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Abstract

Automatic decision making and pattern recognition under uncertainty are diffi-
cult tasks that are ubiquitous in our everyday life. The systems we design, and
technology we develop, requires us to coherently represent and work with uncer-
tainty in data. Probabilistic models and probabilistic inference gives us a pow-
erful framework for solving this problem. Using this framework, while enticing,
results in difficult-to-compute integrals and probabilities when conditioning on
the observed data. This means we have a need for approximate inference, meth-
ods that solves the problem approximately using a systematic approach. In this
thesis we develop new methods for efficient approximate inference in probabilis-
tic models.

There are generally two approaches to approximate inference, variational meth-
ods and Monte Carlo methods. In Monte Carlo methods we use a large number of
random samples to approximate the integral of interest. With variational meth-
ods, on the other hand, we turn the integration problem into that of an optimiza-
tion problem. We develop algorithms of both types and bridge the gap between
them.

First, we present a self-contained tutorial to the popular sequential Monte Carlo
(smc) class of methods. Next, we propose new algorithms and applications based
on smc for approximate inference in probabilistic graphical models. We derive
nested sequential Monte Carlo, a new algorithm particularly well suited for infer-
ence in a large class of high-dimensional probabilistic models. Then, inspired by
similar ideas we derive interacting particle Markov chain Monte Carlo to make
use of parallelization to speed up approximate inference for universal probabilis-
tic programming languages. After that, we show how we can make use of the re-
jection sampling process when generating gamma distributed random variables
to speed up variational inference. Finally, we bridge the gap between smc and
variational methods by developing variational sequential Monte Carlo, a new flex-
ible family of variational approximations.
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Populärvetenskaplig sammanfattning

Fungerar den nya medicinen som vi har utvecklat? Vilket spel, film eller bok
ska vi rekommendera härnäst? Bör jag investera nu eller bör jag vänta? Dessa är
några exempel på frågor som man kan svara på med hjälp av maskininlärning
(eng. machine learning). Maskininlärning handlar om metoder för att få en dator
att automatiskt lära sig något från insamlad data. Data kan vara lite allt möjligt
som man kan spara på en dator, alltifrån aktuell aktiekurs till vem man känner
på Facebook. Datorn lär sig sen oftast en matematisk modell som beskriver datan.
Med denna matematiska modell kan man: i) studera underliggande strukturer
och mekanismer (t.ex. “hur påverkar tryck och temperatur vädret?”), ii) förutsäga
hur framtida data kan se ut (t.ex. “kommer det regna imorgon?”), och iii) ta beslut
(t.ex. “det är inte troligt att det regnar imorgon, så vi behöver inte ta med ett
paraply”).

Matematiska modeller används överallt inom teknologin och vetenskapens alla
grenar. I många fall byggs modeller baserat på data som är insamlad under osäk-
ra förhållanden eller med en i grunden slumpmässig variation. Dessa förhållan-
den lämpar sig väl för att jobba med sannolikheter, ett matematiskt koncept som
blivit centralt i modern statistik och maskininlärning. Att lära sig och använda
matematiska modeller baserat på sannolikhetsteori kallas för statistisk inferens.
I många tillämpningar är datan vi samlat in för storskalig och modellen vi byggt
för komplicerad för att exakt uträkningar ska vara möjliga. Detta betyder att vi
måste använda och införa systematiska approximationer, vi utför approximativ
inferens.

I denna avhandling studerar vi och utvecklar flera olika metoder för approxi-
mativ inferens med användning inom maskininlärning. Vi presenterar en intro-
duktion till en populär klass av metoder som är speciellt användbara om ens
matematiska modell beskriver data som varierar i tiden, till exempel vädret. Vi
presenterar nya strategier som på flera sätt underlättar och effektiviserar den au-
tomatiska lärande-proccesen så att vi enklare kan hantera storskalig data och
bättre, mer avancerade, modeller.
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Part I

Background





1
Introduction

Data and machine learning are by now an integral part of our everyday lives.
Everytime we conduct a web search, machine learning ensures personalized and
progressively better search results. Watching movies or listening to music? Ma-
chine learning is there to provide you with automatic recommendations on what
to look at or listen to next. Need that sentence translated from English to Swedish?
No problem! Use deep learning-powered machine translation. Machine learning
is having an impact on everything from healthcare to video games. Wherever we
have access to complex data, there is the potential that machine learning can be
useful.

We are creating data at an unprecedented speed, quintillions of bytes every day.
This is way more than any person could ever process in a lifetime. Machine learn-
ing instead uses computers and computer programs to help us make sense of the
data. The increasing scale and complexity requires ever more efficient methods
to process the data effectively.

With this motivation, the research in this thesis focuses on increasing the machine
learning expert’s toolbox and understanding of the tools available. We focus on
stuyding the class of sequential Monte Carlo (smc) methods for use in machine
learning. We introduce the method in a tutorial article, study new applications
within e.g. information theory and graphical models, develop methodological ad-
vances to smc, and connect it to variational methods.

3



4 1 Introduction

1.1 Data and machine learning

We begin by giving some general background to what we mean when we talk
about data and (machine) learning.

1.1.1 Data

Data is arguably the most important ingredient in machine learning. We need
to study data to learn patterns and make predictions. Basically anything that
can be stored or recorded can be considered to be data. Whilst data can have
near arbitrary form, in this thesis we ultimately only consider data that is well-
represented by numbers. To be concrete we provide below a few of the examples
that appear in some form or other in Part II:

Images: By using intensity for grayscale or RGB values for color, we can repre-
sent images using numbers. One example that we study is how machine
learning can be used to generate images. (see Paper G)

Text: We can represent text using e.g. integer values, corresponding to a word’s
location in a dictionary. We study, amongst other things, how we can au-
tomatically categorize and sort documents from just their textual content.
(see Papers C and G)

Brain activity: One common way to represent data from a biological neural net-
work is to use spikes of brain activity, e.g. the number of neurons firing as a
function of time. We study dynamical models for motor cortex neurons in
a macaque monkey. (see Paper H)

Forex: The exchange rate between two currencies is easily represented by a nu-
merical value. We study the volatility, or degree of variation, of the ex-
change rate between the US dollar and various other currencies. (see Pa-
per H)

Precipitation: Average amount of precipitation in a given location during a given
time period can also be represented using numerical values. We use ob-
servations of monthly average precipitation values collected over decades
to detect extended periods of drought in North America and sub-Saharan
Africa. (see Paper D)

To illustrate new methods for machine learning we also make liberal use through-
out this thesis of artificially generated (simulated) data. Sometimes the data may
mimick properties of real data, such as the soil carbon data from Paper E. Other
times, the simulated data is purely artificial and only used to illustrate and pro-
file the properties of the proposed algorithm, such as in Paper B.
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1.1.2 Machine learning

Learning can be thought of as distilling information, or improving performance
at a task, based on data. Machine learning simply means there is a machine (or
computer program) that, with more or less automation, does the actual learn-
ing.

One of the most succesful coherent approaches to machine learning in the pres-
ence of uncertainty is probabilistic machine learning (Ghahramani, 2015). Ran-
dom variables and probabilities are used to relate the data to a mathematical
model. The model includes latent variables, variables that we do not observe di-
rectly but nevertheless are interested in knowing the values of. We make use of
inference to deduce these values based on the model and data. Based on the re-
sults of inference, we can take rational decisions or actions. We illustrate with a
simple example where our data consists of recorded results of a sequence of coin
flips (heads/tails):

Model: The model is a probability distribution describing the relation between
data and (unobserved) latent variables.

Example: The latent variable is the probability of a flip resulting in heads.

Inference: We deduce the value, or range of potential values, for the latent vari-
ables given our observed data.

Example: What is our best guess for the value, or range of likely values, of
the probability of heads?

Decision: Based on the inference result and available choices, we take a rational
decision on the best action.

Example: Is the coin fair enough, probability of heads is close to one half,
or should we use another coin?

Inference typically leads to mathematical equations that we can not write down a
closed-form solution to. This means that we have use for methods that solve the
inference task approximately, so called approximate inference methods.

We return to these subjects in Chapter 2 and Chapter 3, where we expand and
formalize the concepts briefly introduced above.

1.2 Contributions

The main contribution of this thesis is developing new methods for approximate
inference and learning in latent variable models.

This section will elaborate on the contributions, organized by different research
themes. Each theme is introduces and summarized in its own subsection. Fur-
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thermore, the relevant papers to each theme is presented, as well as the author of
this thesis’ contributions to each particular paper.

1.2.1 Elements of sequential Monte Carlo

Sequential Monte Carlo methods are a powerful tool for approximate inference.
The first contribution in Part II of this thesis is a self-contained tutorial article on
smcmethods from a machine learning perspective.

The tutorial has a distinct focus from previously published tutorials on the topic.
It focuses on the smc algorithm’s ability to approximate the final smoothing or
marginal distribution of the latent variable model. These types of methods have
recently seen use within machine learning to everything from improving varia-
tional inference to reinforcement learning.

This tutorial complements Part I, the background for this thesis.

Relevant publications

Paper A:
Christian A. Naesseth, Fredrik Lindsten, and Thomas B. Schön. Ele-
ments of sequential Monte Carlo. Foundations and Trends in Machine
Learning, 2018b. (proposal accepted, manuscript in preparation).

The idea originated from the author of this thesis, and was subsequently refined
in discussion with the co-authors. The majority of the article is written by the
author of this thesis. All examples and code supplied have been implemented
and written by the author of this thesis.

1.2.2 Sequential Monte Carlo for graphical models

A probabilistic graphical model (pgm) is a type of model where the conditional
independencies of the joint probability distribution of the variables are described
by edges in a graph. The graph structure allows for easier and stronger control
on the type of prior information that the user can express. The main limitation of
the pgm is that exact inference is typically intractable and approximate inference
is difficult.

The relevant publications in Part II explores new applications for smc inference
to compute the capacity of two-dimensional information channels. The capacity
of the channel can be expressed as the normalization constant of an undirected
pgm. An example where this is potentially useful is in emerging technology such
as optical data storage. Furthermore, a new way of applying smcmethods specif-
ically suitable for generic pgms is developed and studied. Potential applications
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include sampling from undirected pgms, a notoriously difficult problem, gen-
erating efficient unbiased estimates of normalization constants, and evaluating
model fit.

Relevant publications

Paper B:
Christian A. Naesseth, Fredrik Lindsten, and Thomas B. Schön. Capac-
ity estimation of two-dimensional channels using sequential Monte
Carlo. In IEEE Information Theory Workshop (ITW), pages 431–435,
2014a.

The idea originated from the author of this thesis, and was subsequently refined
in discussion with the co-authors. The majority of the article is written by the
author of this thesis. All empirical studies have been carried out by the author of
this thesis.

Paper C:
Christian A. Naesseth, Fredrik Lindsten, and Thomas B. Schön. Se-
quential Monte Carlo for graphical models. In Advances in Neural
Information Processing Systems (NIPS), pages 1862–1870, 2014b.

The idea originated from Fredrik Lindsten and Thomas B. Schön. The majority of
the article is written by the author of this thesis. All empirical results, apart from
the algorithm implementation for the latent Dirichlet allocation example, are by
the author of this thesis.

Fredrik Lindsten, Adam M. Johansen, Christian A. Naesseth, Brent
Kirkpatrick, Thomas B. Schön, John Aston, and Alexandre Bouchard-
Côté. Divide-and-conquer with sequential Monte Carlo. Journal of
Computational and Graphical Statistics, 26(2):445–458, 2017.

The author of this thesis has made minor contributions to the empirical results
and writing of this paper. Because the author of this thesis has only made minor
contributions to this paper it is not included in Part II.

1.2.3 Nested sequential Monte Carlo

The key design choice in any smc algorithm is without a doubt the proposal dis-
tribution. The locally optimal proposal distribution is the best local proposal
distribution that uses data only in a causal fashion, i.e. only up until the current
iteration. Unfortunately this distribution is typically unavailable and approxima-
tions must be made for a practical smc algorithm.

The first two relevant papers within this theme in Part II introduce so called ex-
act approximations to any proposal distribution, focusing on the locally optimal
proposal. The key idea is to construct a nested Monte Carlo (mc) method that
approximates the proposal distribution, and then choose weights and samples in
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such a way such that the resulting estimate is still consistent. There is a signif-
icant methodological overlap in these two papers. However, they complement
each other with distinct derivations, focus, and results.

The last relevant paper uses similar ideas as in nested mc methods, but now
instead tackle the problem of parallelization of inference for generic probabilistic
programming. A new algorithm, interacting particle Markov chain Monte Carlo,
particularly suited for taking advantage of multi-core architecture is developed
and studied.

Relevant publications

Paper D:
Christian Naesseth, Fredrik Lindsten, and Thomas Schön. Nested se-
quential Monte Carlo methods. In International Conference on Ma-
chine Learning (ICML), pages 1292–1301, 2015a.

The idea originated from discussions between the co-authors of the paper. The
majority of the article is written by the author of this thesis. The proof of The-
orem 2 is by Fredrik Lindsten. All empirical results are by the author of this
thesis.

Paper E:
Christian A. Naesseth, Fredrik Lindsten, and Thomas B. Schön. High-
dimensional filtering using nested sequential Monte Carlo. arXiv:1612.09162,
2016.

The idea originated from discussions between the co-authors of the paper. The
majority of the article is written by the author of this thesis. All theoretical and
empirical results are by the author of this thesis.

Paper F:
Tom Rainforth, Christian A. Naesseth, Fredrik Lindsten, Brooks Paige,
Jan-Willem Vandemeent, Arnaud Doucet, and Frank Wood. Interact-
ing particle Markov chain Monte Carlo. In International Conference
on Machine Learning (ICML), pages 2616–2625, 2016.

The idea originated from discussions between the author of this thesis and Fredrik
Lindsten, subsequently refined by the co-authors of the paper. The majority of
the method development is written by the author of this thesis. All theoretical
results are by the author of this thesis. The empirical results of Figure 1 are by
the author of this thesis.

1.2.4 Variational Monte Carlo

Variational methods are another powerful tool for approximate inference, turn-
ing the integration problem in inference into an optimization problem which we
can solve more efficiently. Classical approaches have relied on so-called mean
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field approximations to the posterior to derive tractable coordinate ascent algo-
rithms for the optimization procedure. To allow for more flexible and accurate
posterior inferences one needs to resort to stochastic optimization.

The first paper and contribution within this theme develops low-variance repa-
rameterization gradients for a class of variational approximations that rely on the
rejection sampler for simulation. The second paper combines variational meth-
ods with smc, viewing the (expected) posterior distribution approximation from
smc as the variational approximation we need to optimize. This leads to a more
flexible and accurate distribution, trading off fidelity to the posterior with com-
putational cost.

Relevant publications

Paper G:
Christian A. Naesseth, Francisco Ruiz, Scott W. Linderman, and David M.
Blei. Reparameterization gradients through acceptance-rejection sam-
pling algorithms. In Artificial Intelligence and Statistics (AISTATS),
pages 489–498, 2017.

The idea originated from discussions between the co-authors of the paper. The
majority of the article is written by the author of this thesis. All theoretical and
empirical results are by the author of this thesis.

Paper H:
Christian A. Naesseth, Scott W. Linderman, Rajesh Ranganath, and
David M. Blei. Variational sequential Monte Carlo. In Artificial Intel-
ligence and Statistics (AISTATS), pages 968–977, 2018a.

The idea originated from the author of this thesis, and was subsequently refined
in discussion with the co-authors. The majority of the article is written by the
author of this thesis. All theoretical and empirical results are by the author of
this thesis.

1.3 Thesis outline

The thesis is divided into two parts. The first part contains a brief introduction
to machine learning from a probabilistic or statistical point of view, explaining
the three central concepts modeling, inference, and decision making. The first
part concludes with an introduction to the two main methods for performing
approximate inference, variational and Monte Carlo methods. The second part
contains edited versions of eight publications.
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1.4 Publications

The author’s published work is listed below in reverse chronological order. Pub-
lications indicated by a ? are included in Part II of this thesis.

? Christian A. Naesseth, Fredrik Lindsten, and Thomas B. Schön. Ele-
ments of sequential Monte Carlo. Foundations and Trends in Machine
Learning, 2018b. (proposal accepted, manuscript in preparation).

? Christian A. Naesseth, Scott W. Linderman, Rajesh Ranganath, and
David M. Blei. Variational sequential Monte Carlo. In Artificial Intel-
ligence and Statistics (AISTATS), pages 968–977, 2018a.

? Christian A. Naesseth, Francisco Ruiz, Scott W. Linderman, and
David M. Blei. Reparameterization gradients through acceptance-rejection
sampling algorithms. In Artificial Intelligence and Statistics (AIS-
TATS), pages 489–498, 2017.

Fredrik Lindsten, Adam M. Johansen, Christian A. Naesseth, Brent
Kirkpatrick, Thomas B. Schön, John Aston, and Alexandre Bouchard-
Côté. Divide-and-conquer with sequential Monte Carlo. Journal of
Computational and Graphical Statistics, 26(2):445–458, 2017.

Sina Khoshfetrat Pakazad, Christian A. Naesseth, Fredrik Lindsten,
and Anders Hansson. Distributed, scalable and gossip-free consen-
sus optimization with application to data analysis. arXiv:1705.02469,
2017.

? Christian A. Naesseth, Fredrik Lindsten, and Thomas B. Schön. High-
dimensional filtering using nested sequential Monte Carlo. arXiv:1612.09162,
2016.

? Tom Rainforth, Christian A. Naesseth, Fredrik Lindsten, Brooks
Paige, Jan-Willem Vandemeent, Arnaud Doucet, and Frank Wood. In-
teracting particle Markov chain Monte Carlo. In International Con-
ference on Machine Learning (ICML), pages 2616–2625, 2016.

Christian A. Naesseth, Fredrik Lindsten, and Thomas B. Schön. To-
wards automated sequential Monte Carlo for probabilistic graphical
models. In NIPS Workshop on Black Box Learning and Inference,
2015b.

Thomas B. Schön, Fredrik Lindsten, Johan Dahlin, Johan Wågberg,
Christian A. Naesseth, Andreas Svensson, and Liang Dai. Sequential
Monte Carlo methods for system identification. IFAC-PapersOnLine
(SYSID), 48(28):775–786, 2015.

? Christian Naesseth, Fredrik Lindsten, and Thomas Schön. Nested
sequential Monte Carlo methods. In International Conference on Ma-
chine Learning (ICML), pages 1292–1301, 2015a.
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? Christian A. Naesseth, Fredrik Lindsten, and Thomas B. Schön. Se-
quential Monte Carlo for graphical models. In Advances in Neural
Information Processing Systems (NIPS), pages 1862–1870, 2014b.

? Christian A. Naesseth, Fredrik Lindsten, and Thomas B. Schön. Ca-
pacity estimation of two-dimensional channels using sequential Monte
Carlo. In IEEE Information Theory Workshop (ITW), pages 431–435,
2014a.





2
Probabilistic machine learning

Machine learning is a science that focuses on the study and design of computer
programs that learn automatically from data and experience. Probabilistic (or
statistical) machine learning does this while explicitly representing uncertainty.
With probabilistic machine learning we make use of probability theory to repre-
sent the uncertainty. Uncertainty, for the purpose of this thesis, can take many
forms. It can be an inherent randomness in a system, or it could be about our own
imperfect or partial information about the system we observe. This is also tightly
connected to the definition of what probabilities and random variables actually
are. We take a very pragmatic approach, making use of ideas from both Bayesian
and frequentist perspectives on probability.

In this chapter we introduce some fundamentals to probabilistic machine learn-
ing: the concepts of modeling, inference, and decision. Modeling is the procedure
of writing down explicit assumptions on how the data was generated, usually in
the form of a probability distribution. Inference means taking our model and
combining it with our observed data to reach a conclusion; perhaps to predict
future data or answer a causal question. Decision is using our inferences to make
a choice.

The field of machine learning is closely related to, amongst other fields, compu-
tational statistics (Efron and Hastie, 2016) and mathematical optimization (Bert-
sekas, 2016; Nocedal and Wright, 2006). Throughout this thesis, we will see how
making use of methods from these fields will empower us with more powerful
methods for machine learning.

This chapter is intentionally kept quite brief. For a more thorough introduction to
probabilistic and statistical machine learning, we refer the reader to the textbooks
by Bishop (2006) or Friedman et al. (2009).

13
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2.1 Modeling

A model describes data from a system that we observe. We will focus on the use
of probabilistic models: mathematical models making use of probability distribu-
tions to encode uncertainty. The key variables of the model are the data y and the
parameters θ, a type of latent (unobserved) variable. The data y usually consists
of T separate observations y = {yt}Tt=1 indexed by t.

To prior, or not to prior One fundamental consideration is whether we define a
joint probability of both data and parameters, i.e. p(y, θ) = p(y | θ)p(θ), or if we
focus solely on the likelihood p(y | θ). Pragmatically the two differ in the prior
p(θ) and the interpretation of the parameters. For frequentist statistics we are
interested in an estimator of θ that works well for repeated use, where we could
potentially observe many different realisations of y. In Bayesian statistics, we
assign a prior degree of belief for the potential values of the parameter θ and in-
terpret the parameter as a random variable. Then based on the observed data, a
particular realization of y, we update our belief about the parameter θ. Bayesian
statistics is usually criticized for being subjective because of the prior, which in-
troduces preferences for different values of the parameters. These priors can be
different for different people, meaning that the inference can also be different.
However, the likelihood (common to both approaches) is also a subjective choice.
Either way, we will see both of these types of interpretations on unknown param-
eters in Part II, with a focus on the Bayesian approach.

For a more thorough discussion of the fundamentals of the different schools of sta-
tistical inference we recommend Casella and Berger (2002); Gelman et al. (2013);
Robert (2007).

Example We present a simple toy example in Example 2.1, the data is modeled
as independent and identically distributed from a normal distribution with un-
known mean. This example will be used throughout this chapter to illustrate the
different concepts.

Example 2.1: Toy Example: Model
For illustrative purposes we will consider a very simple model for which infer-
ence and decision is usually analytically tractable. We simulate data from the
following joint probability

p(y, θ) = p(y | θ)p(θ) = N (θ | 0, 1) ·
3∏
t=1

N (yt | θ, 1),

where N ( · | µ, σ2) denotes a normal distribution with mean µ and variance σ2.
We will use the dataset y1 = −0.65, y2 = 0.072, and y3 = −0.54.
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Local latent variables A common technique to make modeling and inference eas-
ier is introducing extra (local) latent variables, also known as data augmenta-
tion (Van Dyk and Meng, 2001). This means that we have extra latent variables
x = {xt}Tt=1, where each local latent variable xt is often associated with a data
point yt . With this we can define the likelihood

p(y | θ) =
∫
p(y, x | θ) dx, (2.1)

where p(y, x | θ) is known as the complete data likelihood. We present three ex-
amples of model classes that are ubiquitous in practice:

• Conditionally independent model: In the conditionally independent model
the complete data likelihood will satisfy the following factorization

p(y, x | θ) =
T∏
t=1

p(xt | θ)p(yt | xt , θ), (2.2)

i.e. the data are conditionally independent given θ. This is a common model
for exchangeable data (Gelman et al., 2013): data yt , t = 1, . . . , T where a
reordering does not change the joint distribution p(y). Examples of this
type are used in Papers G and H.

• State space model: The local latent variables in a state space model (ssm)
satisfy a Markov property (Cappé et al., 2005). This means that the prior
for xt only depends on its immediate preceding latent variable xt−1, and the
data yt only directly depends on xt . With these assumptions we get

p(y, x | θ) = p(x1 | θ)p(y1 | x1, θ)
T∏
t=2

p(xt | xt−1, θ)p(yt | xt , θ). (2.3)

Examples of this type are used in Papers E and H.

• Probabilistic graphical model: The local latent variables in a pgm (Koller
et al., 2009) have a dependence defined by a graph. The complete data
likelihood for the model, based on a graph with edges defined in the edge
set E, can be written as

p(y, x | θ) =
1

Z(θ)

∏
(i,j)∈E

ψ(xi , xj | θ)
T∏
t=1

φ(xt , yt | θ), (2.4)

where Z(θ) is the normalization constant, ensuring that the right-hand side
is a probability distribution. The positive functions ψ, φ are known as in-
teraction and observation potentials, respectively. Examples of this type are
used in Papers B, C, D, and E.

Local latent-variable-based models are mainstay modeling tool used throughout
the field of probabilistic machine learning.
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Mechanistic-algorithmic continuum One way to distinguish different models on a
high level is on a mechanistic-algorithmic continuum. On the one side, purely
mechanistic models are fully specified models based on physical or natural pro-
cesses where the parameters have a physical or natural interpretation. An exam-
ple of this type of model is Newton’s second law of motion. On the other side,
we have the purely algorithmic model where the parameters have no physical or
natural interpretation and we are only interested in its predictive abilities. An
example that comes close to this are models making use of (artificial) neural net-
works and deep learning. Machine learning methods tend to make use of models
that fall closer to the algorithmic part of the spectrum. However, no matter where
a specific model falls within this continuum, we want to infer its parameters and
other unknown latent variables.

2.2 Inference

Inference means taking the observed data and combining it with our model as-
sumptions to deduce properties on the latent variables. The goal of inference
usually takes one of two forms: we are interested in either prediction or causality.
Prediction means learning to forecast future values of new, as of yet unobserved,
data. Causality focuses on understanding the parameter, the values it takes, and
how it affects the data. Our main focus in this thesis is predictive inference based
on the posterior distribution and the maximum likelihood estimator.

Posterior distribution When we have a joint probabilistic model for both data and
parameters, inference is conceptually straightforward. By Bayes’ rule, a funda-
mental result of conditional probabilities, the posterior distribution of θ given y
is

p(θ | y) =
p(y | θ)p(θ)

p(y)
, (2.5)

where p(y) =
∫
p(y, θ) dθ is known as the marginal likelihood. The posterior

distribution is the fundamental object for Bayesian inference. It is then used
both in prediction and causality to compute expectations of functions f(θ) with
respect to the posterior,

Ep(θ | y) [f(θ)] =
∫

f(θ)p(θ | y) dθ. (2.6)

For example, when we want to predict new potential values y? for our data we
can use the posterior predictive distribution. This distribution can be written as
an expectation of f(θ) = p(y? | θ) with respect to the posterior distribution,

p(y? | y) =
∫
p(y? | θ)p(θ | y) dθ. (2.7)
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Bayesian statistics and the posterior distribution can be traced back to early work
by the English statistician and reverend Thomas Bayes (1701–1761) and the French
mathematician Pierre-Simon Laplace (1749–1827) (Bayes, 1763; Laplace, 1774;
Stigler, 1986). Our current interpretation of Bayesian probability has its root in
Laplace’s extensive work on subjective probability.

Maximum likelihood When we only have access to the likelihood function, we
can take several approaches to find a good value of the parameter. One of the
most common and sensible approaches is to maximize the likelihood p(y | θ)
with respect to the parameters: the maximum likelihood parameter estimate θ̂ML

is

θ̂ML = arg max
θ

log p(y | θ). (2.8)

The logarithm is introduced purely for computational convenience. Since it is a
monotone function of its argument, it does not change the maximizing argument
θ̂ML.

Prediction in the maximum likelihood framework focuses on using the likelihood
evaluated at the maximum likelihood value for the parameters, i.e. p(y? | θ̂ML).

The rise and popularization of frequentist statistics and maximum likelihood es-
timators can be traced back mainly to work by the British statistician Sir Ronald
Fisher (1890–1962) during the early 20th century (Fisher, 1922). However, the
principle and idea had previously been used by Hagen, Gauss, and Edgeworth
(Hald, 1999).

Example We return to our Gaussian toy example to perform Bayesian and fre-
quentist inference, see Example 2.2. We focus on the posterior distribution and
maximimum likelihood estimate.

Example 2.2: Toy Example: Inference
Under the model assumptions of Example 2.1 we can analytically solve for the
posterior distribution and maximum likelihood parameter:

• Posterior distribution:

p(θ | y) = N

θ ∣∣∣∣ 1
T + 1

T∑
t=1

yt ,
1

T + 1

 (2.9)

• Maximum likelihood:

θ̂ML =
1
T

T∑
t=1

yt (2.10)
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Figure 2.1: The prior distribution p(θ), posterior distribution p(θ | y), and
maximum likelihood estimate θ̂ML, for the dataset y1 = −0.65, y2 = 0.072,
and y3 = −0.54 based on our Gaussian model.

With our example dataset y1 = −0.65, y2 = 0.072, and y3 = −0.54 we illustrate the
model, posterior distribution, and maximum likelihood estimator in Figure 2.1.
The true value of the parameter that generated this particular dataset is θ� =
−0.78.

We have seen a simple example were exact inference is analytically tractable, i.e.
closed-form solutions exist. However, this will not be the case in general. Most
models and data that we encounter in practice will lead to an intractable infer-
ence problem, i.e. one where we can not evaluate the posterior distribution or
find the maximum likelihood value. For the posterior distribution it is usually
the marginal likelihood that is computationally intractable, because it requires
us to evaluate a (potentially) high-dimensional integral, which is difficult. This
means that we will have to resort to some form of approximation, which is the
topic of Chapter 3 and the publications in Part II of this thesis.

2.3 Decision

Decision theory is associated with the notion of risk and loss. The typical setting
is that we are interested in making a choice for the value of parameter θ, by
picking an estimator δ(y) that approximates the parameter of interest as well as
possible. To do this we first define the concepts of loss and risk.
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The loss L(θ, δ) is a non-negative function of the parameter and decision. It lets us
evaluate the penalty of taking the decision δ when the parameter is in fact θ. The
risk R( · ) defines the average loss that we would like to optimize with respect to
the decision δ. The risk differs between a frequentist and Bayesian interpretation,
by changing what is interpreted as random and what is fixed.

Frequentist risk: In the frequentist approach to decision theory, we average the
loss for the potential datasets we could have observed. The frequentist risk is
defined by computing the expectation of our loss with respect to the likelihood,
i.e.

R(θ, δ) =
∫

L(θ, δ(y))p(y | θ) dy. (2.11)

The frequentist risk is a function not only of our decision δ, but also of our (un-
known) parameter θ. The actual observed data is not taken into account any fur-
ther, instead we average over the likelihood and any potential dataset we could
see if the experiment was repeated.

Bayes risk: With the Bayesian approach we instead integrate over our uncertainty
on the parameters. The posterior expected loss is given by

r(δ(y), y) =
∫

L(θ, δ(y))p(θ | y) dθ, (2.12)

which is a function of the observed data y and our decision δ. The Bayes estimator
is given by

δB(y) := arg min
δ

r(δ(y), y), (2.13)

for each dataset y that we could potentially observe. Unlike the frequentist risk,
the posterior expected loss only depends on the model and dataset y (which are
known).

The expected posterior loss in Equation (2.12) is the only risk we care about from
a strictly Bayesian point of view. All calculations are conditional on our known
data. However, with the prior we can connect the posterior expect loss to the
frequentist risk by defining the integrated risk,

R(δ) =
∫

r(δ(y), y)p(y) dy =
∫

R(θ, δ)p(θ) dθ, (2.14)

where p(θ) is the prior distribution and p(y) is the marginal likelihood. It is pos-
sible to show that δB is the estimator that minimizes the integrated risk (Robert,
2007). The Bayes risk is then defined by R(δB). If the Bayes risk is finite we call
δB admissible. It dominates and outperforms any other estimator in terms of
frequentist risk.
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For the reader interested in more information about the foundations of Bayesian
decision theory, and its connection to the frequentist approach, we refer to Robert
(2007).

Example Returning to the toy example we consider two loss functions: the squared
error and absolute error losses. See Example 2.3 for a derivation of the optimal
Bayesian decisions in this case.

Example 2.3: Toy Example: Decision
Using the model definition in Example 2.1 and the posterior distribution from
Example 2.2, we can derive the optimal Bayes estimators for the two loss func-
tions:

• Squared error: L(θ, δ) = (θ − δ(y))2

For the squared error loss we obtain the Bayes estimator

δB(y) =
∫
θp(θ | y) dθ, (2.15)

i.e. the posterior mean. For the dataset in our toy example, we get

δB(y) =
1
4

3∑
t=1

yt = −0.28.

• Absolute error: L(θ, δ) = |θ − δ(y)|

For the absolute error loss, we obtain the posterior median as the Bayes
estimator

δB(y) = δ̂, where P(θ ≤ δ̂ | y) = P(θ ≥ δ̂ | y) =
1
2
, (2.16)

where P(θ ≤ δ̂ | y) =
∫ δ̂
−∞ p(θ | y) dθ is the probability that the parameter θ

is smaller than δ̂ given the data y. For the dataset in our toy example we get

δB(y) =
1
4

3∑
t=1

yt = −0.28,

since the median and mean of the normal distribution coincide.

Decision theory does not feature prominently in this thesis; we focus instead on
the task of approximate inference. However, as we can see above, being able to
evaluate the posterior distribution (and expectations with respect to it) is key for
Bayesian decision theory. This means that even in this setting, we have a need for
efficient and accurate approximations to the posterior distribution. This is the
main focus of most publications in Part II.
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Approximate inference

Approximate inference is mainly focused on developing, and studying, approaches
to estimate the posterior distribution. We can then make use of the approxima-
tion of the posterior and compute expectations with respect to it. We have seen
from Chapter 2 that this is central to probabilistic machine learning. Approxi-
mate inference lets us trade off fidelity of the posterior approximation with com-
putational complexity; the accuracy of the approximation typically depends on
the amount of computation used.

Variational and Monte Carlo methods are two of the most popular approaches to
approximate inference in machine learning. We will focus this chapter on intro-
ducing these two types of methods. First, we give a short introduction to Monte
Carlo methods. These methods use (pseudo-)random numbers, usually referred
to as samples, approximately distributed according to the posterior distribution.
The samples are then averaged to estimate the posterior and posterior expecta-
tions. Second, we introduce and explain variational methods for approximate in-
ference. Variational methods postulate a family of approximating distributions,
e.g. the normal distribution family parameterized by the mean and variance. We
then use a suitable cost function to optimize the parameters such that the varia-
tional approximation fits as close as possible to the true distribution.

This chapter is intentionally kept brief. For a more thorough introduction to
Monte Carlo and variational methods, we refer the reader to Liu (2004); Robert
and Casella (2004), Paper A, Blei et al. (2017), and Bishop (2006).

21
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3.1 Monte Carlo methods

Monte Carlo methods are a class of algorithms relying on (pseudo-)random num-
bers to approximate high-dimensional integrals. As discussed in Eckhardt (1987),
the roots of Monte Carlo methods can be found in work by the Polish–American
scientist Stanislaw Ulam (1909–1984) and Hungarian–American mathematician
John von Neumann (1903–1957) during the 1940s.

We will here focus on the basic idea behind the variousmcmethods, and explain
rejection sampling which is used in Paper G. The remaining papers in Part II
rely on importance sampling (is) and smc methods, which we give a thorough
introduction to in Paper A.

3.1.1 The Monte Carlo idea

We have shown that probabilistic machine learning relies on performing infer-
ence. In the Bayesian approach this means that we are interested in estimating
the posterior distribution or compute expectations with respect to it, i.e.

Ep(θ | y) [f(θ)] =
∫

f(θ)p(θ | y) dθ. (3.1)

The key Monte Carlo idea (see e.g. Metropolis and Ulam (1949) for an early ref-
erence discussing the idea) is to draw samples, random numbers, that are either
exactly or approximately distributed according to p(θ | y) and estimate the expec-
tation by averaging

Ep(θ | y) [f(θ)] ≈ 1
N

N∑
i=1

f(θi), θi ∼ p(θ | y), i = 1, . . . , N . (3.2)

We can view the samples {θi}Ni=1 as defining an empirical distribution that ap-
proximates the posterior,

p( dθ | y) ≈ 1
N

N∑
i=1

δθi ( dθ), (3.3)

where δθi ( dθ) is the Dirac measure at θ = θi .

This basic Monte Carlo method has many favorable properties. It is

• unbiased:

E

 1
N

N∑
i=1

f(θi)

 = Ep(θ | y) [f(θ)] , (3.4)
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• consistent:

1
N

N∑
i=1

f(θi)
a.s.−−−→ Ep(θ | y) [f(θ)] , N →∞, (3.5)

• asymptotically normal:

√
N
σf

 1
N

N∑
i=1

f(θi) − Ep(θ | y) [f(θ)]

 d−−→ N (0, 1), N →∞, (3.6)

where
a.s.−−−→ and

d−−→ denotes convergence almost surely and convergence in distri-
bution, respectively. The asymptotic normality holds if the variance of the func-
tion f( · ) with respect to the posterior distribution p(θ | y), σ2

f = Varp(θ | y) (f(θ)),
is finite. One of the fundamental strengths of mc methods is that the rate of im-
provement as a function of the number of samples N , illustrated by the central
limit theorem (asymptotic normality), does not depend on the dimensionality of
the parameter θ.

In practice it is often difficult or impossible to simulate exactly from the poste-
rior distribution. In the next section we describe rejection sampling, a method
that accomplishes exact simulation using auxiliary variables and samples from a
different distribution.

3.1.2 Rejection sampling

Rejection sampling (Devroye, 1986; von Neumann, 1951), or acceptance-rejection
sampling, is a method for exact simulation. In most cases we use a rejection sam-
pler to generate random samples from a distribution for which standard sam-
pling methods, such as inverse transform sampling (Robert and Casella, 2004),
are unavailable or impractical. For notational convenience we will simply denote
any distribution we are interested in generating samples from as γ(θ). We will
refer to this as the target distribution.

The fundamental idea in rejection sampling is based on the straightforward idea
that we can rewrite any density as an integral

γ(θ) =

γ(θ)∫
0

1 du, (3.7)

for some auxiliary variable u. This means that the distribution γ(θ) is the marginal
density of the uniform distribution on {(θ, u) : 0 < u < γ(θ)}, which we denote
by U ({(θ, u) : 0 < u < γ(θ)}). This corresponds to putting a uniform distribution
on the area under the graph defined by the θ-axis and γ(θ), see the shaded area
in Figure 3.1 for an example.
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Now, if we could sample (θ, u) ∼ U ({(θ, u) : 0 < u < γ(θ)}) we would have essen-
tially solved the problem. However, directly trying to sample this distribution
can be difficult. The straightforward way would be θ ∼ γ(θ) and u ∼ U (0, γ(θ)).
Because this approach relies on sampling θ from γ(θ) it defeats the purpose.
What we can do instead is to sample uniformly over a larger area that covers the
one we are interested in. Then we simply keep only the ones that fall within the
area of interest defined by the constraint 0 < u < γ(θ) and reject the rest.

To accomplish this we need to make use of a proposal distribution q(θ). We
assume that the proposal is simple to sample from, that we can evaluate q(θ),
and that we can find a finite constant M ≥ 1 such that γ(θ) ≤ Mq(θ) for all
values θ. We generate samples from the distribution

(θ′ , u′) ∼ U ({(θ, u) : 0 < u < Mq(θ)}) , (3.8)

simply by first simulating θ′ ∼ q(θ), and then u′ ∼ U(0, Mq(θ′)). Then we ac-
cept the sample (θ′ , u′) if u′ < γ(θ′), and otherwise repeat the procedure. We
summarize: repeat

θ′ ∼ q(θ), u′ | θ′ ∼ U(0, Mq(θ′)), (3.9)

until u′ < γ(θ′). The accepted value θ′ is then distributed θ′ ∼ γ(θ) as required.
We only have to know the desired γ(θ) up to a normalization constant Z, i.e.
γ(θ) = 1

Z γ̃(θ). The normalization constant Z may be subsumed into the factor
M. In Bayesian inference we would have γ̃(θ) = p(y, θ), and the normalization
constant Z = p(y) would be subsumed by our choice of M such that p(y, θ) ≤
Mq(θ).

We illustrate rejection sampling with a simple example.

Example 3.1: Rejection sampling
We consider a simple scalar example. The probability distribution γ(θ) is defined
by

γ(θ) =
1
Z
e−

1
2θ

2 (
1 + sin2(4θ) + 3 cos2(θ) sin2(θ)

)
︸                                              ︷︷                                              ︸

γ̃(θ)

, (3.10)

and we use the standard normal, which we can easily generate samples from, as
our proposal distribution

q(θ) = N (θ | 0, 1) =
1
√

2π
e−

1
2θ

2
. (3.11)

If we choose M = 2 we have that γ(θ) ≤ M · q(θ) for all θ. We illustrate the
setup in Figure 3.1. We found this value of M by numerically computing Z. If we
only assume that we can evaluate the unnormalized distribution γ̃(θ), we could
instead choose e.g. M = 5

√
2π. Higher values for M will give rise to a lower

acceptance probability, requiring us to propose more samples (on average).
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Figure 3.1: Illustration of rejection sampling with target γ(θ) ∝
e−

1
2 θ

2 (
1 + sin2(4θ) + 3 cos2(θ) sin2(θ)

)
, proposal q(θ) = N (θ | 0, 1), and con-

stant M = 2.

One of the main limitations of rejection sampling is the requirement to find the
constant M and proposal q(θ) that satisfies the constraints and results in few
rejected samples. The computational complexity of rejection sampling tends to
scale poorly with the dimension of θ. For these reasons, improving on rejection
sampling is key to more efficient approximate inference.

3.2 Variational inference

Variational methods, also known as variational Bayes, turn the problem of inte-
grating over the parameters (to find the marginal likelihood) into an optimization
problem. The solution to the optimization problem results in a simpler distribu-
tion that we can efficiently work with. This distribution is chosen so that the
discrepancy between it and the posterior is as small as possible. We trace the
beginnings of variational methods in machine learning back to at least the early
works by Peterson and Anderson (1987) and Hinton and van Camp (1993). This
together with insight from Parisi (1988) led to a flurry of work in the area (Jordan
et al., 1999; Waterhouse et al., 1996).

We will in this section describe the fundamentals of variational methods for ap-
proximating the posterior distribution. Variational inference, together with con-
nections to Monte Carlo methods, are studied in Papers G and H.
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q(θ ; λ)

p(θ | y)

λ?

λinit

KL
(
q(θ ; λ?)‖p(θ | y)

)

Figure 3.2: Conceptual illustration of variational methods. Each point corre-
sponds to a distribution on θ. The ellipse contains the approximating family
q(θ ; λ) indexed by variational parameters λ.

3.2.1 The variational idea

Just like in mc methods, with variational methods we are interested in approxi-
mating the posterior distribution. We do this by postulating a variational family
of approximations, q(θ ; λ) indexed by the variational parameters λ. A common
example is to use a normal distribution, q(θ ; λ) = N (θ | µ, σ2) where λ = (µ, σ ).
The key idea is then to turn to mathematical optimization, choosing λ such that
we minimize a cost function representing the discrepancy between the variational
approximation and the posterior distribution. A common choice of cost function
is the Kullback-Leibler (kl) divergence from the variational approximation to the
posterior,

KL (q(θ ; λ)‖p(θ | y)) = Eq(θ ;λ) [log q(θ ; λ) − log p(θ | y)] . (3.12)

For an illustration of generic variational methods for approximate inference see
Figure 3.2. However, this expression still requires us to evaluate the posterior
distribution, the problem we are trying to solve in the first place.

To resolve the issue we note that minimizing the kl divergence is equivalent to
maximizing the evidence lower bound (elbo) (Jordan et al., 1999),

L(λ) := Eq(θ ;λ) [log p(y, θ) − log q(θ ; λ)] . (3.13)

This is true because we can rewrite the kl divergence as follows

KL (q(θ ; λ) | p(θ | y)) = log p(y) − Eq(θ ;λ) [log p(y, θ) − log q(θ ; λ)] . (3.14)

Because log p(y) does not depend on the variational parameters λ, we can min-
imize the kl by minimizing the second expression (negative elbo) on the right
hand side.
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The rest of this section will be focused on various ways for maximizing the elbo,
focusing on an explicit coordinate ascent algorithm for mean field approxima-
tions and stochastic gradient methods for generic variational approximating fam-
ilies.

3.2.2 Coordinate ascent variational inference

Coordinate ascent variational inference (cavi) is a method for finding an optimal
variational approximation when we restrict our family to be independent over
the components of θ, i.e.

q(θ) =
K∏
k=1

qk(θk), (3.15)

where we assume θ = (θ1, . . . , θK )>. Note that we have not made any parametric
assumptions on the factors qk( · ), except that they are probability distributions.
This variational family of approximations is known as the mean field variational
family.

Under the mean field assumption it is possible to design a coordinate ascent
method to optimize the elbo in Equation (3.13). We update each factor qk( · )
one by one, keeping the other K − 1 factors fixed. A necessary condition in opti-
mization for a point to be optimal is that the derivative is equal to zero. However,
in our setting each factor qk( · ) is a functional and we instead rely on calculus
of variations and functional derivatives (Forsyth, 1960). To ensure that qk( · ) is a
probability density function we can study the Lagrangian (Bertsekas, 2016; Boyd
and Vandenberghe, 2004) L̃ for Equation (3.13),

L̃(q1:K , ν1:K ) = E∏
k qk(θk )

log p(y, θ1:K ) −
K∑
k=1

log qk(θk)

 − K∑
k=1

νk

(∫
qk(θk) dθk − 1

)
= Eqk(θk )

[
E∏

m,k qm(θm) [log p(y, θ1:K )] − log qk(θk) − νk
]

+ const., (3.16)

where θ1:K = (θ1, . . . , θK )> = θ, the νk ’s are the Lagrange multipliers, and const.
includes all terms constant with respect to qk(θk). Using the Euler-Lagrange equa-
tion we can compute the functional derivative with respect to qk(θk)

∂L̃(q1:K , ν1:k)
∂qk(θk)

= E∏
m,k qm(θm) [log p(y, θ1:K )] − log qk(θk) + const. (3.17)

Setting the right-hand side equal to zero gives us the solution for factor q?k (θk),

q?k (θk) ∝ exp
(
E∏

m,k q
?
m(θm) [log p(y, θ1:K )]

)
. (3.18)

This requires us to be able to evaluate the expectation, and re-normalize the
right-hand side of Equation (3.18) with respect to θk . This is possible when
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the complete conditional p(θk | y, θ1, . . . , θk−1, θk+1, . . . , θK ) is in a specific class
of exponential family distributions (Blei et al., 2017). For more information on
cavi, and a detailed Bayesian mixture example, see e.g. Bishop (2006); Blei et al.
(2017).

cavi is not applicable if we can not evaluate the expectation and the normaliza-
tion constant in Equation (3.18). This might be true if our model p(y, θ) is too
complex. The mean field approximation also makes a strong assumption on the
independence between components of the parameter θ. When either of these two
assumptions does not hold, we need to resort to a different approach to optimize
the elbo. In the next section, we discuss applying stochastic gradient methods
for optimization.

