Magnetic-Field Based Odometry

Gustaf Hendeby, gustaf.hendeby@liu.se Manon Kok, M.Kok-1@tudelft.nl Isaac Skog, isaac.skog@liu.se

Magnetic Field Based Odometry: Basic idea

By measuring how the shape of the local magnetic field varies the pose change of the array can be estimated.

Two approaches two estimate the pose change:

• Differential equation based magnetic field odometry

IPIN 2023

• Model based magnetic field odometry

Differential Equation Based Magnetic Field Odometry

Diff. Eq. Based Magnetic Field Odometry: Dorveaux et al.

• The change experienced magnetic field is given by a differential equation:

$$\frac{dm}{dt} = m \times \omega + \frac{dm}{dr}v$$

- Quantities that can be derived from the array:
 - ω : measured with a gyroscope.
 - m: directly available from the array.
 - $\frac{dm}{dr}$: approximated using numerical derivatives.
 - $\frac{dm}{dt}$: approximated using numerical derivative.
- The speed v can be solved for.

Diff. Eq. Based Magnetic Odometry: Properties

- Requires gyroscope measurements.
- The numerical derivatives does not take the measurement noise into consideration. ⇒ Sensitive to measurement noise in magnetometers and gyroscope.
- Resulting v is in body frame!
- Practical results are promising.

References

E. Dorveaux. Magneto-inertial navigation: principles and application to an indoor pedometer. PhD thesis, Paris Institute of Technology, 2011.

IPIN 2023

E. Dorveaux, T. Boudot, M. Hillion, and N. Petit. Combining inertial measurements and distributed magnetometry for motion estimation. In *Proc. of American Control Conf.*, San Francisco, CA, June 2011.

E. Dorveaux and N. Petit. Presentation of a magneto-inertial positioning system: navigating through magnetic disturbances. In Int. Conf. on Indoor Positioning and Indoor Navigation (IPIN), Guimaraes, Portugal, Sept. 2011.

INS Integration: Zmitri et al.

- Continues Dorveaux's work.
- An intricate *extended Kalman filter* (EKF) and machine learning to solve the magnetic differential equation.
- INS drift theoretically reduced from cubic to linear in time.

References

M. Zmitri, H. Fourati, and C. Prieur. Improving inertial velocity estimation through magnetic field gradient-based extended Kalman filter. In Int. Conf. on Indoor Positioning and Indoor Navigation (IPIN), Pisa, Italy, Oct. 2019.

M. Zmitri, H. Fourati, and C. Prieur. Magnetic field gradient-based EKF for velocity estimation in indoor navigation. Sensors, 20(20), 2020.

M. Zmitri, H. Fourati, and C. Prieur. BiLSTM network-based extended kalman filter for magnetic field gradient aided indoor navigation. *IEEE Sensors Journal*, 22(6):4781–4789, 2022.

R. Neymann, A. Berthou, J.-F. Jourdas, H. Lhachemi, C. Prieur, and A. Girard. Magneto-inertial dead-reckoning navigation with walk dynamic model in indoor environment. In *Proceedings of Thirtheens International Conference on Indoor Positioning and Indoor Navigation*, Nuremberg, German, Sept. 2023.

Model Based Magnetic-Field Odometry

An Optical Flow Point of View

Optical Flow Follow points between two visual images.

"Magnetic Flow"

Follow magnetic changes between two magnetic-field "images" and use a magnetic-field model to interpolate between the sparse measurement points.

Model Based Approach: General Idea

Model Based Approach: Key Questions

Key questions:

- How to choose the model $\mathcal{M}_k(r; \theta)$ and train it?
- How to use the predicted field to estimate the pose change?

Magnetic field properties and modeling

Maxwell's equations (in vacuum, no charges or currents):

$$\nabla \cdot E = 0 \qquad \nabla \times E = -\frac{\partial M}{\partial t}$$
$$\nabla \cdot M = 0 \qquad \nabla \times M = \mu_0 \varepsilon_0 \frac{\partial E}{\partial t}$$

IPIN 2023

Observations:

- The magnetic field is divergence free: $\nabla\cdot M=0$
- In a static electric field, the magnetic field is curl free: $\nabla \times M = 0$

 \implies A model $\mathcal{M}(r;\theta)$ (θ = model parameters) of the magnetic-field should (preferably) fulfill this property. Examples of models that can be designed to have these properties are: sum of dipoles, **polynomial**, **Gaussian processes**, and neural networks.

