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Magnetic Field Based Odometry: Basic idea

By measuring how the shape of the local magnetic field varies the pose change of the
array can be estimated.

Field measurements at time instant: k Field measurements at time instant: k + 1

Pose change: xk+1

Two approaches two estimate the pose change:

• Differential equation based magnetic field odometry

• Model based magnetic field odometry



Differential Equation Based Magnetic Field
Odometry



Diff. Eq. Based Magnetic Field Odometry: Dorveaux et al.

• The change experienced magnetic field is given
by a differential equation:

dm

dt
= m× ω +

dm

dr
v

• Quantities that can be derived from the array:

ω: measured with a gyroscope.
m: directly available from the array.
dm
dr : approximated using numerical derivatives.
dm
dt : approximated using numerical derivative.

• The speed v can be solved for.

C
u
rt
es
y:

E
ri
c
D
or
ve
a
u
x



Diff. Eq. Based Magnetic Odometry: Properties

• Requires gyroscope measurements.

• The numerical derivatives does not take the measurement noise into
consideration. ⇒ Sensitive to measurement noise in magnetometers and
gyroscope.

• Resulting v is in body frame!

• Practical results are promising.
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INS Integration: Zmitri et al.

• Continues Dorveaux’s work.

• An intricate extended Kalman filter (EKF) and machine learning
to solve the magnetic differential equation.

• INS drift theoretically reduced from cubic to linear in time.
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Model Based Magnetic-Field Odometry



An Optical Flow Point of View

Optical Flow Follow points between two
visual images.

Magnetic field strength

PositionDisplacement: x

dd

{y(i)
0 }Ni=1

Array measurements
{y(i)

1 }Ni=1 sampled at
time instant t1.

“Magnetic Flow”
Follow magnetic changes between two
magnetic-field “images” and use a

magnetic-field model to interpolate between
the sparse measurement points.



Model Based Approach: General Idea



Model Based Approach: Key Questions

Key questions:
• How to choose the modelMk(r; θ) and train it?
• How to use the predicted field to estimate the pose change?



Magnetic field properties and modeling

Maxwell’s equations (in vacuum, no charges or currents):

∇ · E = 0 ∇× E = −∂M
∂t

∇ ·M = 0 ∇×M = µ0ε0
∂E

∂t
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Observations:

• The magnetic field is divergence free: ∇ ·M = 0

• In a static electric field, the magnetic field is curl free: ∇×M = 0

=⇒ A modelM(r; θ) (θ = model parameters) of the magnetic-field should (preferably)
fulfill this property. Examples of models that can be designed to have these properties
are: sum of dipoles, polynomial, Gaussian processes, and neural networks.



Polynomial Model: General Case

• Use 3 independent polynomials to describe the magnetic field in
the 3 directions.

• Number of parameters needed for a degree ℓ field model:
dim(θ) = 3 · (ℓ+3)(ℓ+2)(ℓ+1)

6 .

Example:
Field model consisting of three quadratic polynomials

M(r; θ) =

rTC2
x r + C1

x r + C0
x

rTC2
y r + C1

y r + C0
y

rTC2
z r + C1

z r + C0
z
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• θ = {C2
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0
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0
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1
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0
z }

• dim(θ) = 30



Polynomial Model: Curl-free Case

• Fields generated from potentials are always curl free.

• Model the magnetic field in terms of its magnetic potential
φ(r; θ) : R3 7→ R.
• Number of parameters needed for a degree ℓ field model (degree

(ℓ+ 1) potential): dim(θ) = (ℓ+4)(ℓ+3)(ℓ+2)
6 − 1.

Example :
The underlying potential is a cubic polynomial defined by h(r)θ.

M(r; θ) = ∇r φ(r; θ)︸ ︷︷ ︸
potential

= ∇r h(r)θ︸ ︷︷ ︸
poly.

= A(r)θ

• Number of parameters: dim(θ) = 19



Polynomial Model: Divergence- & Curl-free Case

• Divergence-free implies that ∇r · M(r; θ) = 0.

• For a polynomial model this is a linear constrain in θ:

∇r · M(r; θ) = ∇r ·A(r)θ = Bθ = 0

• The number of linear constrains are K = (ℓ+2)(ℓ+1)ℓ
6 .

• θ must reside in the null space of B. ⇒ New par. θ = B⊥θl,
B⊥ = null(B).

• dim(θl) = dim(θ)−K = ℓ2 + 4ℓ+ 3.

Example :
The underlying potential is a cubic polynomial in r.

M(r; θl) = Φ(r)θl Φ(r) ≜ ∇rh(r) null
(
∇r·(∇rh(r))

)
dim(θl) = 15



Polynomial Model Parameter Estimation (Training/Learning)

• Estimation (learning) of the model parameters is given by

θ̂l =

(
L∑
i=1

Φ⊤(d(i))Φ(d(i))

)−1 L∑
i=1

Φ⊤(d(i))y
(i)
k .