3.2.3 Stochastic gradient variational inference

We return to the case when we have a variational family of approximations pa-
rameterized by λ, i.e. q(θ ; λ). When either or both of the model p(y, θ) and the
variational approximation q(θ ; λ) do not satisfy the requirements for cavi, we
must look to other methods for optimizing the elbo. A recent approach that has
garnered a considerable amount of success is to make use of stochastic gradients
to optimize the elbo (Kingma and Welling, 2014; Mnih and Gregor, 2014; Pais-
ley et al., 2012; Ranganath et al., 2014; Salimans and Knowles, 2013). Essentially
we use standard gradient descent with decreasing step-size, but instead of exact
gradients we use gradients approximated via mc methods. Stochastic gradient
descent is an iterative method for λ. The update is

λn = λn−1 + αnĝ(λn−1), (3.19)

where ĝ(λn−1) is a mc estimator of the elbo gradient

g(λn−1) := ∇λL(λn−1) (3.20)

and the stepsizes satisfy αn ≥ 0,
∑
n αn = ∞,

∑
n α

2
n < ∞ (Robbins and Monro,

1951).

We review below two of the most common estimators of the elbo gradient: the
score function estimator and the reparameterization estimator.

Score function estimator The score function gradient estimator is based on a refor-
mulation of the elbo gradient (Mnih and Gregor, 2014; Paisley et al., 2012; Ran-
ganath et al., 2014) as an expectation with respect to the variational approxima-
tion q(θ ; λ). The estimator is also known by its other names: the log-derivative
trick or REINFORCE (Glynn, 1990; Williams, 1992). It is a generic estimator with
very few assumptions on the parameter space or the variational family. It works
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whether θ is continuous or discrete. We have

∇λL(λ) = ∇λEq(θ ;λ) [log p(y, θ) − log q(θ ; λ)]

= Eq(θ ;λ) [(log p(y, θ) − log q(θ ; λ)) ·∇λ log q(θ ; λ)] , (3.21)

where we have made use of the fact that the expectation of the score function
∇λ log q(θ ; λ) is zero, i.e.

Eq(θ ;λ) [∇λ log q(θ ; λ)] = 0, (3.22)

and the log-derivative trick ∇λq(θ ; λ) = q(θ ; λ)∇λ log q(θ ; λ).

Equation (3.21) suggests estimating the elbo gradient using the standard mc
idea,

∇λL(λ) ≈ ĝscore =
1
N

N∑
i=1

(
log p(y, θi) − log q(θi ; λ)

)
·∇λ log q(θi ; λ), (3.23)

where the samples are iid θi ∼ q( · ; λ), just like we discussed in Section 3.1. From
the theoretical results of standard mc we know that this estimator is unbiased
and consistent.

The main limitation of the score function estimator is that it tends to give quite
high variance gradient estimators. This is generally undesirable for an efficient
optimization method. It can be partially alleviated by various variance reduc-
ing adjustments, such as control variates (Robert and Casella, 2004) and Rao-
Blackwellization (Casella and Robert, 1996) as explained by e.g. Ranganath et al.
(2014).

Reparameterization estimator The reparameterization trick (Bonnet, 1964; Kingma
and Welling, 2014; Price, 1958; Salimans and Knowles, 2013) usually results in
a gradient estimator with lower variance than the score function estimator. This
comes at the price of applicability, where the reparameterization trick only works
for a certain class of continuous distributions. We require that the model p(y, θ)
is differentiable with respect to the parameters θ. Furthermore, we require that
the variational approximation q(θ ; λ) is differentiable with respect to θ, and that
it is reparameterizable by a differentiable function f. What this means is that we
assume that we can simulate from the variational approximation through a non-
centered parameterization (Papaspiliopoulos et al., 2003), i.e.

θ ∼ q(θ ; λ)⇐⇒ θ = f(ε, λ), ε ∼ p(ε), (3.24)

where f is differentiable with respect to λ, and the distribution p(ε) does not
depend on the variational parameters λ. A commonly used variational family
is the normal distribution q(θ ; λ) = N (θ | µ, σ2), with λ = (µ, σ ), which has the
following non-centered parameterization

f(ε, λ) = µ + σε, ε ∼ N (0, 1).
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With the non-centered parameterization we can rewrite the gradient of the elbo
using the reparameterization trick

∇λL(λ) = ∇λEq(θ ;λ) [log p(y, θ) − log q(θ ; λ)]

= ∇λEp(ε) [log p(y, f(ε, λ)) − log q(f(ε, λ) ; λ)]

= Ep(ε)

[
∇θ (log p(y, θ) − log q(θ ; λ))

∣∣∣∣
θ=f(ε,λ)

∇λf(ε, λ)
]

(3.25)

where in the last equation we have again made use of that the expectation of the
score function is zero (Roeder et al., 2017). Equation (3.25) suggests the following
mc estimator of the elbo gradient

∇λL(λ) ≈ ĝreparam =
1
N

N∑
i=1

∇θ (log p(y, θ) − log q(θ ; λ))
∣∣∣∣
θ=f(εi ,λ)

∇λf(εi , λ),

(3.26)

where the samples are iid εi ∼ p(ε). In practice, the variance of the reparameter-
ization estimator is often low enough that a single sample, N = 1, is sufficient
(Kingma and Welling, 2014; Roeder et al., 2017).

The restriction that the variational approximation must be reparameterizable can
be alleviated using partial reparameterization, see e.g. Ruiz et al. (2016) and Pa-
per G.

Large-scale data Datasets where the number of (exchangeable) datapoints T is
very large works well in the setting of stochastic gradient-based variational infer-
ence. We simply replace evaluating the exact log-likelihood log p(y | θ) with an
unbiased estimate of it, i.e.

log p(y | θ) =
T∑
t=1

log p(yt | θ) ≈ T
B

B∑
b=1

log p(yτb | θ), τb ∼ U ({1, . . . , T }) . (3.27)

Here τb are discrete random variables drawn uniformly over the support {1, . . . , T }.
When used together with either of the two stochastic gradient methods above,
the resulting algorithm is known as a doubly stochastic algorithm (Titsias and
Lázaro-Gredilla, 2014).

3.2.4 Variational expectation-maximization

The expectation–maximization (em) algorithm (Dempster et al., 1977) is a method
for finding the maximum likelihood estimate θ̂ML when the model depends on
local latent (unobserved) variables x. This means that our probabilistic model is
p(y, x | θ), and we are interested in maximizing the marginal likelihood p(y | θ) =
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∫
p(y, x | θ) dx with respect to the parameters θ. The em algorithm solves this

through coordinate ascent for the elbo defined by

L(q(x), θ) = Eq(x) [log p(y, x | θ) − log q(x)] , (3.28)

where q(x) is a distribution over x. The em algorithm consists of iteratively solv-
ing

qn(x) = arg max
q(x)

L(q(x), θn−1), (3.29a)

θn = arg max
θ

L(qn(x), θ), (3.29b)

where the solution to the first line is given by qn(x) = p(x | y, θn−1).

One of the first approaches to variational expectation–maximization (vem) (Beal
and Ghahramani, 2003)1 replaces Equation (3.29a) (maximization for q(x)), by
cavi. While the exact em (under suitable conditions) is guaranteed to converge
to a local maxima of log p(y | θ), this is generally not true for vem. Just like vari-
ational inference and mc methods are approximate methods for inference, so is
vem.

Because vem relies on cavi, it has restricted applicability. Recent research has fo-
cused on using stochastic gradient-based variational inference instead. In this set-
ting we iteratively do only partial updates for q and θ, unlike in Equation (3.29).
We let the variational approximation be defined by q(x ; λ), and design an update
scheme for λ, θ based on stochastic gradient descent for the elbo

L(λ, θ) = Eq(x ;λ) [log p(y, x | θ) − log q(x ; λ)] . (3.30)

Based on step-size sequences αλn , α
θ
n (satisfying the same requirements as de-

tailed in Section 3.2.3), we get

λn = λn−1 + αλn ĝλn , (3.31a)

θn = θn−1 + αθn ĝθn , (3.31b)

where ĝθn is

ĝθn =
1
N

N∑
i=1

∇θ log p(y, xi | θ)
∣∣∣∣
θ=θn−1

, xi ∼ q(x ; λn−1). (3.32)

For the gradient with respect to λ, ĝλn , we make use of either the score func-
tion or reparameterization trick estimators of Section 3.2.3, evaluated for λn−1,
θn−1. Because the algorithm we described is a form of stochastic gradient descent-
algorithm, it will (under suitable conditions) converge to a local maxima of the
evidence lower bound in Equation (3.30) (Bottou et al., 2018). However, there
are no guarantees for the original problem of maximum marginal likelihood max-
imization. We are maximizing a lower bound to the marginal likelihood, where
the gap between them that we neglect is a function of both λ and θ.

1The authors actually consider model selection: p(y, x, θ |m) and the mean-field model q(θ)q(x)
where m is a model selection variable. The fundamental idea is the same.





4
Concluding remarks

We conclude Part I of this thesis by a short summary, and discuss potential av-
enues for future work in approximate inference. However, we note that more
discussion is also provided at the end of most articles in Part II.

In this thesis we introduce various new methods for approximate inference and
learning in latent variable models. The focus has been on sequential Monte Carlo
and variational inference, as well as the connection between them. At the heart
of each paper liesmcmethods, used to estimate intractable integrals. We present
a tutorial on, new applications for, and extensions to sequential Monte Carlo. We
also study reparameterization gradients for variational inference (vi), and derive
the variational sequential Monte Carlo (vsmc) family of approximations to the
posterior.

We would like to take the opportunity to focus the discussion on nested Monte
Carlo and variational Monte Carlo, two open avenues for future research.

Nested Monte Carlo We refer to the use of mc methods within other mc methods
as nested Monte Carlo (nmc) algorithms. Examples include, but are not limited
to,

• Markov chain Monte Carlo within smc, e.g. sequential Monte Carlo sam-
plers (Del Moral et al., 2006),

• smc within Markov chain Monte Carlo, e.g. particle Markov chain Monte
Carlo (Andrieu et al., 2010),

• smc within smc, e.g. nested sequential Monte Carlo (Papers D, E) or smc2

(Chopin et al., 2012).

33
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This area is by no means exhausted, particularly the intersection between differ-
ent nmc algorithms. We believe that nested sequential Monte Carlo (nsmc) is
potentially useful for a much wider range of applications than it has been ap-
plied to so far. More generally, how can we design nmc algorithms such that
we preserve the theoretical guarantees? Can we automatically choose the right
algorithm for a particular task? Is it possible to give practical guarantees on the
approximation we obtain?

Variational Monte Carlo By synthesizing approximate inference from both varia-
tional andmcmethods, we get variational Monte Carlo (vmc). We can also think
of this as a form of adaptive mc method. Examples include, but are not limited
to,

• Markov chain Monte Carlo-inspired approximations, e.g. Hamiltonian vari-
ational inference (Salimans et al., 2015),

• importance sampling within variational inference, e.g. variational impor-
tance sampling (Paper H), (Cremer et al., 2017),

• smc within variational inference, e.g. variational sequential Monte Carlo
(Paper H).

Explicitly making use of the mc approximation of the posterior when defining a
variational approximation is a largely unexplored area. Can we efficiently learn
the corresponding variational parameters? Will investigating different cost func-
tions help improve the approximation? Is it possible to extract informative the-
oretical guarantees for this class of approximations? How can we better take
into account the discrete nature, introduced by the use of mc, of the approxima-
tions?

The above two examples are areas that can potentially have a significant impact
on approximate inference for probabilistic machine learning.
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Abstract

A core problem in statistics and probabilistic machine learning is to
compute probability distributions and expectations. This is the fun-
damental problem of Bayesian statistics, which frames all inference as
expectations with respect to the posterior distribution. The key chal-
lenge is to approximate these intractable expectations. In this tutorial,
we review sequential Monte Carlo (smc), a random-sampling-based
class of methods for approximate inference. First, we explain the ba-
sics of smc and review its main building block, importance sampling.
Then, we discuss practical issues and theoretical results. Finally, we
examine the two main user design choiches: the proposal distribution
and the target distribution.

1 Introduction

A key strategy in machine learning is to break down a problem into smaller and
more manageable parts, then process data or unknown variables recursively. Well
known examples of this are message passing algorithms for graphical models and
annealing for optimization or sampling. Sequential Monte Carlo (smc) is a class
of methods that are tailored to solved statistical inference problems recursively.
These methods have mostly received attention in the signal processing and statis-
tics communities. With over two decades of research in smc, they have enabled
inference in increasingly complex and challenging models. Recently, there has
been an emergent interest in this class of algorithms from the machine learning
community. We have seen applications to probabilistic graphical models (pgms)
(Naesseth et al., 2014; Paige and Wood, 2016), probabilistic programming (Wood
et al., 2014), variational inference (vi) (Le et al., 2018; Maddison et al., 2017;
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Naesseth et al., 2018), inference evaluation (Cusumano-Towner and Mansinghka,
2017; Grosse et al., 2015), and many other areas.

We provide a unifying view of the smc methods that have been developed since
their conception in the early 1990s (Gordon et al., 1993; Kitagawa, 1993; Stewart
and McCarty, 1992). In this introduction we provide relevant background mate-
rial, introduce a running example, and discuss the use of code snippets through-
out the tutorial.

This manuscript is an extract from a tutorial paper in preparation. The full paper
will further include a section on pseudo-marginal methods (Andrieu et al., 2009,
2010) and a section on conditional smcmethods (Andrieu et al., 2010).

1.1 Historical Background

smcmethods are generic tools for performing approximate (statistical) inference,
predominantly Bayesian inference. They use a weighted sample set to iteratively
approximate the posterior distribution of a probabilistic model. Ever since the
dawn of Monte Carlo methods (see e.g. Metropolis and Ulam (1949) for an early
discussion), random sample-based approximations have been recognized as pow-
erful tools for inference in complex probabilistic models. Parallel to the develop-
ment of Markov chain Monte Carlo (mcmc) methods (Hastings, 1970; Metropo-
lis et al., 1953), sequential importance sampling (sis) (Handschin and Mayne,
1969) and sampling/importance resampling (Rubin, 1987) laid the foundations
for what would one day become smc.

smc methods where initially known as particle filters (Gordon et al., 1993; Kita-
gawa, 1993; Stewart and McCarty, 1992). Particle filters where conceived as algo-
rithms for online inference in nonlinear state space models (ssms) (Cappé et al.,
2005). Since then there has been a flurry of work applying smc and particle filters
to perform approximate inference in ever more complex models. While research
in smc initially focused on ssms, we will see that smc can be a powerful tool in a
much broader setting.

1.2 Probabilistic Models and Target Distributions

As mentioned above, smcmethods were originally developed as an approximate
solution to the so called filtering problem, which amounts to online inference in
dynamical models. Several overview and tutorial articles focus on particle filters,
i.e. the smc algorithms specifically tailored to solve the online filtering problem
(Arulampalam et al., 2002; Doucet and Johansen, 2009; Fearnhead and Künsch,
2018). However, in this tutorial we will take a different view and explain how
smc can be used to solve more general “offline” problems. We shall see how this
viewpoint opens up for many interesting applications of smc in machine learning
that do not fall in the traditional filtering setup, and furthermore how it gives rise
to new and interesting design choices. We consider a generic probabilistic model
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given by a joint probability distribution function (pdf) of latent variables x and
observed data y,

p(x, y). (1)

We focus on Bayesian inference, where the key object is the posterior distribu-
tion

p(x | y) =
p(x, y)
p(y)

, (2)

where p(y) is known as the marginal likelihood.

The target distributions are a sequence of probability distributions that we recur-
sively approximate using smc. We define each target distribution γt(x1:t) in the
sequence as a joint pdf of latent variables x1:t = (x1, . . . , xt), where t = 1, . . . , T .
The pdf is denoted by

γt(x1:t) :=
1
Zt
γ̃t(x1:t), t = 1, . . . , T , (3)

where γ̃t is a positive integrable function and Zt is the normalization constant,
ensuring that γt is a pdf.

We connect the target distributions to the probabilistic model through a require-
ment on the final target distribution γT (x1:T ). We enforce the condition that
γT (x1:T ) is either equivalent to the posterior distribution, or it contains the pos-
terior distribution as a marginal distribution. The intermediate target distribu-
tions, i.e. γt(x1:t) for t < T , are useful only insofar they help us approximate the
final target γT (x1:T ). This approach is distinct from previous tutorials on parti-
cle filters and smc that traditionally focus on the intermediate targets, i.e. the
filtering distributions. We stress that there is not necessarily a direct one-to-one
correspondence between the latent variables x1:T of the target distribution and
the latent variables x of the probabilistic model.

Below we introduce a few examples of probabilistic models and some straight-
forward choices of target distributions. We introduce and illustrate our running
example which will be used throughout. We will return to the issue of choosing
the sequence of intermediate targets in Section 3.2.

State Space Models The state space model (or hidden Markov model) is a type of
probabilistic models where the latent variables and data satisfy a Markov prop-
erty. For this model we typically have x = x1:T . Often the data can also be split
into a sequence of the same length (T ) as the latent variables, i.e. y = y1:T . The
model is defined by a transition pdf f and observation pdf g,

xt | xt−1 ∼ f ( · | xt−1), (4a)

yt | xt ∼ g( · | xt). (4b)



48 Paper A Elements of Sequential Monte Carlo

The joint pdf is

p(x, y) = p(x1)g(y1 | x1)
T∏
t=2

f (xt | xt−1)g(yt | xt), (5)

where p(x1) is the prior on x1. This class of models is especially common for
data that has an inherent time structure such as in the field of signal processing.
A common choice is to let the target distributions follow the same sequential
structure as in Equation (5):

γ̃t(x1:t) = p(x1)g(y1 | x1)
t∏
k=2

f (xk | xk−1)g(yk | xk), (6)

which means that the final normalized target distribution satisfies γT (x1:T ) =
p(x | y) as required. This is the model class and target distributions which are
studied in the classical filtering setup.

Non-Markovian Latent Variable Models The non-Markovian latent variable models
(lvms) are characterized by either no, or higher order, Markov structure between
the latent variables x and/or data y. This can be seen as a non-trivial extension
of the ssm, see Equation (4), which has a Markov structure. Also for this class of
models it is common to have x = x1:T and y = y1:T .

Unlike the ssm, the non-Markovian lvm in its most general setting requires ac-
cess to all previous latents x1:t−1 to generate xt , yt

xt | x1:t−1 ∼ ft( · | x1:t−1), (7a)

yt | x1:t ∼ gt( · | x1:t), (7b)

where we again refer to ft and gt as the transition pdf and observation pdf, re-
spectively. The joint pdf is

p(x, y) = p(x1)g(y1 | x1)
T∏
t=2

ft(xt | x1:t−1)gt(yt | x1:t), (8)

where p(x1) is the prior on x1. A typical target distribution is given by

γ̃t(x1:t) = γ̃t−1(x1:t−1)ft(xt | x1:t−1)gt(yt | x1:t), t > 1, (9)

with γ̃1(x1) = p(x1)g1(y1 | x1). Another option is

γ̃1(x1) = p(x1),

γ̃t(x1:t) = γ̃t−1(x1:t−1)ft(xt | x1:t−1), 1 < t < T ,

γ̃T (x1:T ) = γ̃T−1(x1:T−1)fT (xT | x1:T−1)
T∏
t=1

gt(yt | x1:t).
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Figure 1: Five sample paths of y1:T from our running example for T = 100.

For both these sequences of target distributions the final iteration T is the pos-
terior distribution, i.e. γT (x1:T ) = p(x1:T | y1:T ) = p(x | y). However, the former
one will often lead to more accurate inferences. This is because we introduce
information from the data at an earlier stage in the smc algorithm.

Throughout the monograph we will exemplify the different methods using a
Gaussian special case of Equation (7), see Example 1. We let the prior on x1:t ,
defined by the transition pdf ft , be Markovian and introduce the non-Markov
property instead through the observation pdf gt .

Example 1: Non-Markovian Gaussian Sequence Model
As running example for illustration purposes we use a non-Markovian Gaussian
sequence model. It is

xt | x1:t−1 ∼ ft( · | xt−1), yt | x1:t ∼ gt( · | x1:t), (10)

with observed variables yt (data), and where

ft(xt | xt−1) = N (xt |φxt−1, q) ,

gt(yt | x1:t) = N

yt |
t∑

k=1

βt−kxk, r

 .

We let the prior at t = 1 be p(x1) = N (x1 | 0, q). Artificial data was generated
using (φ, q, β, r) = (0.9, 1, 0.5, 1). The distribution of interest is the posterior dis-
tribution p(x1:T | y1:T ). We illustrate a few sample paths of y1:T in Figure 1 for
T = 100.

We can adjust the strength of the dependence on previous latent variables in the
observations, yt , through the parameter β ∈ [0, 1]. If we set β = 0 we obtain a
linear Gaussian ssm, since the data depends only on the most recent latent xt .
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On the other hand if we let β = 1, this signifies that xk for k < t has equally
strong effect on yt as does xt .

Conditionally independentmodels A common model in probabilistic machine learn-
ing is to assume that the datapoints yt in the dataset y = {yk}Kk=1 are conditionally
indepent given the latent x. This means that the joint pdf is given by

p(x, y) = p(x)
K∏
k=1

gk(yk | x)

︸         ︷︷         ︸
p(y | x)

, (11)

where p(y | x) is the likelihood. For this class of models it might not be immedi-
ately apparent that we can define a useful sequence of target distributions. How-
ever, as we shall see, we can make use of auxiliary variables to design target
distributions that may help with inference.

We will discuss two approaches to design the sequence of target distributions:
using data tempering and likelihood tempering, respectively. Both of these will
make use of an auxiliary variable technique, where each xt is a random variable
on the same space as x.

Data tempering: Using data tempering we add the data yk to the target distribu-
tion one by one. In this case the model index k coincides with the target index t.
We define the target distribution

γ̃t(x1:t) = p(xt)
t∏
k=1

gk(yk | xt) ·
t−1∏
k=1

sk(xk | xk+1), (12)

where the distributions sk(xk | xk+1) are a design choice, known as backward ker-
nels. With this choice, we have that the marginal distribution of xT at the fi-
nal iteration is exactly the posterior distribution, i.e. γT (xT ) = p(x | y). In fact,
at each step we have that the target distribution is a partial posterior γt(xt) =
p(x | y1:t).

Likelihood tempering: With likelihood tempering, instead of adding the data one
by one, we change the likelihood p(y | x) through a sequence of positive variables.
We define the target distribution

γ̃t(x1:t) = p(xt)p(y | xt)τt ·
t−1∏
k=1

sk(xk | xk+1), (13)

where 0 = τ1 < . . . < τT = 1, and again make use of the user chosen backward
kernels sk(xk | xk+1). In this setting all data is considered at each iteration. Since
τT = 1, we have that the final marginal target distribution is again equal to the
posterior γT (xT ) = p(x | y).
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Applying smc methods to tempered (and similar) target distributions has been
studied by e.g. Chopin (2002); Del Moral et al. (2006). We refer to these works
for a thorough discussion on the choice of backward kernels sk(xk | xk+1). Another
well known example is annealed importance sampling by Neal (2001).

Models and Targets We have seen several probabilistic models with examples of
corresponding target distributions. While not limited to these, this illustrates
the wide range of the applicability of smc. In fact, as long as we can design a
sequence of target distributions such that γT coincides with the distribution of
interest, we can leverage smc for inference.

1.3 Example Code

We will be making use of inline Python code snippets throughout the manuscript
to illustrate the algorithms and methods. Below we summarize the modules that
are necessary to import to run the code snippets:

1 import numpy as np
2 import numpy . random as npr
3 from s c i p y . misc import logsumexp
4 from s c i py . s t a t s import norm

Example Code A.1: Necessary imports for Python code examples.

1.4 Outline

The remainder of this tutorial is organized as follows. In Section 2, we first in-
troduce importance sampling (is), a foundational building block for smc. Then,
we discuss the limitations of is and how smc resolves these. Finally, the section
concludes with discussing some practical issues and theoretical results relevant
to smcmethods.

Section 3 is focused on the two key design choices of smc: the proposal and tar-
get distributions. Initially we focus on the proposal, discussing various ways of
adapting and learning good proposals that will make the approximation more
accurate. Then we discuss the sequence of target distributions; how we can learn
intermediate distributions that help us when we try to approximate the poste-
rior.

The tutorial concludes with a discussion and outlook in Section 4.
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2 Importance Sampling to Sequential Monte Carlo

Typical applications require us to be able to evaluate or sample from the target
distributions γt , as well as compute their normalization constants Zt . For most
models and targets this will be intractable, and we need approximations based
on e.g. Monte Carlo methods.

In this section, we first review is and some of its shortcomings. Then, we intro-
duce the smc method, the key algorithm underpinning this monograph. Finally,
we discuss some key theoretical properties of the smc algorithm.

2.1 Importance Sampling

Importance sampling is a Monte Carlo method that constructs an approximation
using samples from a proposal distribution, and corrects for the discrepancy be-
tween the target and proposal using (importance) weights.

Most applications of Bayesian inference can be formulated as computing expec-
tations of test functions ht with respect to the target distribution γt ,

γt(ht) := Eγt [ht(x1:t)] . (14)

Examples include posterior predictive distributions, Bayesian p-values, and point
estimates such as the posterior mean. Computing Equation (14) is intractable, but
by a clever trick we can rewrite it as follows

Eγt [ht(x1:t)] =
1
Zt

Eqt

[
γ̃t(x1:t)
qt(x1:t)

ht(x1:t)
]

=
Eqt

[
γ̃t(x1:t)
qt(x1:t)

ht(x1:t)
]

Eqt
[
γ̃t(x1:t)
qt(x1:t)

] . (15)

The pdf qt is a user choosen proposal distribution, we assume it is simple to sam-
ple from and evaluate. We can now estimate the right hand side of Equation (15)
using the Monte Carlo method,

Eγt [ht(x1:t)] ≈
1
N

∑N
i=1 w̃t(x

i
1:t)ht(x

i
1:t)

1
N

∑N
j=1 w̃t(x

j
1:t)

, (16)

where w̃t(x1:t) := γ̃t(x1:t)/qt(x1:t) and xi1:t are simulated iid from qt . We will usually
write Equation (16) more compactly as

Eγt [ht(x1:t)] ≈
N∑
i=1

witht(x
i
1:t), xi1:t

iid∼ qt , (17)

where the normalized weights wit are defined by

wit :=
w̃it∑
j w̃

j
t

,
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Algorithm 1: Importance sampling (is)
input : Unnormalized target distribution γ̃t , proposal qt , number of samples N .

output : Samples and weights
{(
xi1:t , w

i
t

)}N
i=1

approximating γt .

for i = 1 to N do
Sample xi1:t ∼ qt
Set w̃it = γ̃t(x

i
1:t)

qt(x
i
1:t)

end

Set wit = w̃it∑
j w̃

j
t

, for i = 1, . . . , N

with w̃it a shorthand for w̃t(x
i
1:t). The estimate in Equation (17) is strongly consis-

tent, converging (almost surely) to the true expectation as the number of samples
tend to infinity. An alternate view of is is to consider it an (empirical) approxima-
tion of γt ,

γt(x1:t) ≈
N∑
i=1

witδxi1:t
(x1:t) =: γ̂t(x1:t), (18)

where δX denotes the Dirac measure at X. Furthermore, is provides an approxi-
mation of the normalization constant,

Zt ≈
1
N

N∑
i=1

w̃it =: Ẑt (19)

Because the weights depend on the random samples, xi1:t , it is itself a random
variable. One of its key properties is that it is unbiased, which will be important
for several of the more powerful is and smc-based methods considered in this
monograph.

We summarize the importance sampling method in Algorithm 1. This algorithm
is sometimes referred to as self-normalized is, because we are normalizing each
individual weight using all samples.

A straightforward implementation of the is method we have described thus far
is impractical for many of the example models and targets in Section 1.2. It is
challenging to design good proposals for high-dimensional models. A good pro-
posal is typically more heavy-tailed than the target; if it is not, the weights can
have infinite variance. Another favorable property of a proposal is that it should
cover the bulk of the target probability mass, putting high probability on regions
of high probability under the target distribution. Even Markovian models, such
as the ssm, can have a prohibitive computational complexity without careful de-
sign of the proposal. In the next section we will describe how we can alleviate
these concerns using sis, a special case of is, with a kind of divide-and-conquer
approach to tackle the high-dimensionality in T .
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Algorithm 2: Sequential importance sampling (sis)
input : Unnormalized target distributions γ̃t , proposals qt , number of samples

N .
output : Samples and weights

{(
xi1:t , w

i
t

)}N
i=1

approximating γt , for t = 1, . . . , T .

for t = 1 to T do
for i = 1 to N do

Sample xit ∼ qt(xt | xi1:t−1)
Append xi1:t =

(
xi1:t−1, x

i
t

)
Set w̃it = w̃it−1

γ̃t(x
i
1:t)

γ̃t−1(xi1:t−1)qt(x
i
t | xi1:t−1)

end

Set wit = w̃it∑
j w̃

j
t

, for i = 1, . . . , N

end

2.1.1 Sequential Importance Sampling

Sequential importance sampling is a variant of is were we select a proposal dis-
tribution that has an autoregressive structure, and compute importance weights
recursively. By choosing a proposal defined by

qt(x1:t) = qt−1(x1:t−1)qt(xt | x1:t−1)

we can decompose the proposal design problem into T conditional distributions.
This means we obtain samples xi1:t by reusing xi1:t−1 from the previous iteration,
and append a new sample, xit , simulated from qt(xt | xi1:t−1). The unnormalized
weights can be computed recursively by noting that

w̃t(x1:t) =
γ̃t(x1:t)
qt(x1:t)

=
γ̃t−1(x1:t−1)
qt−1(x1:t−1)

γ̃t(x1:t)
γ̃t−1(x1:t−1)qt(xt | x1:t−1)

= w̃t−1(x1:t−1)
γ̃t(x1:t)

γ̃t−1(x1:t−1)qt(xt | x1:t−1)
.

We summarize the sis method in Algorithm 2, where q1(x1 | x1:0) = q1(x1) and
w̃0 = γ̃0 = 1.

If we need to evaluate the normalization constant estimate Ẑt , analogously to is
we make use of Equation (19). However, we may also obtain a (strongly) consis-
tent estimate of the ratio of normalization constants Zt/Zt−1

Zt
Zt−1

= Eγt(x1:t−1)qt(xt | x1:t−1)

[
γ̃t(x1:t)

γ̃t−1(x1:t−1)qt(xt | x1:t−1)

]
≈

N∑
i=1

wit−1
w̃it
w̃it−1

.
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While the estimate of the ratio is consistent, it is in general not unbiased. How-
ever, sis is a special case of is. This means that the sis estimate of the nor-
malization constant for γ̃t , i.e. Ẑt in Equation (19), is still unbiased and consis-
tent.

In Example 2 we detail a first example proposal qt for the running example, and
derive the corresponding weights w̃t . Furthermore, we include a code snippet
that illustrates how to implement the sampler in Python.

Example 2: Sequential importance sampling for Example 1
We revisit our running non-Markovian Gaussian example. The target distribu-
tion is

γ̃t(x1:t) = p(x1)g(y1 | x1)
t∏
k=2

f (xk | xk−1)g(yk | x1:k),

with p(x1) = N (x1 | 0, q) and

f (xk | xk−1) = N (xk |φxk−1, q) , g(yk | x1:k) = N

yt | k∑
l=1

βk−lxl , r

 .
A common approach is to set the proposal to be the prior (or transition) distri-
bution f . A sample from the proposal qt(xt | xt−1) = f (xt | xt−1) is generated as
follows

xt = φxt−1 +
√
qεt , εt ∼ N (0, 1). (20)

We refer to this proposal simply as the prior proposal. The corresponding weight
update is

w̃t(x1:t) = w̃t−1(x1:t−1)
γ̃t(x1:t)

γ̃t−1(x1:t−1)qt(xt | x1:t−1)
(21)

= w̃t−1(x1:t−1)N

yt | t∑
k=1

βt−kxk , r

 , (22)

where w̃0 = 1. We provide Example Code A.2 to illustrate how to implement sis
with the prior proposal for this model in Python.

1 x = np . z e r o s ( (N,T) )
2 logw = np . z e r o s (N)
3 mu = np . z e r o s (N)
4 f o r t in range (T) :
5 x [ : , t ]= phi *x [ : , t -1]+np . s q r t ( q ) *npr . randn (N)
6 mu = beta *mu + x [ : , t ]
7 logw += norm . logpd f ( y [ t ] , mu, np . s q r t ( r ) )
8 w = np . exp ( logw - logsumexp ( logw ) )

Example Code A.2: Sequential importance sampling for Example 1.

For improved numerical stability we update the log-weights log w̃t .



56 Paper A Elements of Sequential Monte Carlo

Figure 2: Weight degeneracy of the sis method. Size of the disks represent
the size of the corresponding weights wi

t .

Sis can be implemented efficiently for a large class of problems, the computa-
tional complexity is usually linear in N and T . Even so, the is methods suffer
from severe drawbacks limiting their practical use for many high-dimensional
problems.

2.1.2 Shortcomings of Importance Sampling

The main drawback of is is that the variance of the estimator scales unfavorably
with the dimension of the problem; the variance generally increases exponen-
tially in T . Because sis is a special case of is it inherits this unfavorable prop-
erty.

One way in which this problem manifests itself in practice is through the normal-
ized weights wi

t . The maximum of the weights, maxi w
i
t , will quickly approach

one as t increases; a phenomena known as weight degeneracy. This means that,
effectively, we approximate the target distribution using a single sample.

We illustrate weight degeneracy in Example 3 using the running example.

Example 3: SIS weight degeracy
We return to our running example, set the length T = 6, number of particles
N = 5, and (φ, q, β, r) = (0.9, 1.0, 0.5, 1.0). Figure 2 shows the particles and the
normalized weights wi

t , where the area of the discs correspond to the size of the
weights. We can see that as t increases nearly all mass concentrates on the fourth
particle x4

t . This means that the normalized weight of the particle is almost one,
w4
t ≈ 1. The remaining particles have normalized weights that are all close to

zero, and thus have a negligible contribution to the approximation. This concen-
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tration of mass for sis to a single particle happens very quickly. Even for very
simple Markovian models the variance of e.g. our normalization constant estima-
tor can increase exponentially fast as a function of T .

Sequential Monte Carlo methods essentially solve the weight degeneracy issue by
choosing a proposal that leverages information contained in γ̂t−1, the previous
iteration’s target distribution approximation.

2.2 Sequential Monte Carlo

Sequential Monte Carlo methods improve upon is by mitigating the weight de-
generacy issue through a clever choice of the proposal distribution. For certain
sequence models the weight degeneracy issue can be resolved altogether, provid-
ing estimators to the final marginal distribution γT (xT ) that do not deteriorate
for increasing T . For other sequence models, smc still tends to provide more
accurate estimates in practice compared to is.

Just like in sis we need a sequence of proposal distributions qt(xt | x1:t−1) for t =
1, . . . , T . This is a user choice that can significantly impact the accuracy of the
smc approximation. For now we assume that the proposal is given and return to
this issue in Section 3. Below, we detail the iterations (or steps) of a basic smc
algorithm.

Step 1: The first iteration of smc boils down to approximating the target distri-
bution γ1 using standard is. Simulating N times independently from the first
proposal

xi1
iid∼ q1(x1), i = 1, . . . , N , (23)

and assigning corresponding weights

w̃i1 =
γ̃1(xi1)

q1(xi1)
, wi1 =

w̃i1∑N
j=1 w̃

j
1

, i = 1, . . . , N , (24)

lets us approximate γ1 (cf. Equation (18)) by

γ̂1(x1) =
N∑
i=1

wi1δxi1
(x1). (25)

The key innovation of the smc algorithm is that it takes advantage of the infor-
mation provided in γ̂1(x1), Equation (25), when constructing a proposal for the
next target distribution γ2.
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Step 2: In the second iteration of smcwe sample x1:2 from the proposal γ̂1(x1)q2(x2 | x1),
rather than from q1(x1)q2(x2 | x1) like sis. We sample N times independently
from

xi1:2
iid∼ γ̂1(x1)q2(x2 | x1), i = 1, . . . , N , (26)

and assign weights

w̃i2 =
γ̃2(xi1:2)

γ̃1(xi1)q2(xi2 | x
i
1)
, wi2 =

w̃i2∑N
j=1 w̃

j
2

, i = 1, . . . , N .

Simulating xi1:2, Equation (26), can be broken down into parts: resampling xi1 ∼
γ̂1(x1), propagation xi2 | x

i
1 ∼ q2(x2 | xi1), and concatenation xi1:2 = (xi1, x

i
2). Note

the overloaded notation for xi1. We replace the initial sample set {xi1}
N
i=1 from

Step 1, with the resampled set xi1 ∼ γ̂1(x1), i = 1, . . . , N .

Resampling can refer to a variety of methods in statistics, for our purpose it is
simple (weighted) random sampling with replacement from x1:N

1 = {xi1}
N
i=1 with

weights w1:N
1 = {wi1}

N
i=1. Resampling N times independently means that the num-

ber of times each particle is selected is multinomially distributed. This resam-
pling algorithm is known as multinomial resampling, see Example Code A.3. In
Sections 2.2.1 and 2.2.2 we revisit resampling and present alternative resampling
algorithms, increasing efficiency by correlation and adaptation.

1 de f mult inomial_resampl ing (w, x ) :
2 u = npr . rand (*w. shape )
3 bins = np . cumsum(w)
4 r e turn x [ np . d i g i t i z e (u , b ins ) ]

Example Code A.3: Sampling N times independently from
∑
i w

iδxi .

Propagation generates new samples independently from the proposal, i.e. xi2 ∼
q2(x2 | xi1) for each i = 1, . . . , N .

By concatenating xi1:2 = (xi1, x
i
2) we obtain a complete sample from the proposal

γ̂1(x1)q2(x2 | x1). The approximation of γ2 is

γ̂2(x1:2) =
N∑
i=1

wi2δxi1:2
(x1:2).

smc can in essence be described as a synthesis of sis and resampling, which ex-
plains its alternate names sequential importance resampling (sir) or sequential
importance sampling and resampling (sisr).

Step t: The remaining iterations follow the recipe outlined in step 2. First, the
proposal is the product of the previous empirical distribution approximation and
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Algorithm 3: Sequential Monte Carlo (smc)
input : Unnormalized target distributions γ̃t , proposals qt , number of samples

N .
output : Samples and weights

{(
xi1:t , w

i
t

)}N
i=1

approximating γt , for t = 1, . . . , T .

for t = 1 to T do
for i = 1 to N do

Sample xi1:t ∼ γ̂t−1(x1:t−1)qt(xt | x1:t−1) (see Equation (27))

Set w̃it = γ̃t(x
i
1:t)

γ̃t−1(xi1:t−1)qt(x
i
t | xi1:t−1)

(see Equation (28))

end

Set wit = w̃it∑
j w̃

j
t

, for i = 1, . . . , N

end

a conditional distribution

qt(x1:t) = γ̂t−1(x1:t−1)qt(xt | x1:t−1). (27)

Samples for i = 1, . . . , N are generated as follows

resample xi1:t−1 ∼ γ̂t−1(x1:t−1),

propagate xit | xi1:t−1 ∼ qt(xt | x
i
1:t−1),

concatenate xi1:t =
(
xi1:t−1, x

i
t

)
.

Finally, we assign the weights

w̃it =
γ̃t(x

i
1:t)

γ̃t−1(xi1:t−1)qt(x
i
t | xi1:t−1)

, wit =
w̃it∑N
j=1 w̃

j
t

, i = 1, . . . , N , (28)

and approximate γt by

γ̂t(x1:t) =
N∑
i=1

witδxi1:t
(x1:t).

The normalization constant Zt can be estimated by

Ẑt =
t∏
k=1

1
N

N∑
i=1

w̃ik . (29)

We summarize the full sequential Monte Carlo sampler in Algorithm 3, where
γ̂0 = γ̃0 = 1, and q1(x1 | x1:0) = q1(x1).

The smc method typically achieves drastic improvements compared to sis. In
Example 4 we return to our running example, using the same settings as in Ex-
ample 3, to study the sample diversity and quality of the basic smcmethod com-
pared to sis.



60 Paper A Elements of Sequential Monte Carlo

Figure 3: Diversity of samples in the smcmethod. Size of the disks represent
the size of the weights wi

t , and the grey arrows represent resampling.

Example 4: SMC sample diversity
We illustrate the weights and resampling dependencies in Figure 3. The grey ar-
rows represent what sample from iteration t−1 that generated the current sample
at iteration t. We can see that the weights tend to be more evenly distributed for
smc. The algorithm dynamically chooses to focus computational effort on more
promising samples through the resampling step. Particles with low weights tend
to not be resampled, and particles with high weights are resampled more fre-
quently.

Eγ̂10
[log γ̃10/10] Eγ̂20

[log γ̃20/20] Eγ̂40
[log γ̃40/40]

sis −2.76 −3.35 −9.86
smc −2.47 −2.51 −2.77

Table 1: Average log-probability values of the unnormalized target distribu-
tion with respect to the sampling distributions of sis and smc. The number
of particles N = 10 is fixed for both methods.

Not only do we get more diversity in our sample set, smc also tends to find ar-
eas of higher probability. We illustrate this phenomenon in Table 1. We fix the
number of particles N = 10, then study the average log-probability of our tar-
get distribution log γ̃T , under the sampling distributions γ̂T , normalized by the
number of iterations T .

While smc methods do not suffer from weight degeneracy, they do however suf-
fer from what is known as path degeneracy. We illustrate this property in Exam-
ple 5.
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Figure 4: Path degeneracy of the smcmethod for smoothing approximation.
Size of the disks represent the size of the weights wi

t , and the grey arrows
represent resampling.

Example 5: SMC path degeneracy
In Figure 4 we reiterate the result from our previous example, Example 4. How-
ever, this time we only include the arrows corresponding to samples that have
been consistently resampled and form our final approximation γ̂T . We can see
that our approximation for early iterations collapses back to a single sample, e.g.
we have N = 5 identical copies of x1

1 in Figure 4. This phenomena is known as
path degeneracy and occurs because of the resampling mechanism. In Jacob et al.
(2015) the authors study the impact this has on the memory requirements. They
show that for state space models, under suitable conditions on the observation
pdf g , the expected distance from the current iteration to a coalescence of the
paths is bounded from above by O(N logN ).

In Figure 5 we study the impact that increasing dependence on earlier iterations
has on our smc estimate of the log-normalization constant. We let N = 20,
T = 100 be fixed and vary the value of β ∈ (0, 1), where increasing values of
β correspond to more long-range dependencies in our non-Markovian lvm. We
can see that for modest values of β the smc method achieves accurate estimates,
whereas for higher values the drop-off in efficiency is significant. This manifests
itself as an increase in the Monte Carlo (mc) variance in the estimate (width of
bars), as well as a negative bias. As we will discuss in Section 2.3, this negative
bias in the estimate of logZT is typical for smc and is.

In Sections 2.2.1 and 2.2.2 we will discuss two standard practical approaches that
help alleviate (but not solve) the issue of path degeneracy and improve overall es-
timation accuracy. The first is low-variance resampling — we lower the variance
in the resampling step by correlating random variables. The second is adaptive
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Figure 5: Violinplots for the log of the smc estimate of the normalization
constant divided by the true value, i.e. log ẐT − logZT . The number of par-
ticles are N = 20, length of the data is T = 100, and we study five different
settings of β = (0.001, 0.1, 0.5, 0.7, 0.99).

resampling, which essentially means that we do not resample at each iteration
but only on an as-needed basis. In Section 3 we go a step further and show how
to choose, or learn, proposal and target distributions that lead to even further
improvement.

2.2.1 Low-variance Resampling

The resampling step introduces extra variance in the short-term, using γ̂t−1 to es-
timate γt−1 is better than using the resampled particle set. However, discarding
improbable particles, and putting more emphasis on promising ones is crucial to
the long-term performance of smc. To keep long-term performance but minimize
the added variance, we can employ standard variance reduction techniques based
on correlating samples drawn from γ̂t−1. First, we explain a common technique
for implementing multinomial resampling based on inverse transform sampling.
Then, we explain two low-variance resampling alternatives, stratified and system-
atic resampling.

To sample from γ̂t−1 we use inverse transform sampling based on the weights
wi
t−1. We have that

x1:t−1 ∼ γ̂t−1 ⇔ x1:t−1 = xa1:t−1,

where the ancestor a is an integer random variable on {1, . . . , N }, such that the
following is true

∑a−1
i=1 wi

t−1 ≤ u <
∑a

i=1 w
i
t−1, (30)
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for u ∼ U(0, 1). Repeating the above process independently N times gives multi-
nomial resampling. That is, we draw ui ∼ U(0, 1) and find the corresponding ai

for each i = 1, . . . , N .

Stratified Resampling One way to improve resampling is by stratification on the
uniform random numbers ui . This means we divide the unit interval into N
strata, (0, 1/N), (1/N , 2/N), . . . , (1 − 1/N , 1). Then, we generate ui ∼ U(i−1/N , i/N) for
each strata i = 1, . . . , N . Finally, the corresponding ancestor variables ai are given
by studying Equation (30).

Example Code A.4 shows how this can be implemented in Python. The main
change compared to multinomial resampling, Example Code A.3, is the way the
ui ’s are generated.

1 de f s t r a t i f i e d _ r e s a m p l i n g (w, x ) :
2 Np = w. shape [ 0 ]
3 u = ( np . arange (Np) + npr . rand (Np) ) /Np
4 bins = np . cumsum(w)
5 r e turn x [ np . d i g i t i z e (u , b ins ) ]

Example Code A.4: Sampling N times from
∑
i w

iδxi using stratification.