Polynomial Model: General Case

- Use 3 independent polynomials to describe the magnetic field in the 3 directions.
- Number of parameters needed for a degree ℓ field model: $\dim(\theta) = 3 \cdot \frac{(\ell+3)(\ell+2)(\ell+1)}{6}.$

Example:

Field model consisting of three quadratic polynomials

$$\mathcal{M}(r;\theta) = \begin{pmatrix} r^T C_{\mathsf{x}}^2 r + C_{\mathsf{x}}^1 r + C_{\mathsf{x}}^0 \\ r^T C_{\mathsf{y}}^2 r + C_{\mathsf{y}}^1 r + C_{\mathsf{y}}^0 \\ r^T C_{\mathsf{z}}^2 r + C_{\mathsf{z}}^1 r + C_{\mathsf{z}}^0 \end{pmatrix}$$

- $\theta = \{C_{\mathsf{x}}^2, C_{\mathsf{x}}^1, C_{\mathsf{x}}^0, C_{\mathsf{y}}^2, C_{\mathsf{y}}^1, C_{\mathsf{y}}^0, C_{\mathsf{z}}^2, C_{\mathsf{z}}^1, C_{\mathsf{z}}^0\}$
- $\dim(\theta) = 30$

Polynomial Model: Curl-free Case

- Fields generated from potentials are always curl free.
- Model the magnetic field in terms of its magnetic potential $\varphi(r; \theta)$: $\mathbb{R}^3 \mapsto \mathbb{R}$.
- Number of parameters needed for a degree ℓ field model (degree $(\ell + 1)$ potential): dim $(\theta) = \frac{(\ell+4)(\ell+3)(\ell+2)}{6} 1$.

Example :

The underlying potential is a cubic polynomial defined by $h(r)\theta$.

$$\mathcal{M}(r;\theta) = \nabla_r \underbrace{\varphi(r;\theta)}_{\text{potential}} = \nabla_r \underbrace{h(r)\theta}_{\text{poly.}} = A(r)\theta$$

IPIN 2023

• Number of parameters: $\dim(\theta) = 19$

Polynomial Model: Divergence- & Curl-free Case

- Divergence-free implies that $\nabla_r \cdot \mathcal{M}(r; \theta) = 0.$
- For a polynomial model this is a linear constrain in θ :

$$\nabla_r \cdot \mathcal{M}(r;\theta) = \nabla_r \cdot A(r)\theta = B\theta = 0$$

- The number of linear constrains are $K = \frac{(\ell+2)(\ell+1)\ell}{6}$.
- θ must reside in the null space of $B_{\cdot} \Rightarrow \text{New par.} \ \theta = B^{\perp} \theta_l$, $B^{\perp} = \text{null}(B)$.
- $\dim(\theta_l) = \dim(\theta) K = \ell^2 + 4\ell + 3.$

Example :

The underlying potential is a cubic polynomial in r.

$$\mathcal{M}(r;\theta_l) = \Phi(r)\theta_l \qquad \Phi(r) \triangleq \nabla_r h(r) \operatorname{\mathsf{null}} \left(\nabla_r \cdot (\nabla_r h(r)) \right) \qquad \dim(\theta_l) = 15$$

Polynomial Model Parameter Estimation (Training/Learning)

• Estimation (learning) of the model parameters is given by

$$\hat{\theta}_l = \left(\sum_{i=1}^L \Phi^\top(d^{(i)}) \Phi(d^{(i)})\right)^{-1} \sum_{i=1}^L \Phi^\top(d^{(i)}) y_k^{(i)}.$$

• The cross-covariance of the two estimates $\hat{\mathcal{M}}_k(r^{(i)})$ and $\hat{\mathcal{M}}_k(r^{(j)})$ is given by

$$\Sigma_{\hat{\mathcal{M}}}^{(i,j)} = \hat{\sigma}_e^2 \, \Phi(r^{(i)}) \left(\sum_{i=1}^L \Phi^\top(d^{(i)}) \Phi(d^{(i)}) \right)^{-1} \Phi^\top(r^{(j)})$$

where

$$\hat{\sigma}_e^2 = \frac{1}{3L} \sum_{i=1}^L \|y_k^{(i)} - \Phi(d^{(i)})\hat{\theta}_l\|^2.$$

Gaussian Processes (GPs)

- Stochastic process, such that every finite collection of those random variables has a multivariate normal distribution.
- Commonly used for non-parametric function approximation, i.e., $m(r) \sim \mathcal{GP}(\mu(r), \kappa(r, r')).$
- The kernel function $\kappa(r, r')$ describes the correlation between input r and r'; the mean is described by $\mu(r)$.