• The cross-covariance of the two estimates M̂k(r
(i)) and M̂k(r

(j)) is given by

Σ
(i,j)

M̂
= σ̂2e Φ(r

(i))

(
L∑
i=1

Φ⊤(d(i))Φ(d(i))

)−1

Φ⊤(r(j))

where

σ̂2e =
1

3L

L∑
i=1

∥y(i)k − Φ(d(i))θ̂l∥2.



Gaussian Processes (GPs)

• Stochastic process, such that every finite collection of those
random variables has a multivariate normal distribution.

• Commonly used for non-parametric function approximation, i.e.,
m(r) ∼ GP(µ(r), κ(r, r′)).
• The kernel function κ(r, r′) describes the correlation between
input r and r′; the mean is described by µ(r).
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GP Model: Curl-free Case

• The magnetic field can be modeled as a GP, in its basic form

M(r; θ) = GP(0, κB(r, r′)) (Mean has been marginalized)

• A curlfree field can be enforced with an appropriate kernel choice, e.g.:

κB(r, r
′) = σ2linI3 + σ2fe

− ∥r−r′∥2

2ℓ2 ·
(
(r − r′)(r − r′)⊤

ℓ2
+
(
2− ∥r − r

′∥2
ℓ2

)
I3

)
As with polynomial model case, model the potential as a GP to get a curl-free field.
• The hyper parameters represent freedom to vary (σ2lin and σ2f ) and the length scale

of the variations (ℓ).

Can be optimize in an outer loop.
Can be picked based on physical insight.



GP Model: Divergence- & Curl-free Case

• Add magnetization η(r), which is known to be 0 in air, to the GP model.

• The resulting GP:(
M(r; θ)
η(r)

)
= GP

((
0
0

)
,

(
κB(r, r

′) κB(r, r
′)

κB(r, r
′) κB(r, r

′) + κH(r, r′)

))

κH(r, r′) = σ2linI3 + σ2fe
− ∥r−r′∥2

2ℓ2 ·
(
I3 −

(r − r′)(r − r′)⊤
ℓ2

)
.

• Make virtual measurements to enforce η(r) = 0.

• Additional complexity seems to pay of in practice.



Modelling the magnetic field

Gaussian process models: Estimate a function f(x) from observations and prior
knowledge about the shape of the function.



How To Estimate The Pose Change?

• Measurement model with prefect magnetic field model

yk+1 = h(xk+1;Mk(r)) + ek+1

where xk+1 = pose change,Mk(r) = mag. field model, and ek+1 = meas. error
with covariance Cov(ek) = Σek .

• If M̂k(r) is unbiased and the model error small, then

yk+1 ≈ h(xk+1;M̂k(r)) + εk+1

where

Σεk ≜ Cov(εk) = ΣM̂k−1
(xk)︸ ︷︷ ︸

additional uncertainty due to model errors

+ Σek︸︷︷︸
uncertainty due to measurement errors

• Least squares pose change estimate

x̂k+1 = argmin
x

V (x) V (x) = ∥yk+1 − h(x;M̂k(r))∥2Σ−1
εk+1

(x)
.



Results



Scaled Experiments

Proof-of-concept experiment

• Controlled linear translation

• Scaled down, realistic field

• Proposed polynomial based
method works well
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Results: Full Scale Experiment (1/3)
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Results: Full Scale Experiment (2/3)
Aims

• Judge the feasibility of the proposed
method under realistic conditions

• Compare polynomial and GP model
assumption

Trajectory 2

• Motion out of the plane

• Displacement: 100mm
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Results: Full Scale Experiment (3/3)
Trajectory 3

• Motion out of the plane + rotations

• Displacement: 100mm

• Rotation: 3 ◦
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Conclusions

• Good est. accuracy at high, but realistic,
SNR values.

• Poly. model simpler and more accurate.
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Magnetic Odometry Aided INS



Magnetic Odometry Aided INS

• Inertial navigation systems (INSs)
inherently drift over time.

• Speed/displacement information can
limit the drift.

• The proposed estimated pose change
comes with uncertainty information,
making it perfect for INS integration.

• Use a filter (e.g., extended Kalman
filter (EKF)), compensate the predicted
displacement based on the magnetic
measurements.



Loose Versus Tight Integration

Loose INS integration

• Pose change estimates used as
measurements for the filter in the INS
aiding.

• Can keep existing INS aiding filter
structures.

• Typically makes the system less robust.

Tight INS integration

• Raw magnetometer data used as
measurements for the filter in the INS
aiding.

• New INS aiding filter structures must be
developed.

• Typically makes the system more robust.



Tight Integration Using A Polynomial Model: Basic Idea (1/2)

1. Note that the parameters change due to the shift of the center of a polynomial
model

g(r; θ, r0) =

p∑
i=0

θi(r − r0)i ⇔ g(r; θ′, r0 +∆r)

p∑
i=0

θ′i(r − r0 −∆r)i

can be described by a linear transformation of the form θ′ = A(∆r)θ.