Systematic Resampling We can take correlation to the extreme by only generating
a single uniform number u ∼ U(0, 1) to set all the ui ’s. Systematic resampling
means that we let

ui =
i − 1
N

+
u
N
,

where the random number u ∼ U(0, 1) is identical for all i = 1, . . . , N . Then,
we find corresponding ancestors ai by again studying Equation (30). Note that
just like in stratified resampling, systematic resampling also generates one ui in
each strata (i−1/N , i/N). However, in this case the ui ’s are based on a single random
value u. This means that systematic resampling will be the most computationally
efficient way for resampling.

The code change to implement systematic resampling is simple. We only need to
change a single line in Example Code A.4. We replace line 3 by: u = (np.arange
(Np) + npr.rand())/Np.

Both systematic and stratified resampling are heavily used in practice. In many
cases systematic resampling achieves slightly better results (Hol et al., 2006).
However, systematic resampling can sometimes lead to non-convergence (Gerber
et al., 2017), depending on the ordering of the samples.

For a more thorough discussion on these, and other, resampling methods see e.g.
Douc and Cappé (2005); Hol et al. (2006).
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2.2.2 Effective Sample Size and Adaptive Resampling

The resampling step introduces extra variance by eliminating particles with low
weights, and replicating particles with high weights. If the variance of the nor-
malized weights is low, this step might be unnecessary. By tracking the variability
of the normalized weights, and trigger a resampling step only when the variabil-
ity crosses a pre-specified threshold, we can alleviate this issue. This is known as
adaptive resampling in the smc literature. Often we study the effective sample
size (ess) to gauge the variability of the weights, which for iteration t is

ESSt =
1∑N

i=1

(
wit

)2 . (31)

The ess is a positive variable taking values in the continuous range between 1 and
N . For is the ess is an approximation to the number of exact samples from γt we
would need to achieve a comparable estimation accuracy (Doucet and Johansen,
2009). A common approach is to resample only at iterations when the ess falls
below N/2.

Adaptive resampling can be implemented by slight alterations to the proposal
and weight updates in Equations (27) and (28). If ESSt−1 is above the prespecified
threshold we simply omit the resampling step in Equation (27) and obtain

propagate xit | xi1:t−1 ∼ qt(xt | x
i
1:t−1),

concatenate xi1:t =
(
xi1:t−1, x

i
t

)
.

This means that for iterations where we do not resample, we simply revert to
using sis. The corresponding weight update is

w̃it = w̃it−1 ·
γ̃t(x

i
1:t)

γ̃t−1(xi1:t−1)qt(x
i
t | xi1:t−1)

, wit =
w̃it∑N
j=1 w̃

j
t

, i = 1, . . . , N .

Note then dependence on the previous weight w̃it−1 just like in standard sis.

When the ess falls below our pre-set threshold, we use the standard update Equa-
tions (27) and (28) with resampling instead.

Adaptive resampling is usually combined with the low-variance resampling tech-
niques explained above for further variance reduction.

2.3 Analysis and Convergence

Since its conception in the 1990s, significant effort has been spent on studying
the theoretical properties of smc methods. We will review and discuss a few
select results in this section. For an early review of the area, see e.g. Del Moral
(2004). The theorems we discuss below all hold for a number of conditions on the
proposal, probabilistic model, and test functions. For brevity we have omitted
these exact conditions and refer to the cited proofs for details.
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Unbiasedness One of the key properties of smc approximations is that they pro-
vide unbiased approximations of integrals of functions ht with respect to the
unnormalized target distribution γ̃t . We formalize this in Theorem 1.

Theorem 1 (Unbiasedness).

E

 t∏
k=1

 1
N

N∑
j=1

w̃
j
k

 ·
N∑
i=1

witht(x
i
1:t)

 =
∫
ht(x1:t)γ̃t(x1:t) dx1:t

Proof: See Del Moral (2004, Theorem 7.4.2). For the special case ht ≡ 1 see also
Appendix A.

A particularly important special case is when ht ≡ 1 and we approximate the
normalization constant of γ̃t . We have that E[ẐT ] = ZT , where the expectation is
taken with respect to all the random variables generated by the smc algorithm.
If we instead consider the more numerically stable log ẐT , we have by Jensen’s
inequality that E

[
log ẐT

]
≤ logZT . This means that the estimator of the log-

normalization constant is negatively biased. This is illustrated in the violin plot
discussed in Example 5.

We will delve deeper into the applications of the unbiasedness property and its
consequences in Section 3.

Laws of Large Numbers While integration with respect to unnormalized distribu-
tions can be estimated unbiasedly, this is unfortunately not true when estimating
expectations with respect to the normalized target distribution γt . However, smc
methods are still strongly consistent, leading to exact solutions when the number
of particles N tend to infinity. We formalize this law of large numbers in Theo-
rem 2.

Theorem 2 (Law of Large Numbers).

γ̂t(ht) :=
N∑
i=1

witht(x
i
1:t)

a.s.−→ γt(ht) =
∫
ht(x1:t)γt(x1:t) dx1:t , N →∞

Proof: See Del Moral (2004, Theorem 7.4.3).

Central Limit Theorem While the law of large numbers from the previous section
shows that smc approximations are exact in the limit of infinite computation, it
tells us nothing about the quality of our estimate. The central limit theorem (clt)
in Theorem 3 tells us about the limiting distribution of our smc estimate and its
asymptotic variance. This gives us a first approach to get an understanding for
the precision of our smc approximation to γt(ht).
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Theorem 3 (Central Limit Theorem).

√
N (γ̂t(ht) − γt(ht))

d−→ N (0,Vt (ht)) , N →∞,

where Vt( · ) is defined recursively for a measurable function h,

Vt (h) = Ṽt (w′t(x1:t) (h(x1:t) − γt(h))) , t ≥ 1,

Ṽt(h) = V̂t−1

(
Eqt(xt | x1:t−1) [h(x1:t)]

)
+ Eγt−1

[
Varqt(xt | x1:t−1)(h)

]
, t > 1,

V̂t(h) = Vt(h) + Varγt (h), t ≥ 1,

initialized with Ṽ1(h) = Varq1
(h) and where

w′t(x1:t) =
γt(x1:t)

γt−1(x1:t−1)qt(xt | x1:t−1)
,

w′1(x1:t) =
γ1(x1)
q1(x1)

.

Proof: See Chopin (2004).

Sample Bounds Another way of looking at the smc method, disregarding test
functions, is as a direct approximation to the target distribution itself. With this
point of view we can study bounds on the difference between the distribution
of a sample from the smc approximation compared to that of the target distri-
bution. Specifically, assume that we generate a sample x′1:t by first running an
smc sampler to generate an approximation γ̂t of γt , and then simulate x′1:t ∼ γ̂t .
Then, the marginal distribution of x′1:t is E[γ̂t], where the expectation is taken
with respect to all random variables generated by the smc algorithm. It is worth
noting that this distribution, E[γ̂t], may be continuous despite the fact that γ̂t
is a point-mass distribution by construction. In Theorem 4 we restate a generic
sample bound on the Kullback-Leibler (kl) divergence from the expected smc
approximation E [γ̂t] to the target distribution γT .

Theorem 4 (Sample Bound).

KL (E [γ̂T ] ‖γT ) ≤ C
N
,

for a finite constant C.

Proof: See Del Moral (2004, Theorem 8.3.2).

From this result we can conclude that in fact the smc approximation tends to the
true target in distribution as the number of particles increase.

Recently there has been an increased interest for using smc as an approximation
to the target distribution, rather than just as a method for estimating expectations
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with respect to test functions. This point of view has found applications in e.g.
probabilistic programming and variational inference (Huggins and Roy, 2015;
Naesseth et al., 2018; Wood et al., 2014).

3 Learning Proposals and Twisting Targets

The two main design choices of sequential Monte Carlo methods are the proposal
distributions qt and the intermediate target distributions γ̃t . Carefully choosing
these can drastically improve the efficiency of the algorithm and accuracy of our
estimation. Adapting both the proposal and target distribution is especially im-
portant if the latent space dimension is high.

In the first section below we discuss how to choose, or learn, the proposal distri-
bution for a fixed target distribution. Then, in the final section we discuss how
we can design a good sequence of intermediate target distributions for a given
probabilistic model.

3.1 Designing the Proposal Distribution

The choice of the proposal distribution is perhaps the most important design
choice for an efficient sequential Monte Carlo algorithm. A common choice is to
propose samples from the model prior, this is simply known as the prior proposal.
However, using the prior can lead to poor approximations for a small number of
particles, especially if the latent space is high-dimensional.

We will in this section derive the locally (one-step) optimal proposal distribu-
tion, or optimal proposal for short. Because it is typically intractable, we further
discuss various ways to either emulate it or approximate it directly. Finally, we
discuss alternatives to learn efficient proposal distributions using an end-to-end
variational perspective.

3.1.1 Locally Optimal Proposal Distribution

The locally optimal proposal distribution is the distribution we obtain if we as-

sume that we have a perfect approximation at iteration t − 1, i.e. γ̂t−1
d= γt−1.

Then, choose the proposal qt that minimizes the kl divergence from the joint
distribution γt−1(x1:t−1)qt(xt | x1:t−1) to γt(x1:t). We formalize this result in Propo-
sition 1. Equivalently, we can view this as the proposal minimizing the variance
of the incremental weights, i.e. w̃it/w̃it−1, with respect to the newly generated sam-
ples xit .
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Proposition 1 (Locally optimal proposal distribution). The optimal proposal
q?t (xt | x1:t−1) minimizing KL (γt−1(x1:t−1)qt(xt | x1:t−1)‖γt(x1:t)) is given by

q?t (xt | x1:t−1) = γt(xt | x1:t−1) =
γ̃t(x1:t)
γ̃t(x1:t−1)

, (32)

where γ̃t(x1:t−1) =
∫
γ̃t(x1:t) dxt .

Proof: If we let “const” denote terms constant with respect to the proposal dis-
tribution qt(xt | x1:t−1), we get

KL (γt−1(x1:t−1)qt(xt | x1:t−1)‖γt(x1:t))

= Eγt−1qt [log qt(xt | x1:t−1) − log γt(x1:t)] + const

= Eγt−1qt [log qt(xt | x1:t−1) − log γt(xt | x1:t−1)] + const

= Eγt−1(x1:t−1) [KL (qt(xt | x1:t−1)‖γt(xt | x1:t−1))] + const,

where the inner (conditional) Kullback-Leibler divergence is zero if and only if
qt(xt | x1:t−1) ≡ γt(xt | x1:t−1).

In Example 6 we show that the optimal proposal is analytically tractable for our
running non-Markovian Gaussian example.

Example 6: Optimal proposal for Example 1
If we let γ̃t(x1:t) = γ̃t−1(x1:t−1)f (xt | xt−1)g(xt | x1:t), then the (locally) optimal pro-
posal for our running example is analytically tractable. It is

q?t (xt | x1:t−1) =
γ̃t(x1:t)
γ̃t(x1:t−1)

∝ f (xt | xt−1)g(yt | x1:t)

∝ N
xt | rφxt−1 + qyt − q

∑t−1
k=1 β

t−kxk
q + r

,
qr

q + r

 .

In most practical cases the optimal proposal distribution is not a feasible alter-
native. The resulting importance weights are intractable, or simulating random
variables from the optimal proposal is too computationally costly. Below we dis-
cuss various common approaches for approximating it.

3.1.2 Approximations to the Optimal Proposal Distribution

There have been a number of suggestions over the years on how to approximate
the optimal distribution. We will review three analytic approximations based on
a Gaussian assumption, as well as briefly describe an exact approximation.
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Laplace Approximation We obtain the Laplace approximation to the optimal pro-
posal by a second-order Taylor approximation of the log-pdf around a point x̄
(Doucet et al., 2000). If we let lt(xt) := log γt(xt | x1:t−1), supressing the depen-
dence on x1:t−1, then

lt(xt) ≈ lt(x̄) + ∇lt(x̄)>(xt − x̄) +
1
2

(xt − x̄)>∇2lt(x̄)(xt − x̄)

= const +
1
2

(
xt − x̄ +

(
∇2lt(x̄)

)−1
∇lt(x̄)

)>
∇2lt(x̄)

(
xt − x̄ +

(
∇2lt(x̄)

)−1
∇lt(x̄)

)
,

where ∇lt and ∇2lt are the gradient and Hessian of the log-pdf with respect to xt ,
respectively. A natural approximation to the optimal proposal is then

qt(xt | x1:t−1) = N
(
xt | x̄ −

(
∇2lt(x̄)

)−1
∇lt(x̄),−∇2lt(x̄)−1

)
. (33)

The mode of the distribution can be a good choice for the linearization point x̄
if the distribution is unimodal. With this choice the mean simplifies to just x̄.
However, the mode is usually unknown and will depend on the value of x1:t−1.
This means that we are required to run a separate optimization for each particle
xi1:t−1 and iteration t to find the mode and Hessian. This can outweigh the benefits
of the improved proposal distribution.

Extended and Unscented Kalman Filter Approximations The extended Kalman filter
(ekf) and unscented Kalman filter (ukf) (Anderson and Moore, 1979; Julier and
Uhlmann, 1997) are by now standard solutions to non-linear and non-Gaussian
filtering problems. We can leverage these ideas to derive another class of Gaus-
sian approximations to the optimal proposal distribution (Doucet et al., 2000;
Van Der Merwe et al., 2001).

The two methods depend on a structural equation representation of our proba-
bilistic model,

xt = a(x1:t−1, vt), (34a)

yt = c(x1:t , et), (34b)

where vt , et are random variables. The representation implies a joint distribution
on xt and yt conditional on x1:t−1, i.e. p(xt , yt | x1:t−1). The locally optimal pro-
posal distribution corresponding to this representation is given by q?t (xt | x1:t−1) =
p(xt | x1:t−1, yt).

The ekf and ukf approximations rely on a Gaussian approximation to the joint
conditional distribution of xt and yt ,

p(xt , yt | x1:t−1) ≈ p̂(xt , yt | x1:t−1) = N
((
xt
yt

) ∣∣∣∣ µ̂, Σ̂)
, (35)
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where we have suppressed the dependence on x1:t−1 for clarity. We block the
mean µ̂ and variance Σ̂ as follows

µ̂ =
(
µ̂x
µ̂y

)
, Σ̂ =

(
Σ̂xx Σ̂xy

Σ̂yx Σ̂yy

)
. (36)

Under the assumptions of the approximation in Equation (35), the distribution
of xt | x1:t−1, yt is tractable:

p̂(xt | x1:t−1, yt) = N (xt | µt , Σt) , (37)

with

µt = µ̂x + Σ̂xy Σ̂
−1
yy

(
yt − µ̂y

)
, (38a)

Σt = Σ̂xx − Σ̂xy Σ̂−1
yy Σ̂yx. (38b)

The key difference between the ekf- and ukf-based approximations is how to
compute the estimates µ̂ and Σ̂. We leave the details of these procedures to Ap-
pendix B, and focus here on the intuition behind them.

The ekf uses a first-order Taylor approximation to the non-linear functions a, c
to derive an approximation to the full posterior distribution based on exact (an-
alytical) updates of the approximate model. Following this line of thinking we
can similarly linearize a, c locally. Then under a Gaussian assumption on the
noise vt , et , we compute the distribution p̂(xt , yt | x1:t−1) exactly for the linearized
model. The ekf-based approximations µ̂ and Σ̂ can be found in Equation (79) in
the appendix.

The ukf on the other hand uses so-called sigma points to reach the Gaussian ap-
proximation p̂(xt , yt | x1:t−1). The key idea is to choose a set of sigma points, pass
them through the nonlinear functions a and c, and then estimate the mean and
variance of the transformed point-set. Unlike the ekf-based approximation, the
ukf-based approximation does not require that the noises vt and et are Gaussian
distributed. However, we do require that the mean and variance for these random
variables are available. The ukf-based approximations µ̂ and Σ̂ can be found in
Equation (81) in the appendix.

Analytic Gaussian Approximations We refer to the Laplace-, ekf- and ukf-based
approximations as analytic Gaussian approximations to the locally optimal pro-
posal distribution. We summarize these three approaches in Algorithm 4. Which
one works best depends heavily on the model being studied. In Example 7 we
study a simple example when x and y are one-dimensional random variables.
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Algorithm 4: Analytic Gaussian Proposal Approximations

Proposal: qt(xt | x1:t−1) = N (xt | µt ,Σt)
• The Laplace approximation around the point x̄ is

µt = x̄ −
(
∇2lt(x̄)

)−1
∇lt(x̄),

Σt = −∇2lt(x̄)−1,

where lt(xt) = log γ̃t(x1:t) and derivatives are w.r.t. xt .
• The ekf- and ukf-based approximations are

µt = µ̂x + Σ̂xy Σ̂
−1
yy

(
yt − µ̂y

)
,

Σt = Σ̂xx − Σ̂xy Σ̂−1
yy Σ̂yx,

where the variables are defined in Equation (79) (ekf) and in
Equation (81) (ukf), respectively.

Example 7: Gaussian Proposal Approximations
We illustrate the analytic Gaussian approximations from Algorithm 4 based on a
simple scalar example

x = v, v ∼ N (0, 1), (39a)

y =
(x + 1)(x − 1)(x − 3)

6
+ e, e ∼ N (0, 0.5). (39b)

The prior on the latent variable x is a standard normal, but the measurement
model c is a polynomial in x with additive Gaussian noise. In Figure 6 we show
the true (bimodal) posterior p(x | y), and the corresponding approximations based
on the Laplace, ekf, and ukf methods. Neither of these methods can capture
the bimodality of the true normalized distribution, since they are all based on
the basic simplifying assumption that the posterior is Gaussian. However, as
previously discussed a good proposal will cover the bulk of probability mass of
the target. This means it is likely that the ekf and ukf proposals will outperform
the Laplace proposal in this case.

Exact Approximations In exact approximations we use another level of mc. In-
stead of drawing exact samples from q?t , we approximate draws from it using a
nested mc algorithm (Naesseth et al., 2015, 2016). This nested algorithm is cho-
sen such that it does not alter the asymptotic exactness of the outer smcmethod.
We have discussed how smc and is can be used as distribution approximators.
Nested mc methods takes this one step further, using a separate smc (or is) ap-
proximation q̂?t for each sample from q?t we would like. This can lead to sub-
stantial benefits for e.g. high-dimensional latent variables xt . One of the key
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Figure 6: Analytic Gaussian approximations of p(x | y) for the model in
Equation (39).

differences between the analytic Gaussian approximations and the exact approxi-
mations is the fixed form distribution assumption on the analytic approximation.
The exact approximation is not limited to a standard parametric distribution, and
we can obtain arbitrarily accurate approximations with enough compute. The
trade-off is the additional effort needed to generate each sample xit , which re-
quires us to run independent smc algorithms for each particle i at each iteration
t. While this might seem wasteful, it can actually improve accuracy compared
to smc methods with standard proposals (Naesseth et al., 2015), even for equal
compute.

We are interested in approximating the locally optimal proposal distribution, i.e.
q�t (xt | x1:t−1) ∝ γ̃t (x1:t), separately for each particle i using an mc method. A
first approach is to use a nested is sampler with a proposal rt(xt | x1:t−1) targeting
q�t (xt | x1:t−1). We construct an approximation of the optimal proposal indepen-
dently for each particle xi1:t−1 as follows

q̂�t (xt | xi1:t−1) =
M∑

j=1

ν̃
j,i
t∑
l ν̃

l,i
t

δx̄j,i (xt), x̄j,i ∼ rt(xt | xi1:t−1), (40)

where the weights ν̃t are given by

ν̃
j,i
t =

γ̃t

(
(xi1:t−1, x̄

j,i )
)

γ̃t−1(xi1:t−1)rt(x̄j,i | xi1:t−1)
.

We replace qt(xt | x1:t−1) in Equation (27) with samples from the distribution de-
fined in Equation (40). The corresponding weight update, under the assumption
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Algorithm 5: Nested is Approximation

input : Unnormalized target distributions γ̃t , γ̃t−1, resampled particle xi1:t−1,
nested proposal rt , number of samples M.

output : Samples and weights xit , w̃
i
t .

Sample x̄j,i ∼ rt(xt | xi1:t−1), j = 1, . . . , M.

Set ν̃j,it =
γ̃t((xi1:t−1,x̄

j,i ))
γ̃t−1(xi1:t−1)rt(x̄j,i | xi1:t−1)

.

Sample xit ∼
∑M
j=1

ν̃
j,i
t∑
l ν̃

l,i
t

δx̄j,i (xt). (see Equation (40))

Set w̃it = 1
M

∑M
j=1 ν̃

j,i
t . (see Equation (41))

that we have resampled xi1:t−1, is given by

w̃it =
1
M

M∑
j=1

ν̃
j,i
t . (41)

We summarize the nested is approach to approximate the optimal proposal in
Algorithm 5. The algorithm generates a single sample, and must be repeated for
each i = 1, . . . , N .

By what we know from the theory of smc, see Section 2.3, we would expect that

q̂?t
d−→ q?t if we let M → ∞. This is true, and as shown by Naesseth et al. (2016)

the asymptotic variance in the limit of M → ∞ is equal to that of using the
locally optimal proposal distribution. The main implication is that we can obtain
arbitrarily accurate optimal proposal approximations at the cost of increasing
the number of samples M for the nested mc method. We can also combine the
analytic Gaussian approximations above with exact approximations by choosing
rt as either the Laplace, ekf, ukf, or any other analytic approximation.

The computational complexity of the nested is method is increased by a factor
of M compared to standard smc. However, the memory requirement is lower
and there are opportunities for speeding up through parallelization. There are
even variants of nested mc that can outperform on the same computational bud-
get (Naesseth et al., 2015), i.e. when compared to standard smc with NM parti-
cles.

3.1.3 Learning a Proposal Distribution

Rather than relying on approximating the locally optimal proposal distribution,
we can instead directly learn a good proposal distribution that can take into ac-
count global information of the target distribution. By parameterizing a suit-
able class of distributions and choosing a cost function to optimize, we can use
standard optimization tools (such as stochastic gradient descent) to adapt our
proposal to the problem we are trying to solve. When combined with the smc
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approximation, we refer to these types of approaches as adaptive or variational
smcmethods.

We will in this section focus on proposal distributions, qt , parameterized by λ, we
denote this as qt(xt | x1:t−1 ; λ). A common choice is to use a conditional Gaussian
distribution

qt(xt | x1:t−1 ; λ) = N
(
xt | µλ(x1:t−1), σ2

λ(x1:t−1)
)
,

where µλ( · ), σ2
λ( · ) are neural networks parameterized by λ. The proposal is also

a function of the data, either explicitly as a part of the input to the functions
or implicitly through the cost function for the parameters. These types of con-
ditional distributions have recently been used with success in everything from
image and speech generation (Gulrajani et al., 2017; Maddison et al., 2017) to
causal inference (Krishnan et al., 2017; Louizos et al., 2017).

Below we discuss two classes of methods to learn the parameters λ, adaptive and
variational methods, respectively.

Adaptive Sequential Monte Carlo Adaptive methods are characterized by choosing
a cost function that tries to fit directly the proposal distribution qt(x1:T ) to the
target distribution γt(x1:T ). This can either be done locally at each iteration for
qt(xt | x1:t−1 ; λ) as in e.g. Cornebise et al. (2008), or globally for qT (x1:T ; λ) as in
e.g. Gu et al. (2015); Paige and Wood (2016). Because we are mainly interested
in the approximation of the final target distribution γT , we will here focus our
attention to methods that take a global approach to learning proposals.

Since we generally need the proposal distribution to cover areas of high probabil-
ity under the target distribution, we need the proposal to be more diffuse than the
target. This will ensure that the weights we assign will have finite variance and
that our approximation is more accurate. This means that using the cost function
KL(qT (x1:T ; λ)‖γT (x1:T )), like in standard variational inference (Blei et al., 2017),
would not result in a good proposal distribution. This cost function will encour-
age a proposal that is more concentrated than the target, and not less. Instead we
focus our attention on the inclusive kl divergence KL(γT (x1:T )‖qT (x1:T ; λ)) like
in e.g. Gu et al. (2015) or Paige and Wood (2016). The inclusive kl divergence
encourages a qT that covers the high-probability regions of γT .

We focus our exposition on adaptive methods to the case when γT (x1:T ) is the
posterior distribution p(x1:T | y1:T ). The cost function to minimize is the inclusive
kl divergence

KL(p(x1:T | y1:T )‖qT (x1:T ; λ)) =
∫
p(x1:T | y1:T ) log

p(x1:T | y1:T )
qT (x1:T ; λ)

dx1:T

= −
∫
p(x1:T | y1:T ) log qT (x1:T ; λ) dx1:T + const, (42)

where “const” includes all terms constant with respect to the proposal distribu-
tion. If we could compute the gradients of Equation (42) with respect to λ we
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could employ a standard gradient descent method to optimize it. Unfortunately
the gradients, given by

gKL = ∇λKL(p(x1:T | y1:T )‖qT (x1:T ; λ)) =

− Ep(x1:T | y1:T )

 T∑
t=1

∇λ log qt(xt | x1:t−1 ; λ)

 , (43)

requires us to compute expectations with respect to the posterior distribution.
Computing these types of expectations is the problem we try to solve with smc
in the first place! Below we will detail two approaches to solve this problem. First,
we consider a stochastic gradient method that uses smc to estimate the gradients.
Then, we consider an alternative solution that uses inference amortization com-
bined with stochastic gradient methods.

In the first approach, we use our current best guess for the parameters λ and then
the smc procedure itself to approximate the gradient in Equation (43). Given this
estimate of the gradient we can do an update step based on standard stochastic
gradient descent methods. Suppose we have the iterate λn−1, we estimate the
gradient in Equation (43) using Algorithm 3 with proposals qt(xt | x1:t−1 ; λn−1),
and get

gnKL ≈ ĝKL
n :=

N∑
i=1

wiT∇λ log qT (xi1:T ; λ)
∣∣∣∣
λ=λn−1

. (44)

With stochastic gradient descent we update our iterate by

λn = λn−1 − αnĝKL
n, (45)

where αn are a set of positive step-sizes, typically choosen such that
∑
n αn =

∞ and
∑
n α

2
n < ∞. Note that unlike standard stochastic optimization methods,

the gradient estimate is biased and convergence to a local minima of the cost
function is not guaranteed. However, this approach has still shown to deliver
useful proposal adaptation in practice (Gu et al., 2015).

The other approach relies on amortizing inference (Gershman and Goodman,
2014; Paige and Wood, 2016). One view of inference amortization is as a proce-
dure that does not just learn a single optimal λ? for the observed dataset y1:T , but
rather learns a mapping λ?( · ) from the data space to the parameter space. This
mapping is optimized to make sure qT (x1:T ; λ?(y1:T )) is a good approximation
to p(x1:T | y1:T ) for any y1:T that is likely under the probabilistic model p(y1:T ).
Instead of the kl divergence in Equation (42), we consider minimizing

KL (p(x1:T , y1:T )‖p(y1:T )qT (x1:T ; λ(y1:T )))

= −Ep(x1:T ,y1:T ) [log qT (x1:T ; λ(y1:T ))] + const. (46)

If we let λη( · ) be a parametric function with parameters η, we can compute
stochastic gradients of Equation (46) w.r.t. η with no need to resort to smc. A com-
mon choice is to let λη be defined by a neural network where η are the weights



76 Paper A Elements of Sequential Monte Carlo

and biases. We define the gradient

gKL = −Ep(x1:T ,y1:T )

[
∇η log qT (x1:T ; λη(y1:T ))

]
, (47)

and estimate it, for the current iterate ηn, using mc

gnKL ≈ ĝKL
n :=

− ∇η log qT (x̄1:T ; λη(ȳ1:T ))
∣∣∣∣
η=ηn−1

, (x̄1:T , ȳ1:T ) ∼ p(x1:T , y1:T ). (48)

Previous methods we have considered focus on proposals that try to emulate the
posterior or the locally optimal proposal, both conditionally on the observed data
y1:T . However, the amortized inference approach, in this setting, learns proposals
based on simulated data from the model p(x1:T , y1:T ). This is performed offline
before using the learned proposal and the real dataset for inference.

The amortized inference method follows the same procedure as above in Equa-
tion (45) when updating ηn, replacing the gradient with the expression from
Equation (48)

ηn = ηn−1 − αnĝKL
n. (49)

Unlike the above approach that uses smc to estimate the gradients, the amortized
inference approach results in an unbiased approximation of the gradient. This
means that using the update Equation (49) will ensure convergence to a local
minima of its cost function Equation (46) by standard stochastic approximation
results (Robbins and Monro, 1951). On the other hand, this approach requires us
to learn a proposal that works well for any dataset that could be generated by our
model. This puts extra stress on the model to be accurate for the actual observed
dataset to be able to learn a good proposal. For more thorough discussion of these
topics see Paige and Wood (2016).

We summarize these two approaches to optimize the proposal in Algorithm 6.

Variational Sequential Monte Carlo The key idea in variational sequential Monte
Carlo (vsmc) (Le et al., 2018; Maddison et al., 2017; Naesseth et al., 2018) is to
use the parametric distribution for our proposals, qt(xt | x1:t−1 ; λ), and optimize
the fit in kl divergence from the expected smc approximation E [γ̂T ] to the target
distribution γT . The dependence on λ comes in implicitly in the expected smc ap-
proximation E [γ̂T ] through the proposed samples, weights, and resampling step.
In contrast to mimicking the locally optimal proposal distribution, this cost func-
tion takes into account the complete smc approximation and defines a coherent
global objective function for it. Compared to the previously described adaptive
smcmethods, vsmc optimizes the fit of the final smc distribution approximation
to the true target, rather than the fit between the proposal to the target distribu-
tion. This means that we explicitly take into account the resampling steps that
are a key part of the smc algorithm.
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Algorithm 6: Adaptive smc

Stochastic Gradient qt(xt | x1:t−1 ; λ)

λn = λn−1 − αnĝKL
n,

where ĝKL
n is given in Equation (44).

Amortized Inference qt(xt | x1:t−1 ; λη(y1:T ))

ηn = ηn−1 − αnĝKL
n,

where ĝKL
n is given in Equation (48).

(The stepsizes satisfy αn > 0,
∑
n αn = ∞, and

∑
n α

2
n < ∞.)

Studying the marginal distribution of a single sample from γ̂T , i.e. E [γ̂T ], it is
possible to show that (Naesseth et al., 2018) the kl divergence from this distribu-
tion to the target distribution γT can be bounded from above

KL (E [γ̂T (x1:T ; λ)] ‖γT (x1:T )) ≤ −E
[
log

ẐT
ZT

]
, (50)

where the log-normalization constant estimate, cf. Equation (29), is

log ẐT =
T∑
t=1

log

 1
N

N∑
i=1

w̃t
(
xi1:t ; λ

) . (51)

The expectation is taken with respect to all random variables generated by the
smc algorithm. Because logZT does not depend on the parameters λ, minimizing
Equation (50) is equivalent to maximizing

E
[
log ẐT

]
= E

 T∑
t=1

log

 1
N

N∑
i=1

w̃t
(
xi1:t ; λ

)
 . (52)

The kl divergence KL(E[γ̂T ]‖γT ) is non-negative, which means Equation (52) is a
lower bound to the log-normalization constant logZT . This is why Equation (52)
is typically known as an evidence lower bound in the variational inference liter-
ature. By maximizing the cost function in Equation (52), with respect to λ, we
can find a proposal that fits the complete smc distribution to the target distribu-
tion. The main issue is that evaluating and computing the gradient of this cost
function is intractable, we need to resort to approximations.

We assume that the proposal distributions qt are reparameterizable (Kingma and
Welling, 2014; Naesseth et al., 2017; Rezende et al., 2014; Ruiz et al., 2016). This
means we can replace simulating xt | x1:t−1 ∼ qt( · | x1:t−1) by

xt = ht(x1:t−1, εt ; λ), εt ∼ p(ε), (53)
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Algorithm 7: Variational smc
Until convergence:
Run Algorithm 3 with proposals qt(xt | x1:t−1 ; λn−1).
Update parameters λn = λn−1 + αnĝVSMC

n, where ĝVSMC
n is given in

Equation (55).
(The stepsizes satisfy αn > 0,

∑
n αn = ∞, and

∑
n α

2
n < ∞.)

where the distribution of the random variable εt is independent of the parameters
λ. If we further assume that ht is differentiable we can use

∇λE
[
log ẐT

]
≈ E

 T∑
t=1

N∑
i=1

wit∇λ log w̃t
(
xi1:t ; λ

) =: gVSMC, (54)

where ∇λ log w̃t( · ) can be computed using e.g. automatic differentiation, replac-
ing xi1:t with its defintion through Equation (53). The approximation follows from
ignoring the gradient part that results from the resampling step, which has been
shown to work well in practice (Le et al., 2018; Maddison et al., 2017; Naesseth
et al., 2018).

Just like for the adaptive smc methods, Equation (54) suggests a stochastic gra-
dient method to optimize λ. Given an iterate λn−1, we compute the gradient
estimate by running smc with proposals qt(xt | x1:t−1 ; λn−1) and evaluate

gVSMC ≈ ĝVSMC
n =

T∑
t=1

N∑
i=1

wit∇λ log w̃t
(
xi1:t ; λ

) ∣∣∣∣
λ=λn−1

. (55)

With stochastic gradient ascent we update our iterate by

λn = λn−1 + αnĝVSMC
n, (56)

where αn are positive step-sizes, choosen such that
∑
n αn = ∞ and

∑
n α

2
n <

∞.

We summarize the vsmc algorithm to adapt the proposals in Algorithm 7.

3.2 Adapting the Target Distribution

A less well-known design aspect of smc algorithms is the target distribution itself.
If we are mainly interested in the final distribution γT , we are free to choose the
intermediate target distributions γt to maximize the accuracy of our estimate γ̂T .
By making use of information from future iterations, such as future observations,
we can change the target distribution to take this into account. This leads to
so-called auxiliary or twisted smc methods (Guarniero et al., 2017; Heng et al.,
2017).
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3.2.1 Twisting the Target

Even if we could simulate exactly from the locally optimal proposal distribution
Equation (32), we still would not be getting exact samples from our target distri-
bution. The reason for this is because when sampling and weighting our particles
at iteration t we do not take into account potential future iterations. These fu-
ture iterations can add new information regarding earlier latent variables. For
instance, in an lvm (cf. Equation (9)) a natural choice of target distributions
is

γ̃t(x1:t) = p(x1)g1(y1 | x1)
t∏
k=2

fk(xk | x1:k−1)gk(yk | x1:k).

However, with this choice we do not take future observations yt+1, . . . , yT into
account at iteration t. The smc approximation for earlier iterations has finite
support (represented by the particles xi1:t−1) and so the only way we can incorpo-
rate this is by reweighting and resampling. These two operations will typically
impoverish our approximation for the full states x1:t , a phenomena related to the
path degeneracy discussed in Section 2. The key idea in twisting (or tilting) the
target distribution is to change our intermediate target distributions to take into
account information from future iterations already at the current step. These
types of approaches also have a connection to so-called lookahead strategies (Lin
et al., 2013) and block sampling (Doucet et al., 2006) for smc.

The optimal target distribution, under the assumption that we are using the lo-
cally optimal proposal, is to let the target at each iteration be the marginal distri-
bution of the final iteration’s target, i.e.

γ?t (x1:t) = γT (x1:t). (57)

With this choice all samples from x1:T ∼ γ̂T are perfect samples from γT . We
can easily see this if we write out the optimal proposal for this sequence of tar-
gets

q?t (xt | x1:t−1) = γ?t (xt | x1:t−1) = γT (xt | x1:t−1) = p(xt | x1:t−1, y1:T ),

where in the final equality we have assumed that the target γT is the posterior dis-
tribution p(x1:T | y1:T ) for an lvm. This means that the locally optimal proposal
distribution is no longer only locally optimal, it is in fact optimal in a global
sense.

In the following discussion we will assume that the final unnormalized target
distribution γ̃T (x1:T ) = p(x1:T , y1:T ) can be split into a product of factors

p(x1:T , y1:T ) =
T∏
t=1

f̃t(x1:t)g̃t(x1:t , y1:T ). (58)



80 Paper A Elements of Sequential Monte Carlo

With this form of the joint distribution of data and latent variables, we choose
the following structure for our unnormalized target distributions:

γ̃t(x1:t) = γ̃t−1(x1:t−1)f̃t(x1:t)g̃t(x1:t , y1:T )
ψt(x1:t)

ψt−1(x1:t−1)
, (59)

where ψt ≥ 0 are our so-called twisting potentials, with ψ0 ≡ ψT ≡ 1. Then we
can confirm that the unnormalized target at the final iteration is the full joint
pdf

γ̃T (x1:T ) = p(x1:T , y1:T )
T∏
t=1

ψt(x1:t)
ψt−1(x1:t−1)

= p(x1:T , y1:T ),

and our normalized target distribution γT (x1:T ) is the posterior p(x1:T | y1:T ). The
target distribution structure postulated in Equation (59) can be directly applied
in our basic smcmethod in Algorithm 3 without any changes.

To deduce the optimal twisting potentials ψ?t we can make use of the property
that the targets must fulfill

γ̃?t (x1:t) =
∫
γ̃?t+1(x1:t+1) dxt+1, t = 1, . . . , T − 1. (60)

This follows from Equation (57), each target γ?t should be the marginal distri-
bution of x1:t under the final target distribution γT . By replacing γ̃?t in Equa-
tion (60) with the definition from Equation (59) we get

ψ?t (x1:t) =
∫
f̃t+1(x1:t+1)g̃t+1(x1:t+1, y1:T )ψ?t+1(x1:t+1) dxt+1. (61)

While Equation (61) is typically not available analytically for practical applica-
tions, we will see in Section 3.2.2 that it can serve as a guideline for designing
tractable twisting potentials.

Below we give a few concrete examples on what the optimal potentials might look
like for both non-Markovian lvms and conditionally independent models with
tempering.

Non-Markovian Latent Variable Model The non-Markovian lvm can be described by
a transition pdf ft and an observation pdf gt with the following structure

f̃t(x1:t) = ft(xt | x1:t−1), (62a)

g̃t(x1:t , y1:T ) = gt(yt | x1:t , y1:t−1). (62b)

For this model we can rewrite Equation (61) as follows

ψ?t (x1:t) = Eft+1(xt+1 | x1:t)

[
gt+1(yt+1 | x1:t+1, y1:t)ψ

?
t+1(x1:t+1)

]
= E∏T

k=t+1 fk(xk | x1:k−1)

 T∏
l=t+1

gl(yl | x1:l , y1:l−1)

 = p(yt+1:T | x1:t), (63)
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where the final expression is the predictive likelihood of yt+1:T given the latent
variables x1:t . In Example 8 we derive the optimal twisting potentials for our
Gaussian non-Markovian lvm.

Example 8: Analytical Twisting Potential
Our running example is a non-Markovian lvm with an analytical optimal twist-
ing potential ψ?t . This is because the joint distribution is Gaussian, and thus the
integrals we need to compute to construct it (cf. Equation (62)) are tractable. We
can rewrite the equation for the observations yt for each t only as a function of
x1:l , et and vl+1:t , denoted by yt | l , as follows

yt | l =

 t∑
k=l+1

βt−kφk−l
 xl +

l∑
k=1

βt−kxk + et +
t∑

k=l+1

γkvk , (64)

where γk is

γk =
t∑

m=k

βt−mφm−k .

Because we know that ψ?t (x1:t) = p(yt+1:T | x1:t) we get the optimal value by con-
sidering the distribution of (yt+1 | t , . . . , yT | t)>. Since et and vt are independent
Gaussian, by Equation (64) the predictive likelihood is a correlated multivariate
Gaussian.

Conditionally Independent Models Another class of probabilistic models we dis-
cussed in Section 1.2 was conditionally independent models. In the notation of
Equation (59) we can express this class of models as follows

f̃t(x1:t) = st(xt−1 | xt), t = 2, . . . , T , (65a)

g̃t(x1:t , y1:T ) =
p(xt)gt(xt , y1:T )

p(xt−1)gt−1(xt−1, y1:T )
, t = 2, . . . , T , (65b)

where p(xt) is the prior distribution on the latent variable. We initialize by f̃1 ≡
1 and g̃1 = p(x1)g1(x1, y1:T ). The potential gt usually takes either of the two
following forms

gt(xt , y1:T ) =
t∏
k=1

p(yk | xt), (data tempering)

gt(xt , y1:T ) =

 T∏
k=1

p(yk | xt)


τt

, (likelihood tempering)

where 0 = τ1 < τ2 < . . . < τT = 1. The distribution st is an artificially introduced
distribution to enable the use of smc methods, requiring approximating a space
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of increasing dimension. See Section 1.2 for more examples of useful sequence
models in annealing methods, or Del Moral et al. (2006) for a more thorough
treatment of the subject.

When we replace f̃t and g̃t in Equation (61) with their respective definitions from
Equation (65) we get

ψ?t (x1:t) =
∫
p(xt+1)gt+1(xt+1, y1:T )
p(xt)gt(xt , y1:T )

st+1(xt | xt+1)ψ?t+1(x1:t+1) dxt+1

=
1

p(xt)gt(xt , y1:T )

∫
p(xT )gT (xT , y1:T )

T∏
k=t+1

sk(xk−1 | xk) dxt+1:T , (66)

where we can see that because of the (reverse) Markov structure in the annealing
model from Equation (65), the optimal twisting potential only depends on the
current value of xt , i.e. ψ?t (x1:t) = ψ?t (xt). This will hold true also for the ssm,
the Markovian special case of Equation (62) where ft(xt | x1:t−1) = ft(xt | xt−1) and
gt(yt | x1:t , y1:t−1) = gt(yt | xt).

3.2.2 Designing the Twisting Potentials

The optimal twisting potentials are typically not tractable, requiring us to solve
integration problems that might be as difficult to compute as the posterior itself.
However, they can give insight into how to design and parameterize approximate
twisting functions. First, we study a certain class of models that admit a locally
optimal twisting potential, which gives rise to the so-called fully adapted smc
(Johansen and Doucet, 2008; Pitt and Shephard, 1999). After discussing the lo-
cally optimal choice, we then move on to discuss a general approach to learning
twisting potentials for smc algorithms.

Locally Optimal Twisting Potential If we assume that the twisting potentials only
satisfy the optimal twisting equation, Equation (61), for one iteration we get a
locally optimal twisting potential

ψt(x1:t) =
∫
f̃t+1(x1:t+1)g̃t+1(x1:t+1, y1:T ) dxt+1. (67)

The target distribution based on these potentials will allow us to adapt for infor-
mation from one step into the future.

Furthermore, we combine the locally optimal twisting potentials with the propos-
als based only on factors up until iteration t, i.e.

qt(xt | x1:t−1) =
f̃t(x1:t)g̃t(x1:t , y1:T )

ψt−1(x1:t−1)
.
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With these choices of twisting and proposal, based on the twisted target structure
Equation (59), we obtain the fully adapted smc (Johansen and Doucet, 2008; Pitt
and Shephard, 1999) with corresponding weights

w̃t(x1:t) =
γ̃t(x1:t)

γ̃t(x1:t−1)qt(xt | x1:t−1)
= ψt(x1:t). (68)

Note that this perspective on fully adaptive smc approximates the predictive
target

γ̃t(x1:t) =
∫
f̃t+1(x1:t+1)g̃t+1(x1:t+1, y1:T ) dxt+1︸                                         ︷︷                                         ︸

ψt(x1:t)

·
t∏
k=1

f̃k(x1:k)g̃k(x1:k , y1:T ),

including information from iteration t + 1 already at iteration t. In some situa-
tions we might be interested in the filtering target

∏t
k=1 f̃k(x1:k)g̃k(x1:k , y1:T ). If so,

we can make use of the approach described above to generate the particles xi1:t .
Then to estimate the filtering target we simply average the particles xi1:t , ignoring
the weights in Equation (68) because of the discrepancy between the filtering and
predictive targets.

The proposal used above is not the locally optimal proposal distribution for our
(predictive) target distribution. The optimal proposal for the target based on
Equation (67) is

qt(xt | x1:t−1) ∝ f̃t(x1:t)g̃t(x1:t , y1:T )ψt(x1:t),

which would result in weights

w̃t(x1:t) =
γ̃t(x1:t)

γ̃t(x1:t−1)qt(xt | x1:t−1)
=

∫
f̃t(x1:t)g̃t(x1:t , y1:T )ψt(x1:t) dxt

ψt−1(x1:t−1)
. (69)

Just like in the non-twisted case the weights for the locally optimal proposal are
independent of the actual samples we generate at iteration t of the smc algorithm.
However, even if the potentials in Equation (67) are available, the integration in
Equation (69) is not necessarily tractable.

Except for a few special cases the optimal potential is not available, therefore we
resort to approximating it. We can extend the ideas from Section 3.1 and either
make an approximation to the locally optimal potential, or we can learn a full
twisting potential.

Learning Twisting Potentials By parameterizing a class of positive functions and a
cost function, we can effectively learn useful twisting potentials for the applica-
tion at hand. From Equation (61) we know that the optimal twisting potentials
must satisfy a recursive relationship. We can make use of this property as we
define the cost function and the twisting potentials.
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We explain the approach by Guarniero et al. (2017), but generalize slightly to
allow for non-Markovian lvms. This means that our model is defined by f̃t =
ft(xt | x1:t−1) and g̃t = gt(yt | x1:t), cf. Equation (62). Furthermore, we define the
twisting potentials ψt(x1:t) implicitly as expectations with respect to ft+1 of posi-
tive functions ψ̄t+1(x1:t+1 ; ρt+1), i.e.