Gaussian Processes (GPs)

- Stochastic process, such that every finite collection of those random variables has a multivariate normal distribution.
- Commonly used for non-parametric function approximation, i.e., $m(r) \sim \mathcal{GP}(\mu(r), \kappa(r, r')).$
- The kernel function $\kappa(r, r')$ describes the correlation between input r and r'; the mean is described by $\mu(r)$.

Gaussian Processes (GPs)

- Stochastic process, such that every finite collection of those random variables has a multivariate normal distribution.
- Commonly used for non-parametric function approximation, i.e., $m(r) \sim \mathcal{GP}(\mu(r), \kappa(r, r')).$
- The kernel function $\kappa(r, r')$ describes the correlation between input r and r'; the mean is described by $\mu(r)$.

GP Model: Curl-free Case

• The magnetic field can be modeled as a GP, in its basic form

 $\mathcal{M}(r;\theta) = \mathcal{GP}(0,\kappa_B(r,r'))$ (Mean has been marginalized)

• A curlfree field can be enforced with an appropriate kernel choice, e.g.:

$$\kappa_B(r,r') = \sigma_{\text{lin}}^2 I_3 + \sigma_f^2 e^{-\frac{\|r-r'\|^2}{2\ell^2}} \cdot \left(\frac{(r-r')(r-r')^{\top}}{\ell^2} + \left(2 - \frac{\|r-r'\|^2}{\ell^2}\right) I_3\right)$$

As with polynomial model case, model the potential as a GP to get a curl-free field.

- The hyper parameters represent freedom to vary (σ_{lin}^2 and σ_f^2) and the length scale of the variations (ℓ).
 - Can be optimize in an outer loop.
 - Can be picked based on physical insight.

GP Model: Divergence- & Curl-free Case

- Add magnetization $\eta(r),$ which is known to be 0 in air, to the GP model.
- The resulting GP:

$$\begin{pmatrix} \mathcal{M}(r;\theta)\\ \eta(r) \end{pmatrix} = \mathcal{GP}\left(\begin{pmatrix} 0\\ 0 \end{pmatrix}, \begin{pmatrix} \kappa_B(r,r') & \kappa_B(r,r')\\ \kappa_B(r,r') & \kappa_B(r,r') + \kappa_H(r,r') \end{pmatrix}\right)$$

$$\kappa_H(r,r') = \sigma_{\ln}^2 I_3 + \sigma_f^2 e^{-\frac{\|r-r'\|^2}{2\ell^2}} \cdot \left(I_3 - \frac{(r-r')(r-r')^{\top}}{\ell^2}\right).$$

- Make virtual measurements to enforce $\eta(r) = 0$.
- Additional complexity seems to pay of in practice.

Modelling the magnetic field

Gaussian process models: Estimate a function f(x) from observations and prior knowledge about the shape of the function.

How To Estimate The Pose Change?

• Measurement model with prefect magnetic field model

$$y_{k+1} = h(x_{k+1}; \mathcal{M}_k(r)) + e_{k+1}$$

where $x_{k+1} = \text{pose change}$, $\mathcal{M}_k(r) = \text{mag.}$ field model, and $e_{k+1} = \text{meas.}$ error with covariance $\text{Cov}(e_k) = \Sigma_{e_k}$.

• If $\hat{\mathcal{M}}_k(r)$ is unbiased and the model error small, then

$$y_{k+1} \approx h(x_{k+1}; \hat{\mathcal{M}}_k(r)) + \varepsilon_{k+1}$$

where

$$\Sigma_{\varepsilon_k} \triangleq \operatorname{Cov}(\varepsilon_k) = \underbrace{\Sigma_{\hat{\mathcal{M}}_{k-1}}(x_k)}_{\text{additional uncertainty due to model errors}} + \underbrace{\Sigma_{e_k}}_{\text{uncertainty due to measurement errors}}$$

• Least squares pose change estimate

$$\hat{x}_{k+1} = \operatorname*{arg\,min}_{x} V(x) \qquad V(x) = \|y_{k+1} - h(x; \hat{\mathcal{M}}_k(r))\|^2_{\Sigma^{-1}_{\varepsilon_{k+1}}(x)}.$$

Scaled Experiments

Proof-of-concept experiment

- Controlled linear translation
- Scaled down, realistic field
- Proposed polynomial based method works well

