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Magnetic Field Based Odometry: Basic idea

By measuring how the shape of the local magnetic field varies the pose change of the
array can be estimated.

Field measurements at time instant: k Field measurements at time instant: k+ 1

Pose change: 1) | ee———

Two approaches two estimate the pose change:
e Differential equation based magnetic field odometry

® Model based magnetic field odometry
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Differential Equation Based Magnetic Field

Odometry
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Diff. Eq. Based Magnetic Field Odometry: Dorveaux et al.

® The change experienced magnetic field is given
by a differential equation:

dm ot m
— =mXw+—0
dt dr

® Quantities that can be derived from the array:

m w: measured with a gyroscope.

m m: directly available from the array.
dm

m o approximated using numerical derivatives.
T

am

m 70 approximated using numerical derivative.

® The speed v can be solved for.
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Curtesy: Eric Dorveaux
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Diff. Eq.

Based Magnetic Odometry: Properties

Requires gyroscope measurements.

The numerical derivatives does not take the measurement noise into
consideration. = Sensitive to measurement noise in magnetometers and

gyroscope.
Resulting v is in body frame!

Practical results are promising.
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INS Integration: Zmitri et al.

® Continues Dorveaux's work.

® An intricate extended Kalman filter (EKF) and machine learning
to solve the magnetic differential equation.

® INS drift theoretically reduced from cubic to linear in time.
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Model Based Magnetic-Field Odometry
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An Optical Flow Point of View

Magnetic field strength

Array measurements
{yi”}Y, sampled at
time instant ;.

Displacement: z Position

“Magnetic Flow”

Follow magnetic changes between two
magnetic-field “images” and use a
magnetic-field model to interpolate between

Optical Flow Follow points between two the sparse measurement points.
visual images.
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Model Based Approach: General Idea

Image #1

Measurements:
PNONY Learn local
ye = s magnetic-field
model

Movement of array

Model:
Mi(r)

f

Array geometry:

Dy £ {d)}e,

Predict field

Image #2

Predictions:

Vit1, B 2 Cov(§rr1) -

Optimizer

Loss function

J(AGAT) 2 lyipr — Fiallz
+ C(Ag, Ar)

Possible prior from
inertial navigation
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Model Based Approach: Key Questions

Movement of array

I
Measurements: t Model: Predictions: . Yk+1
PNONY Learn local My (r) Fiins T 2 Cov(gn :
ye & {n)ha 1> magnetic-field Predict field + (L2220
model
T

Array geometry:

‘[— J(Dg,Ar) 2 g = Va3
imi Aqg, A

& g0 Optimizer + C(Aq,Ar)

e - T

Possible prior from
inertial navigation

Loss function

Key questions:

® How to choose the model M(r; ) and train it?
® How to use the predicted field to estimate the pose change?
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Magnetic field properties and modeling

Maxwell’s equations (in vacuum, no charges or currents):

V'EZO VXE:_L :u. ............ T “ <
ot : B3

oF | # g

V-M=0 V x M = - £
X Ho€o ot ,: ’. n

Observations:
® The magnetic field is divergence free: V- M =0

® In a static electric field, the magnetic field is curl free: V. x M =0

= A model M(r;68) (6 = model parameters) of the magnetic-field should (preferably)
fulfill this property. Examples of models that can be designed to have these properties
are: sum of dipoles, polynomial, Gaussian processes, and neural networks.
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Polynomial Model: General Case

® Use 3 independent polynomials to describe the magnetic field in
the 3 directions.

® Number of parameters needed for a degree ¢ field model:
dim(0) = 3 - w.

Example:
Field model consisting of three quadratic polynomials

TTCE?” + Clr 42
M(r;0) = TTC}?T + Cylr + C’S
TTCZ2’I“ + Czlr + C’S

* 0={C; CL,C,Cy,C),C),CF,Cp, O}
e dim(6) = 30
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Polynomial Model: Curl-free Case

® Fields generated from potentials are always curl free.

® Model the magnetic field in terms of its magnetic potential
o(r;0): R3—R.

® Number of parameters needed for a degree ¢ field model (degree
(¢ + 1) potential): dim(#) = %63)(“2) -1

Example :
The underlying potential is a cubic polynomial defined by h(r)6.

M(r;0) =V, p(r;0) =V, h(r)d = A(r)0
—— —

potential poly.

® Number of parameters: dim(6) = 19
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Polynomial Model: Divergence- & Curl-free Case

® Divergence-free implies that V, - M(r;6) = 0.