ψt(x1:t ; ρt+1) := Eft(xt+1 | x1:t)

[
ψ̄t+1(x1:t+1 ; ρt+1)

]
, t = 1, . . . , T − 1, (70)

We further assume that this expectation can be computed analytically. With this
setup we focus on learning the ψ̄t’s instead. Using the optimality condition from
Equation (61) with twisting potentials defined by Equation (70), we get the recur-
sive approximation criteria for the ψ̄t’s

ψ̄T (x1:T ; ρT ) ≈ gT (yT | x1:T ), (71a)

ψ̄t(x1:t ; ρt) ≈ gt(yt | x1:t)Eft(xt+1 | x1:t)

[
ψ̄t+1(x1:t+1 ; ρt+1)

]
. (71b)

Because we assumed that Eft(xt | x1:t−1)

[
ψ̄t(x1:t ; ρt)

]
is available analytically, and

Equation (71) is telling us to view it as an approximation of p(yt:T | x1:t−1), it
makes sense to use as the proposal

qt(xt | x1:t−1 ; ρt) =
ft(xt | x1:t−1)ψ̄t(x1:t ; ρt)

Eft(xt | x1:t−1)

[
ψ̄t(x1:t ; ρt)

] . (72)

With this choice of proposal we tie together the parameters for the proposal and
the potentials. The corresponding weights in the smc algorithm are

w̃t(x1:t ; ρt:t+1) =
gt(yt | x1:t)ψt(x1:t ; ρt+1)

ψ̄t(x1:t ; ρt)
. (73)

What remains is how to use Equation (71) to actually learn a useful set of poten-
tials. To do this we follow the approach by Guarniero et al. (2017) which uses an
iterative refinement process: initialize parameters, run smc with the current pa-
rameters, update parameters based on the current smc approximation γ̂t , repeat.
The update step solves for ρnt by recursively minimizing

ρnT = arg min
ρT

N∑
i=1

wiT
(
ψ̄T (xi1:T ; ρT ) − gT (yT | xi1:T )

)2
, (74a)

ρnt = arg min
ρt

N∑
i=1

wit
(
ψ̄t(x

i
1:t ; ρt) − gt(yt | xi1:t)ψt(x

i
1:t ; ρnt+1)

)2
, (74b)

where the last step is for t = T − 1, . . . , 1. With the updated set of parameters,
we re-run smc and repeat the updates in Equation (74) if a stopping criteria has
not been met. Guarniero et al. (2017) proposes a stopping criteria based on the
normalization constant estimate ẐT .

We summarize the iterated auxiliary smcmethod explained above in Algorithm 8,
and give an example setup for a stochastic recurrent neural network (rnn) in
Example 9.
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Algorithm 8: Iterated auxiliary smc

Initialize ρ0
1, . . . , ρ

0
T .

while (stopping criteria not met) do
Run Algorithm 3 with current parameters ρn−1

1 , . . . , ρn−1
T . The proposal and

weights are given by Equation (72) and Equation (73), respectively.
Update the parameters to ρn1 , . . . , ρ

n
T by solving Equation (74).

end

Example 9: Stochastic Recurrent Neural Network
A stochastic rnn is a non-Markovian lvmwhere the parameters of the transition
and observation models are defined by rnns. A common example is using the
conditional Gaussian distribution to define the transition pdf

ft(xt | x1:t−1) = N (xt | µt(x1:t−1),Σt(x1:t−1)) ,

where the functions µt( · ),Σt( · ) are defined by rnns. This model together with
a Gaussian-like definition for the potentials satisfies the criteria for using Algo-
rithm 8. We define ψ̄t as follows

ψ̄t(x1:t ; ρt) = exp
(
−1

2
x>t Λt(x1:t−1)xt + ιt(x1:t−1)>xt + ct(x1:t−1)

)
,

where the functions Λt( · ), ιt( · ), ct( · ) depend on the parameters ρt—for nota-
tional brevity we have not made this dependence explicit. The proposal (cf. Equa-
tion (72)) is given by

qt(xt | x1:t−1 ; ρt) = N
(
xt | µ̂t , Σ̂t

)
,

Σ̂t =
(
Σt(x1:t−1)−1 + Λt(x1:t−1)

)−1
,

µ̂t = Σ̂t

(
Σt(x1:t−1)−1µt(x1:t−1) + ιt(x1:t−1)

)
,

and the twisting potential

ψt−1(x1:t−1 ; ρt) = Eft(xt | x1:t−1)

[
ψ̄t(x1:t ; ρt)

]
=

√
det

(
Σ̂t

)
det (Σt(x1:t−1))

· exp
(1

2
µ̂>t Σ̂

−1
t µ̂t −

1
2
µt(x1:t−1)>Σt(x1:t−1)−1µt(x1:t−1) + ct(x1:t−1)

)
.

Twisting the target distribution is an area of active research (Guarniero et al.,
2017; Heng et al., 2017). The iterated auxiliary smc (Guarniero et al., 2017)
makes strong assumptions on the model for easier optimization. End-to-end op-
timization of a priori independent twisting potentials ψt and proposals qt might
lead to even more accurate algorithms.
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4 Discussion

We have described sequential Monte Carlo, methods that use random samples
to approximate the posterior. The goal is to approximate the distribution of the
latent (unobserved) variables given the data. The idea is to draw samples from
a (simpler) proposal distribution. Then correct for the discrepancy between the
proposal and posterior using weights. smc is generally applicable and can be
considered to be an alternative, or complement, to mcmcmethods.

First, we discussed the roots of smc in (sequential) importance sampling and
sampling/importance resampling. Next, we introduced the smc algorithm in
its full generality. The algorithm was illustrated with synthetic data from a
non-Markovian latent variable model. Then, we discussed practical issues and
theoretical results. The smc estimate satisfies favorable theoretical properties;
under appropriate assumptions it is both consistent and has a central limit the-
orem. Finally, we discussed and explained how to learn a good proposal and
target distribution. As a motivating example, we described how to go about
learning a proposal- and target distribution for a stochastic recurrent neural net-
work.

There are several avenues open for further work and research in smc methods
and their application. We provide a few examples below. The proposal distri-
bution is crucial for performance, and finding efficient ways to learn useful pro-
posals is an area of continued research. The twisting potential can drastically
improve accuracy. However, jointly learning twisting potentials and proposal
distributions for complex models is a challenging and largely unsolved problem.
Parallelization and distributed computing for smc algorithms are also topics of
active research.

We hope that this paper can serve as a catalyst for further research on smcmeth-
ods and their application in machine learning.
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Appendix

A Proof of Unbiasedness

The distribution of all random variables generated by the smc method in Algo-
rithm 3 is given by

QSMC

(
x1:N

1:T , a
1:N
1:T−1

)
=

N∏
i=1

q1(xi1) ·
T∏
t=2

N∏
i=1

[
w
ait−1
t−1 qt

(
xit | x

ait−1
1:t−1

)]
, (75)

where the particles are x1:N
1:T =

⋃T
t=1

{
xit

}N
i=1

, and the ancestor variables from the

resampling step are a1:N
1:T−1 =

⋃T−1
t=1

{
ait

}N
i=1

. We are going to prove that

EQSMC(x1:N
1:T ,a

1:N
1:T−1)

[
ẐT
ZT

]
= 1, (76)

from which the result follows. To do this we introduce another set of variables
biT = i and bit = a

bit+1
t , for t = 1, . . . , T − 1. The notation describes the ancestor

index at iteration t for the final particle xi1:T . This means that we can write xi1:T =

(x
bi1
1 , . . . , x

biT
T ). Using this notation we can rewrite the integrand in Equation (76)

as follows,

ẐT
ZT

QSMC

(
x1:N

1:T , a
1:N
1:T−1

)
=

1
ZT

T∏
t=1

 1
N

N∑
i=1

w̃it

 ·
N∏
i=1

q1(xi1) ·
T∏
t=2

N∏
i=1

 w̃
ait−1
t−1∑N

j=1 w̃
j
t−1

qt

(
xit | x

ait−1
1:t−1

)
=

1
N T ZT

N∑
i=1

w̃bi11 q1(x
bi1
1 )

T∏
t=2

w̃
bit
t qt(x

bit
t | x

bit−1
1:t−1)

·
∏
j,bi1

q1(xj1) ·
T∏
t=2

∏
j,bit−1

[
w
a
j
t−1
t−1 qt

(
x
j
t | x

a
j
t−1

1:t−1

)]
=

1
N T

N∑
i=1

 γ̃T (xi1:T )
ZT

·
∏
j,bi1

q1(xj1) ·
T∏
t=2

∏
j,bit−1

[
w
a
j
t−1
t−1 qt

(
x
j
t | x

a
j
t−1

1:t−1

)] ,
where the first equality is the definition, the second equality separates the de-
pendence of the particle xi1:T from the rest, and the third equality simplifies the
product between weights and proposals for particle xi1:T .
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Now, using Equation (76) and the above rewrite of the integrand we obtain

1
N T

∑
a1:N

1:T−1

∫ N∑
i=1

 γ̃T (xi1:T )
ZT

·
∏
j,bi1

q1(xj1) ·
T∏
t=2

∏
j,bit−1

[
w
a
j
t−1
t−1 qt

(
x
j
t | x

a
j
t−1

1:t−1

)]dx1:N
1:T

=
1

N T−1

∑
a1:N

1:T−1

∫
γ̃T (x1

1:T )
ZT

·
∏
j,b1

1

q1(xj1) ·
T∏
t=2

∏
j,b1

t−1

[
w
a
j
t−1
t−1 qt

(
x
j
t | x

a
j
t−1

1:t−1

)]
dx1:N

1:T

=
1

N T−1

∑
b1

1:T−1

∫
γ̃T (x1

1:T )
ZT

dx1
1:T =

∫
γ̃T (x1:T )
ZT

dx1:T = 1,

where in the first equality we note that the sum over i generates N equal values,
and thus we can arbitrarily choose one of these (in this case i = 1) to evaluate and
multiply the result by N . In the second equality we marginalize the variables
not involved in the particle x1

1:T . The two final equalities follow because we are
averaging N T−1 values that are all equal to 1. This concludes the proof.

B Taylor and Unscented Transforms

In this appendix we detail the ekf- and ukf-based approximations to the distri-
bution p(xt , yt | x1:t−1). We refer to the two approaches as Taylor and Unscented
transforms, respectively.

Taylor Transform If we assume that vt and et are zero-mean and linearize a around
vt = 0 and c around xt = a(x1:t−1, 0), et = 0 we get

xt ≈ ā + Jav (ā)vt , (77a)

yt ≈ c̄ + J cxt (c̄)(xt − ā) + J cet (c̄)et , (77b)

where ā = a(x1:t−1, 0), c̄ = c ((x1:t−1, ā), 0), and Javt (ā) denotes the Jacobian of the
function a with respect to vt evaluated at the point ā. We rewrite Equation (77):

xt ≈ ā + Jav (ā)vt , (78a)

yt ≈ c̄ + J cxt (c̄)J
a
v (ā)vt + J cet (c̄)et . (78b)
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For the approximation in Equation (78) xt , yt | x1:t−1 is indeed Gaussian, and with
vt ∼ N (0, Q), et ∼ N (0, R), we can identify the blocks of µ̂ and Σ̂:

µ̂x = ā, (79a)

µ̂y = c̄, (79b)

Σ̂xx = Jav (ā)Q Jav (ā)>, (79c)

Σ̂xy = Σ̂>yx = Jav (ā)Q Jav (ā)>J cxt (c̄)
>, (79d)

Σ̂yy = J cxt (c̄)J
a
v (ā)Q Jav (ā)>J cxt (c̄)

> + J cet (c̄)R J
c
et (c̄)

>. (79e)

Using e.g. automatic differentiation we can easily compute the Jacobians needed
for the ekf-based proposal. However, we still have to be able to evaluate the
densities defined by a(x1:t−1, vt) and c(x1:t , et) for the weight updates w̃t . For
notational convenience we have omitted the dependence on previous latent states
in the expressions above. However, in general because of this dependence we
will have to compute the proposals separately for each particle, which includes
inverse matrix computations that can be costly if xt is high-dimensional.

Unscented Transform We rewrite Equation (34) as a single joint random variable,
and such that the functions a, c only depend on x1:t−1, vt , and et ,(

xt
yt

)
=

(
a(x1:t−1, vt)

c ((x1:t−1, a(x1:t−1, vt)) , et)

)
=: ã(x1:t−1, zt), (80)

where zt = (vt , et)>. By approximating the conditional distribution of (xt , yt)>

given x1:t−1 as Gaussian, we can again compute the distribution of xt | x1:t−1, yt
for the approximation. We choose sigma points based on the two first moments
of zt . The mean and variance of zt is

µz = E[zt], Σz = Var(zt) =

nx+ny∑
l=1

σ2
l ulu

>
l ,

where the scalars σl and vectors ul correspond to the singular value decomposi-
tion of Σz . We then choose the 2nx + 2ny + 1 sigma points for z as follows,

z0 = µz , z±l = µz ± σl
√
nx + ny + λ · ul ,

where λ = α2(nx + ny + κ) − nx − ny (Julier and Uhlmann, 1997). We will discuss
the choice of design parameters α and κ below. The mean and variance of (xt , yt)>
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is estimated by

E
[
(xt , yt)

>
]
≈

(
µ̂x
µ̂y

)
=

nx+ny∑
l=−(nx+ny )

ωl ã(x1:t−1, z
l), (81a)

Var
(
(xt , yt)

>
)
≈

(
Σ̂xx Σ̂xy

Σ̂yx Σ̂yy

)
=

(1 − α2 + β)
(
ã(x1:t−1, z

0) −
(
µ̂x
µ̂y

)) (
ã(x1:t−1, z

0) −
(
µ̂x
µ̂y

))>
+

nx+ny∑
l=−(nx+ny )

ωl
(
ã(x1:t−1, z

l) −
(
µ̂x
µ̂y

)) (
ã(x1:t−1, z

l) −
(
µ̂x
µ̂y

))>
, (81b)

where the coefficients ωl are

ω0 =
λ

nx + ny + λ
, ω±l =

1
2(nx + ny + λ)

,

and β is another design parameter.

Like in the ekf-based approximation we still need access to the densities corre-
sponding to Equation (34). Unlike in the ekf case the, ukf-based approximation
does not need access to derivatives. However, we need to choose the three design
parameters: α, β, κ. Both α and κ control the spread of the sigma points, and β is
related to the distribution of zt (Julier, 2002). Typical values of these parameters
are (α, κ, β) = (10−3, 0, 2).
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Abstract
We derive a new Sequential-Monte-Carlo-based algorithm to estimate
the capacity of two-dimensional channel models. The focus is on
computing the noiseless capacity of the 2-D (1,∞) run-length limited
constrained channel, but the underlying idea is generally applicable.
The proposed algorithm is profiled against a state-of-the-art method,
yielding more than an order of magnitude improvement in estimation
accuracy for a given computation time.

1 Introduction

With ever increasing demands on storage system capacity and reliability there
has been increasing interest in page-oriented storage solutions. For these types
of systems variations of two-dimensional constraints can be imposed to help with,
amongst other things, timing control and reduced intersymbol interference (Im-
mink, 2004). This has sparked an interest in analyzing information theoretic
properties of two-dimensional channel models for use in e.g. holographic data
storage (Siegel, 2006).

Our main contribution is a new algorithm, based on sequential Monte Carlo
(SMC) methods, for numerically estimating the capacity of two-dimensional chan-
nels. We show how we can utilize structure in the model to sample the auxiliary
target distributions in the SMC algorithm exactly. The focus in this paper is on
computing the noiseless capacity of constrained finite-size two-dimensional mod-
els. However, the proposed algorithm works also for various generalizations and
noisy channel models.
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Recently, several approaches have been proposed to solve the capacity estimation
problem in two-dimensional constrained channels. These methods rely either
on variational approximations (Sabato and Molkaraie, 2012) or on Markov chain
Monte Carlo (Loeliger and Molkaraie, 2009; Molkaraie and Loeliger, 2013). Com-
pared to these methods our algorithm is fundamentally different; samples are
drawn sequentially from a sequence of probability distributions of increasing
dimensions using SMC coupled with a finite state-space forward-backward pro-
cedure. We compare our proposed algorithm to a state-of-the-art Monte Carlo
estimation algorithm proposed in (Loeliger and Molkaraie, 2009; Molkaraie and
Loeliger, 2013). Using SMC algorithms has earlier been proposed to compute the
information rate of one-dimensional continuous channel models with memory
(Dauwels and Loeliger, 2008). Although both approaches are based on SMC, the
methods, implementation and goals are very different.

2 Two-dimensional channel models

As in (Molkaraie and Loeliger, 2013) we consider the 2-D (1,∞) run-length lim-
ited constrained channel. The 2-D (1,∞) run-length limited constraint implies
that no two horizontally or vertically adjacent bits on a 2-D lattice may be both
be equal to 1. An example is given below:

· · · · · · · · · · · · · · ·
· · · 0 1 0 · · ·
· · · 0 0 1 · · ·
· · · 0 1 0 · · ·
· · · · · · · · · · · · · · ·

This channel can be modelled as a probabilistic graphical model (PGM). A PGM
is a probabilistic model which factorizes according to the structure of an under-
lying graph G = {V , E}, with vertex set V and edge set E. In this article we will
focus on square lattice graphical models with pair-wise interactions, see Figure 1.
That means that the joint probability mass function (PMF) of the set of random
variables, X := {x1,1, . . . , x1,M , x2,M , . . . , xM,M }, can be represented as a product of
factors over the pairs of variables in the graph:

p(X) =
1
Z

∏
(`j,mn)∈E

ψ(x`,j , xm,n). (1)

Here, Z—the partition function—is given by

Z =
∑
X

∏
(`j,mn)∈E

ψ(x`,j , xm,n), (2)

and ψ(x`,j , xm,n) denotes the so-called potential function encoding the pairwise
interaction between x`,j and xm,n. For a more in-depth exposition of graphical
models we refer the reader to (Koller and Friedman, 2009).
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Figure 1: M ×M square lattice graphical model with pair-wise interactions.
The nodes correspond to random variables x`,j and the edges encodes the
interactions ψ(x`,j , xm,n).

2.1 Constrained channels and PGM

The noiseless 2-D (1,∞) run-length limited constrained channel can be described
by a square lattice graphical model as in Figure 1, with binary variables x`,j ∈
{0, 1} and pair-wise interactions between adjacent variables. Defining the factors
as

ψ(x`,j , xm,n) =

0, if x`,j = xm,n = 1,
1, otherwise,

(3)

results in a joint PMF given by

p(X) =
1
Z

∏
(`j,mn)∈E

ψ(x`,j , xm,n), (4)

where the partition function Z is the number of satisfying configurations or,
equivalently, the cardinality of the support of p(X). For a channel of dimension
M ×M we can write the finite-size noiseless capacity as

CM =
1
M2 log2 Z. (5)

Hence, to compute the capacity of the channel we need to compute the partition
function Z. Unfortunately, calculating Z exactly is in general computationally
intractable. This means that we need a way to approximate the partition func-
tion. Note that for this particular model, known upper and lower bounds of the
infinite-size noiseless capacity, M → ∞, agree on more than eight decimal digits
(Kato and Zeger, 1999; Nagy and Zeger, 2000). However, our proposed method
is applicable in the finite-size case, as well as to other models where no tight
bounds are known.
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2.2 High-dimensional undirected chains

In the previous section we described how we can calculate the noiseless capacity
for 2-D channel models by casting the problem as a partition function estima-
tion problem in the PGM framework. In our running example the corresponding
graph is the M ×M square lattice PGM depicted in Figure 1. We now show how
we can turn these models into high-dimensional undirected chains by introduc-
ing a specific new set of variables. We will see that this idea, although simple, is
a key enabler of our proposed algorithm.

We define xk to be the M-dimensional variable corresponding to all the original
variables in column k, i.e.

xk = {x1,k , . . . , xM,k}, k = 1, . . . , M. (6)

The resulting graphical model in the xk ’s will be an undirected chain with joint
PMF given by

p(X) =
1
Z

M∏
k=1

φ(xk)
M∏
k=2

ψ(xk , xk−1), (7)

where the partition function Z is the same as for the original model and the
φ(xk)’s and ψ(xk , xk−1)’s are the in-column and between-column interaction po-
tentials, respectively. In terms of the original factors of the 2-D (1,∞) run-length
limited constrained channel model we get

φ(xk) =
M−1∏
j=1

ψ(xj+1,k , xj,k), (8a)

ψ(xk , xk−1) =
M∏
j=1

ψ(xj,k , xj,k−1). (8b)

We illustrate this choice of auxiliary variables and the resulting undirected chain
in Figure 2. This transformation of the PGM is a key enabler for the partition
function estimation algorithm we propose in the subsequent section.

3 Sequential Monte Carlo

Sequential Monte Carlo methods, also known as particle filters, are designed to
sample sequentially from some sequence of target distributions: γ̄k(x1:k), k =
1, 2 . . . . While SMC is most commonly used for inference on directed chains, in
particular for state-space models, these methods are in fact much more generally
applicable. Specifically, as we shall see below, SMC can be used to simulate from
the joint PMF specified by an undirected chain. Consequently, by using the rep-
resentation introduced in Section 2 it is possible to apply SMC to estimate the
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x1 x2 x3 x4 x5 x6

(a)M ×M square lattice PGM
x1 x2 x3 x4 x5 x6

(b) Corresponding M-dimensional
chain

Figure 2: M × M square lattice graphical model converted to an M-
dimensional undirected chain model.

partition function of the 2-D (1,∞) run-length limited constrained channel. We
start this section with a short introduction to SMC samplers with some known
theoretical results. These results are then used to compute an unbiased estimate
of the partition function. We leverage the undirected chain model with the SMC
sampler and show how we can perform the necessary steps using Forward Filter-
ing/Backward Sampling (FF/BS) (Carter and Kohn, 1994; Frühwirth-Schnatter,
1994). For a more thorough description of SMC methods see e.g. (Doucet and
Johansen, 2011; Doucet et al., 2001).

3.1 Estimating the partition function using fully adapted SMC

We propose to use a fully adapted SMC algorithm (Pitt and Shephard, 1999).
That the sampler is fully adapted means that the proposal distributions for the
resampling and propagation steps are optimally chosen with respect to minimiz-
ing the variance of the importance weights, i.e. the importance weights for a fully
adapted sampler are all equal. Using the optimal proposal distributions—which
can significantly reduce the variance of estimators derived from the sampler—is
not tractable in general. However, as we shall see below, this is in fact possible
for the square lattice PGM described above.

For the undirected chain model (see Figure 2b), we let γ̄k(x1:k) be the PMF in-
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duced by the sub-graph corresponding to the first k variables. Specifically, γ̄k(x1:k) =
γk(x1:k )
Zk

, where the unnormalized distributions γk(x1:k) are given by

γ1(x1) = φ(x1), (9a)

γk(x1:k) = γk−1(x1:k−1)φ(xk)ψ(xk , xk−1), (9b)

with φ( · ),ψ( · ) as defined in (8) and Zk being the normalizing constant for γk(x1:k).
We take the sequence of distributions γ̄k(x1:k) for k = 1, . . . , M as the target dis-
tributions for the SMC sampler. Note that γ̄k(x1:k) for k < M is not, in general,
a marginal distribution under p(X). This is, however, not an issue since by con-
struction γ̄M (x1:M ) = p(X) (where x1:M identifies to X), i.e. at iteration k = M we
still recover the correct target distribution.

At iteration k, the SMC sampler approximates γ̄k(x1:k) by a collection of particles
{xi1:k}

N
i=1, where x1:k = {x1, . . . , xk} is the set of all variables in column 1 through k

of the PGM. These samples define an empirical point-mass approximation of the
target distribution,

γ̂Nk (x1:k) :=
1
N

N∑
i=1

δ(x1:k − xi1:k),

where δ(x) is the Kronecker delta. The standard SMC algorithm produces a col-
lection of weighted particles. However, as mentioned above, in the fully adapted
setting we use a specific choice of proposal distribution and resampling probabil-
ities, resulting in equally weighted particles (Pitt and Shephard, 1999).

Consider first the initialization at iteration k = 1. The auxiliary probability distri-
bution γ̄1(x1) corresponds to the PGM induced by the first column of the original
square lattice model. That is, the graphical model for γ̄1(x1) is a chain (the first
column of Figure 2a). Consequently, we can sample from this distribution ex-
actly, as well as compute the normalizing constant Z1, using FF/BS. The details
are given in the subsequent section. Simulating N times from γ̄(x1) results in an
equally weighted sample {xi1}

N
i=1 approximating this distribution.

We proceed inductively and assume that we have at hand a sample {xi1:k−1}
N
i=1,

approximating γ̄k−1(x1:k−1). This sample is propagated forward by simulating,
conditionally independently given the particle generation up to iteration k − 1,
as follows: We decide which particle among {xj1:k−1}

N
j=1 that should be used to

generate a new particle xi1:k (for each i ∈ {1, . . . , N }) by drawing an ancestor index
aik with probability

P(aik = j) =
ν
j
k−1∑
l ν

l
k−1

, j ∈ {1, . . . , N }, (10)

where ν ik−1 are resampling weights. The variable aik is the index of the particle at
iteration k − 1 that will be used to construct xi1:k . Generating the ancestor indices
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corresponds to a selection—or resampling—process that will put emphasis on
the most likely particles. This is a crucial step of the SMC sampler. For the
fully adapted sampler, the resampling weights ν ik−1 = νk−1(xik−1) are chosen in
order to adapt the resampling to the consecutive target distribution γ̄k (Pitt and
Shephard, 1999). Intuitively, a particle xi1:k−1 that is probable under the marginal
distribution

∑
xk γ̄k(x1:k) will be assigned a large weight. Specifically, in the fully

adapted algorithm we pick the resampling weights according to

νk−1(xk−1) =
∑
xk

γk(x1:k)
γk−1(x1:k−1)

=
∑
xk

φ(xk)ψ(xk , xk−1). (11)

Given the ancestors, we simulate xik from the optimal proposal distribution: xik ∼

q( · | xa
i
k
k−1) for i = 1, . . . , N , where

q(xk | xk−1) =
φ(xk)ψ(xk , xk−1)∑
x′k
φ(x′k)ψ(x′k , xk−1)

. (12)

Again, simulating from this distribution, as well as computing the resampling
weights (11), can be done exactly by running FF/BS on the kth column of the

model. Finally, we augment the particles as, xi1:k := (x
aik
1:k−1, x

i
k). As pointed out

above, with the choices (11) and (12) we obtain a collection of equally weighted
particles {xi1:k}

N
i=1, approximating γ̄k(x1:k).

At iteration k = M, the SMC sampler provides a Monte Carlo approximation of
the joint PMF p(X) = γ̄M (x1:k). While this can be of interest on its own, we are
primarily interested in the normalizing constant Z (i.e. the partition function).
However, it turns out that the SMC algorithm in fact provides an estimator of Zk
as a byproduct, given by

ẐNk := Z1

k−1∏
`=1

 1
N

N∑
i=1

ν i`

 . (13)

It may not be obvious to see why (3) is a natural estimator of the normalizing con-
stant Zk . However, it has been shown that this SMC-based estimator is unbiased
for any N ≥ 1 and k = 1, . . . , K . This result is due to (Del Moral, 2004, Propo-
sition 7.4.1). Specifically, for our 2-D constrained channel example, it follows
that at the last iteration k = M we have an unbiased estimator of the partition
function

E[ẐNM ] = Z. (14)

Furthermore, under a weak integrability condition the estimator is asymptoti-
cally normal with a rate

√
N :

√
N (ẐNM − Z)

d→ N (0, σ2), (15)

where an explicit expression for σ2 is given in (Del Moral, 2004, Proposition 9.4.1).
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3.2 SMC samplers and Forward Filtering/Backward Sampling

To implement the fully adapted SMC sampler described above we are required
to compute the sums involved in equations (11) and (12). By brute force cal-
culation our method would be computationally prohibitive as the complexity is
exponential in the dimensionality M of the chain. However, as we show below, it
is possible to use FF/BS to efficiently carry out these summations. This develop-
ment is key to our proposed solution to the problem of estimating the partition
function, since the computational complexity of estimating the channel capacity
is reduced from O(NM2M ) (brute force) to O(NM2) (FF/BS).

Initially, at k = 1, the graph describing the target distribution γ̄1(x1) is trivially
a chain which can be sampled from exactly by using FF/BS. Additionally, the
normalizing constant Z1 can be computed in the forward pass of the FF/BS al-
gorithm. However, this is true for any consecutive iteration k as well. Indeed,
simulating xk under γ̄k , conditionally on x1:k−1, again corresponds to doing infer-
ence on a chain. This means we can employ FF/BS to compute the resampling
weights (11) (corresponding to a conditional normalizing constant computation)
and to simulate xk from the optimal proposal (12).

Let k be a fixed iteration of the SMC algorithm. The forward filtering step of
FF/BS is performed by sending messages

mij+1(xj+1,k) =
∑
xj,k

ψ(xj+1,k , xj,k)ψ(xj,k , x
i
j,k−1)mij (xj,k), (16)

for j = 1, . . . , M − 2, i.e. from the top to the bottom of column k. The resampling
weights are given as a byproduct from the message passing as

νk−1(xik−1) =
∑
xk

φ(xk)ψ(xk , x
i
k−1)

=
∑
xM,k

ψ(xM,k , x
i
M,k−1)mi(xM−1,k). (17)

After sampling the ancestor indices aik as in (10), we perform backward sampling
to sample the full column of variables xk , one at a time in reverse order j =
M, . . . , 1,

xij,k ∼
ψ(xj,k , x

i
j+1,k)ψ(xj,k , x

aik
j,k−1)ma

i
k (xj,k)∑

x′j,k
ψ(x′j,k , x

i
j+1,k)ψ(x′j,k , x

aik
j,k−1)ma

i
k (x′j,k)

, (18)

with straightforward modifications for j = 1 and M. This results in a draw xik =

(xi1,k , . . . , x
i
M,k) from the optimal proposal q( · | xa

i
k
k−1) defined in (12). A summary

of the resulting solution is provided in Algorithm 1. Furthermore, for increased
numerical stability we pass normalized messages and compute the resampling
weights and the partition function estimate directly in the log-space.
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Algorithm 1: Channel capacity estimation

Perform each step for i = 1, . . . , N , except setting ẐNk .
Sample xi1 using FF/BS (16), (18).
Set ẐN1 = Z1.
for k = 2 to M do

Calculate νk−1(xik−1) using forward filtering (16)-(17).
Sample aik according to (10).
Sample xik using backward sampling (18).

Set xi1:k = (x
aik
1:k−1, x

i
k).

Set ẐNk = ẐNk−1

(
1
N

∑N
i=1 νk−1(xik−1)

)
end for

4 Experiments

We compare our algorithm to the state-of-the-art Monte Carlo approximation al-
gorithm proposed in (Molkaraie and Loeliger, 2013) on the same example that
they consider as explained in Section 2. Since the key enabler to the algorithm
proposed in (Molkaraie and Loeliger, 2013) is tree sampling according to (Hamze
and de Freitas, 2004)—a specific type of blocked Gibbs sampling—we will in
the sequel refer to this algorithm as the tree sampler. All results are compared
versus average wall-clock execution time. We run each algorithm 10 times in-
dependently to estimate error bars as well as mean-squared-errors (MSE) com-
pared to the true value (computed using a long run of the tree sampler). For the
MCMC-based tree sampler, we use a burn-in of 10% of the generated samples
when estimating the capacity. The tree sampler actually gives two estimates of
the capacity at each iteration; we use the average of these two when comparing to
the SMC algorithm. Code for reproducing the results is available at (A. Naesseth
et al., 2014).

Consider first a channel with dimension M = 10. We can see the results with
error bars from 10 independent runs in Figure 3 of both algorithms. The right-
most data point corresponds to approximately 20k iterations/particles. Both al-
gorithms converge to the value C10 ≈ 0.6082. However, the SMC algorithm is
clearly more efficient and with less error per fix computation time. We estimated
the true value by running 10 independent tree samplers for 100k iterations, re-
moved burn-in and taking the mean as our estimate.

The estimated true value was subsequently used to calculate the MSE as dis-
played in Figure 4. The central limit theorem for the SMC sampler (see (15))
tells us that the error should decrease at a rate of 1/N which is supported by
this experiment. Furthermore, we can see that the SMC algorithm on average
gives an order of magnitude more accurate estimate than the tree sampler per
fix computation time. In our second example we scale up the model to M = 60,
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Figure 3: Estimates of the capacity C10, with error bars, based on 10 in-
dependet runs of our proposed SMC-based method and the tree sampler
(Molkaraie and Loeliger, 2013). Plotted versus wall-clock time in log-scale.
Note that this is also an upper bound on the infinite-size capacity, i.e.
CM ≥ C∞ ≈ 0.5879.
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Figure 4: Mean-squared-error of the capacity C10 estimates based on 10 in-
dependet runs of our proposed SMC-based method and the tree sampler
(Molkaraie and Loeliger, 2013). Plotted versus wall-clock time in log-log-
scale.

i.e. a total of 3600 nodes as opposed to 100 in the previous example. The ba-
sic tree sampler performs poorly on this large model with very slow mixing and
convergence. To remedy this problem (Molkaraie and Loeliger, 2013) propose to
aggregate every W columns in the tree sampler and sample these exactly by sim-
ple enumeration, resulting in further blocking of the underlying Gibbs sampler.
However, this results in an algorithm with a computational complexity exponen-
tial in W (Molkaraie and Loeliger, 2013). The same strategy can be applied to
our algorithm and we compare the tree sampler and SMC for widths W = 1 and
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3. There seems to be no gain in increasing the width higher than this for either
method. The resulting MSEs1 based on 10 independent runs of the tree sampler
and the SMC algorithm are presented in Figure 5. As we can see the basic tree
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Figure 5: Mean-squared-error of the capacity C60 estimates based on 10 in-
dependet runs of our proposed SMC-based method and the tree sampler
(Molkaraie and Loeliger, 2013) for strip widths 1 (standard) and 3 respec-
tively. Plotted versus wall-clock time in log-log-scale.

sampler converges very slowly, in line with results from (Molkaraie and Loeliger,
2013). On the other hand, our proposed SMC sampling method performs very
well, even with W = 1, and on average it has more than an order-of-magnitude
smaller error than the tree sampler with W = 3. In comparing the two different
SMC methods there seems to be no apparent gain in increasing the width of the
strips added at each iteration in this case.

5 Conclusions

We have introduced an SMC method to compute the noiseless capacity of two-
dimensional channel models. The proposed algorithm was shown to improve
upon a state-of-the-art Monte Carlo estimation method by more than an order-of-
magnitude. Furthermore, while this improvement was obtained using a sequen-
tial implementation, the SMC method is easily parallelizable over the particles
(which is not the case for the MCMC-based tree sampler), offering further im-
provements by making use of modern computational architectures. This gain is
of significant importance because the running time can be on the order of days
for realistic scenarios. Extensions to calculate the information rate of noisy 2-

1For this model the basic tree sampler converges too slowly and the tree sampler with W = 3 was
too computationally demanding to provide an accurate estimate of the “true” value. For this reason,
we estimate the true value by averaging 10 independent runs of SMC with N = 200k.
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D source/channel models by the method proposed in (Molkaraie and Loeliger,
2013) are straightforward.
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Abstract

We propose a new framework for how to use sequential Monte Carlo
(SMC) algorithms for inference in probabilistic graphical models (PGM).
Via a sequential decomposition of the PGM we find a sequence of aux-
iliary distributions defined on a monotonically increasing sequence
of probability spaces. By targeting these auxiliary distributions using
SMC we are able to approximate the full joint distribution defined by
the PGM. One of the key merits of the SMC sampler is that it provides
an unbiased estimate of the partition function of the model. We also
show how it can be used within a particle Markov chain Monte Carlo
framework in order to construct high-dimensional block-sampling al-
gorithms for general PGMs.

1 Introduction

Bayesian inference in statistical models involving a large number of latent ran-
dom variables is in general a difficult problem. This renders inference methods
that are capable of efficiently utilizing structure important tools. Probabilistic
Graphical Models (PGMs) are an intuitive and useful way to represent and make
use of underlying structure in probability distributions with many interesting
areas of applications (Jordan, 2004).

Our main contribution is a new framework for constructing non-standard (auxil-
iary) target distributions of PGMs, utilizing what we call a sequential decompo-
sition of the underlying factor graph, to be targeted by a sequential Monte Carlo
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(SMC) sampler. This construction enables us to make use of SMC methods devel-
oped and studied over the last 20 years, to approximate the full joint distribution
defined by the PGM. As a byproduct, the SMC algorithm provides an unbiased
estimate of the partition function (normalization constant). We show how the
proposed method can be used as an alternative to standard methods such as the
Annealed Importance Sampling (AIS) proposed in (Neal, 2001), when estimat-
ing the partition function. We also make use of the proposed SMC algorithm
to design efficient, high-dimensional MCMC kernels for the latent variables of
the PGM in a particle MCMC framework. This enables inference about the la-
tent variables as well as learning of unknown model parameters in an MCMC
setting.

During the last decade there has been substantial work on how to leverage SMC
algorithms Doucet et al. (2001) to solve inference problems in PGMs. The first
approaches were PAMPAS (Isard, 2003) and nonparametric belief propagation
by Sudderth et al. (2003, 2010). Since then, several different variants and refine-
ments have been proposed by e.g. Briers et al. (2005); Frank et al. (2009); Ihler
and Mcallester (2009). They all rely on various particle approximations of mes-
sages sent in a loopy belief propagation algorithm. This means that in general,
even in the limit of Monte Carlo samples, they are approximate methods. Com-
pared to these approaches our proposed methods are consistent and provide an
unbiased estimate of the normalization constant as a by-product.

Another branch of SMC-based methods for graphical models has been suggested
by Hamze and de Freitas (2005). Their method builds on the SMC sampler by
Del Moral et al. (2006), where the initial target is a spanning tree of the orig-
inal graph and subsequent steps add edges according to an annealing sched-
ule. Everitt (2012) extends these ideas to learn parameters using particle MCMC
Andrieu et al. (2010). Yet another take is provided by Carbonetto and de Fre-
itas (2007), where an SMC sampler is combined with mean field approxima-
tions. Compared to these methods we can handle both non-Gaussian and/or
non-discrete interactions between variables and there is no requirement to per-
form MCMC steps within each SMC step.

The left-right methods described by Wallach et al. (2009) and extended by Bun-
tine (2009) to estimate the likelihood of held-out documents in topic models are
somewhat related in that they are SMC-inspired. However, these are not actual
SMC algorithms and they do not produce an unbiased estimate of the partition
function for finite sample set. On the other hand, a particle learning based ap-
proach was recently proposed by Scott and Baldridge (2009) and it can be viewed
as a special case of our method for this specific type of model.

2 Graphical models

A graphical model is a probabilistic model which factorizes according to the struc-
ture of an underlying graph G = {V , E}, with vertex set V and edge set E. By this
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we mean that the joint probability density function (PDF) of the set of random
variables indexed by V , XV := {x1, . . . , x|V |}, can be represented as a product of
factors over the cliques of the graph:

p(XV ) =
1
Z

∏
C∈C

ψC(XC), (1)

where C is the set of cliques in G, ψC is the factor for clique C, and
Z =

∫ ∏
C∈C ψC(xC)dXV is the partition function.

x1 x2

x3

x4

x5

(a) Undirected graph.

x1 ψ1 x2 ψ2

x3

x4

ψ3

ψ4

x5 ψ5

(b) Factor graph.

Figure 1: Undirected PGM and a corresponding factor graph.

We will frequently use the notation XI =
⋃
i∈I {xi} for some subset I ⊆ {1, . . . , |V |}

and we write XI for the range of XI (i.e., XI ∈ XI ). To make the interactions
between the random variables explicit we define a factor graph F = {V ,Ψ , E ′}
corresponding to G. The factor graph consists of two types of vertices, the original
set of random variables XV and the factors Ψ = {ψC : C ∈ C}. The edge set E ′
consists only of edges from variables to factors. In Figure 1a we show a simple
toy example of an undirected graphical model, and one possible corresponding
factor graph, Figure 1b, making the dependencies explicit. Both directed and
undirected graphs can be represented by factor graphs.

3 Sequential Monte Carlo

In this section we propose a way to sequentially decompose a graphical model
which we then make use of to design an SMC algorithm for the PGM.

3.1 Sequential decomposition of graphical models

SMC methods can be used to approximate a sequence of probability distributions
on a sequence of probability spaces of increasing dimension. This is done by re-
cursively updating a set of samples—or particles—with corresponding nonnega-
tive importance weights. The typical scenario is that of state inference in state-
space models, where the probability distributions targeted by the SMC sampler
are the joint smoothing distributions of a sequence of latent states conditionally
on a sequence of observations; see e.g., Doucet and Johansen (2011) for applica-
tions of this type. However, SMC is not limited to these cases and it is applicable
to a much wider class of models.
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To be able to use SMC for inference in PGMs we have to define a sequence of tar-
get distributions. However, these target distributions do not have to be marginal
distributions under p(XV ). Indeed, as long as the sequence of target distributions
is constructed in such a way that, at some final iteration, we recover p(XV ), all the
intermediate target distributions may be chosen quite arbitrarily.

This is key to our development, since it lets us use the structure of the PGM to
define a sequence of intermediate target distributions for the sampler. We do this
by a so called sequential decomposition of the graphical model. This amounts
to simply adding factors to the target distribution, from the product of factors
in (1), at each step of the algorithm and iterate until all the factors have been
added. Constructing an artificial sequence of intermediate target distributions
for an SMC sampler is a simple, albeit underutilized, idea as it opens up for
using SMC samplers for inference in a wide range of probabilistic models; see
e.g., Bouchard-Côté et al. (2012); Del Moral et al. (2006) for a few applications of
this approach.

Given a graph G with cliques C, let {ψk}Kk=1 be a sequence of factors defined as
follows ψk(XIk ) =

∏
C∈Ck ψC(XC), where Ck ⊂ C are chosen such that

⋃K
k=1 Ck = C

and Ci ∩ Cj = ∅, i , j, and where Ik ⊆ {1, . . . , |V |} is the index set of the variables
in the domain of ψk , Ik =

⋃
C∈Ck C. We emphasize that the cliques in C need

not be maximal. In fact even auxiliary factors may be introduced to allow for e.g.
annealing between distributions. It follows that the PDF in (1) can be written as
p(XV ) = 1

Z

∏K
k=1 ψk(XIk ). Principally, the choices and the ordering of the Ck ’s is

arbitrary, but in practice it will affect the performance of the proposed sampler.
However, in many common PGMs an intuitive ordering can be deduced from the
structure of the model, see Section 6.

The sequential decomposition of the PGM is then based on the auxiliary quan-
tities γ̃k(XLk ) :=

∏k
`=1 ψ`(XI` ), with Lk :=

⋃k
`=1 I`, for k ∈ {1, . . . , K}. By con-

struction, LK = V and the joint PDF p(XLK ) will be proportional to γ̃K (XLK ).
Consequently, by using γ̃k(XLk ) as the basis for the target sequence for an SMC
sampler, we will obtain the correct target distribution at iteration K . However,
a further requirement for this to be possible is that all the functions in the se-
quence are normalizable. For many graphical models this is indeed the case, and
then we can use γ̃k(XLk ), k = 1 to K , directly as our sequence of intermediate
target densities. If, however,

∫
γ̃k(XLk )dXLk = ∞ for some k < K , an easy remedy

is to modify the target density to ensure normalizability. This is done by setting
γk(XLk ) = γ̃k(XLk )qk(XLk ), where qk(XLk ) is choosen so that

∫
γk(XLk )dXLk < ∞.

We set qK (XLK ) ≡ 1 to make sure that γK (XLK ) ∝ p(XLk ). Note that the integral∫
γk(XLk )dXLk need not be computed explicitly, as long as it can be established

that it is finite. With this modification we obtain a sequence of unnormalized
intermediate target densities for the SMC sampler as γ1(XL1

) = q1(XL1
)ψ1(XL1

)

and γk(XLk ) = γk−1(XLk−1
)

qk(XLk )
qk−1(XLk−1

)ψk(XIk ) for k = 2, . . . , K . The corresponding

normalized PDFs are given by γ̄k(XLk ) = γk(XLk )/Zk , where Zk =
∫
γk(XLk )dXLk .

Figure 2 shows two examples of possible subgraphs when applying the decompo-
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Figure 2: Examples of five- (top) and three-step (bottom) sequential decom-
position of Figure 1.

sition, in two different ways, to the factor graph example in Figure 1.

3.2 Sequential Monte Carlo for PGMs

At iteration k, the SMC sampler approximates the target distribution γ̄k by a
collection of weighted particles {X iLk , w

i
k}
N
i=1. These samples define an empirical

point-mass approximation of the target distribution. In what follows, we shall
use the notation ξk := XIk\Lk−1

to refer to the collection of random variables that
are in the domain of γk , but not in the domain of γk−1. This corresponds to the
collection of random variables, with which the particles are augmented at each
iteration.

Initially, γ̄1 is approximated by importance sampling. We proceed inductively
and assume that we have at hand a weighted sample {X iLk−1

, wik−1}
N
i=1, approx-

imating γ̄k−1(XLk−1
). This sample is propagated forward by simulating, condi-

tionally independently given the particle generation up to iteration k − 1, and
drawing an ancestor index aik with P(aik = j) ∝ ν

j
k−1w

j
k−1, j = 1, . . . , N , where

ν ik−1 := νk−1(X iLk−1
)—known as adjustment multiplier weights—are used in the

auxiliary SMC framework to adapt the resampling procedure to the current tar-
get density γ̄k (Pitt and Shephard, 1999). Given the ancestor indices, we simulate

particle increments {ξ ik}
N
i=1 from a proposal density ξ ik ∼ rk( · |Xa

i
k
Lk−1

) on XIk\Lk−1
,

and augment the particles as X iLk := X
aik
Lk−1
∪ ξ ik .

After having performed this procedure for the N ancestor indices and particles,
they are assigned importance weights wik = Wk(X

i
Lk ). The weight function, for
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k ≥ 2, is given by

Wk(XLk ) =
γk(XLk )

γk−1(XLk−1
)νk−1(XLk−1

)rk(ξk |XLk−1
)
, (2)

where, again, we write ξk = XIk\Lk−1
. We give a summary of the SMC method in

Algorithm 1.

Algorithm 1: Sequential Monte Carlo (SMC)
Perform each step for i = 1, . . . , N .
Sample X iL1

∼ r1( · ).

Set wi1 = γ1(X iL1
)/r1(X iL1

).
for k = 2 to K do

Sample aik according to P(aik = j) =
ν
j
k−1w

j
k−1∑

l ν
l
k−1w

l
k−1

.

Sample ξ ik ∼ rk( · |Xa
i
k
Lk−1

) and set X iLk = X
aik
Lk−1
∪ ξ ik .

Set wik = Wk(X
i
Lk ).

end for

In the case that Ik \ Lk−1 = ∅ for some k, resampling and propagation steps are
superfluous. The easiest way to handle this is to simply skip these steps and
directly compute importance weights. An alternative approach is to bridge the
two target distributions γ̄k−1 and γ̄k similarly to Del Moral et al. (2006).

Since the proposed sampler for PGMs falls within a general SMC framework,
standard convergence analysis applies. See e.g., Del Moral (2004) for a compre-
hensive collection of theoretical results on consistency, central limit theorems,
and non-asymptotic bounds for SMC samplers.