Reference

I. Skog, G. Hendeby, and F. Gustafsson. Magnetic odometry — a model-based approach using a sensor array. In *Proceedings of 21th IEEE International Conference on Information Fusion*, Cambridge, UK, July 10–13 2018

Results: Full Scale Experiment (1/3)

Reference

I. Skog, G. Hendeby, and F. Trulsson. Magnetic-field based odometry — an optical flow inspired approach. In Proceedings of Eleventh International Conference on Indoor Positioning and Indoor Navigation, Lloret de Mar, Spain, Nov. 29–Dec. 2 2021

Results: Full Scale Experiment (2/3)

Aims

- Judge the feasibility of the proposed method under realistic conditions
- Compare polynomial and GP model assumption

Trajectory 2

- Motion out of the plane
- Displacement: 100 mm

Results: Full Scale Experiment (3/3) Trajectory 3

- Motion out of the plane + rotations
- Displacement: 100 mm
- Rotation: 3°

Conclusions

- Good est. accuracy at high, but realistic, SNR values.
- Poly. model simpler and more accurate.

Magnetic Odometry Aided INS

Magnetic Odometry Aided INS

- Inertial navigation systems (INSs) inherently drift over time.
- Speed/displacement information can limit the drift.
- The proposed estimated pose change comes with uncertainty information, making it perfect for INS integration.
- Use a filter (*e.g.*, extended Kalman filter (EKF)), compensate the predicted displacement based on the magnetic measurements.

Loose Versus Tight Integration

Loose INS integration

- Pose change estimates used as measurements for the filter in the INS aiding.
- Can keep existing INS aiding filter structures.
- Typically makes the system *less* robust.

Tight INS integration

- Raw magnetometer data used as measurements for the filter in the INS aiding.
- New INS aiding filter structures must be developed.
- Typically makes the system *more* robust.

Tight Integration Using A Polynomial Model: Basic Idea (1/2)

1. Note that the parameters change due to the shift of the center of a polynomial model

$$g(r;\theta,r_0) = \sum_{i=0}^p \theta_i (r-r_0)^i \quad \Leftrightarrow \quad g(r;\theta',r_0+\Delta r) \sum_{i=0}^p \theta_i' (r-r_0-\Delta r)^i$$

can be described by a linear transformation of the form $\theta' = A(\Delta r) \theta.$

2. Describe the local magnetic-field center at the origin of the array using a polynomial model and add the coefficients to the navigation state-vector x_k .

$$x_{k+1}^{\text{ext}} \triangleq \begin{bmatrix} x_k \\ \theta_{k+1} \end{bmatrix} = f^{\text{ext}}(x_k^{\text{ext}}, u_k, w_k^{\text{ext}}) = \begin{bmatrix} \underbrace{f(x_k, u_k, w_k)}_{\text{INS nav. eq}} \\ \underbrace{A(x_k, u_k)\theta_k + w_k^{\theta}}_{\text{poly. coeff. update}} \end{bmatrix}$$

Tight Integration Using A Polynomial Model: Basic Idea (2/2)

3. Create measurement equation using the polynomial model equation

$$y_k^{\text{mag}} = \begin{bmatrix} 0 & \dots & \Phi(d^{(1)}) \\ 0 & \dots & \vdots \\ 0 & \dots & \Phi(d^{(M)}) \end{bmatrix} x_k^{\text{ext}}$$

4. Estimate the state x_k^{ext} with the your favourite filter...

References

• C. Huang, G. Hendeby, and I. Skog. A tightly-integrated magnetic-field aided inertial navigation system. In *IEEE Int. Conf. on Information Fusion*, Linköping, Sweden, July 2022

Preliminary Results: Tightly Integrated Magnetic-Field Aided INS

- Verified on experimental data from (repeated) indoor trajectories.
- Sub-meter accuracy observed after $3 + \min$.
- Drastically reduced drift compared to pure dead reckoning

Summary

- Odometrics can be estimated from measuring the natural magnetic field.
- The field variations limits the performance.
- The odometric measurements are suitable as supporting measurements in INS systems

- Challenges:
 - The size of the array.
 - Quality and calibration of magnetometers.
 - How to best integrate this into a SLAM solution?

Gustaf Hendeby, gustaf.hendeby@liu.se Manon Kok, M.Kok-1@tudelft.nl Isaac Skog, isaac.skog@liu.se

www.liu.se