® For a polynomial model this is a linear constrain in 0:

YV,  M(r;0) =V, - A(r)f = B =0

® The number of linear constrains are K = W.
® ¢ must reside in the null space of B. = New par. § = B4,

Bt = null(B).
e dim(f;) = dim(f) — K = (> + 40 + 3.

Example :
The underlying potential is a cubic polynomial in 7.

M(r;0;) = ®(r)6, ®(r) £ V,h(r) null(V,-(V,h(r))) dim(6;) = 15
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Polynomial Model Parameter Estimation (Training/Learning)

¢ Estimation (learning) of the model parameters is given by

L
0, = (Z @T(d@))@(d(i))) pECA
=1 i=1

® The cross-covariance of the two estimates Mk(r(i)) and /\;lk(r(j)) is given by

I -1
z%lﬂ) = 52 3(r) (Z @T(d(l))q)(d(l))> o7 (+0)
=1
where
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Gaussian Processes (GPs)
® Stochastic process, such that every finite collection of those

random variables has a multivariate normal distribution.
® Commonly used for non-parametric function approximation, i.e.,

m(r) ~ GP(u(r), x(r,r")).
® The kernel function x(r,r’) describes the correlation between

input r and 7’; the mean is described by pu(r).
T T

Example:
T T
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GP Model: Curl-free Case
® The magnetic field can be modeled as a GP, in its basic form
M(r;0) = GP(0, kp(r,7")) (Mean has been marginalized)

® A curlfree field can be enforced with an appropriate kernel choice, e.g.:

_ =y r—r)r—7r)" r—1|?
kp(r,r’) = op Is + a]%e 22 . <( )lEQ ) + (2 - 7“ 72 | )Ig)
As with polynomial model case, model the potential as a GP to get a curl-free field.
® The hyper parameters represent freedom to vary (o7, and 0]20) and the length scale
of the variations ().

m Can be optimize in an outer loop.
m Can be picked based on physical insight.
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GP Model: Divergence- & Curl-free Case

® Add magnetization 7(r), which is known to be 0 in air, to the GP model.
® The resulting GP:

() = ((0) (o o rinrt)

_lr=r'? r—r)(r—r)"
kg (r,r) = of I3 + a]%e . ([3 | )é2 ) ) .

® Make virtual measurements to enforce n(r) = 0.

® Additional complexity seems to pay of in practice.
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Modelling the magnetic field

Gaussian process models: Estimate a function f(z) from observations and prior
knowledge about the shape of the function.
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How To Estimate The Pose Change?
® Measurement model with prefect magnetic field model

Ykr1 = h(@pq1; Mi(r)) + exqr

where 111 = pose change, My (r) = mag. field model, and e;1 = meas. error
with covariance Cov(ey) = X, .

® If My, (r) is unbiased and the model error small, then
Ykt ~ h(zpg; Mi(r)) + epp
where
e, £ Cov(eg) = ZMk—l(xk) + e,

additional uncertainty due to model errors ~ Uncertainty due to measurement errors

® | east squares pose change estimate

Tgpr1 = argmin V(x) Vi(z) = |lyp+1 — h(x;Mk(T))H;E;H(LU)'

houios IPIN 2023



houios IPIN 2023



Scaled Experiments

. Estlmatlon €ITOT Versus array poamon using a 2nd order model.
Proof-of-concept experiment 5 U

Mean error of the proposed method

— — Mean error of the direct method

o Controlled linear translation —— 30 bound of the proposed method
—— £3,/tr(Z;") (Cramer-Rao bound)
® Scaled down, realistic field T

® Proposed polynomial based
method works well

Error [mm)|

Ly

50 100 150 200 250
Position [mm]

Field strength versus array position.
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Results: Full Scale Experiment (1/3)

Generated magnetic-field and trajectories

Reference

I. Skog, G. Hendeby, and F. Trulsson. Magnetic-field
based odometry — an optical flow inspired approach. In
Proceedings of Eleventh International Conference on
Indoor Positioning and Indoor Navigation, Lloret de Mar,
Spain, Nov. 29-Dec. 2 2021 185 269 353 437 52.1

Magnitude [pT]
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Results: Full Scale Experiment
Aims
® Judge the feasibility of the proposed
method under realistic conditions

® Compare polynomial and GP model
assumption

Trajectory 2
® Motion out of the plane
® Displacement: 100 mm

Signal-to-noise ratio

(2/3)

60 T T : . .

SNR [dB]

RMSE [mm]