The choices of proposal density and adjustment multipliers can quite signifi-
cantly affect the performance of the sampler. It follows from (2) that Wk(XLk ) ≡ 1

if we choose νk−1(XLk−1
) =

∫ γk(XLk )
γk−1(XLk−1

) dξk and rk(ξk |XLk−1
) =

γk(XLk )
νk−1(XLk−1

)γk−1(XLk−1
) .

In this case, the SMC sampler is said to be fully adapted.

3.3 Estimating the partition function

The partition function of a graphical model is a very interesting quantity in many
applications. Examples include likelihood-based learning of the parameters of
the PGM, statistical mechanics where it is related to the free energy of a system
of objects, and information theory where it is related to the capacity of a chan-
nel. However, as stated by Hamze and de Freitas (2005), estimating the partition
function of a loopy graphical model is a “notoriously difficult” task. Indeed, even
for discrete problems simple and accurate estimators have proved to be elusive,
and MCMC methods do not provide any simple way of computing the partition
function.
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On the contrary, SMC provides a straightforward estimator of the normalizing
constant (i.e. the partition function), given as a byproduct of the sampler accord-
ing to,

ẐNk :=

 1
N

N∑
i=1

wik


k−1∏
`=1

1
N

N∑
i=1

ν i`w
i
`

 . (3)

It may not be obvious to see why (3) is a natural estimator of the normalizing
constant Zk . However, a by now well known result is that this SMC-based estima-
tor is unbiased. This result is due to Del Moral (2004, Proposition 7.4.1) and, for
the special case of inference in state-space models, it has also been established by
Pitt et al. (2012). For completeness we also offer a proof using the present nota-
tion in the supplementary material. Since ZK = Z, we thus obtain an estimator
of the partition function of the PGM at iteration K of the sampler. Besides from
being unbiased, this estimator is also consistent and asymptotically normal; see
Del Moral (2004).

In (Naesseth et al., 2014) we have studied a specific information theoretic appli-
cation (computing the capacity of a two-dimensional channel) and inspired by
the algorithm proposed here we were able to design a sampler with significantly
improved performance compared to the previous state-of-the-art.

4 Particle MCMC and partial blocking

Two shortcomings of SMC are: (i) it does not solve the parameter learning prob-
lem, and (ii) the quality of the estimates of marginal distributions p(XLk ) =∫
γ̄K (XLK )dXLK\Lk deteriorates for k � K due to the fact that the particle tra-

jectories degenerate as the particle system evolves (see e.g., Doucet and Johansen
(2011)). Many methods have been proposed in the literature to address these
problems; see e.g. Lindsten and Schön (2013) and the references therein. Among
these, the recently proposed particle MCMC (PMCMC) framework Andrieu et al.
(2010), plays a prominent role. PMCMC algorithms make use of SMC to con-
struct (in general) high-dimensional Markov kernels that can be used within
MCMC. These methods were shown by Andrieu et al. (2010) to be exact, in the
sense that the apparent particle approximation in the construction of the kernel
does not change its invariant distribution. This property holds for any number
of particles N ≥ 2, i.e., PMCMC does not rely on asymptotics in N for correct-
ness.

The fact that the SMC sampler for PGMs presented in Algorithm 1 fits under
a general SMC umbrella implies that we can also straightforwardly make use
of this algorithm within PMCMC. This allows us to construct a Markov kernel
(indexed by the number of particles N ) on the space of latent variables of the
PGM, PN (X ′LK ,dXLK ), which leaves the full joint distribution p(XV ) invariant. We
do not dwell on the details of the implementation here, but refer instead to An-
drieu et al. (2010) for the general setup and Lindsten et al. (2014) for the specific



122 Paper C Sequential Monte Carlo for Graphical Models

method that we have used in the numerical illustration in Section 6.

PMCMC methods enable blocking of the latent variables of the PGM in an MCMC
scheme. Simulating all the latent variables XLK jointly is useful since, in general,
this will reduce the autocorrelation when compared to simulating the variables xj
one at a time (Robert and Casella, 2004). However, it is also possible to employ
PMCMC to construct an algorithm in between these two extremes, a strategy
that we believe will be particularly useful in the context of PGMs. Let {Vm, m ∈
{1, . . . , M}} be a partition of V . Ideally, a Gibbs sampler for the joint distribution
p(XV ) could then be constructed by simulating, using a systematic or a random
scan, from the conditional distributions

p(XVm |XV\Vm ) for m = 1, . . . , M. (4)

We refer to this strategy as partial blocking, since it amounts to simulating a
subset of the variables, but not necessarily all of them, jointly. Note that, if we set
M = |V | and Vm = {m} for m = 1, . . . , M, this scheme reduces to a standard Gibbs
sampler. On the other extreme, with M = 1 and V1 = V , we get a fully blocked
sampler which targets directly the full joint distribution p(XV ).

From (1) it follows that the conditional distributions (4) can be expressed as

p(XVm |XV\Vm ) ∝
∏
C∈Cm

ψC(XC), (5)

where Cm = {C ∈ C : C ∩ Vm , ∅}. While it is in general not possible to sample
exactly from these conditionals, we can make use of PMCMC to facilitate a par-
tially blocked Gibbs sampler for a PGM. By letting p(XVm |XV\Vm ) be the target
distribution for the SMC sampler of Algorithm 1, we can construct a PMCMC
kernel P mN that leaves the conditional distribution (5) invariant. This suggests the
following approach: with X ′V being the current state of the Markov chain, update
block m by sampling

XVm ∼ P mN 〈X
′
V\Vm〉(X

′
Vm , · ). (6)

Here we have indicated explicitly in the notation that the PMCMC kernel for the
conditional distribution p(XVm |XV\Vm ) depends on both X ′V\Vm (which is consid-
ered to be fixed throughout the sampling procedure) and on X ′Vm (which defines
the current state of the PMCMC procedure).

As mentioned above, while being generally applicable, we believe that partial
blocking of PMCMC samplers will be particularly useful for PGMs. The reason
is that we can choose the vertex sets Vm for m = 1, . . . , M in order to facilitate
simple sequential decompositions of the induced subgraphs. For instance, it is al-
ways possible to choose the partition in such a way that all the induced subgraphs
are chains.
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Figure 3: Mean-squared-errors for sample size N in the estimates of logZ
for AIS and four different orderings in the proposed SMC framework.

5 Experiments

In this section we evaluate the proposed SMC sampler on three examples to il-
lustrate the merits of our approach. Additional details and results are available
in the supplementary material and code to reproduce results can be found in
(A. Naesseth et al., 2014). We first consider an example from statistical mechan-
ics, the classical XY model, to illustrate the impact of the sequential decomposi-
tion. Furthermore, we profile our algorithm with the “gold standard” AIS (Neal,
2001) and Annealed Sequential Importance Resampling (ASIR1) (Del Moral et al.,
2006). In the second example we apply the proposed method to the problem
of scoring of topic models, and finally we consider a simple toy model, a Gaus-
sian Markov random field (MRF), which illustrates that our proposed method
has the potential to significantly decrease correlations between samples in an
MCMC scheme. Furthermore, we provide an exact SMC-approximation of the
tree-sampler by Hamze and de Freitas (2004) and thereby extend the scope of
this powerful method.

5.1 Classical XY model

The classical XY model (see e.g. (Kosterlitz and Thouless, 1973)) is a member in
the family of n-vector models used in statistical mechanics. It can be seen as a
generalization of the well known Ising model with a two-dimensional electromag-
netic spin. The spin vector is described by its angle x ∈ (−π, π]. We will consider

1ASIR is a specific instance of the SMC sampler by (Del Moral et al., 2006), corresponding to AIS
with the addition of resampling steps, but to avoid confusion with the proposed method we choose
to refer to it as ASIR.
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square lattices with periodic boundary conditions. The joint PDF of the classical
XY model with equal interaction is given by

p(XV ) ∝ eβ
∑

(i,j)∈E cos(xi−xj ), (7)

where β denotes the inverse temperature.

To evaluate the effect of different sequence orders on the accuracy of the estimates
of the log-normalizing-constant logZ we ran several experiments on a 16×16 XY
model with β = 1.1 (approximately the critical inverse temperature (Tomita and
Okabe, 2002)). For simplicity we add one node at a time and all factors bridging
this node with previously added nodes. Full adaptation in this case is possible
due to the optimal proposal being a von Mises distribution. We show results for
the following cases: Random neighbour (RND-N) First node selected randomly
among all nodes, concurrent nodes selected randomly from the set of nodes with
a neighbour in XLk−1

. Diagonal (DIAG) Nodes added by traversing diagonally
(45◦ angle) from left to right. Spiral (SPIRAL) Nodes added spiralling in towards
the middle from the edges. Left-Right (L-R) Nodes added by traversing the graph
left to right, from top to bottom.

We also give results of AIS with single-site-Gibbs updates and 1 000 annealing
distributions linearly spaced from zero to one, starting from a uniform distribu-
tion (geometric spacing did not yield any improvement over linear spacing for
this case). The “true value” was estimated using AIS with 10 000 intermediate
distributions and 5 000 importance samples. We can see from the results in Fig-
ure 3 that designing a good sequential decomposition for the SMC sampler is
important. However, the intuitive and fairly simple choice L-R does give very
good results comparable to that of AIS.

Furthermore, we consider a larger size of 64 × 64 and evaluate the performance
of the L-R ordering compared to AIS and the ASIR method. Figure 4 displays
box-plots of 10 independent runs. We set N = 105 for the proposed SMC sampler
and then match the computational costs of AIS and ASIR with this computational
budget. A fair amount of time was spent in tuning the AIS and ASIR algorithms;
10 000 linear annealing distributions seemed to give best performance in these
cases. We can see that the L-R ordering gives results comparable to fairly well-
tuned AIS and ASIR algorithms; the ordering of the methods depending on the
temperature of the model. One option that does make the SMC algorithm inter-
esting for these types of applications is that it can easily be parallelized over the
particles, whereas AIS/ASIR has limited possibilities of parallel implementation
over the (crucial) annealing steps.

5.2 Likelihood estimation in topic models

Topic models such as Latent Dirichlet Allocation (LDA) (Blei et al., 2003) are pop-
ular models for reasoning about large text corpora.
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Model evaluation is often conducted by computing the
likelihood of held-out documents w.r.t. a learnt model.
However, this is a challenging problem on its own—which
has received much recent interest (Buntine, 2009; Scott
and Baldridge, 2009; Wallach et al., 2009)—since it essen-
tially corresponds to computing the partition function of
a graphical model; see Figure 5. The SMC procedure of
Algorithm 1 can used to solve this problem by defining a
sequential decomposition of the graphical model. In par-
ticular, we consider the decomposition corresponding to
first including the node θ and then, subsequently, intro-
ducing the nodes z1 to zM in any order. Interestingly, if
we then make use of a Rao-Blackwellization over the vari-
able θ, the SMC sampler of Algorithm 1 reduces exactly
to a method that has previously been proposed for this specific problem (Scott
and Baldridge, 2009). In (Scott and Baldridge, 2009), the method is derived by
reformulating the model in terms of its sufficient statistics and phrasing this as a
particle learning problem; here we obtain the same procedure as a special case of
the general SMC algorithm operating on the original model.

We use the same data and learnt models as Wallach et al. (2009), i.e. 20 news-
groups, and PubMed Central abstracts (PMC). We compare with the Left-Right-
Sequential (LRS) sampler (Buntine, 2009), which is an improvement over the
method proposed by Wallach et al. (2009). Results on simulated and real data
experiments are provided in Figure 6. For the simulated example (Figure 6a), we
use a small model with 10 words and 4 topics to be able to compute the exact log-
likelihood. We keep the number of particles in the SMC algorithm equal to the
number of Gibbs steps in LRS; this means LRS is about an order-of-magnitude
more computationally demanding than the SMC method. Despite the fact that
the SMC sampler uses only about a tenth of the computational time of the LRS
sampler, it performs significantly better in terms of estimator variance. The other
two plots show results on real data with 10 held-out documents for each dataset.
For a fixed number of Gibbs steps we choose the number of particles for each doc-
ument to make the computational cost approximately equal. Run #2 has twice
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Figure 6: Estimates of the log-likelihood of heldout documents for various
datasets.

the number of particles/samples as in run #1. We show the mean of 10 runs and
error-bars estimated using bootstrapping with 10 000 samples. Computing the
logarithm of Ẑ introduces a negative bias, which means larger values of log Ẑ
typically implies more accurate results. The results on real data do not show
the drastic improvement we see in the simulated example, which could be due to
degeneracy problems for long documents. An interesting approach that could im-
prove results would be to use an SMC algorithm tailored to discrete distributions,
e.g. Fearnhead and Clifford (2003).

5.3 Gaussian MRF

Finally, we consider a simple toy model to illustrate how the SMC sampler of
Algorithm 1 can be incorporated in PMCMC sampling. We simulate data from
a zero mean Gaussian 10 × 10 lattice MRF with observation and interaction stan-
dard deviations of σi = 1 and σij = 0.1 respectively. We use the proposed SMC al-
gorithm together with the PMCMC method by Lindsten et al. (2014). We compare
this with standard Gibbs sampling and the tree sampler by Hamze and de Freitas
(2004). We use a moderate number of N = 50 particles in the PMCMC sampler
(recall that it admits the correct invariant distribution for any N ≥ 2). In Figure 7
we can see the empirical autocorrelation funtions (ACF) centered around the true
posterior mean for variable x82 (selected randomly from among XV ; similar re-
sults hold for all the variables of the model). Due to the strong interaction be-
tween the latent variables, the samples generated by the standard Gibbs sampler
are strongly correlated. Tree-sampling and PMCMC with partial blocking show
nearly identical gains compared to Gibbs. This is interesting, since it suggest that
simulating from the SMC-based PMCMC kernel can be almost as efficient as ex-
act simulation, even using a moderate number of particles. Indeed, PMCMC with
partial blocking can be viewed as an exact SMC-approximation of the tree sam-
pler, extending the scope of tree-sampling beyond discrete and Gaussian models.
The fully blocked PMCMC algorithm achieves the best ACF, dropping off to zero
considerably faster than for the other methods. This is not surprising since this
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sampler simulates all the latent variables jointly which reduces the autocorrela-
tion, in particular when the latent variables are strongly dependent. However,
it should be noted that this method also has the highest computational cost per
iteration.

6 Conclusion

We have proposed a new framework for inference in PGMs using SMC and il-
lustrated it on three examples. These examples show that it can be a viable al-
ternative to standard methods used for inference and partition function estima-
tion problems. An interesting avenue for future work is combining our proposed
methods with AIS, to see if we can improve on both.
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Abstract

We propose nested sequential Monte Carlo (NSMC), a methodology
to sample from sequences of probability distributions, even where
the random variables are high-dimensional. NSMC generalises the
SMC framework by requiring only approximate, properly weighted,
samples from the SMC proposal distribution, while still resulting in
a correct SMC algorithm. Furthermore, NSMC can in itself be used to
produce such properly weighted samples. Consequently, one NSMC
sampler can be used to construct an efficient high-dimensional pro-
posal distribution for another NSMC sampler, and this nesting of the
algorithm can be done to an arbitrary degree. This allows us to con-
sider complex and high-dimensional models using SMC. We show
results that motivate the efficacy of our approach on several filtering
problems with dimensions in the order of 100 to 1 000.

1 Introduction

Inference in complex and high-dimensional statistical models is a very challeng-
ing problem that is ubiquitous in applications. Examples include, but are defi-
nitely not limited to, climate informatics (Monteleoni et al., 2013), bioinformatics
(Cohen, 2004) and machine learning (Wainwright and Jordan, 2008). In particu-
lar, we are interested in sequential Bayesian inference, which involves computing
integrals of the form

π̄k(f ) := Eπ̄k [f (X1:k)] =
∫
f (x1:k)π̄k(x1:k)dx1:k , (1)
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Figure 1: Example of a spatio-temporal model where π̄k(x1:k) is given by a
k × 2 × 3 undirected graphical model and xk ∈ R2×3.

for some sequence of probability densities

π̄k(x1:k) = Z−1
πk πk(x1:k), k ≥ 1, (2)

with normalisation constants Zπk =
∫
πk(x1:k)dx1:k . Note that x1:k := (x1, . . . , xk) ∈

Xk . The typical scenario that we consider is the well-known problem of inference
in time series or state space models (Cappé et al., 2005; Shumway and Stoffer,
2011). Here the index k corresponds to time and we want to process some ob-
servations y1:k in a sequential manner to compute expectations with respect to
the filtering distribution π̄k(dxk) = P(Xk ∈ dxk | y1:k). To be specific, we are
interested in settings where

(i) Xk is high-dimensional, i.e. Xk ∈ Rd with d � 1, and

(ii) there are local dependencies among the latent variables X1:k , both w.r.t.
time k and between the individual components of the (high-dimensional)
vectors Xk .

One example of the type of models we consider are the so-called spatio-temporal
models (Cressie and Wikle, 2011; Rue and Held, 2005; Wikle, 2015). In Figure 1
we provide a probabilistic graphical model representation of a spatio-temporal
model that we will explore further in Section 6.

Sequential Monte Carlo (SMC) methods, reviewed in Section 2.1, comprise one
of the most successful methodologies for sequential Bayesian inference. However,
SMC struggles in high-dimensions and these methods are rarely used for dimen-
sions, say, d ≥ 10 (Rebeschini and van Handel, 2015). The purpose of the NSMC
methodology is to push this limit well beyond d = 10.

The basic strategy, described in Section 2.2, is to mimic the behaviour of a so-
called fully adapted SMC algorithm. Full adaptation can drastically improve
the efficiency of SMC in high dimensions. Unfortunately, it can rarely be imple-
mented in practice since the fully adapted proposal distributions are typically
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intractable. NSMC addresses this difficulty by requiring only approximate, prop-
erly weighted, samples from the proposal distribution. The proper weighting con-
dition ensures the validity of NSMC, thus providing a generalisation of the family
of SMC methods. Furthermore, NSMC will itself produce properly weighted sam-
ples. Consequently, it is possible to use one NSMC procedure within another to
construct efficient high-dimensional proposal distributions. This nesting of the
algorithm can be done to an arbitrary degree. For instance, for the model de-
picted in Figure 1 we could use three nested samplers, one for each dimension of
the “volume”.

The main methodological development is concentrated to Sections 3–4. We intro-
duce the concept of proper weighting, approximations of the proposal distribu-
tion, and nesting of Monte Carlo algorithms. Throughout Section 3 we consider
simple importance sampling and in Section 4 we extend the development to the
sequential setting.

We deliberately defer the discussion of the existing body of related work until Sec-
tion 5, to open up for a better understanding of the relationships to the new de-
velopments presented in Sections 3–4. We also discuss various attractive features
of NSMC that are of interest in high-dimensional settings, e.g. the fact that it is
easy to distribute the computation, which results in improved memory efficiency
and lower communication costs. Finally, Section 6 profiles our method exten-
sively with a state-of-the-art competing algorithm on several high-dimensional
data sets. We also show the performance of inference and the modularity of the
method on a d = 1 056 dimensional climatological spatio-temporal model (Fu
et al., 2012) structured according to Figure 1.

2 Background and Inference Strategy

2.1 Sequential Monte Carlo

Evaluating π̄k(f ) as well as the normalisation constant Zπk in (2) is typically in-
tractable and we need to resort to approximations. SMC methods, or particle fil-
ters (PF), constitute a popular class of numerical approximations for sequential
inference problems. Here we give a high-level introduction to the concepts under-
lying SMC methods, and postpone the details to Section 4. For a more extensive
treatment we refer to Cappé et al. (2005); Doucet and Johansen (2011); Doucet
et al. (2001). In particular, we will use the auxiliary SMC method as proposed by
Pitt and Shephard (1999).

At iteration k − 1, the SMC sampler approximates the target distribution π̄k−1
by a collection of weighted particles {(X i1:k−1, W

i
k−1)}Ni=1. These samples define an

empirical point-mass approximation of the target distribution

π̄Nk−1(dx1:k−1) :=
N∑
i=1

W i
k−1∑

`W
`
k−1

δX i1:k−1
(dx1:k−1), (3)



136 Paper D Nested Sequential Monte Carlo Methods

where δX(dx) denotes a Dirac measure at X. Each iteration of the SMC method
can then conceptually be described by three steps, resampling, propagation, and
weighting.

The resampling step puts emphasis on the most promising particles by discarding
the unlikely ones and duplicating the likely ones. The propagation and weighting
steps essentially correspond to using importance sampling when changing the
target distribution from π̄k−1 to π̄k , i.e. simulating new particles from a proposal
distribution and then computing corresponding importance weights.

2.2 Adapting the Proposal Distribution

The first working SMC algorithm was the bootstrap PF by Gordon et al. (1993),
which propagates particles by sampling from the system dynamics and computes
importance weights according to the observation likelihood (in the state space
setting). However, it is well known that the bootstrap PF suffers from weight
collapse in high-dimensional settings (Bickel et al., 2008), i.e. the estimate is
dominated by a single particle with weight close to one. This is an effect of the
mismatch between the importance sampling proposal and the target distribution,
which typically gets more pronounced in high dimensions.

More efficient proposals, partially alleviating the degeneracy issue for some mod-
els, can be designed by adapting the proposal distribution to the target distribu-
tion (see Section 4.2). In Naesseth et al. (2014a) we make use of the fully adapted
SMC method (Pitt and Shephard, 1999) for doing inference in a (fairly) high-
dimensional discrete model where xk is a 60-dimensional discrete vector. We can
then make use of forward filtering and backward simulation, operating on the in-
dividual components of each xk , in order to sample from the fully adapted SMC
proposals. However, this method is limited to models where the latent space is
either discrete or Gaussian and the optimal proposal can be identified with a tree-
structured graphical model. Our development here can be seen as a non-trivial
extension of this technique. Instead of coupling one SMC sampler with an exact
forward filter/backward simulator (which in fact reduces to an instance of stan-
dard SMC), we derive a way of coupling multiple SMC samplers and SMC-based
backward simulators. This allows us to construct procedures for mimicking the
efficient fully adapted proposals for arbitrary latent spaces and structures in high-
dimensional models.

3 Proper Weighting and Nested Importance Sampling

In this section we will lay the groundwork for the derivation of the class of NSMC
algorithms. We start by considering the simpler case of importance sampling (IS),
which is a fundamental component of SMC, and introduce the key concepts that
we make use of. In particular, we will use a (slightly nonstandard) presentation
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of an algorithm as an instance of a class, in the object-oriented sense, and show
that these classes can be nested to an arbitrary degree.

3.1 Exact Approximation of the Proposal Distribution

Let π̄(x) = Z−1
π π(x) be a target distribution of interest. IS can be used to esti-

mate an expectation π̄(f ) := Eπ̄[f (X)] by sampling from a proposal distribution
q̄(x) = Z−1

q q(x) and computing the estimator (
∑N
i=1 W

i)−1 ∑N
i=1 W

if (X i), with

W i =
Zqπ(X i )
q(X i )

, and where {(X i , W i)}Ni=1 are the weighted samples. It is possible
to replace the IS weight by a nonnegative unbiased estimate, and still obtain a
valid (consistent, etc.) algorithm (Liu, 2001, p. 37). One way to motivate this
approach is by considering the random weight to be an auxiliary variable and
to extend the target distribution accordingly. Our development is in the same
flavour, but we will use a more explicit condition on the relationship between the
random weights and the simulated particles. Specifically, we will make use of the
following key property to formally justify the proposed algorithms.

Definition 1 (Properly weighted sample). A (random) pair (X,W ) is properly
weighted for an unnormalised distribution p if W ≥ 0 and E[f (X)W ] = p(f ) :=∫
f (x)p(x)dx for all measurable functions f .

Note that proper weighting of {(X i , W i)}Ni=1 implies unbiasedness of the estimate
of the normalising constant of p. Indeed, taking f (x) ≡ 1 gives E

[
1
N

∑N
i=1 W

i
]

=∫
p(x)dx =: Zp.

Interestingly, to construct a valid IS algorithm for our target π̄ it is sufficient to
generate samples that are properly weighted w.r.t. the proposal distribution q.
To formalise this claim, assume that we are not able to simulate exactly from q̄,
but that it is possible to evaluate the unnormalised density q point-wise. Further-
more, assume we have access to a class Q, which works as follows. The construc-
tor of Q requires the specification of an unnormalised density function, say, q,
which will be approximated by the procedures of Q. Furthermore, to highlight
the fact that we will typically use IS (and SMC) to construct Q, the constructor
also takes as an argument a precision parameter M, corresponding to the num-
ber of samples used by the “internal” Monte Carlo procedure. An object is then
instantiated as q = Q(q,M). The class Q is assumed to have the following proper-
ties:

(A1) Let q = Q(q,M). Assume that:
1. The construction of q results in the generation of a (possibly random) mem-

ber variable, accessible as Ẑq = q.GetZ(). The variable Ẑq is a nonnegative,
unbiased estimate of the normalising constant Zq =

∫
q(x)dx.

2. Q has a member function Simulate which returns a (possibly random) vari-
able X = q.Simulate(), such that (X, Ẑq) is properly weighted for q.
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With the definition of Q in place, it is possible to generalise1 the basic impor-
tance sampler as in Algorithm 1, which generates weighted samples {(X i , W i)}Ni=1
targeting π̄. Note that Algorithm 1 is different from a random weight IS, since
it approximates the proposal distribution (and not just the importance weights).

Algorithm 1: Nested IS (steps 1–3 for i = 1, . . . , N )

1. Initialise qi = Q(q,M).
2. Set Ẑ iq = qi .GetZ() and X i = qi .Simulate().

3. Set W i =
Ẑ iqπ(X i)

q(X i)
.

4. Compute Ẑπ = 1
N

∑N
i=1 W

i .

To see the validity of Algorithm 1 we can interpret the sampler as a standard IS al-
gorithm for an extended target distribution, defined as Π̄(x, u) := u Q̄(x, u)π̄(x)q−1(x),
where Q̄(x, u) is the joint PDF of the random pair (q.Simulate(),q.GetZ()). Note
that Π̄ is indeed a PDF that admits π̄ as a marginal; for any measurable subset
A ⊆ X,

Π̄(A × R+) =
∫

1A(x)
u π̄(x)
q(x)

Q̄(x, u)dxdu

= E
[
Ẑq

1A(X)π̄(X)
q(X)

]
= q̄

(
1A
π̄
q

)
Zq = π̄(A),

where the penultimate equality follows from the fact that (X, Ẑq) is properly
weighted for q. Furthermore, the standard unnormalised IS weight for a sam-
pler with target Π̄ and proposal Q̄ is given by u π/q, in agreement with Algo-
rithm 1.

Algorithm 1 is an example of what is referred to as an exact approximation; see
e.g., Andrieu and Roberts (2009); Andrieu et al. (2010). Algorithmically, the
method appears to be an approximation of an IS, but samples generated by the
algorithm nevertheless target the correct distribution π̄.

3.2 Modularity of Nested IS

To be able to implement Algorithm 1 we need to define a class Q with the required
properties (A1). The modularity of the procedure (as well as its name) comes
from the fact that we can use Algorithm 1 also in this respect. Indeed, let us now
view π̄—the target distribution of Algorithm 1—as the proposal distribution for
another Nested IS procedure and consider the following definition of Q:

1With q.GetZ() 7→ Z and q.Simulate() returning a sample from q̄we obtain the standard IS method.
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1. Algorithm 1 is executed at the construction of the object p = Q(π, N ), and
p.GetZ() returns the normalising constant estimate Ẑπ.

2. p.Simulate() simulates a categorical random variable B with P(B = i) =
W i /

∑N
`=1 W

` and returns XB.
A simple computation now yields that for any measurable f we have E[f (XB)Ẑπ] =
π̄(f )Zπ. This implies that (XB, Ẑπ) is properly weighted for π and that our defini-
tion of Q(π, N ) indeed satisfies condition (A1).

The Nested IS algorithm in itself is unlikely to be of direct practical interest. How-
ever, in the next section we will, essentially, repeat the preceding derivation in the
context of SMC to develop the NSMC method.

4 Nested Sequential Monte Carlo

4.1 Fully Adapted SMC Samplers

Let us return to the sequential inference problem. As before, let π̄k(x1:k) =
Z−1
πk πk(x1:k) denote the target distribution at “time” k. The unnormalised density
πk can be evaluated point-wise, but the normalising constant Zπk is typically un-
known. We will use SMC to simulate sequentially from the distributions {π̄k}nk=1.
In particular, we consider the fully adapted SMC sampler (Pitt and Shephard,
1999), which corresponds to a specific choice of resampling weights and proposal
distribution, chosen in such a way that the importance weights are all equal to
1/N . Specifically, the proposal distribution (often referred to as the optimal pro-
posal ) is given by q̄k(xk | x1:k−1) = Zqk (x1:k−1)−1qk(xk | x1:k−1), where

qk(xk | x1:k−1) := πk(x1:k)/πk−1(x1:k−1).

In addition, the normalising “constant” Zqk (x1:k−1) =
∫
qk(xk | x1:k−1)dxk is fur-

ther used to define the resampling weights, i.e. the particles at time k − 1 are
resampled according to Zqk (x1:k−1) before they are propagated to time k. For
notational simplicity, we use the convention x1:0 = ∅, q1(x1 | x1:0) = π1(x1)
and Zq1

(x1:0) = Zπ1
. The fully adapted auxiliary SMC sampler is given in Al-

gorithm 2.

As mentioned above, at each iteration k = 1, . . . , n, the method produces un-
weighted samples {X ik}

N
i=1 approximating π̄k . It also produces an unbiased esti-

mate Ẑπk of Zπk (Del Moral, 2004, Proposition 7.4.1). The algorithm is expressed
in a slightly non-standard form; at iteration k we loop over the ancestor particles,
i.e. the particles after resampling at iteration k − 1, and let each ancestor particle
j generate mjk offsprings. (The variable L is just for bookkeeping.) This is done to
clarify the connection with the NSMC procedure below. Furthermore, we have in-
cluded a (completely superfluous) resampling step at iteration k = 1, where the
“dummy variables” {X i1:0}

N
i=1 are resampled according to the (all equal) weights
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Algorithm 2: SMC (fully adapted)

1. Set Ẑπ0
= 1.

2. for k = 1 to n
(a) Compute Ẑπk = Ẑπk−1

× 1
N

∑N
j=1 Zqk (X

j
1:k−1).

(b) Draw m1:N
k from a multinomial distribution with probabilities

Zqk (Xj1:k−1)∑N
`=1 Zqk (X`1:k−1)

, for j = 1, . . . , N .

(c) Set L← 0
(d) for j = 1 to N

i. Draw X ik ∼ q̄k( · | X j1:k−1) and let X i1:k = (X j1:k−1, X
i
k) for

i = L + 1, . . . , L + mjk .

ii. Set L← L + mjk .

{Zq1
(X i1:0)}Ni=1 = {Zπ1

}Ni=1. The analogue of this step is, however, used in the NSMC
algorithm, where the initial normalising constant Zπ1

is estimated. We thus have
to resample the corresponding initial particle systems accordingly.

4.2 Fully Adapted Nested SMC Samplers

In analogue with Section 3, assume now that we are not able to simulate exactly
from q̄k , nor compute Zqk . Instead, we have access to a class Q which satisfies
condition (A1). The proposed NSMC method is then given by Algorithm 3.

Algorithm 3: Nested SMC (fully adapted)

1. Set Ẑπ0
= 1.

2. for k = 1 to n
(a) Initialise qj = Q(qk( · | X j1:k−1), M) for j = 1, . . . , N .

(b) Set Ẑ jqk = qj .GetZ() for j = 1, . . . , N .

(c) Compute Ẑπk = Ẑπk−1
×
{

1
N

∑N
j=1 Ẑ

j
qk

}
.

(d) Draw m1:N
k from a multinomial distribution with probabilities

Ẑ
j
qk∑N

`=1 Ẑ
`
qk

for j = 1, . . . , N .

(e) Set L← 0
(f) for j = 1 to N

i. Compute X ik = qj .Simulate() and let X i1:k = (X j1:k−1, X
i
k) for

i = L + 1, . . . , L + mjk .
ii. delete qj .

iii. Set L← L + mjk .
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Algorithm 3 can be seen as an exact approximation of the fully adapted SMC
sampler in Algorithm 2. (In Naesseth et al. (2015) we provide a formulation of
NSMC with arbitrary proposals and resampling weights.) We replace the exact
computation of Zqk and exact simulation from q̄k , by the approximate procedures
available through Q. Despite this approximation, however, Algorithm 3 is a valid
SMC method. This is formalised by the following theorem.

Theorem 1. Assume that Q satisfies condition (A1). Then, under certain regu-
larity conditions on the function f : Xk 7→ Rd and for an asymptotic variance
ΣMk (f ), both specified in Naesseth et al. (2015), we have

N1/2

 1
N

N∑
i=1

f (X i1:k) − π̄k(f )

 D−→ N (0,ΣMk (f )),

where {X i1:k}
M
i=1 are generated by Algorithm 3 and

D−→ denotes convergence in
distribution.

Proof: See Naesseth et al. (2015).

Remark 1. The key point with Theorem 1 is that, under certain regularity conditions, the
NSMC method converges at rate

√
N even for a fixed (and finite) value of the precision

parameter M. The asymptotic variance ΣMk (f ), however, will depend on the accuracy and
properties of the approximative procedures of Q. We leave it as future work to establish
more informative results, relating the asymptotic variance of NSMC to that of the ideal,
fully adapted SMC sampler.

4.3 Backward Simulation and Modularity of NSMC

As previously mentioned, the NSMC procedure is modular in the sense that we
can make use of Algorithm 3 also to define the class Q. Thus, we now view π̄n
as the proposal distribution that we wish to approximately sample from using
NSMC. Algorithm 3 directly generates an estimate Ẑπn of the normalising con-
stant of πn (which indeed is unbiased, see Theorem 2). However, we also need to
generate a sample X̃1:n such that (X̃1:n, Ẑπn ) is properly weighted for πn.

The simplest approach, akin to the Nested IS procedure described in Section 3.2,
is to draw Bn uniformly on {1, . . . , N } and return X̃1:n = XBn1:n. This will indeed
result in a valid definition of the Simulate procedure. However, this approach
will suffer from the well known path degeneracy of SMC samplers. In particular,
since we call qj .Simulate() multiple times in Step 2(f)i of Algorithm 3, we risk to
obtain (very) strongly correlated samples by this simple approach.

It is possible to improve the performance of the above procedure by instead mak-
ing use of a backward simulator (Godsill et al., 2004; Lindsten and Schön, 2013)
to simulate X̃1:n. The backward simulator, given in Algorithm 4, is a type of
smoothing algorithm; it makes use of the particles generated by a forward pass
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of Algorithm 3 to simulate backward in “time” a trajectory X̃1:n approximately
distributed according to π̄n.

Algorithm 4: Backward simulator (fully adapted)

1. Draw Bn uniformly on {1, . . . , N }.
2. Set X̃n = XBnn .
3. for k = n − 1 to 1

(a) Compute W̃ j
k =

πn((X j1:k , X̃k+1:n))

πk(X
j
1:k)

for j = 1, . . . , N .

(b) Draw Bk from a categorical distribution with probabilities
W̃
j
k∑N

`=1 W̃
`
k

for

j = 1, . . . , N .
(c) Set X̃k:n = (XBkk , X̃k+1:n).

Remark 2. Algorithm 4 assumes unweighted particles and can thus be used in conjunc-
tion with the fully adapted NSMC procedure of Algorithm 2. If, however, the forward
filter is not fully adapted the weights need to be accounted for in the backward simula-
tion; see Naesseth et al. (2015).

The modularity of NSMC is established by the following result.
Definition 2. Let p = Q(πn, N ) be defined as follows:

1. The constructor executes Algorithm 3 with target distribution πn and with
N particles, and p.GetZ() returns the estimate of the normalising constant
Ẑπn .

2. p.Simulate() executes Algorithm 4 and returns X̃1:n.

Theorem 2. The class Q defined as in Definition 2 satisfies condition (A1).

Proof: See Naesseth et al. (2015).

A direct, and important, consequence of Theorem 2 is that NSMC can be used
as a component of powerful learning algorithms, such as the particle Markov
chain Monte Carlo (PMCMC) method (Andrieu et al., 2010) and many of the
other methods discussed in Section 5. Since standard SMC is a special case of
NSMC, Theorem 2 implies proper weighting also of SMC.

5 Practicalities and Related Work

There has been much recent interest in using SMC within SMC in various ways.
The SMC2 by Chopin et al. (2013) and the recent method by Crisan and Míguez
(2013) are sequential learning algorithms for state space models, where one SMC
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sampler for the parameters is coupled with another SMC sampler for the latent
states. Johansen et al. (2012) and Chen et al. (2011) address the state inference
problem by splitting the state variable into different components and run cou-
pled SMC samplers for these components. These methods differ substantially
from NSMC; they solve different problems and the “internal” SMC sampler(s)
is constructed in a different way (for approximate marginalisation instead of for
approximate simulation). Another related method is the random weights PF of
Fearnhead et al. (2010a), requiring exact samples from q̄ and where the impor-
tance weights are estimated using a nested Monte Carlo algorithm.

The method most closely related to NSMC is the space-time particle filter (ST-PF)
(Beskos et al., 2014a), which has been developed independently and in parallel
with our work. The ST-PF is also designed for solving inference problems in
high-dimensional models. It can be seen as a island PF (Vergé et al., 2013) imple-
mentation of the method presented by Naesseth et al. (2014b). Specifically, for
a spatio-temporal models they run an island PF over both spatial and temporal
dimensions. However, the ST-PF does not generate an approximation of the fully
adapted SMC sampler.

Another key distinction between NSMC and ST-PF is that in the latter each par-
ticle in the “outer” SMC sampler comprises a complete particle system from the
“inner” SMC sampler. For NSMC, on the other hand, the particles will simply cor-
respond to different hypotheses about the latent variables (as in standard SMC),
regardless of how many samplers that are nested. This is a key feature of NSMC,
since it implies that it is easily distributed over the particles. The main compu-
tational effort of Algorithm 3 is the construction of {qj }Nj=1 and the calls to the
Simulate procedure, which can be done independently for each particle. This
leads to improved memory efficiency and lower communication costs. Further-
more, we have found (see Section 6) that NSMC can outperform ST-PF even when
run on a single machine with matched computational costs.

Another strength of NSMC methods are their relative ease of implementation,
which we show in Section 6.3. We use the framework to sample from what is
essentially a cubic grid Markov random field (MRF) model just by implement-
ing three nested samplers, each with a target distribution defined on a simple
chain.

There are also other SMC-based methods designed for high-dimensional prob-
lems, e.g., the block PF studied by Rebeschini and van Handel (2015), the location
particle smoother by Briggs et al. (2013) and the PF-based methods reviewed in
Djuric and Bugallo (2013). However, these methods are all inconsistent, as they
are based on various approximations that result in systematic errors.

The previously mentioned PMCMC (Andrieu et al., 2010) is a related method,
where SMC is used as a component of an MCMC algorithm. We make use of a
very similar extended space approach to motivate the validity of our algorithm.
Note that our proposed algorithm can be used as a component in PMCMC and
most of the other algorithms mentioned above, which further increases the scope
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Figure 2: Median (over dimension) ESS (4) and 15–85% percentiles (shaded
region). The results are based on 100 independent runs for the Gaussian
MRF with dimension d.

of models it can handle.

6 Experimental Results

We illustrate NSMC on three high-dimensional examples, both with real and syn-
thetic data. We compare NSMC with standard (bootstrap) PF and the ST-PF of
Beskos et al. (2014a) with equal computational budgets on a single machine (i.e.,
neglecting the fact that NSMC is more easily distributed). These methods are, to
the best of our knowledge, the only other available consistent online methods for
full Bayesian inference in general sequential models. For more detailed explana-
tions of the models and additional results, see Naesseth et al. (2015)2.

6.1 Gaussian State Space Model

We start by considering a high-dimensional Gaussian state space model, where
we have access to the true solution from belief propagation. The latent variables
and measurements {X1:k , Y1:k}, with {Xk, Yk} =

{
Xk,l , Yk,l

}d
l=1, are modeled by a

d × k lattice Gaussian MRF. The true data is simulated from a nearly identical
state space model (see Naesseth et al. (2015)). We run a 2-level NSMC sam-
pler. The outer level is fully adapted, i.e. the proposal distribution is qk = p(xk |
xk−1, yk), which thus constitute the target distribution for the inner level. To
generate properly weighted samples from qk , we use a bootstrap PF operating
on the d components of the vector xk . Note that we only use bootstrap propos-
als where the actual sampling takes place, and that the conditional distribution
p(xk | xk−1, yk) is not explicitly used.

We simulate data from this model for k = 1, . . . , 100 for different values of d =
dim(xk) ∈ {50, 100, 200}. The exact filtering marginals are computed using be-
lief propagation. We compare with both the ST-PF and standard (bootstrap)
PF.

2Code available at https://github.com/can-cs/nestedsmc
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The results are evaluated based on the effective sample size (ESS, see e.g. Fearn-
head et al. (2010b)) defined as,

ESS(xk,l) =
(
E
[

(x̂k,l−µk,l )2

σ2
k,l

])−1

, (4)

where x̂k,l denote the mean estimates and µk,l and σ2
k,l denote the true mean and

variance of xk,l | y1:k obtained from belief propagation. The expectation in (4)
is approximated by averaging over 100 independent runs of the involved algo-
rithms. The ESS reflects the estimator accuracy, obvious by the definition which
is tightly related to the mean-squared-error. Intuitively the ESS corresponds to
the equivalent number of i.i.d. samples needed for the same accuracy.

We use N = 500 and M = 2 · d for NSMC and match the computational time
for ST-PF and bootstrap PF. We report the results in Figure 2. Note that the
bootstrap PF is omitted from d = 100, 200 due to its poor performance already
for d = 50 (which is to be expected). Each dimension l = 1, . . . , d provides us
with a value of the ESS, so we present the median (lines) and 15–85% percentiles
(shaded regions) in the first row of Figure 2.

We have conducted additional experiments with different model parameters and
different choices for N and M (some additional results are given in Naesseth et al.
(2015)). Overall the results seem to be in agreement with the ones presented here,
however ST-PF seems to be more robust to the trade-off betweenN andM. A rule-
of-thumb for NSMC is to generally try to keep N as high as possible, while still
maintaining a reasonable estimate of Zqk .

6.2 Non-Gaussian State Space Model

Next, we consider an example with a non-Gaussian SSM, borrowed from Beskos
et al. (2014a) where the full details of the model are given. The transition prob-
ability p(xk | xk−1) is a localised Gaussian mixture and the measurement proba-
bility p(yk | xk) is t-distributed. The model dimension is d = 1 024. Beskos et al.
(2014a) report improvements for ST-PF over both the bootstrap PF and the block
PF by Rebeschini and van Handel (2015). We use N = M = 100 for both ST-PF
and NSMC (the special structure of this model implies that there is no significant
computational overhead from running backward sampling) and the bootstrap PF
is given N = 10 000. In Figure 3 we report the ESS (4), estimated according to Car-
penter et al. (1999). The ESS for the bootstrap PF is close to 0, for ST-PF around
1–2, and for NSMC slightly higher at 7–8. However, we note that all methods
perform quite poorly on this model, and to obtain satisfactory results it would be
necessary to use more particles.
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Figure 3: Median ESS with 15−85% percentiles (shaded region) for the non-
Gaussian SSM.

6.3 Spatio-Temporal Model – Drought Detection

In this final example we study the problem of detecting droughts based on mea-
sured precipitation data (Jones and Harris, 2013) for different locations on earth.
We look at the situation in North America during the years 1901–1950 and the
Sahel region in Africa during the years 1950–2000, time frames including the
so-called Dust Bowl in the US during the 1930s (Schubert et al., 2004) and the
decades long drought in the Sahel region in Africa starting in the 1960s (Foley
et al., 2003; Hoerling et al., 2006). We consider the spatio-temporal model de-
fined by Fu et al. (2012) and compare with the results therein. Each location in
a region is modelled to be in either a normal state 0 or in an abnormal state 1
(drought). Measurements are given by precipitation (in millimeters) for each loca-

· · · Xk−1

N
→

Xk Xk+1 · · ·

M1
→

↓ M2 ↓ M2 ↓ M2

Xk,1:2,1 Xk,1:2,2 Xk,1:2,3

Figure 4: Illustration of the three-level NSMC.
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Figure 5: Top: Number of locations with estimated p(x = 1) > {0.5, 0.7, 0.9}
for the two regions. Bottom: Estimate of p(xt,i = 1) for all sites over a span
of 3 years. All results for N = 100, N1 = {30, 40}, N2 = 20.

tion and year. At every time instance k our latent structure is described by a rect-
angular 2D grid Xk = {Xk,i,j }

I ,J
i=1,j=1; in essence this is the model showcased in Fig-

ure 1. Fu et al. (2012) considers the problem of finding the maximum aposteriori
configuration, using a linear programming relaxation. We will instead compute
an approximation of the full posterior filtering distribution π̄k(xk) = p(xk | y1:k).
The rectangular structure is used to instantiate an NSMC method that on the first
level targets the full posterior filtering distribution, second level the columns,
and third level the rows of Xk . Properly weighted samples are generated using a
bootstrap PF for the third level. The structure of our NSMC method applied to
this particular problem is illustrated in Figure 4.

Figure 5 gives the results on the parts of North America that we consider. The
first row shows the number of locations where the estimate of p(xk,i,j = 1) ex-
ceeds {0.5, 0.7, 0.9}, for both regions. These results seems to be in agreement with
Fu et al. (2012, Figures 3, 6). However, we also receive an approximation of the
full posterior and can visualise uncertainty in our estimates, as illustrated by the
three different levels of posterior probability for drought. In general, we obtain
a rich sample diversity from the posterior distribution. However, for some prob-
lematic years the sampler degenerates, with the result that the three credibility
levels all coincide. This is also visible in the second row of Figure 5, where we
show the posterior estimates p(xk,i,j | y1:k) for the years 1939–1941, overlayed on
the regions of interest. Naturally, one way to improve the estimates is to run the
sampler with a larger number of particles, which has been kept very low in this
proof-of-concept.