2. Describe the local magnetic-field center at the origin of the array using a polynomial
model and add the coefficients to the navigation state-vector xk.

xext
k+1 ≜

[
xk
θk+1

]
= f ext(xext

k , uk, w
ext
k ) =


f(xk, uk, wk)︸ ︷︷ ︸

INS nav. eq

A(xk, uk)θk + wθ
k︸ ︷︷ ︸

poly. coeff. update





Tight Integration Using A Polynomial Model: Basic Idea (2/2)

3. Create measurement equation using the polynomial model equation

ymag

k =

0 . . . Φ(d(1))

0 . . .
...

0 . . . Φ(d(M))

xext
k

4. Estimate the state xext
k with the your favourite filter...
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Preliminary Results: Tightly Integrated Magnetic-Field Aided INS
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Algorithm 1 ESKF for magnetic-aided INS
Input: {ũk, yk}Nk=0

Output: {x̂k}Nk=1

Initialisation : estimated state x̂0, covariance matrix P0|0
For k = 0 to N − 1 do

State propagation
x̂k+1 ← f(x̂k, ũk, 0)
Error state uncertainty propagation
Pk+1|k ← F ∗Pk|kF ∗⊤ +G∗QkG∗⊤

Error state observation
zk+1 ← yk+1 −Hx̂k+1

Sk+1 ← HPk+1|kH⊤ +Rk+1

Kk+1 ← Pk+1|kH⊤S−1
k+1

δx̂k+1 ← Kk+1zk+1

Pk+1|k+1 ← Pk+1|k −Kk+1HPk+1|k
Correct estimated state
x̂k+1 ← x̂k+1 ⊕ δx̂k+1

ESKF reset
δx̂k+1 ← 0

end for

IV. EXPERIMENTAL RESULTS

The experiments were conducted in the Visionen (Fig. 1)
at Linköping University. Measurements were collected using
the customized sensor board (Fig. 2). In each experiment, the
sensor board was sitting still on the ground for a few seconds
and then picked up by a person. The person held that sensor
board in hand (parallel to the ground or tilted) and started to
walk in squares for a few laps before he put the board back on
the ground. In total, 8 datasets were recorded, and the detailed
information is summarized in Table I.

To simulate the GNSS-denied situation, positions measured
by the Qualysis motion capture system1 were first used to aid
a stand-alone INS and a magnetic-aided INS for 60 seconds,
then both systems operated without position aiding for the
rest trajectory. The method proposed in [16] was also selected
for comparison purposes. To make a fair comparison, the
sensor configuration (the left in Fig. 5) was kept the same
for both algorithms, and the performance during the non-
position-aiding part of the trajectory was evaluated. In addition
to that, MAGAINS was also tested with rectangular sensor
configuration (the right in Fig. 5). The parameters used by the
algorithms and the corresponding results are summarized in
Table II and Table III, respectively.

The estimated trajectories given by the three algorithms and
the corresponding positional error are plotted in Fig. 6.

To help readers better understand the full potential of
MAGAINS and the magnetic field in which the experiments
were conducted, the trajectory given by MAGAINS (Config.
rect.) and the magnetic field magnitude are displayed in Fig. 7.
It can be seen that the magnitude variance along the trajectory
is more than 8 µT and the gradient varies at different positions.
MAGAINS is capable of producing a trajectory that is very
close to the reference, and more importantly, the positional
error is consistently reflected by the uncertainty.

1https://www.qualisys.com/
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Fig. 5. Top view of the sensor configurations used in the experiments.
Left: Configuration cross. Right: Configuration rectangular.

Fig. 6. Comparison of the stand-alone INS, method 1, and MAGAINS
(Dataset2).

Fig. 7. Illustration of the estimated and the true trajectory and magnetic
field magnitude along the trajectory. The color along the trajectory
represents the magnetic field strength.

I am going to include:
• Figure 6- Overlay the output trajectories from the stand-

alone INS, method 1, and MAGAINS

V. CONCLUSION AND FUTURE WORK

In conclusion, I am going to include:

• Verified on experimental data from (repeated) indoor trajectories.
• Sub-meter accuracy observed after 3+min.
• Drastically reduced drift compared to pure dead reckoning



Summary



Summary

• Odometrics can be estimated from
measuring the natural magnetic field.

• The field variations limits the performance.

• The odometric measurements are suitable
as supporting measurements in INS systems

• Challenges:

The size of the array.
Quality and calibration of
magnetometers.
How to best integrate this into a
SLAM solution?



Gustaf Hendeby, gustaf.hendeby@liu.se

Manon Kok, M.Kok-1@tudelft.nl

Isaac Skog, isaac.skog@liu.se

www.liu.se

gustaf.hendeby@liu.se
M.Kok-1@tudelft.nl
isaac.skog@liu.se
www.liu.se

	Differential Equation Based Magnetic Field Odometry
	Model Based Magnetic-Field Odometry
	Results
	Magnetic Odometry Aided INS
	Summary