RMSE of position change estimates

+s RMSE{Ap,} polynomial model

Tr{Za,.} polynomial model

= = = RMSE{Ap;} Gaussian process model

/Tr{Ss,,} Gaussian process model
3 4 5 6 7 8 9 10

RMSE{A,} polynomial model

/Tr{Ea,.} polynomial model
= = = RMSE{Ad} Gaussian process model

/Tr{Ss, } Gaussian process model

3 4 5 6 7 8 9 10
Time instant & [-]
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Results: Full Scale Experiment (3/3)

Trajectory 3
® Motion out of the plane + rotations
® Displacement: 100 mm

® Rotation: 3°

Signal-to-noise ratio

SNR [dB]

20 '
10 20 30 40 50 60

Conclusions
® Good est. accuracy at high, but realistic,
SNR values.

® Poly. model simpler and more accurate.

RMSE [mm]

RMSE of position change estimates

.......... RMSE{Apy} polynomial model

/Tr{E,.] polynomial model

= = = RMSE{Ap;} Gaussian process model
+/Tr{Z4,,} Gaussian process model

10 20 30 40 50 60
RMSE of ori i 1 estimates

.......... }‘IMSE(A@) ‘polynomia_l m‘odcl ‘ ‘
/Tr{Ea, } polynomial model

= = = RMSE{Ag} Gaussian process model

/Tr{Ea, } Gaussian process model

10 20 30 40 50 60
Time instant & [-]
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Magnetic Odometry Aided INS
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Magnetic Odometry Aided INS

RMS horizontal position error

® Inertial navigation systems (INSs) 10
inherently drift over time. Inertial navigation
® Speed/displacement information can 8
limit the drift. E Inertial navigation
- 6 + motion constraints
® The proposed estimated pose change 2
comes with uncertainty information, = 4} [nertal navigation
making it perfect for INS integration. e Pk
® Use a filter (e.g., extended Kalman 2 CLAeTeeT l‘k‘
filter (EKF)), compensate the predicted SRS PRSI o
displacement based on the magnetic 0300 305 310 315 320 325 330

measurements. Time [s]
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Loose Versus Tight Integration

Loose INS integration
® Pose change estimates used as
measurements for the filter in the INS
aiding.
® Can keep existing INS aiding filter
structures.

® Typically makes the system /ess robust.

Tight INS integration

® Raw magnetometer data used as
measurements for the filter in the INS
aiding.

® New INS aiding filter structures must be
developed.

® Typically makes the system more robust.
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Tight Integration Using A Polynomial Model: Basic Idea (1/2)

1. Note that the parameters change due to the shift of the center of a polynomial
model

P P
g(r;0,m¢) = Z O;(r —ro)' = g(r;0,ro + A7) Z 0i(r —ro — Ar)?
=0 i=0
can be described by a linear transformation of the form 6’ = A(Ar)6.

2. Describe the local magnetic-field center at the origin of the array using a polynomial
model and add the coefficients to the navigation state-vector xy.

[ @k, ug, wy)
—_—

Tk INS nav. e
$ext 1 é — feXt(.erXt g, wext) — q 0
ket (91c+1 ko TR Tk A(l‘k, uk)ek + wy,

poly. coeff. update
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Tight Integration Using A Polynomial Model: Basic Idea (2/2)

3. Create measurement equation using the polynomial model equation

mag ___

Yp =

o o O
S

4. Estimate the state z3* with the your favourite filter...

References

® C. Huang, G. Hendeby, and I. Skog. A tightly-integrated magnetic-field aided inertial
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Preliminary Results: Tightly Integrated Magnetic-Field Aided INS

Estimated trajectory
True trajecotry

W Start point

© End point
——95% confidence interval

x [m]
® Verified on experimental data from (repeated) indoor trajectories.

® Sub-meter accuracy observed after 3+ min.
® Drastically reduced drift compared to pure dead reckoning
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Summary

Movement of array

Model: Predicti . Yi+1
PYRONYS Learn local My(r) Fiet, B2 Cov(§art) -
e & e » magnetic-field > Predict field et H
model Loss function
T T

T
Array geometry:

J(AGAr) 2 lyksr — Frar[E
Optimizer + Qlanan)

Dy 2 {d)}E, T
Possible prior from

inertial navigation

® QOdometrics can be estimated from e Challenges:
measuring the natural magnetic field. m The size of the array.
® The field variations limits the performance. = Quality and calibration of
. . magnetometers.
® The odometric measurements are suitable . .
. . m How to best integrate this into a
as supporting measurements in INS systems

SLAM solution?
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