We have shown that a straightforward NSMC implementation with fairly few
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particles can attain reasonable approximations to the filtering problem for di-
mensions in the order of hundreds, or even thousands. This means that NSMC
methods takes the SMC framework an important step closer to being viable for
high-dimensional statistical inference problems. However, NSMC is not a silver
bullet for solving high-dimensional inference problems, and the approximation
accuracy will be highly model dependent. Hence, much work remains to be done,
for instance on combining NSMC with other techniques for high-dimensional in-
ference such as localisation (Rebeschini and van Handel, 2015) and annealing
(Beskos et al., 2014b), in order to solve even more challenging problems.

Acknowledgments

This work was supported by the projects: Learning of complex dynamical sys-
tems (Contract number: 637-2014-466) and Probabilistic modeling of dynam-
ical systems (Contract number: 621-2013-5524), both funded by the Swedish
Research Council.



Bibliography 149

Bibliography

C. Andrieu and G. O. Roberts. The pseudo-marginal approach for efficient Monte
Carlo computations. The Annals of Statistics, 37(2):697–725, 2009.

Christophe Andrieu, Arnaud Doucet, and Roman Holenstein. Particle Markov
chain Monte Carlo methods. Journal of the Royal Statistical Society: Series B
(Statistical Methodology), 72(3):269–342, 2010.

A. Beskos, D. Crisan, A. Jasra, K. Kamatani, and Y. Zhou. A stable particle filter
in high-dimensions. ArXiv:1412.3501, December 2014a.

Alexandros Beskos, Dan Crisan, and Ajay Jasra. On the stability of sequential
Monte Carlo methods in high dimensions. Ann. Appl. Probab., 24(4):1396–
1445, 08 2014b.

Peter Bickel, Bo Li, and Thomas Bengtsson. Sharp failure rates for the bootstrap
particle filter in high dimensions, volume Volume 3 of Collections, pages 318–
329. Institute of Mathematical Statistics, Beachwood, Ohio, USA, 2008.

Jonathan Briggs, Michael Dowd, and Renate Meyer. Data assimilation for large-
scale spatio-temporal systems using a location particle smoother. Environ-
metrics, 24(2):81–97, 2013.

Olivier Cappé, Eric Moulines, and Tobias Rydén. Inference in Hidden Markov
Models. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2005. ISBN
0387402640.

J. Carpenter, P. Clifford, and P. Fearnhead. Improved particle filter for nonlinear
problems. IEE Proceedings Radar, Sonar and Navigation, 146(1):2–7, 1999.

Tianshi Chen, Thomas B. Schön, Henrik Ohlsson, and Lennart Ljung. Decentral-
ized particle filter with arbitrary state decomposition. IEEE Transactions on
Signal Processing, 59(2):465–478, Feb 2011.

N. Chopin, P. E. Jacob, and O. Papaspiliopoulos. SMC2: an efficient algorithm
for sequential analysis of state space models. Journal of the Royal Statistical
Society: Series B (Statistical Methodology), 75(3):397–426, 2013.

Jacques Cohen. Bioinformatics—an introduction for computer scientists. ACM
Computing Surveys (CSUR), 36(2):122–158, 2004.

N. Cressie and C. K. Wikle. Statistics for spatio-temporal data. Wiley, 2011.

D. Crisan and J. Míguez. Nested particle filters for online parameter estimation
in discrete-time state-space Markov models. ArXiv:1308.1883, August 2013.

P. Del Moral. Feynman-Kac Formulae - Genealogical and Interacting Particle
Systems with Applications. Probability and its Applications. Springer, 2004.



150 Paper D Nested Sequential Monte Carlo Methods

Petar M Djuric and Mónica F Bugallo. Particle filtering for high-dimensional sys-
tems. In Computational Advances in Multi-Sensor Adaptive Processing (CAM-
SAP), 2013 IEEE 5th International Workshop on, pages 352–355. IEEE, 2013.

A. Doucet and A. M. Johansen. A tutorial on particle filtering and smoothing:
Fifteen years later. In D. Crisan and B. Rozovsky, editors, Nonlinear Filtering
Handbook. Oxford University Press, 2011.

Arnaud Doucet, Nando De Freitas, and Neil Gordon. An introduction to sequen-
tial Monte Carlo methods. Springer, 2001.

Paul Fearnhead, Omiros Papaspiliopoulos, Gareth O. Roberts, and Andrew Stu-
art. Random-weight particle filtering of continuous time processes. Journal of
the Royal Statistical Society: Series B (Statistical Methodology), 72(4):497–512,
2010a.

Paul Fearnhead, David Wyncoll, and Jonathan Tawn. A sequential smoothing
algorithm with linear computational cost. Biometrika, 97(2):447–464, 2010b.

J. A. Foley, M. T. Coe, M. Scheffer, and G. Wang. Regime shifts in the sahara and
sahel: Interactions between ecological and climatic systems in northern africa.
Ecosystems, 6:524–539, 2003.

Qiang Fu, Arindam Banerjee, Stefan Liess, and Peter K. Snyder. Drought detec-
tion of the last century: An MRF-based approach. In Proceedings of the 2012
SIAM International Conference on Data Mining, pages 24–34, Anaheim, CA,
USA, April 2012.

S. J. Godsill, A. Doucet, and M. West. Monte Carlo smoothing for nonlinear time
series. Journal of the American Statistical Association, 99(465):156–168, March
2004.

N. J. Gordon, D. J. Salmond, and A. F. M. Smith. Novel approach to
nonlinear/non-Gaussian Bayesian state estimation. Radar and Signal Process-
ing, IEE Proceedings F, 140(2):107 –113, April 1993.

M. Hoerling, J. Hurrell, J. Eischeid, and A. Phillips. Detection and attribution
of twentieth-century northern and southern african rainfall change. Journal of
Climate, 19:3989––4008, 2006.

A. M. Johansen, N. Whiteley, and A. Doucet. Exact approximation of Rao-
Blackwellised particle filters. In Proceesings of the 16th IFAC Symposium on
System Identification (SYSID), pages 488–493, Brussels, Belgium, 2012.

P.D. Jones and I. Harris. CRU TS3.21: Climatic research unit (CRU)
time-series (ts) version 3.21 of high resolution gridded data of month-
by-month variation in climate (jan. 1901- dec. 2012). NCAS British
Atmospheric Data Centre, sep 2013. URL http://dx.doi.org/10.5285/
D0E1585D-3417-485F-87AE-4FCECF10A992.



Bibliography 151

R. E. Kalman. A new approach to linear filtering and prediction problems. Trans-
actions of the ASME, Journal of Basic Engineering, 82:35–45, 1960.

F. Lindsten and T. B. Schön. Backward simulation methods for Monte Carlo sta-
tistical inference. Foundations and Trends in Machine Learning, 6(1):1–143,
2013.

Jun S Liu. Monte Carlo strategies in scientific computing. Springer Science &
Business Media, 2001.

Claire Monteleoni, Gavin A. Schmidt, Francis Alexander, Alexandru Niculescu-
Mizil, Karsten Steinhaeuser, Michael Tippett, Arindam Banerjee, M. Benno Blu-
menthal, Jason E. Smerdon Auroop R. Ganguly, and Marco Tedesco. Climate
informatics. In Ting Yu, Nitesh Chawla, and Simeon Simoff, editors, Compu-
tational Intelligent Data Analysis for Sustainable Development. Chapman and
Hall/CRC, London, 2013.

Christian A. Naesseth, Fredrik Lindsten, and Thomas B. Schön. Capacity estima-
tion of two-dimensional channels using sequential Monte Carlo. In The 2014
IEEE Information Theory Workshop (ITW), pages 431–435, Nov 2014a.

Christian A Naesseth, Fredrik Lindsten, and Thomas B Schön. Sequential Monte
Carlo for graphical models. In Advances in Neural Information Processing
Systems 27, pages 1862–1870. Curran Associates, Inc., 2014b.

Christian A. Naesseth, Fredrik Lindsten, and Thomas B. Schön. Nested sequential
Monte Carlo methods. arXiv:1502.02536, 2015.

Michael K Pitt and Neil Shephard. Filtering via simulation: Auxiliary particle
filters. Journal of the American statistical association, 94(446):590–599, 1999.

P. Rebeschini and R. van Handel. Can local particle filters beat the curse of di-
mensionality? Ann. Appl. Probab. (to appear), 2015.

H. Rue and L. Held. Gaussian Markov Random Fields, Theory and Applications.
CDC Press, Boca Raton, FL, USA, 2005.

S. D. Schubert, M. J. Suarez, P. J. Pegion, R. D. Koster, and J. T. Bacmeister. On
the cause of the 1930s dust bowl. Science, 303:1855–1859, 2004.

R. H. Shumway and D. S. Stoffer. Time Series Analysis and Its Applications –
with R examples. Springer Texts in Statistics. Springer, New York, USA, third
edition, 2011.

Christelle Vergé, Cyrille Dubarry, Pierre Del Moral, and Eric Moulines. On par-
allel implementation of sequential Monte Carlo methods: the island particle
model. Statistics and Computing, pages 1–18, 2013.

Martin J Wainwright and Michael I Jordan. Graphical models, exponential fami-
lies, and variational inference. Foundations and Trends® in Machine Learning,
1(1-2):1–305, 2008.



152 Paper D Nested Sequential Monte Carlo Methods

C. K. Wikle. Modern perspectives on statistics for spatio-temporal data. WIREs
Computational Statistics, 7(1):86–98, 2015.



Paper E
High-dimensional Filtering using Nested

Sequential Monte Carlo

Authors: Christian A. Naesseth, Fredrik Lindsten, and Thomas B. Schön

Edited version of the paper:

Christian A. Naesseth, Fredrik Lindsten, and Thomas B. Schön. High-
dimensional filtering using nested sequential Monte Carlo. arXiv:1612.09162,
2016.

This paper has been formatted to fit this layout.





High-dimensional Filtering using Nested
Sequential Monte Carlo

Christian A. Naesseth? , Fredrik Lindsten†, and Thomas B. Schön†

?Dept. of Electrical Engineering,
Linköping University,

SE–581 83 Linköping, Sweden
christian.a.naesseth@liu.se

†Dept. of Information Technology
Uppsala University
Uppsala, Sweden

{fredrik.lindsten,thomas.schon}@it.uu.se

Abstract
Sequential Monte Carlo (SMC) methods comprise one of the most suc-
cessful approaches to approximate Bayesian filtering. However, SMC
without good proposal distributions struggle in high dimensions. We
propose nested sequential Monte Carlo (NSMC), a methodology that
generalizes the SMC framework by requiring only approximate, prop-
erly weighted, samples from the SMC proposal distribution, while
still resulting in a correct SMC algorithm. This way we can exactly
approximate e.g. the locally optimal proposal, and extend the class
of models for which we can perform efficient inference using SMC.
We show improved accuracy over other state-of-the-art methods on
several spatio-temporal state space models.
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1 Introduction

Inference in complex and high-dimensional statistical models is a very challeng-
ing problem that is ubiquitous in applications such as climate informatics (Mon-
teleoni et al., 2013), bioinformatics (Cohen, 2004) and machine learning (Wain-
wright and Jordan, 2008).

We are interested in sequential Bayesian inference in settings where we have a
sequence of posterior distributions that we need to compute. Furthermore, we
focus on settings where the model (or state variable) is high-dimensional, but
where there are local dependencies among state variables. One example of the
type of models we consider are so-called spatio-temporal models (Cressie and
Wikle, 2011; Rue and Held, 2005; Wikle, 2015).

Sequential Monte Carlo (SMC) methods comprise one of the most successful
methodologies for sequential Bayesian inference. However, SMC struggles in
high dimensions (Snyder et al., 2008) and these methods are rarely used for di-
mensions, say, higher than ten (Rebeschini and van Handel, 2015a). The purpose
of the NSMC methodology is to push this limit well beyond the single digits.
While the methodology is applicable to a wide range of different models, we fo-
cus on the spatio-temporal setting. We propose a class of spatio-temporal models
based on a combination of Markov random fields and state space models. Infer-
ence in this model class is challenging, however, we show that the NSMC method
is well suited to this challenge.

The basic strategy is to mimic the behavior of a so-called fully adapted (or locally
optimal) SMC algorithm. Full adaptation can drastically improve the efficiency of
SMC in high dimensions (Snyder et al., 2015). Unfortunately, it can rarely be im-
plemented in practice since the fully adapted proposal distributions are typically
intractable. NSMC addresses this difficulty by requiring only approximate, prop-
erly weighted, samples from the proposal distribution. This enables us to use a
second layer of SMC to simulate approximately from the proposal. The proper
weighting condition ensures the validity of NSMC, thus providing a generaliza-
tion of the family of SMC methods. Furthermore, the NSMC procedure itself gen-
erates properly weighted samples, meaning that the procedure can be nested to
an arbitrary degree. This paper extends preliminary work (Naesseth et al., 2015a)
with the ability to handle more expressive models, more informative central limit
theorems and convergence proofs, as well as new experiments.

Related work

There has been much recent interest in using Monte Carlo methods as nested
procedures of other Monte Carlo algorithms. The SMC2 and IS2 algorithms by
Chopin et al. (2013) and Tran et al. (2013), respectively, are algorithms for learn-
ing static parameters as well as latent variables. In these methods one SMC/IS
method for the parameters is coupled with another for the latent variables. Chen
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et al. (2011) and Johansen et al. (2012) address the state inference problem by
splitting the state vector into two components and run coupled SMC samplers
for these. Compared to the present work, these methods solve different problems
and the “internal” SMC samplers are constructed differently—for approximate
marginalization instead of simulation.

By viewing state inference as a sequential problem in the components of the state
vector xt we can make use of the method for general graphical models by Naes-
seth et al. (2014b). This method is combined with the island particle filter (Vergé
et al., 2015), and studied more closely by Beskos et al. (2017) under the name
space-time particle filter (ST-PF). The ST-PF does not generate an approxima-
tion of the fully adapted SMC. Another key distinction is that in the ST-PF each
particle in the “outer” SMC sampler corresponds to a complete particle system,
whereas for NSMC it will correspond to different hypotheses about the latent
state xt as in standard SMC. This leads to lower communication costs and better
memory efficiency in e.g. distributed implementations. We have also found that
NSMC typically outperforms ST-PF, even when run on a single machine with
matched computing times (see Section 4).

The method proposed by Jaoua et al. (2013) can be viewed as a special case of
NSMC when the nested procedure to generate samples is given by IS with the
proposal being the transition probability. Independent resampling PF (IR-PF) in-
troduced in Lamberti et al. (2016) generates samples in the same way as NSMC
with IS, instead of SMC, as the nested procedure. However, IR-PF uses a dif-
ferent weighting that requires both the outer and the inner number of particles
to tend to infinity for consistency. On the contrary, NSMC only requires that
the number of particles at the outermost level tends to infinity for consistency
(Section 3.5). Furthermore, we provide results in the supplementary material
showing that NSMC significantly outperforming IR-PF on an example studied in
Lamberti et al. (2016).

There are other SMC-related methods that have been introduced to tackle high-
dimensional problems, e.g. the so-called block PF studied by Rebeschini and van
Handel (2015b), the location particle smoother by Briggs et al. (2013), and vari-
ous methods discussed in Djuric and Bugallo (2013). These methods are, however,
all inconsistent because they are based on approximations that result in system-
atic errors.

The concept of proper weighting (or random weights) is not new and has been
used in the so-called random weights particle filter (Fearnhead et al., 2010). They
require exact samples from a proposal qt but use a nested Monte Carlo method
to unbiasedly estimate the importance weights wt . In Martino et al. (2016) the
authors study proper weighting as a means to perform partial resampling, i.e.
only resample a subset of the particles at each time. The authors introduce the
concept of “unnormalized” proper weighting, which is essentially the same as
proper weighting that was introduced and used to motivate NSMC in Naesseth
et al. (2015a). Furthermore, Stern (2015) uses proper weighting and NSMC to
solve an inference problem within statistical historical linguistics.
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Another approach to solve the sequential inference problem is the sequential
Markov chain Monte Carlo class of methods (Yang and Dunson, 2013). It was
shown by Septier and Peters (2016) that the optimal sequential MCMC algorithm
actually is equivalent to the fully adapted SMC.

2 Sequential probabilistic models

Before presenting the new inference methodology in Section 3 we present two
classes of sequential probabilistic models that will be used to illustrate its appli-
cability. First we review the Markov random field (MRF) model and show how
this can be used in a spatio-temporal setting via a sequential model decomposi-
tion. We then propose a combination of the MRF and a state space model (SSM),
resulting in a more explicit separation of the spatial and temporal dependencies
of the model. These models will serve to illustrate the usefulness and wide ap-
plicability of the method we propose. Note, however, that NSMC is by no means
restricted to the classes of models we illustrate in this section. It can in princi-
ple be applied to any sequence of distributions we would like to approximate.
We will refer to this sequence of distributions of interest as the target distribu-
tions.

2.1 Markov random fields

The Markov random field is a type of undirected probabilistic graphical model
(Jordan, 2004). The MRF is typically not represented as a sequence of distribu-
tions (or models), but it has previously been shown (Everitt, 2012; Hamze and
de Freitas, 2005; Lindsten et al., 2017; Naesseth et al., 2014a,b, 2015a,c) that it
can be very useful to artificially introduce a sequence to simplify the inference
problem. Furthermore, it is also possible to postulate the model as an MRF that
increases with “time”, useful in e.g. climate science (Fu et al., 2012).

Consider first a standard MRF model of a multivariate random variable x =
(x1, . . . , xnx ), where x ∈ X. The conditional independencies among the model vari-
ables are described by the structure of the graph G = {V , E}, where V = {1, . . . , nx}
is the vertex set and E = {(i, j) : (i, j) ∈ V × V , ∃ edge between vertex i and j} is
the edge set. Given G we can define a joint probability density function (PDF) for
x that incorporates this structure as

π(x) =
1
Z

∏
i∈V

φ(xi , yi)
∏

(i,j)∈E
ψ(xi , xj ), (1)

where y = (y1, . . . , ynx ) is the observed variable and φ, ψ are called observation
and interaction potentials, respectively. The normalization constant ensuring



2 Sequential probabilistic models 159

that π( · ) integrates to one is given by

Z :=
∫ ∏

i∈V
φ(xi , yi)

∏
(i,j)∈E

ψ(xi , xj )dx.

Note that (1) is usually referred to as a pairwise MRF in the literature due to
π( · ) factorizing into potentials that only depend on pairs of components of the
random variable x. For clarity we restrict ourselves to this type, however the
method we propose in this paper can be applied to more general types of graphs,
see e.g. Naesseth et al. (2014b) for ideas on how to extend SMC inference to non-
pairwise MRFs.

Now, a sequential MRF is obtained if we consider a sequence of random variables
x1:t = (x1, . . . , xt), with x1:t ∈ Xt for t = 1, . . . , T , with a PDF that factorizes accord-
ing to

πt(x1:t) =
1
Zt
γt(x1:t) :=

1
Zt
γt(x1:t−1)

∏
i∈V

φ(xt,i , yt,i)ρ(xt−1, xt,i)
∏

(i,j)∈E
ψ(xt,i , xt,j ),

(2)

where G = {V , E} again encodes the structure of the graphical model and ρ( · ) is a
new type of interaction potential that links xt−1 to xt . Furthermore, the normal-
ization constant is given by Zt :=

∫
γt(x1:t)dx1:t . We illustrate a typical example

of a sequential MRF in Figure 1. As an example, this type of model was used
by Fu et al. (2012) in a spatio-temporal application to detect drought based on
annual average precipitation rates collected from various sites in North America
and Africa over the last century.

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·
· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

t − 1 t t + 1

Figure 1: Illustration of a sequential MRF where G is given by a 2 × 3 grid
with nearest neighbor interaction.

We would like to remark on one peculiarity that arises when the sequential MRF
is used to model a spatio-temporal process. Consider πt( · ) without measure-
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ments as a prior on a spatio-temporal model, i.e. the observation potentials φ in
(2) do not depend on yt . In this case we get that the marginals for t < T change de-
pending on the value of T , i.e. in general πt(x1:t) , πT (x1:t) =

∫
πT (x1:T )dxt+1:T .

Typically we would expect that a priori what happens for a dynamical process at
time t should not be affected by the length of the time-series we consider. The
next class of models we consider can introduce dependencies in both time and
space without giving rise to this counter-intuitive result.

2.2 Spatio-temporal state space models

Before we move on to define the spatio-temporal state space model (ST-SSM), we
will briefly review SSMs, a comprehensive and important model class commonly
used for studying dynamical systems. For a more detailed account, and with
pointers to the wide range of applications, we refer the readers to Cappé et al.
(2005); Douc et al. (2014); Shumway and Stoffer (2010).

In state space models the sequential structure typically enters as a known, or
postulated, dynamics on the unobserved latent state xt that is then partially ob-
served through the measurements yt . A common definition for SSMs is through
its functional form

xt = a(xt−1, vt), vt ∼ pv( · ), (3a)

yt = c(xt , et), et ∼ pe( · ), (3b)

where vt and et—often called process and measurement noise, respectively—are
random variables with some given distributions pv( · ), pe( · ). Furthermore, the
initial state x1 is a random variable with some distribution µ( · ). Equation (3) can
equivalently be stated through conditional distributions

xt |xt−1 ∼ f (xt |xt−1), (4a)

yt |xt ∼ g(yt |xt), (4b)

and we define the sequential probabilistic model (or target distribution) as fol-
lows

πt(x1:t) :=
γt(x1:t)
Zt

=
1
Zt
µ(x1)g(y1|x1)

t∏
s=2

f (xs |xs−1)g(ys |xs). (5)

We will assume that g(yt |xt) is available and that it can be evaluated pointwise.
This condition is satisfied in many practical applications.

A typical assumption when using the SSM to model spatio-temporal systems is
to introduce the spatial dependency only between time steps t − 1 and t, see e.g.
Wikle and Hooten (2010). This can be achieved by defining the model such that
the product of the induced distributions f (xt |xt−1)g(yt |xt), conditionally on xt−1,
completely factorize over the components of xt , see also (Rebeschini and van Han-
del, 2015b) where SMC applied to such a model is studied. However, we argue
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that this approach can be limiting since any spatial dependencies are only im-
plicitly taken into account via the temporal dynamics—indeed, conditionally on
xt−1 the spatial components of xt are assumed independent. Here we will instead
study the case where spatial dependencies within each time step are introduced
through the disturbance term vt . We define the ST-SSM as a combination of the
functional and PDF representation of an SSM where the distribution for vt is
given by an MRF as in (1)

xt =


xt,1
...

xt,nx

 =


a1(xt−1, vt,1)

...
anx (xt−1, vt,nx )

 , vt ∼
1
Zv

∏
i∈V

φ(vt,i)
∏

(i,j)∈E
ψ(vt,i , vt,j ), (6a)

yt |xt ∼ g(yt |xt). (6b)

We make no assumptions on local dependencies between xt and xt−1, however,
to keep it simple we will assume that the graph G = {V , E} describing the distribu-
tion for vt does not depend on time t. Furthermore, we will in this paper mainly
consider models where dependencies between components in vt are “few”, i.e.
the MRF is sparse with few elements in E, and where components of yt in g( · )
only depend on subsets of xt . To illustrate the dependency structure in an ST-
SSM we propose a combination of the traditional undirected graph for the MRF
and the directed acyclic graph for the SSM, see Figure 2. This allows us to model

x1,4

x1,3

x1,2

x1,1

x2,4

x2,3

x2,2

x2,1

x3,4

x3,3

x3,2

x3,1

x4,4

x4,3

x4,2

x4,1

x5,4

x5,3

x5,2

x5,1

x6,4

x6,3

x6,2

x6,1

· · ·

Figure 2: Illustration of a spatio-temporal state space model with nx = 4,
one conditionally independent observation per component in xt , and the
MRF for vt is given by a chain. Grey circles illustrate the observations
yt = (yt,1, . . . , yt,4).

more complex dynamical processes than Naesseth et al. (2015a) who assumed
that f (xt |xt−1)g(yt |xt) factorized with only local dependencies between compo-
nents of xt . Furthermore, we can clearly see that the peculiarity discussed in
Section 2.1 is not present in this model; the marginal of the prior does not change
with T as expected.
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3 Methodology

Inference in sequential probabilistic models essentially boils down to computing
the target distribution πt(x1:t) for t = 1, 2, . . .; typically an intractable problem
with no analytical or simple numerical solution. This means that we have to
resort to approximations. In this paper we focus on one particular successful so-
lution to the problem, the so called sequential Monte Carlo family of algorithms
first introduced in the papers by Gordon et al. (1993); Kitagawa (1993); Stewart
and McCarty (1992).

The basic idea with SMC is to move a set of weighted samples {(xi1:t−1, w
i
t−1)}Ni=1

(particles) approximating πt−1, to a new set of particles {(xi1:t , w
i
t)}Ni=1 which ap-

proximate πt . These samples define an empirical approximation of the target
distribution

πNt (dx1:t) :=
N∑
i=1

wit∑
` w

`
t

δxi1:t
(dx1:t), (7)

where δx(dx) is a Dirac measure at x. In the next section we will detail a particu-
larly efficient way of moving the particles, known as fully adapted SMC (Pitt and
Shephard, 1999), ensuring that all normalized weights are equal to 1

N .

3.1 Fully Adapted Sequential Monte Carlo

The procedure to move the particles and their weights from time t − 1 to t in
any SMC sampler is typically done in three stages. The first, resampling, stochas-
tically chooses N particles at time t − 1 that seem promising, discarding low-
weighted ones. The second stage, propagation, generates new samples for time t
conditioned on the resampled particles. The final stage, weighting, corrects for
the discrepancy between the target distribution and the proposal, i.e. the instru-
mental distribution used in the propagation step.

Fully adapted SMC (Pitt and Shephard, 1999) makes specific choices on the re-
sampling weights, νt−1, and the proposal, qt(xt |x1:t−1), such that all the impor-
tance weights wt are equal. By introducing ancestor indices ait−1 ∈ {1, . . . , N }
for i = 1, . . . , N , we can describe the resampling step (of the fully adapted SMC
sampler) by simulating {ait−1}

N
i=1 conditionally independently with

P(ait−1 = j) =
ν
j
t−1∑M

`=1 ν
`
t−1

, ν
j
t−1 :=

∫ γt

(
(xj1:t−1, xt)

)
γt−1(xj1:t−1)

dxt . (8)

Propagation then follows by simulating xit conditionally on x
ait−1
1:t−1, for i = 1, . . . , N ,
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according to

xit |x
ait−1
1:t−1 ∼ qt(xt |x

ait−1
1:t−1) :=

1

ν
ait−1
t−1

γt((x
ait−1
1:t−1, xt))

γt−1(x
ait−1
1:t−1)

, (9)

xi1:t =
(
x
ait−1
1:t−1, x

i
t

)
.

This proposal is sometimes referred to as the (locally) optimal proposal because
it minimizes incremental variances in the importance weights wit . Weighting is
easy since all weights are equal, i.e. the unnormalized weights are all set to wit = 1.
The fully adapted SMC sampler in fact corresponds to a locally optimal choice
of both resampling weights and proposal with an incremental variance in the
importance weights wit that is zero.

Note that in most cases it is impossible to implement this algorithm exactly, since
we can not calculate νt−1 and/or simulate from qt . Nested SMC solves this by re-
quiring only approximate resampling weights and approximate samples from qt ,
in the sense that is formalized in Section 3.3. However, we will start by detailing
some specific cases where we can efficiently implement exact fully adapted SMC.
These cases are of interest in themselves, however, here we will mainly use them
to build intuition for how the approximations in NSMC are constructed.

3.2 Leveraging Forward Filtering–Backward Simulation

The problems we need to solve are those of efficiently computing {ν it−1}
N
i=1 and

simulating from qt , defined in (8) and (9), respectively. There are at least two
important special cases where we can use fully adapted SMC. The first is if the
state space X is discrete and finite, i.e. xt ∈ {1, . . . , S}⊗nx ,∀t. Even though exact
algorithms are known in this case (Cappé et al., 2005) the computational complex-
ity scales quadratically with the cardinality of xt (which is Snx ). SMC methods
can thus still be of interest (Fearnhead and Clifford, 2003; Naesseth et al., 2014a,
2015a). The second case is if γt(x1:t)

γt−1(x1:t−1) is an unnormalized Gaussian distribution,
e.g. in the ST-SSM this would correspond to

xt = a(xt−1) + vt , vt ∼ Gaussian MRF,

yt |xt ∼ N (yt ;Cxt , R),

for some matrix C, covariance matrix R, and an MRF in the components of vt
where all pair-wise potentials are Gaussian.

Now, even though in principle the fully adapted SMC is available in these spe-
cial cases, the computational complexity can be prohibitive—it is of order O(Snx )
and O(n3

x) for the finite state space and the Gaussian case, respectively. However,
when there are local dependencies among state variables adhering to an underly-
ing chain (or tree) structure it is possible to make use of efficient implementations
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with only O(S2nx) and O(nx) complexity, respectively, as proposed by Naesseth
et al. (2014a) for the finite state space case. This approach makes use of for-
ward filtering–backward simulation (sampling), from Carter and Kohn (1994);
Frühwirth-Schnatter (1994), on the components of xt to compute {ν it−1}

N
i=1 and

sample qt exactly. As an example, let us consider the above ST-SSM with C = I
and R = I and a Gaussian MRF given by

pv(vt) =
1
Zv

exp

−τ2
nx∑
d=1

v2
t,d −

λ
2

nx∑
d=2

(vt,d − vt,d−1)2

,
for some positive constants τ and λ. For a state space model it is well known that
the fully adapted SMC sampler corresponds to qt(xt |x1:t−1) = f (xt |xt−1)g(yt |xt)

p(yt |xt−1) and

ν it−1 = p(yt |xit−1). However, an efficient way of computing {ν it−1}
N
i=1 and simulat-

ing from qt( · |xi1:t−1) is

xt = a(xit−1) + v′t , v′t ∼
1

ν it−1

g(yt |a(xit−1) + vt)pv(vt),

ν it−1 =
∫
g(yt |a(xit−1) + vt)pv(vt)dvt .

Due to the structure in pv( · ) and g(yt |xt) the distribution to sample from corre-
sponds to a Gaussian MRF with a chain-structure in the vt,d ’s (cf. Figure 2)

p(vt |yt , xit−1) =
g(yt |a(xit−1) + vt)pv(vt)∏nx
d=1 p(yt,d |yt,1:d−1, xit−1)

∝ exp

−1
2

nx∑
d=1

[
(yt,d − ad(xit−1) − vt,d)2 + τv2

t,d

]
− λ

2

nx∑
d=2

(vt,d − vt,d−1)2

. (10)

Because of this structure we can efficiently compute the normalization constant
of (10) by means of “forward” filtering over the components of the vector vt ,
keeping track of the incremental contributions to ν it−1, p(yt,d |yt,1:d−1, xit−1), d =
1, . . . , nx. Sampling the distribution is then done by an explicit “backward” pass,
simulating v′t,d ∼ p(vt,d |v′t,d+1:nx

, yt,1:d , xit−1), d = nx, nx − 1, . . . , 1. We provide an
illustration of the process in Figure 3. See also Naesseth et al. (2014a) for an
example of how this is done in practice for a finite state space.

3.3 Nested Sequential Monte Carlo

The idea behind nested SMC is to emulate the forward-backward-based imple-
mentation of the fully adapted SMC sampler detailed in the previous section
for arbitrary sequential probabilistic models. Because computing {ν it−1}

N
i=1 and

simulating from qt exactly is intractable in general we propose to run an SMC-
based forward filtering–backward simulation method (Godsill et al., 2004; Lind-
sten and Schön, 2013) on the components of xt (or vt) to approximate {ν it−1}

N
i=1
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vt,1

xt−1 vt,1

· · ·
vt,2

vt,1

xt−1 vt,1:2

· · ·
vt,3

vt,2

vt,1

xt−1 vt,1:3

· · ·

vt,4

vt,3

vt,2

vt,1

xt−1 vt,1:4

· · ·

Figure 3: Illustration of forward filtering for vt , we then obtain a sample
from v′t ∼ p(vt |yt , xit−1) using backward sampling for vt,4, . . . , vt,1. Setting
xt = a(xit−1) + v′t yields a draw from the locally optimal proposal qt(xt |xi1:t−1).

and generate approximate draws from qt . As we shall see below, this can be
viewed as an exact approximation (Andrieu et al., 2010) of a fully adapted SMC
algorithm.

To describe the NSMC method we will start from a formal presentation of the pro-
cedure and the basic conditions needed for its validity. The description is based
on the introduction of a generic auxiliary variable, here denoted by ut−1 ∈ Ut−1,
for each time t ≥ 1. Recall that {πt(x1:t), t ≥ 1} with πt(x1:t) ∝ γt(x1:t) is a
sequence of target distributions for the sampler. Let {xi1:t−1}

N
i=1 denote an un-

weighted particle set (wt−1 ≡ 1) approximating πt−1. Then, one step of the NSMC
method, going from iteration t − 1 to t, proceeds as follows: first, we sample con-
ditionally independently the auxiliary variables uit−1 ∼ ηMt−1(ut−1|xi1:t−1), where
ηMt−1 is some distribution parameterized by M. In Section 3.4 we will discuss
how to make use of an internal SMC sampler to define this distribution, in which
case the parameter M will denote the number of particles in the internal sam-
pler. More precisely, in this case, sampling the auxiliary variables corresponds
to the forward filtering step (cf. Section 3.2) where ut−1 denotes all the random
variables (particles and weights) generated by the internal SMC sampler (with
M particles) and ηMt−1 denotes the joint distribution of these variables (implicitly
defined by the sampling procedure).

Next, we compute the resampling weights based on the auxiliary variables, ν it−1 =
τt(uit−1), where τt is some real-valued function satisfying the requirements∫

τt(ut−1)ηMt−1(ut−1|x1:t−1)dut−1 =

∫
γt((x1:t−1, xt))dxt
γt−1(x1:t−1)

, τ(ut−1) ≥ 0 a.s. (11)

Below we will define τt as the normalization constant estimate at the final step
of the internal SMC samplers and then the unbiasedness condition (11) is satis-
fied by known properties of SMC (Del Moral, 2004, Proposition 7.4.1). Next, we
resample the particles {xi1:t−1}

N
i=1 jointly with the auxiliary variables {uit−1}

N
i=1, by

simulating ancestor variables {ait}Ni=1 with

P(ait = j) =
ν
j
t−1∑
` ν

`
t−1

, j = 1, . . . , N . (12)



166 Paper E High-dimensional Filtering using NSMC

Note that this means that we formally resample the complete state of the inter-
nal SMC samplers, captured by the auxiliary variables {uit−1}

N
i=1. In practical

implementations there is no need to save multiple copies of the same internal
state.

Next, for propagation we generate samples xit ∼ κMt (xt |u
ait
t−1) from some distribu-

tion κMt satisfying∫
τt(ut−1)κMt (xt |ut−1)ηMt−1(ut−1|x1:t−1)dut−1 =

γt(x1:t)
γt−1(x1:t−1)

. (13)

The distribution κMt can be realized by running (SMC-based) backward simula-
tion, analogously to the procedure described in Section 3.2. However, a simple
straightforward alternative that also satisfies (13) is to sample from the corre-
sponding empirical distribution induced by the internal SMC sampler. We dis-
cuss the construction of ηMt−1, κ

M
t and τt further in the next section.

Finally, we set xi1:t = (xa
i
t

1:t−1, x
i
t), i = 1, . . . , N , and have thus obtained a new set of

unweighted particles approximating πt , i.e.

πNt (dx1:t) :=
1
N

N∑
i=1

δxi1:t
(dx1:t). (14)

The auxiliary variables {uit−1}
N
i=1 can now be discarded.

Algorithm 1: Nested Sequential Monte Carlo (all for i = 1, . . . , N )

Require: ηMt−1, κ
M
t , τt that generate samples properly weighted for γt(x1:t)

γt−1(x1:t−1)
1: for t = 1 to T do
2: Simulate uit−1 ∼ η

M
t−1(ut−1|xi1:t−1)

3: Draw ait with probability P(ait = j) = τt(u
j
t−1)∑

` τt(u
`
t−1)

4: Simulate xit ∼ κMt (xt |u
ait
t−1)

5: Set xi1:t = (xa
i
t

1:t−1, x
i
t)

6: end for

The two conditions on ηMt−1, τt , κ
M
t , i.e. (11) and (13), can in fact be replaced by

the single condition that (xit , τt(u
i
t−1)) are properly weighted for γt(x1:t)

γt−1(x1:t−1) .

Definition 1. Let γt−1 and γt be unnormalized densities on Xt−1 and Xt , respec-
tively, and let x1:t−1 be in the support of γt−1. Let (xt ,ut−1) be a random pair with
distribution possibly depending on x1:t−1 and let τt : Ut−1 → R+. We say that
(xt , τt(ut−1)) are properly weighted for the (unnormalized) distribution γt(x1:t)

γt−1(x1:t−1)
if for all (suitably measurable) functions h : X→ R

E[h(xt)τt(ut−1) | x1:t−1] = C

∫
h(xt)

γt(x1:t)
γt−1(x1:t−1)

dxt , (15)



3 Methodology 167

for some positive constant C > 0 that is independent of the x’s and u’s.

We provide a summary of the proposed method in Algorithm 1. Although we fo-
cus on approximating the fully adapted SMC sampler, the extension to arbitrary
resampling weights and proposal is straightforward, see the appendix. Next we
will illustrate how we can make use of nested or internal SMC samplers to con-
struct ηMt−1, τt , κ

M
t that generate properly weighted samples.

3.4 Constructing ηMt−1, τt and κ
M
t

To construct ηMt−1 we propose to run an SMC sampler targeting the components
of xt (or vt) one-by-one. Note that the internal SMC sampler is run with x1:t−1
fixed (to one of the N particles in the outer SMC sampler), and for notational sim-
plicity we drop the dependence on x1:t−1 throughout this section. The internal
SMC sampler is based on some sequence of (unnormalized) targets pd(xt,1:d) and

proposals rd(xt,d |xt,1:d−1), d = 1, . . . , nx such that pnx (xt,1:nx ) ∝
γt(x1:t)

γt−1(x1:t−1) . Note
that xt = xt,1:nx . We provide a summary in Algorithm 2. In this case, the auxil-
iary variable ut−1 corresponds to all the random variables generated by the inter-
nal SMC sampler, i.e. ut−1 := {x1:M

t,d }
nx
d=1

⋃
{a1:M
t,d }

nx
d=2. The function τt is naturally

defined as the normalizing constant estimate for the internal SMC procedure,
τt(ut−1) =

∏nx
d=1

1
M

∑M
i=1 w

i
t,d .

Algorithm 2: Internal Sequential Monte Carlo (all for i = 1, . . . , M)

Require: Unnormalized target distributions pd(xt,1:d), proposals rd(xt,d |xt,1:d−1),
and M

1: xit,1 ∼ r1(xt,1)

2: Set wit,1 =
p1(xit,1)

r1(xit,1)

3: for d = 2 to nx do

4: Draw ait,d with probability P(ait,d = j) =
w
j
t,d−1∑

` w
`
t,d−1

5: Simulate xit,d ∼ rd(xt,d |x
ait,d
t,1:d−1)

6: Set xit,1:d = (x
ait,d
t,1:d−1, x

i
t,d)

7: Set wit,d =
pd (xit,1:d )

pd−1(x
ait,d
t,1:d−1)rd (xit,d |x

ait,d
t,1:d−1)

8: end for

It remains to define the distribution κMt , used to generate new particles xit con-
ditionally on the auxiliary variables. A first simple alternative is to simulate di-
rectly from the empirical measure defined by the approximation in Algorithm 2,
leading to the following procedure.
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Definition 2 (Internal SMC-based procedure). Let ηMt−1, τt , and κMt be defined

as follows for some sequence {pd( · )}nxd=1 such that pnx (xt,1:nx ) ∝
γt(x1:t)

γt−1(x1:t−1) :

1. Simulate ut−1 ∼ ηMt−1(ut−1|x1:t−1) by running Algorithm 2.

2. Set τt(ut−1) =
∏nx
d=1

1
M

∑M
i=1 w

i
t,d

3. Simulate xt ∼ κMt (xt |ut−1) :=
∑M
i=1

wit,d∑M
j=1 w

j
t,d

δxit,1:nx
(dxt).

However, although this approach will result in properly weighted samples (Propo-
sition 1 below) it can introduce significant correlation between the samples. To
mitigate this we propose to instead make use of backward simulation (Godsill
et al., 2004; Lindsten and Schön, 2013) to construct a more efficient κMt , see Al-
gorithm 3. This mimics the exact backward-simulation-based implementation of
the fully adapted SMC sampler discussed in Section 3.2. Note that we only need
to draw once from κMt for each outer-level particle, implying that for models with
local spatial dependencies there is a small constant (. 2) computational overhead
in using backward sampling in place of simply sampling from the empirical mea-
sure of the forward filter. The NSMC procedure using internal backward simula-
tion is defined as follows.
Definition 3 (Internal SMC-based procedure with backward simulation). Let
ηMt−1 and τt be defined as in Definition 2, but define κMt as:

3’. Simulate xt ∼ κMt (xt |ut−1) by running Algorithm 3

Algorithm 3: Internal Backward Simulation

Require: {(xit,1:d , w
i
t,d)}Mi=1, d = 1, . . . , nx approximating pd(xt,1:d)

1: Draw bnx with probability P(bnx = j) =
w
j
t,nx∑

` w
`
t,nx

2: Set xt,nx = x
bnx
t,nx

3: for d = nx − 1 to 1 do

4: Draw bd with probability P(bd = j) ∝ wjt,d
pnx

(
(xjt,1:d , xt,d+1:nx )

)
pd (xjt,1:d )

5: Set xt,d:nx = (xbdt,d , xt,d+1:nx )
6: end for

Proposition 1 (Proper weighting). The procedure in either Definition 2 or 3
generates (xt , τt(ut−1)) that are properly weighted for γt(x1:t)

γt−1(x1:t−1) .

Proof: The result follows from Theorem 2 in Naesseth et al. (2015a).
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Compare with the example in Section 3.2 and Figure 3 where we used forward
filtering–backward sampling by considering the components of vt,1:d as our tar-
get. Instead of exact forward filtering we can use Algorithm 2, and instead of
exact backward sampling we can use Algorithm 3, to generate properly weighted
samples.

3.5 Theoretical Justification

In this section we will provide a central limit theorem that further motivates
NSMC, and show how the asymptotic variance depends on the internal approx-
imation of the exact fully adapted SMC. Furthermore, we provide a result that
shows how this asymptotic variance converges to that of the corresponding asymp-
totic variance of the exact fully adapted SMC method as M → ∞. We define the
shorthand π(f ) :=

∫
f (x)π(dx) for a measure π and function f .

Theorem 1 (Central Limit Theorem). Assume that ηMt−1, τt , κ
M
t , generate prop-

erly weighted samples for γt(x1:t)/γt−1(x1:t−1). Under certain (standard) regularity
conditions, specified in the appendix, we have the following central limit theo-
rem for any fixed M:

√
N

 1
N

N∑
i=1

ϕ(xi1:t) − πt(ϕ)

 d−→ N
(
0,ΣMt (ϕ)

)
,

where ϕ : Xt → R, and the {xi1:t}
N
i=1 are generated by Algorithm 1. The asymptotic

variance is given by

ΣMt (ϕ) =
t∑
s=0

σMs,t (ϕ),

for σMs,t (ϕ) defined by

σMt,t (ϕ) = πt
(
(ϕ − πt(ϕ))2

)
,

σMs,t (ϕ) =
∫

Ψ M
s,t (x1:s;ϕ)πs(x1:s)dx1:s, for 0 < s < t,

σM0,t(ϕ) =
∫
τ1(u0)2

Z2
1

(∫
(ϕ(x1:t) − πt(ϕ))

πt(x1:t)
π1(x1)

κM1 (x1|u0)dx1:t

)2

ηM0 (u0)du0.

with

Ψ M
s,t (x1:s;ϕ) :=

EηMs (us |x1:s)

 Z2
s

Z2
s+1

τs+1(us)
2
(∫

(ϕ(x1:t) − πt(ϕ))
πt(x1:t)

πs+1(x1:s+1)
κMs+1(xs+1|us)dxs+1:t

)2
(16)



170 Paper E High-dimensional Filtering using NSMC

Proof: See the appendix.

This theorem shows that, even for a fixed and finite value of M, the NSMC
method obtains the standard

√
N convergence rate. We can see how the asymp-

totic variance depends on how well we approximate qt and its normalization con-
stant with κMt and τt . Furthermore, this lets us study convergence of the variance
in M (and also analytic expressions for a high-dimensional state space model; see
the subsequent section).

To show the convergence to fully adapted SMC as the approximation improves
with increasing M we make some further assumptions detailed below.

Assumption E.1 (Uniform integrability). The sequence (in M) of random vari-
ables {Ψ M

s,t (x1:s;ϕ)}, where x1:s ∼ πs, is uniformly integrable.

Note that a sufficient condition for Assumption E.1 to hold is that for some δ > 0
and for all s,M ≥ 1 the following holds∫

Ψ M
s,t (x1:s;ϕ)1+δπs(x1:s)dx1:s < ∞.

Assumption E.2 (Strong mixing). For all s, t, there exist constants 0 < λ−s+1,t <
∞, 0 < λ+

s+1,t < ∞ such that

λ−s+1,t ·πt(xs+2:t |x1:s+1) ≤ πt(x1:t)
πs+1(x1:s+1)

≤ λ+
s+1,t ·πt(xs+2:t |x1:s+1).

In the appendix we detail a weaker assumption for which Proposition 2 still
holds.

Proposition 2. Assume that the NSMC method uses the internal sampling pro-
cedure specified in Definition 2. Under the assumptions of Theorem 1, Assump-
tion E.1 and E.2 the following limit holds:

lim
M→∞

ΣMt (ϕ) =

= πt
(
(ϕ − πt(ϕ))2

)
+
t−1∑
s=1

∫
πt(x1:s)2

πs(x1:s)

(∫
ϕ(x1:t)πt(xs+1:t |x1:s)dxs+1:t − πt(ϕ)

)2

dx1:s.

Proof: See the appendix.

For simplicity we state the result for the case without backward sampling in the
internal sampling procedure (Definition 2). However, the same result is expected
to hold with backward sampling as well (Definition 3). Note that the limiting
asymptotic variance is exactly the one derived for the fully adapted SMC asymp-
totic variance by Johansen and Doucet (2008).
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To study the finite M behavior of NSMC we consider a fairly simple model and
test function that leads to analytical expressions for the asymptotic variance in
the CLT above. Specifically, we study a high-dimensional SSM, given in Defini-
tion 4, obtained by making nx independent copies of an SSM. A similar model is
considered by Beskos et al. (2014) for analyzing the stability of SMC samplers in
high dimensions.
Definition 4. Define the spatially independent state space model as

πt(x1:t) ∝
nx∏
d=1

µ(x1,d)
t∏
s=1

g(ys,d |xs,d)
t∏
s=2

f (xs,d |xs−1,d)

 .
For simplicity we also assume that ys,d = ys,e,∀d, e and that Eπt [xt] = 0.

For this model we can obtain explicit expressions for the asymptotic variances for
the exact fully adapted SMC sampler as well as for the NSMC sampler.

Proposition 3. For the model in Definition 4 and ϕ(x1:t) =
∑nx
d=1 xt,d , we have

that the asymptotic variance of fully adapted SMC is given by

ΣFA
t (ϕ) = nxAt +

t−1∑
s=1

nxB
nx−1
s As + nx(nx − 1)Bnx−2

s C2
s .

Furthermore, using r(xs,d |xs−1,d) as proposal in the inner SMC (Algorithm 2) of
NSMC implemented according to Definition 3, we get that the asymptotic vari-
ance of NSMC is

ΣMt (ϕ) = nxAt +
t−1∑
s=0

nxBnx−1
s

(
As + M−1

(
Ãs − As

)) (
1 − 1

M

)nx−1 (
1 +

B̃s
Bs(M − 1)

)nx−1

+ nx(nx − 1)Bnx−2
s

(
Cs + M−1

(
C̃s − Cs

))2
(
1 − 1

M

)nx−2 (
1 +

B̃s
Bs(M − 1)

)nx−2 ,
for the (finite) positive constants At , As, Ãs, Bs, B̃s, Cs, and C̃s defined in the ap-
pendix.

Proof: See the appendix.

As expected the asymptotic variance of fully adapted SMC grows exponentially
in the dimension nx of the state. (Note that this result is asymptotic only in
N , and not in nx, in contrast to the result obtained by Snyder et al. (2015).)
However, to control the additional approximation introduced by NSMC, i.e. not
evaluating νt−1 and sampling qt exactly, we only need to scale M ∝ nx, even as
nx →∞.

We expect that intuition and rules-of-thumb from running standard SMC also
apply to the internal approximation targeting γt(x1:t)/γt−1(x1:t−1), rather than γt(x1:t).
In Section 4.1 we empirically study how the choice ofM affects the accuracy.
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3.6 Modularity and implementation aspects

The procedure described by Algorithms 1–3 describes a nested SMC procedure
with two levels that can be used to sample from high-dimensional models such
as the sequential MRF or the ST-SSM described in Section 2. Since this proce-
dure is based on using SMC on the components of each xt-vector it will, intu-
itively, work best when the dependencies among these components have a chain
(or chain-like) structure, even though this is not a formal requirement. However,
the methodology described in this section can be generalized to an arbitrary num-
ber of nested SMC procedures, which could prove useful for models with more
than one spatial dimension. Indeed, the nested SMC procedure itself produces
properly weighted samples (Naesseth et al., 2015a). For instance, in an ST-SSM
(6) where the MRF describing the noise distribution is a 2-dimensional lattice, we
may consider a three-level nested SMC procedure: at the first level the sampler
operates on the temporal dimension, the second level simulates complete “rows”
of states of the 2d lattice, and at the third level we sample the individual com-
ponents of each “row”. We investigate this three-level procedure numerically in
Section 4.2.

An important aspect of this nesting of the proposed method is that it is com-
pletely modular, in the sense that the first level SMC does not need to be aware
of the number or specific implementations of the consecutive levels. Indeed, as
long as it has access to some procedure of generating properly weighted samples
for γt(x1:t)/γt−1(x1:t−1) it is possible to run Algorithm 1 without caring about how
these samples are produced (whether we use one or several internal SMC sam-
plers, e.g.).

Related to the modularity of the method it is worth noting that while Algorithm 1
describes the NSMC procedure in mathematical terms, this is not typically how
one would like to implement the method in practice. Specifically, at line 2 of
Algorithm 1 we simulate the auxiliary variables {uit−1}

N
i=1, which correspond to

running N internal SMC samplers. This can be done in separate processes or,
indeed, in a distributed environment on separate machines. Importantly, there is
no need to return the auxiliary variables {uit−1}

N
i=1 to the “master process”, which

would incur a high communication cost. Instead, we simply return the estimates
of the normalizing constants {ν it−1}

N
i=1, which is sufficient to carry out the resam-

pling on line 3. Next, for the propagation step on line 4 we request samples
from the internal procedures; the backward simulation is run internally in these
processes and the resulting samples are returned.
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4 Numerical Results

4.1 Gaussian Model

We start by considering a Gaussian spatio-temporal state space model where the
exact solution is available via the Kalman filter (Kalman, 1960), and we can im-
plement exact fully adapted SMC as explained in Section 3.2. The model is given
by

xt = 0.5xt−1 + vt , vt ∼
1
Zv

exp

−τ2
nx∑
d=1

v2
t,d −

λ
2

nx∑
d=2

(vt,d − vt,d−1)2

 (17a)

yt |xt ∼ N (xt , σ
2
y I). (17b)

The results for N = 100, T = 10, τ = λ = 1 and σ2
y = 0.252, i.e. with fairly

high signal-to-noise ratio, are given in Figure 4. We compare NSMC with (and
without) backward simulation to the bootstrap particle filter (BPF) that uses the
transition probability as proposal. We give all methods equivalent computational
budget as the number of internal particles M grow, i.e. BPF gets NBPF = 100 ·M
particles. Furthermore, for illustrative purposes we include fully adapted SMC
(FAPF), the method that NSMC approximates, for a fixed number of particles
NFAPF = 100. The experiments are run ten times independently and we show
the mean squared error (MSE) as well as one standard deviation error bars, for
estimates of the log-likelihood, E[xT ,1] and E[xT ,nx ] with nx ∈ {10, 100}. The
expectations are with respect to the posterior distribution.

We can see that NSMC is significantly better than BPF and that it converges
quickly towards the fully adapted SMC. Backward simulation also clearly helps
with estimates of E[xT ,d] for d = 1, alleviating the correlation between gener-
ated samples. It is worthwhile to point out that for small M the NSMC seems
to improve much more quickly than the standard asymptotic rate M−1. For the
likelihood estimate the rate almost exceeds M−4. We provide results for different
settings of σ2

y in the supplementary material. In general we see less striking im-
provement of NSMC over BPF when the signal to noise ratio is low, i.e. σ2

y is high
compared to τ−1.

4.2 Soil Carbon Cycles

We move on to study the performance of NSMC and compare it to ST-PF (Beskos
et al., 2017) on a spatio-temporal model inspired by the soil carbon cycle model of
(Clifford et al., 2014; Murray, 2016). The simplified model that we use to profile
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Figure 4: MSE and error bars of Monte Carlo estimates of log p(y1:T ),E[xT ,1],E[xT ,nx ] for
BPF, FAPF and two variants of NSMC. N = 100 for FAPF and NSMC and BPF has equivalent
computational budget.
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the two state-of-the-art methods is defined by

xt = 0.5(xt−1 + eξt )evt , vt ∼
1
Zv

exp
(
− τ

2

∑

i∈V
v2
t,i −

λ
2

∑

(i,j)∈E
(vt,i − vt,j )2

)
,

(18a)

yt |xt ∼ TruncatedNormal
(
xt , σ

2I , 0,∞
)
, (18b)

where ξt is a known input signal and (V , E) is a square lattice,
√
nx ×

√
nx, with

nearest neigbour interaction, i.e. (i, j) ∈ E if i and j are neighbors on the lattice.
The latent variables xt are positive and it is not possible to implement the exact
fully adapted SMC method. We set T = 25, nx = 36 (6 × 6), σ = 0.2, τ = 2,
and λ = 1.0 and run NSMC and ST-PF with matched computational complexity.
Figure 5 displays the mean, over the nx dimensions, mean squared error for each
time-point t estimated by running the algorithms 10 times independently. We

STPF NSMC (3 lvl) NSMC (2 lvl)

5 10 15 20 25

t

10 − 5

10 − 4

10 − 3

10 − 2

M
S

E
E

[x
t
]

5 10 15 20 25

t

10 − 4

10 − 3

10 − 2

10 − 1

100

M
S

E
E

[x
2 t
]

Figure 5: Mean, over components d, MSE of xt,d , x
2
t,d estimated by ST-PF,

and NSMC with two or three levels of inner SMC.

can see that the different NSMC versions perform better than ST-PF in terms of
MSE. This is without taking into account that NSMC simplifies distribution of
the computation and is more memory efficient, only N rather than NM samples
need to be retained at each step.

4.3 Mixture Model

Finally, we consider an example with a non-Gaussian ST-SSM, borrowed from
Beskos et al. (2017) where the full details of the model are given. The transi-
tion probability f (xt |xt−1) is a spatially localized Gaussian mixture and the mea-
surement probability g(yt |xt) is Student’s t-distributed. The model dimension is
nx = 1 024. Beskos et al. (2017) report improvements for ST-PF over both the
BPF and the block PF by Rebeschini and van Handel (2015a). Following Beskos
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et al. (2017) we use N = M = 100 for both ST-PF and NSMC and the BPF is given

20 40 60 80 100

t
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20

25

30

E
S

S

BPF

STPF

NSMC

Figure 6: Mean ESS, with one standard deviation error bars, for the non-
Gaussian SSM.

N = 10 000. In Figure 6 we report the effective sample size (ESS, higher is better),
estimated according to Carpenter et al. (1999). The ESS for the BPF is close to 0,
for ST-PF around 1–2, and for NSMC slightly higher at 7–8. However, we note
that all methods perform quite poorly on this model, and to obtain satisfactory
results it would be necessary to use more particles.

Appendix

This appendix contains supplementary material for High-dimensional Filtering
using Nested Sequential Monte Carlo.

A General Nested Sequential Monte Carlo

Assume that we are interested in approximating an arbitrary auxiliary SMC sam-
pler with proposal qt(xt |x1:t−1) = rt (xt |x1:t−1)∫

rt (xt |x1:t−1)dxt
and adjustment multipliers νt−1(x1:t−1).

The fully adapted SMC that we focus on in this paper is then attained as a special
case when qt(xt |x1:t−1) ∝ γt (x1:t )

γt−1(x1:t−1) and νt−1(x1:t−1) =
∫ γt (x1:t )

γt−1(x1:t−1) dxt .

We can just as easily use a nested Monte Carlo method that produces properly
weighted samples with respect to an arbitrary proposal qt and multipliers νt−1,
see Algorithm 4. Here ν̂t−1(x1:t−1,ut−1) is an approximation to νt−1(x1:t−1).
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Algorithm 4: Nested Sequential Monte Carlo (all for i = 1, . . . , N )

Require: ν̂t−1 and ηMt−1, κ
M
t , τt that generate samples properly weighted for

qt(xt |x1:t−1)
1: for t = 1 to T do
2: Simulate uit−1 ∼ η

M
t−1(ut−1|xi1:t−1)

3: Draw ait with probability P(ait = j) = ν̂t−1(xj1:t−1,u
j
t−1)wjt−1∑

` ν̂t−1(x`1:t−1,u
`
t−1)w`t−1

4: Simulate xit ∼ κMt (xt |u
ait
t−1)

5: Set xi1:t = (xa
i
t

1:t−1, x
i
t)

6: Set wit = γt(xi1:t)

γt−1(x
ait
1:t−1)

τt(u
ait
t−1)

ν̂t−1(x
ait
1:t−1,u

ait
t−1)rt(xit |x

ait
1:t−1)

7: end for

Note that if the adjustment multipliers ν̂t−1 do not depend on ut−1, simulating
from ηt−1 can be done after resampling (simulating at). This ensures that the
new samples are conditionally independent, thus decreasing correlation between
samples.

Generating Properly Weighted Samples using IS

There are many ways of generating properly weighted samples with respect to a
distribution, one example is using sequential Monte Carlo with or without back-
ward simulation as explained in the main manuscript. However, perhaps one of
the most straightforward and simple approaches is to use standard importance
sampling. This means we would define ηMt−1, κ

M
t , τt as follows:

ηMt−1(ut−1|x1:t−1): Set ut−1 = {x̃it}Mi=1, where x̃it ∼ pt(xt |x1:t−1) for some proposal pt ,

κMt (xt |ut−1): Set xt = x̃Bt , where B is simulated with probability P(B = j) = w̃
j
t∑

` w̃
`
t

and wjt = rt(x̃
j
t |x1:t−1)

pt(x̃
j
t |x1:t−1)

,

τt(ut−1): Set τt(ut−1) = 1
M

∑M
i=1 w̃

i
t .

It is straightforward to show that the above procedure generates properly weighted
samples for qt as long as pt > 0 whenever qt is. Now, if we want to use the above to
approximate fully adapted SMC we simply let rt = γt/γt−1 and ν̂t−1 = τt .
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B Theoretical Results

B.1 Proof of Theorem 1

We reproduce the central limit theorem of Naesseth et al. (2015a) here for clar-
ity, see the Appendix of the extended version Naesseth et al. (2015b) for de-
tails.

Notation and Definitions

To explicitly state the general theorem we need some notation defined below.
First, let

Γt(x1:t ,u0:t) =
τt(ut−1)ηMt (ut |x1:t)κ

M
t (xt |ut−1)

rt(xt |x1:t−1)
γt(x1:t)

γt−1(x1:t−1)
Γt−1(x1:t−1,u0:t−1),

Πt(x1:t ,u0:t) =
Γt(x1:t ,u0:t)

Zt
,

with Π0(u0) = ηM0 (u0). If holds that Πt is a probability density function on an
extended space containing both the state variables x1:t and the auxiliary variables
u0:t . The NSMC method is in fact a standard SMC sampler targeting the sequence
of distributions {Πt}t≥0 (Naesseth et al., 2015b). The proposal distribution for
this sampler is given by

QMt (xt ,ut |x1:t−1,ut−1) = ηMt (ut |x1:t)κ
M
t (xt |ut−1),

and the weight function is given by

wt(x1:t ,u0:t) ∝
γt(x1:t)

γt−1(x1:t−1)
τt(ut−1)

νt−1(x1:t−1,ut−1)rt(xt |x1:t−1)
.

Furthermore, the central limit theorem of Naesseth et al. (2015b) is stated using
the following “twisted” target distributions:

Γ ′t (x1:t ,u0:t) = νt(x1:t ,ut)Γt(x1:t ,u0:t),

Π′t(x1:t ,u0:t) =
Γ ′t (x1:t ,u0:t)∫

Γ ′t (x1:t ,u0:t)dx1:tdu0:t

and the ancillary (weight) functions

w′t(x1:t ,u0:t) =
Π′t(x1:t ,u0:t)

QMt (xt ,ut |x1:t−1,ut−1)Π′t−1(x1:t−1,u0:t−1)
∝ νt(x1:t ,ut)wt(x1:t ,u0:t),

ωt(x1:t ,u0:t) =
Πt(x1:t ,u0:t)

QMt (xt ,ut |x1:t−1,ut−1)Π′t−1(x1:t−1,u0:t−1)
∝ wt(x1:t ,u0:t).
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The domain of Πt(x1:t ,u0:t) is denoted by Θt = Xt ×Ut . For a function h : Xt → R,
we define the extension of h to Θt by he(x1:t ,u0:t) := h(x1:t). Let Φt be defined
recursively to be the set of measurable functions h : Θt → R such that there exists
a δ > 0 with EQMt Π′t−1

[‖w′th‖2+δ] < ∞, and such that (x1:t−1,u0:t−1) → EQMt [w′th]
is in Φt−1. We are now ready to state the more general central limit theorem of
Naesseth et al. (2015a).

Theorem 2 (Central Limit Theorem). Assume that ϕ : Xt → R is a function
such that EQMt Π′t−1

[‖w′tϕe‖2+δ] < ∞ for some δ > 0, and that (x1:t−1,u0:t−1) →
EQMt [ωtϕe] is in Φt−1. Then we have the following central limit theorem

√
N

 N∑
i=1

wit∑N
`=1 w

`
t

ϕ(xi1:t) − πt(ϕ)

 d−→ N
(
0,ΣMt (ϕ)

)
,

where {(wit , xi1:t)}
N
i=1 are generated by Algorithm 4 and the asymptotic variance is

given by

ΣMt (ϕ) = ṼM
t (ωt(ϕ

e − EΠt
[ϕe])),

where ṼM
t is defined by the following set of recursions for measurable functions

h : Θt → R

ṼM
t (h) = V̂M

t−1

(
EQMt [h]

)
+ EΠ′t−1

[
VarQMt (h)

]
, t > 0,

VM
t (h) = ṼM

t

(
w′t(h − EΠ′t

[h])
)
, t ≥ 0,

V̂M
t (h) = VM

t (h) + VarΠ′t (h), t ≥ 0.

initialized by ṼM
0 (h) = VarηM0 (h) for h : Θ0 → R.

Approximating the Fully Adapted SMC

When we are approximating the fully adapted SMC, i.e. when qt(xt |x1:t−1) ∝
γt(x1:t)

γt−1(x1:t−1) and νt(x1:t ,ut) = τt+1(ut), we can make significant simplifications of
the expressions in the general central limit theorem above. We get that

Π′t(x1:t ,u0:t) =
τt+1(ut)
Zt+1

Γt(x1:t ,u0:t),

w′t(x1:t ,u0:t) =
Zt
Zt+1

τt+1(ut),

ωt(x1:t ,u0:t) = 1.

Lemma 1. The asymptotic variance ΣMt (ϕ) in Theorem 2 when approximating
the fully adapted SMC is given by

ΣMt (ϕ) = VarηM0 (h0) +
t∑
s=1

VarΠ′s−1,Q
M
s

(hs), (19)
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for hs defined by

ht = ϕe − EΠt
[ϕe],

hs =
Zs
Zs+1

τs+1(us)
(
EQMs+1

[hs+1] − EΠ′s

[
EQMs+1

[hs+1]
])
, 1 ≤ s ≤ t − 1,

h0 =
1
Z1
τ1(u0)

(
EQM1 [h1] − EΠ′0

[
EQM1 [h1]

])
,

where Π′0(u0) = τ1(u0)
Z1

ηM0 (u0).

Proof: For a function ht : Θt → R we have by Theorem 2 that

ṼM
t (ht) = V̂M

t−1

(
EQMt [ht]

)
+ EΠ′t−1

[
VarQMt (ht)

]
= VM

t−1

(
EQMt [ht]

)
+ VarΠ′t−1

(
EQMt [ht]

)
+ EΠ′t−1

[
VarQMt (ht)

]
= ṼM

t−1

(
w′t−1(EQMt [ht] − EΠ′t−1

[EQMt [ht]])
)

+ VarΠ′t−1

(
EQMt [ht]

)
+ EΠ′t−1

[
VarQMt (ht)

]
= . . . = ṼM

t−1

(
Zt−1

Zt
τt(ut−1)

(
EQMt [ht] − EΠ′t−1

[EQMt [ht]]
))

+ VarΠ′t−1,Q
M
t

(ht)

Recursion with ht−1 := Zt−1
Zt
τt(ut−1)

(
EQMt [ht] − EΠ′t−1

[EQMt [ht]]
)

gives the result.

Next, we further simplify the terms of the asymptotic variance expression.

Lemma 2. It holds that

ht = ϕ − πt(ϕ), (20)

hs =
Zs
Zs+1

τs+1(us)
∫

(ϕ(x1:t) − πt(ϕ))
πt(x1:t)

πs+1(x1:s+1)
κMs+1(xs+1|us)dxs+1:t , 1 ≤ s ≤ t − 1,

(21)

h0 =
1
Z1
τ1(u0)

∫
(ϕ(x1:t) − πt(ϕ))

πt(x1:t)
π1(x1)

κM1 (x1|u0)dx1:t , (22)

Proof: The first, ht , follows straightforwardly by the definition of ϕe and Πt . The
remaining will be proved by induction. Assume that (21) holds for some s ≤ t −1.
We will now show that this in fact holds for both ht−1 and hs−1; thus the result
follows. Start by considering ht−1 using the definition in Lemma 1

ht−1 =
Zt−1

Zt
τt(ut−1)

(
EQMt [ht] − EΠ′t−1

[
EQMt [ht]

])
=

Zt−1

Zt
τt(ut−1)

(
EQMt [ϕ − πt(ϕ)] − 0

)
=
Zt−1

Zt
τt(ut−1)

(∫
ϕ(x1:t)κ

M
t (xt |ut−1)dxt − πt(ϕ)

)
.
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Now, for hs−1 let us start by studying EQMs [hs] and EΠ′s−1

[
EQMs [hs]

]
EQMs [hs] = EQMs

[
Zs
Zs+1

τs+1(us)
∫

(ϕ(x1:t) − πt(ϕ))
πt(x1:t)

πs+1(x1:s+1)
κMs+1(xs+1|us)dxs+1:t

]
= . . . =

∫
(ϕ(x1:t − πt(ϕ))

πt(x1:t)
πs(x1:s)

κMs (xs |us−1)dxs:t ,

EΠ′s−1

[
EQMs [hs]

]
= . . . = 0.

This gives us that

hs−1 =
Zs−1

Zs
τs(us−1)

(
EQMs [hs] − EΠ′s−1

[
EQMs [hs]

])
=
Zs−1

Zs
τs(us−1)

∫
(ϕ(x1:t) − πt(ϕ))

πt(x1:t)
πs(x1:s)

κMs (xs |us−1)dxs:t .

The results follows by noting that the procedure is the same for h0 taking into
account edge effects, i.e. Z0 = 1.

Lemma 3. It holds that

VarΠ′t−1,Q
M
t

(ht) = πt
(
(ϕ − πt(ϕ))2

)
,

VarΠ′s−1,Q
M
s

(hs) =∫ Z2
s τs+1(us)2

Z2
s+1

(∫
(ϕ(x1:t) − πt(ϕ))

πt(x1:t)
πs+1(x1:s+1)

κMs+1(xs+1|us)dxs+1:t

)2

ηMs (us |x1:s−1)πs(x1:s)

dusdx1:s, 1 ≤ s ≤ t − 1,

VarηM0 (h0) =
∫
τ1(u0)2

Z2
1

(∫
(ϕ(x1:t) − πt(ϕ))

πt(x1:t)
π1(x1)

κM1 (x1|u0)dx1:t

)2

ηM0 (u0)du0

Proof: We get the first equality

VarΠ′t−1,Q
M
t

(ht) = EΠ′t−1,Q
M
t

[
(ϕ − πt(ϕ))2

]
−
(
EΠ′t−1,Q

M
t

[ϕ − πt(ϕ)]
)2

= πt
(
(ϕ − πt(ϕ)2

)
,

due to Lemma 2 and because

Π′t−1(x1:t−1,u0:t−1)QMt (xt ,ut |x1:t−1,u0:t−1) = Πt(x1:t ,u0:t).
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VarΠ′s−1,Q
M
s

(hs) = EΠ′s−1,Q
M
s

[
h2
s

]
−
(
EΠ′s−1,Q

M
s

[hs]
)2

= EΠ′s−1,Q
M
s

[
h2
s

]
=

∫
hs(x1:s,us)

2Πs(x1:s,u0:s)du0:sdx1:s =
∫
hs(x1:s,us)

2ηMs (us |x1:s)πs(x1:s)dusdx1:s

=
∫ Z2

s τs+1(us)2

Z2
s+1

(∫
(ϕ(x1:t) − πt(ϕ))

πt(x1:t)
πs+1(x1:s+1)

κMs+1(xs+1|us)dxs+1:t

)2

ηMs (us |x1:s−1)πs(x1:s)

dusdx1:s, 1 ≤ s ≤ t − 1,

where the second equality follows by noting that EΠ′s−1,Q
M
s

[hs] = 0. Analogously
to Lemma 2 the expression for s = 0 follows by taking into account the edge
effects.

Finally, with Lemmas 1, 2, and 3 together the result, i.e. Theorem 1, follows.

B.2 Proof of Proposition 2

Assumption E.3 (Approximation property). The approximations, based on ηMs ,
κMs+1 and τs, of qs(xs |x1:s−1) ∝ πs(x1:s)

πs−1(x1:s−1) and νs−1(x1:s−1) =
∫ πs(x1:s)
πs−1(x1:s−1) dxs are such

that

Ψ M
s,t (x1:s;ϕ)

d−→ πt(x1:s)2

πs(x1:s)2

(∫
ϕ(x1:t)πt(xs+1:t |x1:s)dxs+1:t − πt(ϕ)

)2

, as M →∞,

(23)

where Ψ M
s,t (x1:s;ϕ) is defined in Theorem 1. Furthermore, assume that σM0,t(ϕ)

d−→
0 as M →∞.

Lemma 4. The strong mixing assumption,

λ−s+1,t ·πt(xs+2:t |x1:s+1) ≤ πt(x1:t)
πs+1(x1:s+1)

≤ λ+
s+1,t ·πt(xs+2:t |x1:s+1),

where 0 < λ−s+1,t , λ
+
s+1,t < ∞, implies that

Ψ M
s,t (x1:s;ϕ)

d−→ πt(x1:s)2

πs(x1:s)2

(∫
ϕ(x1:t)πt(xs+1:t |x1:s)dxs+1:t − πt(ϕ)

)2

, as M →∞.

(24)

Proof: Under the strong mixing assumption and given that we use a SMC method
to generate properly weighted samples the result follows from standard SMC
results (Del Moral, 2004).
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Theorem 3 (Vitali Convergence Theorem). If {Ψ M
s,t (x1:s;ϕ)} is uniformly inte-

grable and if Ψ M
s,t (x1:s;ϕ)

d−→ Ψ s,t(x1:s;ϕ), then

lim
M→∞

∫
Ψ M
s,t (x1:s;ϕ)πs(x1:s)dx1:s =

∫
Ψ s,t(x1:s;ϕ)πs(x1:s)dx1:s.

Proof: See Folland (1999, Chapter 6).

Under assumptions of uniform integrability and strong mixing (or Assumption E.3),
the result now follows by using the Vitali convergence theorem 3 and noting
that ∫

Ψ s,t(x1:s;ϕ)πs(x1:s)dx1:s

=
∫
πt(x1:s)2

πs(x1:s)

(∫
ϕ(x1:t)πt(xs+1:t |x1:s)dxs+1:t − πt(ϕ)

)2

dx1:s.

B.3 Proposition 3

The constants in Proposition 3 are defined as follows

At =
∫
x2
t,dπt(x1:t,d)dx1:t,d ,

As =
∫
πt(x1:s,d)2

πs(x1:s,d)

(∫
xt,dπt(xt,d |xs,d)dxt,d

)2

dx1:s,d ,

Ãs =
∫

πt(x1:s+1,d)2

πs(x1:s,d)r(xs+1,d |xs,d)

(∫
xt,dπt(xt,d |xs+1,d)dxt,d

)2

dx1:s+1,d ,

Bs =
∫
πt(x1:s,d)2

πs(x1:s,d)
dx1:s,d , B̃s =

∫
πt(x1:s+1,d)2

πs(x1:s,d)r(xs+1,d |xs,d)
dx1:s+1,d ,

Cs =
∫
πt(x1:s,d)2

πs(x1:s,d)

∫
xt,dπt(xt,d |xs,d)dxt,ddx1:s,d ,

C̃s =
∫

πt(x1:s+1,d)2

πs(x1:s,d)r(xs+1,d |xs,d)

∫
xt,dπt(xt,d |xs+1,d)dxt,ddx1:s+1,d ,

with A0 = 0, B0 = 1, C0 = 0,

Ã0 =
∫
πt(x1,d)2

r(x1,d)

(∫
xt,dπt(xt,d |x1,d)dxt,d

)2

dx1,d ,

B̃0 =
∫
πt(x1,d)2

r(x1,d)
dx1,d ,

C̃0 =
∫
πt(x1,d)2

r(x1,d)

∫
xt,dπt(xt,d |x1,d)dxt,ddx1,d ,
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and

Ãt−1 =
∫

πt(x1:t,d)2

πs(x1:t−1,d)r(xt,d |xt−1,d)
x2
t,ddx1:t,d ,

B̃t−1 =
∫

πt(x1:t,d)2

πs(x1:t−1,d)r(xt,d |xt−1,d)
dx1:t,d ,

C̃t−1 =
∫

πt(x1:t,d)2

πs(x1:t−1,d)r(xt,d |xt−1,d)
xt,ddx1:t,d .

B.3.1 Proof of Proposition 3

For fully adapted SMC we have from the result in Johansen and Doucet (2008)
(see also our convergence result in the previous section) and for the model de-
fined in the main manuscript

πt((ϕ − πt(ϕ))2) = nxAt∫
πt(x1:s)2

πs(x1:s)

 nx∑
d=1

∫
xt,dπt(xs+1:t |x1:s)dxs+1:t

2

dx1:s =

=
nx∑
e=1

nx∑
f =1

∫ [
πt(x1:s)2

πs(x1:s)

∫
xt,eπt(xs+1:t |x1:s)dxs+1:t ·

∫
xt,f πt(xs+1:t |x1:s)dxs+1:t

]
dx1:s

=
nx∑
e=1

nx∑
f =1

∫ [
πt(x1:s)2

πs(x1:s)

∫
xt,eπt(xt,e |xs,e)dxt,e ·

∫
xt,f πt(xt,f |xs,f )dxt,f

]
dx1:s

= nxB
nx−1
s As + nx(nx − 1)Bnx−2

s C2
s ,

with constants as defined above.

For nested SMC we have r(xs |xs−1) =
∏nx
d=1 r(xs,d |xs−1,d) and due to the indepen-

dence between dimensions we will have no dependence on internal ancestor vari-
ables in ηs, κs+1, τs+1, i.e.

ηs(us |x1:s) =
nx∏
d=1

M∏
j=1

r(xjs+1,d |xs,d),

κs+1(xs+1|us) =
nx∏
d=1

M∑
j=1

w
j
d∑

` w
`
d

δ
x
j
s+1,d

(dxs+1,d),

τs+1(us) =
nx∏
d=1

1
M

M∑
j=1

w
j
d ,

w
j
d =

f (xjs+1,d |xs,d)g(ys+1,d |x
j
s+1,d)

r(xjs+1,d |xs,d)
.
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For the variance contribution of the final step we obtain πt((ϕ − πt(ϕ))2) = nxσ
2
x ,

the same result as fully adapted SMC. The remaining can be calculated as fol-
lows∫ Z2

s τs+1(us)2

Z2
s+1

(∫
ϕ(x1:t)

πt(x1:t)
πs+1(x1:s+1)

κMs+1(xs+1|us)dxs+1:t

)2

ηMs (us |x1:s−1)πs(x1:s)

dusdx1:s

=
1

p(ys+1|y1:s)2

∫ τs+1(us)
2 1
M2nxτs+1(us)2 η

M
s (us |x1:s−1)πs(x1:s) nx∑

e=1

 M∑
j=1

w
j
e

∫
xt,eπt(x1:s,e, x

j
s+1,e, xt,e)dxt,e

πs+1(x1:s,e, x
j
s+1,e)

·
∏
d,e

M∑
j=1

w
j
d

πt(x1:s,d , x
j
s+1,d)

πs+1(x1:s,d , x
j
s+1,d)




2 dusdx1:s

=
1

p(ys+1|y1:s)2M2nx

nx∑
e=1

nx∑
e′=1

∫
h̃e(x1:s,us)h̃e′ (x1:s,us)

nx∏
d=1

πs(x1:s,d)
M∏
j=1

r(xjs+1,d |xs,d)

dusdx1:s, (25)

for h̃e defined by

h̃e(x1:s,us) =
M∑
j=1

w
j
e

∫
xt,eπt(x1:s,e, x

j
s+1,e, xt,e)dxt,e

πs+1(x1:s,e, x
j
s+1,e)

·
∏
d,e

M∑
j=1

w
j
d

πt(x1:s,d , x
j
s+1,d)

πs+1(x1:s,d , x
j
s+1,d)

.

Now, note that

h̃e(x1:s,us)
2 =

∑
i1:nx ,j1:nx

 nx∏
d=1

widd w
jd
d ·

∏
d,e

πt(x1:s,d , x
id
s+1,d)

πs+1(x1:s,d , x
id
s+1,d)

πt(x1:s,d , x
jd
s+1,d)

πs+1(x1:s,d , x
jd
s+1,d)

·

∫
xt,eπt(x1:s,e, x

ie
s+1,e, xt,e)dxt,e

πs+1(x1:s,e, x
ie
s+1,e)

∫
xt,eπt(x1:s,e, x

je
s+1,e, xt,e)dxt,e

πs+1(x1:s,e, x
je
s+1,e)

,
h̃e(x1:s,us)h̃e′ (x1:s,us) =∑

i1:nx ,j1:nx

 nx∏
d=1

widd w
jd
d ·

∏
d,e

πt(x1:s,d , x
id
s+1,d)

πs+1(x1:s,d , x
id
s+1,d)

∏
d,e′

πt(x1:s,d , x
jd
s+1,d)

πs+1(x1:s,d , x
jd
s+1,d)

·

∫
xt,eπt(x1:s,e, x

ie
s+1,e, xt,e)dxt,e

πs+1(x1:s,e, x
ie
s+1,e)

∫
xt,e′πt(x1:s,e′ , x

je′
s+1,e′ , xt,e′ )dxt,e′

πs+1(x1:s,e′ , x
je′
s+1,e′ )

,
with e , e′ and all id , jd ∈ {1, . . . , M}.
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We will in the sequel also make use of the following observation

wid
πs+1(x1:s,d , x

i
s+1,d)

=
p(ys+1,d |y1:s,d)

r(xis+1,d |xs,d)πs(x1:s,d)
. (26)

Now, we consider the case in (25) when e = e′ :

1
p(ys+1|y1:s)2M2nx

∫
h̃e(x1:s,us)

2
nx∏
d=1

πs(x1:s,d)
M∏
j=1

r(xjs+1,d |xs,d)

dusdx1:s =

1
M2nx

∑
i1:nx ,j1:nx

∏
d,e

∫ ∏M
j=1 r(x

j
s+1,d |xs,d)πt(x1:s,d , x

id
s+1,d)πt(x1:s,d , x

jd
s+1,d)

r(xids+1,d |xs,d)r(xjds+1,d |xs,d)πs(x1:s,d)
dus,ddx1:s,d

·
∫ [ ∏M

j=1 r(x
j
s+1,e |xs,e)πt(x1:s,e)2

r(xies+1,e |xs,e)r(x
je
s+1,e |xs,e)πs(x1:s,e)∫

xt,eπt(x
ie
s+1,e, xt,e |xs,e)dxt,e

∫
xt,eπt(x

je
s+1,e, xt,e |xs,e)dxt,e

]
dus,edx1:s,e


= Bnx−1

s

(
As + M−1

(
Ãs − As

)) (
1 − 1

M

)nx−1 (
1 +

B̃s
Bs(M − 1)

)nx−1

,

where in the first equality we have used (26) and independency over dimensions.
The second equality follows by straightforward (but tedious) calculations using
combinatorial identities and noting that by definition of the model the constants
do not depend on the dimension d.

Let us now consider the case in (25) when e , e′ :∫
h̃e(x1:s,us)h̃e′ (x1:s,us)

∏nx
d=1

[
πs(x1:s,d)

∏M
j=1 r(x

j
s+1,d |xs,d)

]
dusdx1:s

p(ys+1|y1:s)2M2nx
=

1
M2nx

∑
i1:nx ,j1:nx

 ∏
d,e,e′

∫ ∏M
j=1 r(x

j
s+1,d |xs,d)πt(x1:s,d , x

id
s+1,d)πt(x1:s,d , x

jd
s+1,d)

r(xids+1,d |xs,d)r(xjds+1,d |xs,d)πs(x1:s,d)
dus,ddx1:s,d

∫ πt(x1:s,e, x
je
s+1,e)

∏M
j=1 r(x

j
s+1,e |xs,e)

r(xies+1,e |xs,e)r(x
je
s+1,e |xs,e)πs(x1:s,e)

∫
xt,eπt(x1:s,e, x

ie
s+1,e, xt,e)dxt,edus,edx1:s,e

∫ πt(x1:s,e′ , x
ie′
s+1,e′ )

∏M
j=1 r(x

j
s+1,e′ |xs,e′ )

r(xie′s+1,e′ |xs,e′ )r(x
je′
s+1,e′ |xs,e′ )πs(x1:s,e′ )

∫
xt,e′πt(x1:s,e′ , x

je
s+1,e′ , xt,e′ )dxt,e′dus,e′dx1:s,e′


=

(
Cs + M−1

(
C̃s − Cs

))2
(
1 − 1

M

)nx−2 (
1 +

B̃s
Bs(M − 1)

)nx−2

,

where again we have made use of independence over dimensions d and (26). The
last equality follows again by straightforward manipulations and we can see that
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product
∏
d,e,e′ · is more or less equal to the one above, hence we obtain Bnx−2

s

instead of Bnx−1
s .

Putting all this together we get that

ΣMt (ϕ) = nxAt +
t−1∑
s=0

nxBnx−1
s

(
As + M−1

(
Ãs − As

)) (
1 − 1

M

)nx−1 (
1 +

B̃s
Bs(M − 1)

)nx−1

+ nx(nx − 1)Bnx−2
s

(
Cs + M−1

(
C̃s − Cs

))2
(
1 − 1

M

)nx−2 (
1 +

B̃s
Bs(M − 1)

)nx−2 ,
equality follows by noting that

∑
e,e′ =

∑
e
∑
e′=e +

∑
e
∑
e′,e and that the constants

do not depend on e/e′ .

C Experiments

C.1 Comparison with Independent Resampling Particle Filter

We compare several variants of NSMC to Independent Resampling Particle Fil-
ter (IR-PF) on the same setup studied in Lamberti et al. (2016, High dimensional
problems), for more information on the model and setup we refer to that paper.
Figure 7 illustrates the results for N = M ∈ {10, 100} and as we can see NSMC
outperforms IR-PF significantly in root mean square error (RMSE). NSMC-IS and
NSMC-PF both approximate the optimal proposal SMC and as such generate con-
ditionally independent samples (see supplementary methods section above for
how to use IS as a nested procedure). NSMC-FAPF, clearly the best of all of them,
on the other hand, approximates the fully adapted SMC and generates condition-
ally dependent samples.
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(b) N = M = 100

Figure 7: RMSE of the IR-PF and three types of NSMC methods, approxima-
tion of optimal proposal SMC using IS (orange) and PF (green), approxima-
tion of fully adapted SMC using PF with BS (red).
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Abstract

We introduce interacting particle Markov chain Monte Carlo (iPM-
CMC), a PMCMC method based on an interacting pool of standard
and conditional sequential Monte Carlo samplers. Like related meth-
ods, iPMCMC is a Markov chain Monte Carlo sampler on an extended
space. We present empirical results that show significant improve-
ments in mixing rates relative to both non-interacting PMCMC sam-
plers, and a single PMCMC sampler with an equivalent memory and
computational budget. An additional advantage of the iPMCMC method
is that it is suitable for distributed and multi-core architectures.

1 Introduction

MCMC methods are a fundamental tool for generating samples from a poste-
rior density in Bayesian data analysis (see e.g., Robert and Casella (2013)). Parti-
cle Markov chain Monte Carlo (PMCMC) methods, introduced by Andrieu et al.
(2010), make use of sequential Monte Carlo (SMC) algorithms (Doucet et al.,
2001; Gordon et al., 1993) to construct efficient proposals for the MCMC sam-
pler.

One particularly widely used PMCMC algorithm is particle Gibbs (PG). The PG
algorithm modifies the SMC step in the PMCMC algorithm to sample the latent
variables conditioned on an existing particle trajectory, resulting in what is called
a conditional sequential Monte Carlo (CSMC) step. The PG method was first
introduced as an efficient Gibbs sampler for latent variable models with static
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parameters (Andrieu et al., 2010). Since then, the PG algorithm and the exten-
sion by Lindsten et al. (2014) have found numerous applications in e.g. Bayesian
non-parametrics (Tripuraneni et al., 2015; Valera et al., 2015), probabilistic pro-
gramming (van de Meent et al., 2015; Wood et al., 2014) and graphical models
(Everitt, 2012; Naesseth et al., 2014, 2015).

A drawback of PG is that it can be particularly adversely affected by path de-
generacy in the CSMC step. Conditioning on an existing trajectory means that
whenever resampling of the trajectories results in a common ancestor, this ances-
tor must correspond to this trajectory. Consequently, the mixing of the Markov
chain for the early steps in the state sequence can become very slow when the par-
ticle set typically coalesces to a single ancestor during the CSMC sweep.

In this paper we propose the interacting particle Markov chain Monte Carlo (iPM-
CMC) sampler. In iPMCMC we run a pool of CSMC and unconditional SMC algo-
rithms as parallel processes that we refer to as nodes. After each run of this pool,
we apply successive Gibbs updates to the indexes of the CSMC nodes, such that
the indices of the CSMC nodes changes. Hence, the nodes from which retained
particles are sampled can change from one MCMC iteration to the next. This
lets us trade off exploration (SMC) and exploitation (CSMC) to achieve improved
mixing of the Markov chains. Crucially, the pool provides numerous candidate
indices at each Gibbs update, giving a significantly higher probability that an
entirely new retained particle will be “switched in” than in non-interacting alter-
natives.

This interaction requires only minimal communication; each node must report
an estimate of the marginal likelihood and receive a new role (SMC or CSMC) for
the next sweep. This means that iPMCMC is embarrassingly parallel and can be
run in a distributed manner on multiple computers.

We prove that iPMCMC is a partially collapsed Gibbs sampler on the extended
space containing the particle sets for all nodes. In the special case where iPM-
CMC uses only one CSMC node, it can in fact be seen as a non-trivial and un-
studied instance of the α-SMC-based (Whiteley et al., 2016) PMCMC method
introduced by Huggins and Roy (2015). However, with iPMCMC we extend this
further to allow for an arbitrary number of CSMC and standard SMC algorithms
with interaction. Our experimental evaluation shows that iPMCMC outperforms
both independent PG samplers as well as a single PG sampler with the same
number of particles run longer to give a matching computational budget.

An implementation of iPMCMC is provided in the probabilistic programming
system Anglican1 Wood et al. (2014), whilst illustrative MATLAB code, similar
to that used for the experiments, is also provided2.

1http://www.robots.ox.ac.uk/~fwood/anglican
2https://bitbucket.org/twgr/ipmcmc
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2 Background

We start by briefly reviewing sequential Monte Carlo (Doucet et al., 2001; Gor-
don et al., 1993) and the particle Gibbs algorithm (Andrieu et al., 2010). Let us
consider a non-Markovian latent variable model of the following form

xt |x1:t−1 ∼ ft(xt |x1:t−1), (1a)

yt |x1:t ∼ gt(yt |x1:t), (1b)

where xt ∈ X is the latent variable and yt ∈ Y the observation at time step t, respec-
tively, with transition densities ft and observation densities gt ; x1 is drawn from
some initial distribution µ( · ). The method we propose is not restricted to the
above model, it can in fact be applied to an arbitrary sequence of targets.

We are interested in calculating expectation values with respect to the posterior
distribution p(x1:T |y1:T ) on latent variables x1:T := (x1, . . . , xT ) conditioned on
observations y1:T := (y1, . . . , yT ), which is proportional to the joint distribution
p(x1:T , y1:T ),

p(x1:T |y1:T ) ∝ µ(x1)
T∏
t=2

ft(xt |x1:t−1)
T∏
t=1

gt(yt |x1:t).

In general, computing the posterior p(x1:T |y1:T ) is intractable and we have to re-
sort to approximations. We will in this paper focus on, and extend, the family of
particle Markov chain Monte Carlo algorithms originally proposed by Andrieu
et al. (2010). The key idea in PMCMC is to use SMC to construct efficient propos-
als of the latent variables x1:T for an MCMC sampler.

2.1 Sequential Monte Carlo

The SMC method is a widely used technique for approximating a sequence of
target distributions: in our case p(x1:t |y1:t) = p(y1:t)−1p(x1:t , y1:t), t = 1, . . . , T . At
each time step t we generate a particle system {(xi1:t , w

i
t)}Ni=1 which provides a

weighted approximation to p(x1:t |y1:t). Given such a weighted particle system at
time t − 1, this is propagated forward in time to t by first drawing an ancestor
variable ait−1 for each particle from its corresponding distribution:

P(ait−1 = `) = w̄`t−1. ` = 1, . . . , N , (2)

where w̄`t−1 = w`t−1/
∑
i w

i
t−1. This is commonly known as the resampling step in

the literature. We introduce the ancestor variables {ait−1}
N
i=1 explicitly to simplify

the exposition of the theoretical justification given in Section 3.1.

We continue by simulating from some given proposal density xit ∼ qt(xt |x
ait−1
1:t−1)
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Algorithm 1: Sequential Monte Carlo (all for i = 1, . . . , N )

1: Input: data y1:T , number of particles N , proposals qt
2: xi1 ∼ q1(x1)

3: wi1 = g1(y1 |xi1)µ(xi1)

q1(xi1)
4: for t = 2 to T do
5: ait−1 ∼ Discrete

({
w̄`t−1

}N
`=1

)
6: xit ∼ qt(xt |x

ait−1
1:t−1)

7: Set xi1:t = (x
ait−1
1:t−1, x

i
t)

8: wit = gt(yt |xi1:t)ft(x
i
t |x

ait−1
1:t−1)

qt(x
i
t |x

ait−1
1:t−1)

9: end for

and re-weight the system of particles as follows:

wit =
gt(yt |xi1:t)ft(x

i
t |x

ait−1
1:t−1)

qt(x
i
t |x

ait−1
1:t−1)

, (3)

where xi1:t = (x
ait−1
1:t−1, x

i
t). This results in a new particle system {(xi1:t , w

i
t)}Ni=1 that

approximates p(x1:t |y1:t). A summary is given in Algorithm 1.

2.2 Particle Gibbs

The PG algorithm (Andrieu et al., 2010) is a Gibbs sampler on the extended space
composed of all random variables generated at one iteration, which still retains
the original target distribution as a marginal. Though PG allows for inference
over both latent variables and static parameters, we will in this paper focus on
sampling of the former. The core idea of PG is to iteratively run conditional
sequential Monte Carlo (CSMC) sweeps as shown in Algorithm 2, whereby each
conditional trajectory is sampled from the surviving trajectories of the previous
sweep. This retained particle index, b, is sampled with probability proportional
to the final particle weights w̄iT .

3 Interacting Particle Markov Chain Monte Carlo

The main goal of iPMCMC is to increase the efficiency of PMCMC, in particu-
lar particle Gibbs. The basic PG algorithm is especially susceptible to the path
degeneracy effect of SMC samplers, i.e. sample impoverishment due to frequent
resampling. Whenever the ancestral lineage collapses at the early stages of the
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Algorithm 2: Conditional sequential Monte Carlo
1: Input: data y1:T , number of particles N , proposals qt , conditional trajectory
x′1:T

2: xi1 ∼ q1(x1), i = 1, . . . , N − 1 and set xN1 = x′1

3: wi1 = g1(y1 |xi1)µ(xi1)

q1(xi1)
, i = 1, . . . , N

4: for t = 2 to T do
5: ait−1 ∼ Discrete

({
w̄`t−1

}N
`=1

)
, i = 1, . . . , N − 1

6: xit ∼ qt(xt |x
ait−1
1:t−1), i = 1, . . . , N − 1

7: Set aNt−1 = N and xNt = x′t

8: Set xi1:t = (x
ait−1
1:t−1, x

i
t), i = 1, . . . , N

9: wit = gt(yt |xi1:t)ft(x
i
t |x

ait−1
1:t−1)

qt(x
i
t |x

ait−1
1:t−1)

, i = 1, . . . , N

10: end for

state sequence, the common ancestor is, by construction, guaranteed to be equal
to the retained particle. This results in high correlation between the samples, and
poor mixing of the Markov chain. To counteract this we might need a very high
number of particles to get good mixing for all latent variables x1:T , which can be
infeasible due to e.g. limited available memory. iPMCMC can alleviate this issue
by, from time to time, switching out a CSMC particle system with a completely
independent SMC one, resulting in improved mixing.

iPMCMC, summarized in Algorithm 3, consists of M interacting separate CSMC
and SMC algorithms, exchanging only very limited information at each itera-
tion to draw new MCMC samples. We will refer to these internal CSMC and
SMC algorithms as nodes, and assign an index m = 1, . . . , M. At every iter-
ation, we have P nodes running local CSMC algorithms, with the remaining
M − P nodes running independent SMC. The CSMC nodes are given an identifier
cj ∈ {1, . . . , M}, j = 1, . . . , P with cj , ck , k , j and we write c1:P = {c1, . . . , cP }. Let
xim = xi1:T ,m be the internal particle trajectories of node m.

Suppose we have access to P trajectories x′1:P [0] = (x′1[0], . . . , x′P [0]) corresponding
to the initial retained particles, where the index [ · ] denotes MCMC iteration. At
each iteration r, the nodes c1:P run CSMC (Algorithm 2) with the previous MCMC
sample x′j [r−1] as the retained particle. The remainingM−P nodes run standard
(unconditional) SMC, i.e. Algorithm 1. Each node m returns an estimate of the
marginal likelihood for the internal particle system defined as

Ẑm =
T∏
t=1

1
N

N∑
i=1

wit,m. (4)

The new conditional nodes are then set using a single loop j = 1 : P of Gibbs
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Algorithm 3: iPMCMC sampler
1: Input: number of nodes M, conditional nodes P and MCMC steps R, initial

x′1:P [0]
2: for r = 1 to R do
3: Workers 1 : M\c1:P run Algorithm 1 (SMC)
4: Workers c1:P run Algorithm 2 (CSMC), conditional on x′1:P [r − 1]

respectively.
5: for j = 1 to P do
6: Select a new conditional node by simulating cj according to (5).

7: Set new MCMC sample x′j [r] = x
bj
cj by simulating bj according to (7)

8: end for
9: end for

updates, sampling new indices cj where

P(cj = m|c1:P \j ) = ζ̂
j
m (5)

and ζ̂
j
m =

Ẑm1m<c1:P \j∑M
n=1 Ẑn1n<c1:P \j

, (6)

defining c1:P \j = {c1, . . . , cj−1, cj+1, . . . , cP }. We thus loop once through the condi-
tional node indices and resample them from the union of the current node index
and the unconditional node indices3, in proportion to their marginal likelihood
estimates. This is the key step that lets us switch completely the nodes from
which the retained particles are drawn.

One MCMC iteration r is concluded by setting the new samples x′1:P [r] by simulat-
ing from the corresponding conditional node’s, cj , internal particle system

P(bj = i|cj ) = w̄iT ,cj ,

x′j [r] = x
bj
cj . (7)

The potential to pick from updated nodes cj , having run independent SMC algo-
rithms, decreases correlation and improves mixing of the MCMC sampler. Fur-
thermore, as each Gibbs update corresponds to a one-to-many comparison for
maintaining the same conditional index, the probability of switching is much
higher than in an analogous non-interacting system.

The theoretical justification for iPMCMC is independent of how the initial trajec-
tories x′1:P [0] are generated. One simple and effective method (that we use in our
experiments) is to run standard SMC sweeps for the “conditional” nodes at the
first iteration.

3Unconditional node indices here refers to all m < c1:P at that point in the loop. It may thus
include nodes who just ran a CSMC sweep, but have been “switched out” earlier in the loop.
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The iPMCMC samples x′1:P [r] can be used to estimate expectations for test func-
tions f : XT 7→ R in the standard Monte Carlo sense, with

E[f (x)] ≈ 1
RP

R∑
r=1

P∑
j=1

f (x′j [r]). (8)

However, we can improve upon this if we have access to all particles generated
by the algorithm, see Section 3.2.

We note that iPMCMC is suited to distributed and multi-core architectures. In
practise, the particle to be retained, should the node be a conditional node at
the next iteration, can be sampled upfront and discarded if unused. Therefore,
at each iteration, only a single particle trajectory and normalisation constant esti-
mate need be communicated between the nodes, whilst the time taken for calcula-
tion of the updates of c1:P is negligible. Further, iPMCMC should be amenable to
an asynchronous adaptation under the assumption of a random execution time,
independent of x′j [r − 1] in Algorithm 3. We leave this asynchronous variant to
future work.

3.1 Theoretical Justification

In this section we will give some crucial results to justify the proposed iPMCMC
sampler. This section is due to space constraints fairly brief and it is helpful to be
familiar with the proof of PG in Andrieu et al. (2010). We start by defining some
additional notation. Let ξ := {xit}i=1:N

t=1:T

⋃
{ait} i=1:N

t=1:T−1
denote all generated particles

and ancestor variables of a (C)SMC sampler. We write ξm when referring to the
variables of the sampler local to node m. Let the conditional particle trajectory

and corresponding ancestor variables for node cj be denoted by {x
bj
cj ,bcj }, with

bcj = (β1,cj , . . . , βT ,cj ), βT ,cj = bj and βt,cj = a
βt+1,cj
t,cj

. Let the posterior distribution
of the latent variables be denoted by πT (x) := p(x1:T |y1:T ) with normalisation con-
stant Z := p(y1:T ). Finally we note that the SMC and CSMC algorithms induce the
respective distributions over the random variables generated by the procedures:

qSMC(ξ) =
N∏
i=1

q1(xi1) ·
T∏
t=2

N∏
i=1

[
w̄
ait−1
t−1 qt(x

i
t |x

ait−1
1:t−1)

]
,

qCSMC (ξ\{x′ ,b} | x′ ,b) =
N∏
i=1
i,b1

q1(xi1) ·
T∏
t=2

N∏
i=1
i,bt

[
w̄
ait−1
t−1 qt(x

i
t |x

ait−1
1:t−1)

]
.

Note that running Algorithm 2 corresponds to simulating from qCSMC using a
fixed choice for the index variables b = (N . . . , N ). While these indices are used
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to facilitate the proof of validity of the proposed method, they have no practical
relevance and can thus be set to arbitrary values, as is done in Algorithm 2, in a
practical implementation.

Now we are ready to state the main theoretical result.

Theorem 1. The interacting particle Markov chain Monte Carlo sampler of Al-
gorithm 3 is a partially collapsed Gibbs sampler (Van Dyk and Park, 2008) for
the target distribution

π̃(ξ1:M , c1:P , b1:P ) =

1

N P T (M
P

) M∏
m=1
m<c1:P

qSMC (ξm) ·
P∏
j=1

πT

(
x
bj
cj

)
1cj<c1:j−1

·
P∏
j=1

qCSMC

(
ξcj \{x

bj
cj ,bcj } | x

bj
cj ,bcj

)
.

(9)

Proof: See Appendix A at the end of the paper.

Remark 1. The marginal distribution of (xb1:P
c1:P , c1:P , b1:P ), with xb1:P

c1:P = (xb1
c1 , . . . , x

bP
cP ), un-

der (9) is given by

π̃
(
xb1:P
c1:P , c1:P , b1:P

)
=

∏P
j=1 πT

(
x
bj
cj

)
1cj<c1:j−1

N P T (M
P
) . (10)

This means that each trajectory x
bj
cj is marginally distributed according to the posterior

distribution of interest, πT . Indeed, the P retained trajectories of iPMCMC will in the
limit R→∞ be independent draws from πT .

Note that adding a backward or ancestor simulation step can drastically increase
mixing when sampling the conditional trajectories x′j [r] (Lindsten and Schön,
2013). In the iPMCMC sampler we can replace simulating from the final weights
on line 7 by a backward simulation step. Another option for the CSMC nodes
is to replace this step by internal ancestor sampling (Lindsten et al., 2014) steps
and simulate from the final weights as normal.

3.2 Using All Particles

At each MCMC iteration r, we generate MN full particle trajectories. Using only
P of these as in (8) might seem a bit wasteful. We can however make use of all par-
ticles to estimate expectations of interest by, for each Gibbs update j, averaging
over the possible new values for the conditional node index cj and corresponding
particle index bj . We can do this by replacing f (x′j [r]) in (8) by

Ecj |c1:P \j

[
Ebj |cj

[
f (x′j [r])

]]
=

M∑
m=1

ζ̂
j
m

N∑
i=1

w̄iT ,mf (xim).
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This procedure is referred to as a Rao-Blackwellization of a statistical estimator
and is (in terms of variance) never worse than the original one. We highlight that
each ζ̂jm, as defined in (6), depends on which indices are sampled earlier in the
index reassignment loop. Further details, along with a derivation, are provided
in the supplementary material.

3.3 Choosing P

Before jumping into the full details of our experimentation, we quickly consider
the choice of P . Intuitively we can think of the independent SMC’s as particularly
useful if they are selected as the next conditional node. The probability of the
event that at least one conditional node switches with an unconditional, is given
by

P({switch}) = 1 − E
[ P∏
j=1

Ẑcj

Ẑcj +
∑M
m<c1:P

Ẑm

]
. (11)

There exist theoretical and experimental results (Bérard et al., 2014; Doucet et al.,
2015; Pitt et al., 2012) that show that the distributions of the normalisation con-
stants are well-approximated by their log-Normal limiting distributions. Now,
with σ2 (∝ 1

N ) being the variance of the (C)SMC estimate, it means we have

log
(
Z−1Ẑcj

)
∼ N ( σ

2

2 , σ
2) and log

(
Z−1Ẑm

)
∼ N (− σ2

2 , σ
2), m < c1:P at stationar-

ity, where Z is the true normalization constant. Under this assumption, we can
accurately estimate the probability (11) for different choices of P an example of
which is shown in Figure 1a along with additional analysis in the supplementary
material. These provide strong empirical evidence that the switching probability
is maximised for P = M/2.

In practice we also see that best results are achieved when P makes up roughly
half of the nodes, see Figure 1b for performance on the state space model intro-
duced in (12). Note also that the accuracy seems to be fairly robust with respect
to the choice of P . Based on these results, we set the value of P = M

2 for the rest
of our experiments.

4 Experiments

To demonstrate the empirical performance of iPMCMC we report experiments
on two state space models. Although both the models considered are Markovian,
we emphasise that iPMCMC goes far beyond this and can be applied to arbitrary
graphical models. We will focus our comparison on the trivially distributed al-
ternatives, whereby M independent PMCMC samplers are run in parallel–these
are PG, particle independent Metropolis-Hastings (PIMH) Andrieu et al. (2010)
and the alternate move PG sampler (APG) Holenstein (2009). Comparisons to
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Figure 1: a) Estimation of switching probability for different choices of P
and M assuming the log-Normal limiting distribution for Ẑm with σ = 3.
b) Median error in mean estimate for different choices of P and M over 10
different synthetic datasets of the linear Gaussian state space model given
in (12) after 1000 MCMC iterations. Here errors are normalized by the error
of a multi-start PG sampler which is a special case of iPMCMC for which
P = M (see Section 6).

other alternatives, including independent SMC, serialized implementations of
PG and PIMH, and running a mixture of independent PG and PIMH samplers,
are provided in the supplementary material. None outperformed the methods
considered here, with the exception of running a serialized PG implementation
with an increased number of particles, requiring significant additional memory
(O(MN ) as opposed to O(M + N )).

In PIMH a new particle set is proposed at each MCMC step using an indepen-
dent SMC sweep, which is then either accepted or rejected using the standard
Metropolis-Hastings acceptance ratio. APG interleaves PG steps with PIMH steps
in an attempt to overcome the issues caused by path degeneracy in PG. We refer
to the trivially distributed versions of these algorithms as multi-start PG, PIMH
and APG respectively (mPG, mPIMH and mAPG). We use Rao-Blackwellization,
as described in 3.2, to average over all the generated particles for all methods,
weighting the independent Markov chains equally for mPG, mPIMH and mAPG.
We note that mPG is a special case of iPMCMC for which P = M. For simplicity,
multinomial resampling was used in the experiments, with the prior transition
distribution of the latent variables taken for the proposal. M = 32 nodes and N =
100 particles were used unless otherwise stated. Initialization of the retained par-
ticles for iPMCMC and mPG was done by using standard SMC sweeps.



4 Experiments 207

100 101 102 103 104

MCMC iteration

10-4

10-3

10-2

10-1
M

ea
n 

sq
ua

re
d 

er
ro

r

iPMCMC with P=16

mPG

mPIMH

mAPG

(a) Convergence in mean for full se-
quence

0 10 20 30 40 50
State space time step t

10-7

10-6

10-5

10-4

10-3

10-2

M
ea

n 
sq

ua
re

d 
er

ro
r

iPMCMC with P=16

mPG

mPIMH

mAPG

(b) Final error in mean for latent
marginals

Figure 2: Mean squared error averaged over all dimensions and steps in the
state sequence as a function of MCMC iterations (left) and mean squared
error after 104 iterations averaged over dimensions as function of position
in the state sequence (right) for (12) with 50 time sequences. The solid line
shows the median error across the 10 tested synthetic datasets, while the
shading shows the upper and lower quartiles. Ground truth was calculated
using the Rauch–Tung–Striebel smoother algorithm Rauch et al. (1965).

4.1 Linear Gaussian State Space Model

We first consider a linear Gaussian state space model (LGSSM) with 3 dimen-
sional latent states x1:T , 20 dimensional observations y1:T and dynamics given by

x1 ∼ N (µ, V ) (12a)

xt = αxt−1 + δt−1 δt−1 ∼ N (0,Ω) (12b)

yt = βxt + εt εt ∼ N (0,Σ) . (12c)

We set µ = [0, 1, 1]T , V = 0.1 I, Ω = I and Σ = 0.1 I where I represents the
identity matrix. The constant transition matrix, α, corresponds to successively
applying rotations of 7π

10 , 3π
10 and π

20 about the first, second and third dimensions
of xt−1 respectively followed by a scaling of 0.99 to ensure that the dynamics
remain stable. A total of 10 different synthetic datasets of length T = 50 were
generated by simulating from (12a)–(12c), each with a different emission matrix
β generated by sampling each column independently from a symmetric Dirichlet
distribution with concentration parameter 0.2.

Figure 2a shows convergence in the estimate of the latent variable means to the
ground-truth solution for iPMCMC and the benchmark algorithms as a function
of MCMC iterations. It shows that iPMCMC comfortably outperforms the alterna-
tives from around 200 iterations onwards, with only iPMCMC and mAPG demon-
strating behaviour consistent with the Monte Carlo convergence rate, suggesting
that mPG and mPIMH are still far from the ergodic regime. Figure 2b shows the
same errors after 104 MCMC iterations as a function of position in state sequence.



208 Paper F Interacting Particle Markov Chain Monte Carlo

0 10 20 30 40 50
State space time step t

10-4

10-3

10-2

10-1

100

101

102

N
or

m
al

iz
ed

 E
SS

iPMCMC with P=16

mPG

mPIMH

mAPG

(a) LGSSM

0 50 100 150 200
State space time step t

10-3

10-2

10-1

100

101

102

103

N
or

m
al

iz
ed

 E
SS

iPMCMC with P=16

mPG

mPIMH

mAPG

(b) NLSSM

Figure 3: Normalized effective sample size (NESS) for LGSSM (left) and
NLSSM (right).

This demonstrates that iPMCMC outperformed all the other algorithms for the
early stages of the state sequence, for which mPG performed particularly poorly.
Toward the end of state sequence, iPMCMC, mPG and mAPG all gave similar
performance, whilst that of mPIMH was significantly worse.

4.2 Nonlinear State Space Model

We next consider the one dimensional nonlinear state space model (NLSSM) con-
sidered by, among others, Andrieu et al. (2010); Gordon et al. (1993)

x1 ∼ N
(
µ, v2

)
(13a)

xt =
xt−1

2
+ 25

xt−1

1 + x2
t−1

+ 8 cos (1.2t) + δt−1 (13b)

yt =
xt

2

20
+ εt (13c)

where δt−1 ∼ N
(
0, ω2

)
and εt ∼ N

(
0, σ2

)
. We set the parameters as µ = 0,

v =
√

5, ω =
√

10 and σ =
√

10. Unlike the LGSSM, this model does not have an
analytic solution and therefore one must resort to approximate inference meth-
ods. Further, the multi-modal nature of the latent space makes full posterior
inference over x1:T challenging for long state sequences.

To examine the relative mixing of iPMCMC we calculate an effective sample size
(ESS) for different steps in the state sequence. In order to calculate the ESS, we
condensed identical samples as done in for example van de Meent et al. (2015).
Let

uk
t ∈ {xit,m[r]}i=1:N,r=1:R

m=1:M , ∀k ∈ 1 . . . K, t ∈ 1 . . . T

denote the unique samples of xt generated by all the nodes and sweeps of partic-
ular algorithm after R iterations, where K is the total number of unique samples
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Figure 4: Histograms of generated samples at t = 1, 100, and 200 for a sin-
gle dataset generated from (13) with T = 200. Dashed red line shows an
approximate estimate of the ground truth, found by running a kernel den-
sity estimator on the combined samples from a small number of independent
SMC sweeps, each with 107 particles.

generated. The weight assigned to these unique samples, vkt , is given by the com-
bined weights of all particles for which xt takes the value ukt :

vkt =
R∑
r=1

M∑
m=1

N∑
i=1

w̄i,rt,mη
r
mδxit,m[r](u

k
t ) (14)

where δxit,m[r](u
k
t ) is the Kronecker delta function and ηrm is a node weight. For

iPMCMC the node weight is given by as per the Rao-Blackwellized estimator
described in Section 3.2. For mPG and mPIMH, ηrm is simply 1

RM , as samples from
the different nodes are weighted equally in the absence of interaction. Finally we

define the effective sample size as ESSt =
(∑K

k=1

(
vkt

)2
)−1

.

Figure 3 shows the ESS for the LGSSM and NLSSM as a function of position in
the state sequence. For this, we omit the samples generated by the initialization
step as this SMC sweep is common to all the tested algorithms. We further nor-
malize by the number of MCMC iterations so as to give an idea of the rate at
which unique samples are generated. These show that for both models the ESS
of iPMCMC, mPG and mAPG is similar towards the end of the space sequence,
but that iPMCMC outperforms all the other methods at the early stages. The
ESS of mPG was particularly poor at early iterations. PIMH performed poorly
throughout, reflecting the very low observed acceptance ratio of around 7.3% on
average.
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It should be noted that the ESS is not a direct measure of performance for these
models. For example, the equal weighting of nodes is likely to make the ESS ar-
tificially high for mPG, mPIMH and mAPG, when compared with methods such
as iPMCMC that assign a weighting to the nodes at each iteration. To acknowl-
edge this, we also plot histograms for the marginal distributions of a number of
different position in the state sequence as shown in Figure 4. These confirm that
iPMCMC and mPG have similar performance at the latter state sequence steps,
whilst iPMCMC is superior at the earlier stages, with mPG producing almost no
more new samples than those from the initialization sweep due to the degeneracy.
The performance of PIMH was consistently worse than iPMCMC throughout the
state sequence, with even the final step exhibiting noticeable noise.

5 Discussion and Future Work

The iPMCMC sampler overcomes degeneracy issues in PG by allowing the newly
sampled particles from SMC nodes to replace the retained particles in CSMC
nodes. Our experimental results demonstrate that, for the models considered,
this switching in rate is far higher than the rate at which PG generates fully in-
dependent samples. Moreover, the results in Figure 1b suggest that the degree
of improvement over an mPG sampler with the same total number of nodes in-
creases with the total number of nodes in the pool.

The mAPG sampler performs an accept reject step that compares the marginal
likelihood estimate of a single CSMC sweep to that of a single SMC sweep. In the
iPMCMC sampler the CSMC estimate of the marginal likelihood is compared to
a population sample of SMC estimates, resulting in a higher probability that at
least one of the SMC nodes will become a CSMC node.

Since the original PMCMC paper in 2010 there have been several papers study-
ing (Chopin and Singh, 2015; Lindsten et al., 2015) and improving upon the basic
PG algorithm. Key contributions to combat the path degeneracy effect are back-
ward simulation (Lindsten and Schön, 2013; Whiteley et al., 2010) and ancestor
sampling (Lindsten et al., 2014). These can also be used to improve the iPMCMC
method ever further.

Appendix

A Proof of Theorem 1

The proof follows similar ideas as Andrieu et al. (2010). We prove that the in-
teracting particle Markov chain Monte Carlo sampler is in fact a standard par-
tially collapsed Gibbs sampler (Van Dyk and Park, 2008) on an extended space
Υ := X⊗MTN × [N ]⊗M(T−1)N × [M]⊗P × [N ]⊗P .
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Proof: Assume the setup of Section 3. With π̃( · ) with as per (9), we will show
that the Gibbs sampler on the extended space, Υ , defined as follows

ξ1:M\{x
b1:P
c1:P ,bc1:P

} ∼ π̃( · |xb1:P
c1:P ,bc1:P

, c1:P , b1:P ), (15a)

cj ∼ π̃( · |ξ1:M , c1:P \j ), j = 1, . . . , P , (15b)

bj ∼ π̃( · |ξ1:M , c1:P ), j = 1, . . . , P , (15c)

is equivivalent to the iPMCMC method in Algorithm 3.

First, the initial step (15a) corresponds to sampling from

π̃(ξ1:M\{x
b1:P
c1:P ,bc1:P

}|xb1:P
c1:P ,bc1:P

, c1:P , b1:P ) =
M∏
m=1
m<c1:P

qSMC (ξm) ×
P∏
j=1

qCSMC

(
ξcj \{x

bj
cj ,bcj } | x

bj
cj ,bcj , cj , bj

)
.

This, excluding the conditional trajectories, just corresponds to steps 3–4 in Algo-
rithm 3, i.e. running P CSMC and M − P SMC algorithms independently.

We continue with a reformulation of (9) which will be usefuly to prove correct-
ness for the other two steps

π̃(ξ1:M , c1:P , b1:P ) =
1(M
P

) M∏
m=1

qSMC (ξm)

×
P∏
j=1

1cj<c1:j−1
w̄
bj
T ,cj

πT

(
x
bj
cj

)
×
qCSMC

(
ξcj \{x

bj
cj ,bcj } | x

bj
cj ,bcj , cj , bj

)
N T w̄

bj
T ,cj

qSMC

(
ξcj

)


=
1(M
P

) M∏
m=1

qSMC (ξm)
P∏
j=1

Ẑcj
Z

1cj<c1:j−1
w̄
bj
T ,cj

. (16)

Furthermore, we note that by marginalising (collapsing) the above reformulation,
i.e. (16), over b1:P we get

π̃(ξ1:M , c1:P ) =
1(M
P

) M∏
m=1

qSMC (ξm)
P∏
j=1

Ẑcj
Z

1cj<c1:j−1
.

From this it is easy to see that π̃(cj |ξ1:M , c1:P \j ) = ζ̂
j
cj , which corresponds to sam-

pling the conditional node indices, i.e. step 6 in Algorithm 3. Finally, from (16)
we can see that simulating b1:P can be done independently as follows

π̃(b1:P |ξ1:M , c1:P ) =
π̃(b1:P , ξ1:M , c1:P )
π̃(ξ1:M , c1:P )

=
P∏
j=1

w̄
bj
T ,cj

.



212 Paper F Interacting Particle Markov Chain Monte Carlo

This corresponds to step 7 in the iPMCMC sampler, Algorithm 3. So the pro-
cedure defined by (15) is a partially collapsed Gibbs sampler, derived from (9),
and we have shown that it is exactly equal to the iPMCMC sampler described in
Algorithm 3.
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Abstract

Variational inference using the reparameterization trick has enabled
large-scale approximate Bayesian inference in complex probabilistic
models, leveraging stochastic optimization to sidestep intractable ex-
pectations. The reparameterization trick is applicable when we can
simulate a random variable by applying a differentiable deterministic
function on an auxiliary random variable whose distribution is fixed.
For many distributions of interest (such as the gamma or Dirichlet),
simulation of random variables relies on acceptance-rejection sam-
pling. The discontinuity introduced by the accept–reject step means
that standard reparameterization tricks are not applicable. We pro-
pose a new method that lets us leverage reparameterization gradients
even when variables are outputs of a acceptance-rejection sampling
algorithm. Our approach enables reparameterization on a larger class
of variational distributions. In several studies of real and synthetic
data, we show that the variance of the estimator of the gradient is
significantly lower than other state-of-the-art methods. This leads to
faster convergence of stochastic gradient variational inference.

1 Introduction

Variational inference (Hinton and van Camp, 1993; Jordan et al., 1999; Water-
house et al., 1996) underlies many recent advances in large scale probabilistic
modeling. It has enabled sophisticated modeling of complex domains such as im-
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ages (Kingma and Welling, 2014) and text (Hoffman et al., 2013). By definition,
the success of variational approaches depends on our ability to (i) formulate a
flexible parametric family of distributions; and (ii) optimize the parameters to
find the member of this family that most closely approximates the true posterior.
These two criteria are at odds—the more flexible the family, the more challeng-
ing the optimization problem. In this paper, we present a novel method that
enables more efficient optimization for a large class of variational distributions,
namely, for distributions that we can efficiently simulate by acceptance-rejection
sampling, or rejection sampling for short.

For complex models, the variational parameters can be optimized by stochas-
tic gradient ascent on the evidence lower bound (elbo), a lower bound on the
marginal likelihood of the data. There are two primary means of estimating the
gradient of the elbo: the score function estimator (Mnih and Gregor, 2014; Pais-
ley et al., 2012; Ranganath et al., 2014) and the reparameterization trick (Bonnet,
1964; Kingma and Welling, 2014; Price, 1958; Rezende et al., 2014), both of which
rely on Monte Carlo sampling. While the reparameterization trick often yields
lower variance estimates and therefore leads to more efficient optimization, this
approach has been limited in scope to a few variational families (typically Gaus-
sians). Indeed, some lines of research have already tried to address this limitation
(Knowles, 2015; Ruiz et al., 2016).

There are two requirements to apply the reparameterization trick. The first is
that the random variable can be obtained through a transformation of a simple
random variable, such as a uniform or standard normal; the second is that the
transformation be differentiable. In this paper, we observe that all random vari-
ables we simulate on our computers are ultimately transformations of uniforms,
often followed by accept-reject steps. So if the transformations are differentiable
then we can use these existing simulation algorithms to expand the scope of the
reparameterization trick.

Thus, we show how to use existing rejection samplers to develop stochastic gra-
dients of variational parameters. In short, each rejection sampler uses a highly-
tuned transformation that is well-suited for its distribution. We can construct
new reparameterization gradients by “removing the lid” from these black boxes,
applying 65+ years of research on transformations (Devroye, 1986; von Neu-
mann, 1951) to variational inference. We demonstrate that this broadens the
scope of variational models amenable to efficient inference and provides lower-
variance estimates of the gradient compared to state-of-the-art approaches.

We first review variational inference, with a focus on stochastic gradient methods.
We then present our key contribution, rejection sampling variational inference
(rsvi), showing how to use efficient rejection samplers to produce low-variance
stochastic gradients of the variational objective. We study two concrete exam-
ples, analyzing rejection samplers for the gamma and Dirichlet to produce new
reparameterization gradients for their corresponding variational factors. Finally,
we analyze two datasets with a deep exponential family (def) (Ranganath et al.,
2015), comparing rsvi to the state of the art. We found that rsvi achieves a sig-
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nificant reduction in variance and faster convergence of the elbo. Code for all
experiments is provided at github.com/blei-lab/ars-reparameterization.

2 Variational Inference

Let p(x, z) be a probabilistic model, i.e., a joint probability distribution of data
x and latent (unobserved) variables z. In Bayesian inference, we are interested
in the posterior distribution p(z|x) = p(x,z)

p(x) . For most models, the posterior distri-
bution is analytically intractable and we have to use an approximation, such as
Monte Carlo methods or variational inference. In this paper, we focus on varia-
tional inference.

In variational inference, we approximate the posterior with a variational family
of distributions q(z ; θ), parameterized by θ. Typically, we choose the variational
parameters θ that minimize the kl divergence between q(z ; θ) and p(z|x). This
minimization is equivalent to maximizing the elbo (Jordan et al., 1999), defined
as

L(θ) = Eq(z ;θ) [f (z)] + H[q(z ; θ)],

f (z) := log p(x, z),

H[q(z ; θ)] := Eq(z ;θ)[− log q(z ; θ)].

(1)

When the model and variational family satisfy conjugacy requirements, we can
use coordinate ascent to find a local optimum of the elbo (Blei et al., 2016). If
the conjugacy requirements are not satisfied, a common approach is to build a
Monte Carlo estimator of the gradient of the elbo (Kingma and Welling, 2014;
Mnih and Gregor, 2014; Paisley et al., 2012; Ranganath et al., 2014; Salimans
and Knowles, 2013). This results in a stochastic optimization procedure, where
different Monte Carlo estimators of the gradient amount to different algorithms.
We review below two common estimators: the score function estimator and the
reparameterization trick.1

Score function estimator. The score function estimator, also known as the log-
derivative trick or reinforce (Glynn, 1990; Williams, 1992), is a general way to
estimate the gradient of the elbo (Mnih and Gregor, 2014; Paisley et al., 2012;
Ranganath et al., 2014). The score function estimator expresses the gradient as
an expectation with respect to q(z ; θ):

∇θL(θ) = Eq(z ;θ)[f (z)∇θ log q(z ; θ)] + ∇θH[q(z ; θ)].

We then form Monte Carlo estimates by approximating the expectation with in-
dependent samples from the variational distribution. Though it is very general,

1In this paper, we assume for simplicity that the gradient of the entropy ∇θH[q(z ; θ)] is available
analytically. The method that we propose in Section 3 can be easily extended to handle non-analytical
entropy terms. Indeed, the resulting estimator of the gradient may have lower variance when the
analytic gradient of the entropy is replaced by its Monte Carlo estimate. Here we do not explore that.
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the score function estimator typically suffers from high variance. In practice we
also need to apply variance reduction techniques such as Rao-Blackwellization
(Casella and Robert, 1996) and control variates (Robert and Casella, 2004).

Reparameterization trick. The reparameterization trick (Bonnet, 1964; Kingma
and Welling, 2014; Price, 1958; Salimans and Knowles, 2013) results in a lower
variance estimator compared to the score function, but it is not as generally ap-
plicable. It requires that: (i) the latent variables z are continuous; and (ii) we can
simulate from q(z ; θ) as follows,

z = h(ε, θ), with ε ∼ s(ε). (2)

Here, s(ε) is a distribution that does not depend on the variational parameters;
it is typically a standard normal or a standard uniform. Further, h(ε, θ) must
be differentiable with respect to θ. In statistics, this is known as a non-central
parameterization and has been shown to be helpful in, e.g., Markov chain Monte
Carlo methods (Papaspiliopoulos et al., 2003).

Using (2), we can move the derivative inside the expectation and rewrite the gra-
dient of the elbo as

∇θL(θ) = Es(ε) [∇zf (h(ε, θ))∇θh(ε, θ)] + ∇θH[q(z ; θ)].

Empirically, the reparameterization trick has been shown to be beneficial over
direct Monte Carlo estimation of the gradient using the score fuction estimator
(Fan et al., 2015; Kingma and Welling, 2014; Salimans and Knowles, 2013; Titsias
and Lázaro-Gredilla, 2014). Unfortunately, many distributions commonly used
in variational inference, such as gamma or Dirichlet, are not amenable to stan-
dard reparameterization because samples are generated using a rejection sampler
(Robert and Casella, 2004; von Neumann, 1951), introducing discontinuities to
the mapping. We next show that taking a novel view of the acceptance-rejection
sampler lets us perform exact reparameterization.

3 Reparameterizing the Acceptance-Rejection Sampler

The basic idea behind reparameterization is to rewrite simulation from a complex
distribution as a deterministic mapping of its parameters and a set of simpler ran-
dom variables. We can view the rejection sampler as a complicated deterministic
mapping of a (random) number of simple random variables such as uniforms
and normals. This makes it tempting to take the standard reparameterization
approach when we consider random variables generated by rejection samplers.
However, this mapping is in general not continuous, and thus moving the deriva-
tive inside the expectation and using direct automatic differentiation would not
necessarily give the correct answer.

Our insight is that we can overcome this problem by instead considering only the
marginal over the accepted sample, analytically integrating out the accept-reject
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Figure 1: Example of a reparameterized rejection sampler
for q(z ; θ) = Gam(θ, 1), shown here with θ = 2. We use the rejection
sampling algorithm of Marsaglia and Tsang (2000), which is based on a non-
linear transformation h(ε, θ) of a standard normal ε ∼ N (0, 1) (c.f. Eq. 10),
and has acceptance probability of 0.98 for θ = 2. The marginal density of
the accepted value of ε (integrating out the acceptance variables, u1:i ) is
given by π(ε ; θ). We compute unbiased estimates of the gradient of the
elbo (6) via Monte Carlo, using Algorithm 1 to rejection sample ε ∼ π(ε ; θ).
By reparameterizing in terms of ε, we obtain a low-variance estimator of the
gradient for challenging variational distributions.

variable. Thus, the mapping comes from the proposal step. This is continuous
under mild assumptions, enabling us to greatly extend the class of variational
families amenable to reparameterization.

We first review rejection sampling and present the reparameterized rejection sam-
pler. Next we show how to use it to calculate low-variance gradients of the elbo.
Finally, we present the complete stochastic optimization for variational inference,
rsvi.

3.1 Reparameterized Rejection Sampling

Acceptance-Rejection sampling is a powerful way of simulating random variables
from complex distributions whose inverse cumulative distribution functions are
not available or are too expensive to evaluate (Devroye, 1986; Robert and Casella,
2004). We consider an alternative view of rejection sampling in which we explic-
itly make use of the reparameterization trick. This view of the rejection sampler
enables our variational inference algorithm in Section 3.2.

To generate samples from a distribution q(z ; θ) using rejection sampling, we first
sample from a proposal distribution r(z ; θ) such that q(z ; θ) ≤ Mθr(z ; θ) for
some Mθ < ∞. In our version of the rejection sampler, we assume that the pro-
posal distribution is reparameterizable, i.e., that generating z ∼ r(z ; θ) is equiv-
alent to generating ε ∼ s(ε) (where s(ε) does not depend on θ) and then setting
z = h(ε, θ) for a differentiable function h(ε, θ). We then accept the sample with
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Algorithm 1: Reparameterized Rejection Sampling

Input: target q(z ; θ), proposal r(z ; θ), and constant Mθ , with
q(z ; θ) ≤ Mθr(z ; θ)

Output: ε such that h(ε, θ) ∼ q(z ; θ)
1: i ← 0
2: repeat
3: i ← i + 1
4: Propose εi ∼ s(ε)
5: Simulate ui ∼ U [0, 1]
6: until ui <

q(h(εi ,θ) ;θ)
Mθ r(h(εi ,θ) ;θ)

7: return εi

probability min
{
1, q(h(ε,θ) ;θ)

Mθ r(h(ε,θ) ;θ)

}
; otherwise, we reject the sample and repeat the

process. We illustrate this in Figure 1 and provide a summary of the method in
Algorithm 1, where we consider the output to be the (accepted) variable ε, instead
of z.

The ability to simulate from r(z ; θ) by a reparameterization through a differen-
tiable h(ε, θ) is not needed for the rejection sampler to be valid. However, this is
indeed the case for the rejection sampler of many common distributions.

3.2 The Reparameterized Rejection Sampler in Variational
Inference

We now use reparameterized rejection sampling to develop a novel Monte Carlo
estimator of the gradient of the elbo. We first rewrite the elbo in (1) as an
expectation in terms of the transformed variable ε,

L(θ) = Eq(z ;θ) [f (z)] + H[q(z ; θ)]

= Eπ(ε ;θ) [f (h(ε, θ))] + H[q(z ; θ)].
(3)

In this expectation, π(ε ; θ) is the distribution of the accepted sample ε in Algo-
rithm 1. We construct it by marginalizing over the auxiliary uniform variable
u,

π(ε ; θ) =
∫
π(ε, u ; θ)du =

∫
Mθs(ε)1

[
0 < u <

q (h(ε, θ) ; θ)
Mθr (h(ε, θ) ; θ)

]
du

= s(ε)
q (h(ε, θ) ; θ)
r (h(ε, θ) ; θ)

, (4)

where 1[x ∈ A] is the indicator function, and recall that Mθ is a constant used
in the rejection sampler. This can be seen by the algorithmic definition of the
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rejection sampler, where we propose values ε ∼ s(ε) and u ∼ U [0, 1] until accep-
tance, i.e., until u < q(h(ε,θ) ;θ)

Mθ r(h(ε,θ) ;θ) . Eq. 3 follows intuitively, but we formalize it in
Proposition 1.

Proposition 1. Let f be any measurable function, and ε ∼ π(ε ; θ), defined by
(4) (and implicitly by Algorithm 1). Then

Eπ(ε ;θ) [f (h(ε, θ))] =
∫
f (z)q(z ; θ)dz.

Proof: Using the definition of π(ε ; θ),

Eπ(ε ;θ) [f (h(ε, θ))] =
∫
f (h(ε, θ)) s(ε)

q (h(ε, θ) ; θ)
r (h(ε, θ) ; θ)

dε

=
∫
f (z)r(z ; θ)

q(z ; θ)
r(z ; θ)

dz =
∫
f (z)q(z ; θ)dz,

where the second to last equality follows because h(ε, θ), ε ∼ s(ε) is a reparame-
terization of r(z ; θ).

We can now compute the gradient of Eq(z ;θ)[f (z)] based on Eq. 3,

∇θEq(z ;θ)[f (z)] = ∇θEπ(ε ;θ)[f (h(ε, θ))]

= Eπ(ε ;θ)[∇θf (h(ε, θ))]︸                     ︷︷                     ︸
=:grep

+Eπ(ε ;θ)

[
f (h(ε, θ))∇θ log

q(h(ε, θ) ; θ)
r(h(ε, θ) ; θ)

]
︸                                             ︷︷                                             ︸

=:gcor

, (5)

where we have used the log-derivative trick and rewritten the integrals as expec-
tations with respect to π(ε ; θ) (see the supplement for all details.) We define
grep as the reparameterization term, which takes advantage of gradients with re-
spect to the model and its latent variables; we define gcor as a correction term that
accounts for not using r(z ; θ) ≡ q(z ; θ).

Using (5), the gradient of the elbo in (1) can be written as

∇θL(θ) = grep + gcor + ∇θH[q(z ; θ)], (6)

and thus we can build an unbiased one-sample Monte Carlo estimator ĝ ≈ ∇θL(θ)
as

ĝ := ĝrep + ĝcor + ∇θH[q(z ; θ)],

ĝrep = ∇zf (z)
∣∣∣
z=h(ε,θ)

∇θh(ε, θ)

ĝcor = f (h(ε, θ))∇θ log
q(h(ε, θ) ; θ)
r(h(ε, θ) ; θ)

,

(7)

where ε is a sample generated using Algorithm 1. Of course, one could generate
more samples of ε and average, but we have found a single sample to suffice in
practice.
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Note if h(ε, θ) is invertible in ε then we can simplify the evaluation of the gradient
of the log-ratio in gcor,

∇θ log
q(h(ε, θ) ; θ)
r(h(ε, θ) ; θ)

= ∇θ log q(h(ε, θ) ; θ) + ∇θ log
∣∣∣∣∣dhdε (ε, θ)

∣∣∣∣∣ . (8)

See the supplementary material for details.

Alternatively, we could rewrite the gradient as an expectation with respect to s(ε)
(this is an intermediate step in the derivation shown in the supplement),

∇θEq(z ;θ)[f (z)] = Es(ε)

[
q (h(ε, θ) ; θ)
r (h(ε, θ) ; θ)

∇θf (h(ε, θ))
]

+

+ Es(ε)

[
q (h(ε, θ) ; θ)
r (h(ε, θ) ; θ)

f (h(ε, θ))∇θ log
q (h(ε, θ) ; θ)
r (h(ε, θ) ; θ)

]
,

and build an importance sampling-based Monte Carlo estimator, in which the im-
portance weights would be q (h(ε, θ) ; θ) /r (h(ε, θ) ; θ). However, we would expect
this approach to be beneficial for low-dimensional problems only, since for high-
dimensional z the variance of the importance weights would be too high.

Algorithm 2: Rejection Sampling Variational Inference

Input: Data x, model p(x, z), variational family q(z ; θ)
Output: Variational parameters θ∗

1: repeat
2: Run Algorithm 1 for θn to obtain a sample ε
3: Estimate the gradient ĝn at θ = θn (Eq. 7)
4: Calculate the stepsize ρn (Eq. 10)
5: Update θn+1 = θn + ρnĝn

6: until convergence

3.3 Full Algorithm

We now describe the full variational algorithm based on reparameterizing the re-
jection sampler. In Section 5 we give concrete examples of how to reparameterize
common variational families.

We make use of Eq. 6 to obtain a Monte Carlo estimator of the gradient of the
elbo. We use this estimate to take stochastic gradient steps. We use the step-
size sequence ρn proposed by Kucukelbir et al. (2016) (also used by Ruiz et al.
(2016)), which combines rmsprop (Tieleman and Hinton, 2012) and Adagrad
(Duchi et al., 2011). It is

ρn = η · n−1/2+δ ·
(
1 +
√
sn

)−1
,

sn = t (ĝn)2 + (1 − t)sn−1,
(9)
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where n is the iteration number. We set δ = 10−16 and t = 0.1, and we try different
values for η. (When θ is a vector, the operations above are element-wise.)

We summarize the full method in Algorithm 2. We refer to our method as rsvi.

4 Related Work

The reparameterization trick has also been used in automatic differentiation vari-
ational inference (advi) (Kucukelbir et al., 2015, 2016). advi applies a transfor-
mation to the random variables such that their support is on the reals and then
places a Gaussian variational posterior approximation over the transformed vari-
able ε. In this way, advi allows for standard reparameterization, but it cannot
fit gamma or Dirichlet variational posteriors, for example. Thus, advi struggles
to approximate probability densities with singularities, as noted by Ruiz et al.
(2016). In contrast, our approach allows us to apply the reparameterization trick
on a wider class of variational distributions, which may be more appropriate
when the exact posterior exhibits sparsity.

In the literature, we can find other lines of research that focus on extending the
reparameterization gradient to other distributions. For the gamma distribution,
Knowles (2015) proposed a method based on approximations of the inverse cu-
mulative density function; however, this approach is limited only to the gamma
distribution and it involves expensive computations. For general expectations,
Schulman et al. (2015) expressed the gradient as a sum of a reparameterization
term and a correction term to automatically estimate the gradient in the context
of stochastic computation graphs. However, it is not possible to directly apply
it to variational inference with acceptance-rejection sampling. This is due to dis-
continuities in the accept–reject step and the fact that a rejection sampler pro-
duces a random number of random variables. Recently, another line of work has
focused on applying reparameterization to discrete latent variable models (Jang
et al., 2017; Maddison et al., 2017) through a continuous relaxation of the discrete
space.

The generalized reparameterization (g-rep) method (Ruiz et al., 2016) exploits
the decomposition of the gradient as grep + gcor by applying a transformation
based on standardization of the sufficient statistics of z. Our approach differs
from g-rep: instead of searching for a transformation of z that makes the distri-
bution of ε weakly dependent on the variational parameters (namely, standard-
ization), we do the opposite by choosing a transformation of a simple random
variable ε such that the distribution of z = h(ε, θ) is almost equal to q(z ; θ). For
that, we reuse the transformations typically used in rejection sampling. Rather
than having to derive a new transformation for each variational distribution, we
leverage decades of research on transformations in the rejection sampling litera-
ture (Devroye, 1986). In rejection sampling, these transformations (and the dis-
tributions of ε) are chosen so that they have high acceptance probability, which
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means we should expect to obtain gcor ≈ 0 with rsvi. In Sections 5 and 6 we
compare rsvi with g-rep and show that it exhibits significantly lower variance,
thus leading to faster convergence of the inference algorithm.

Finally, another line of research in non-conjugate variational inference aims at
developing more expressive variational families (Maaløe et al., 2016; Ranganath
et al., 2016; Salimans et al., 2015; Tran et al., 2016). rsvi can extend the repara-
meterization trick to these methods as well, whenever rejection sampling is used
to generate the random variables.

5 Examples of Acceptance-Rejection
Reparameterization

As two examples, we study rejection sampling and reparameterization of two
well-known distributions: the gamma and Dirichlet. These have been widely
used as variational families for approximate Bayesian inference. We emphasize
that rsvi is not limited to these two cases, it applies to any variational family
q(z ; θ) for which a reparameterizable rejection sampler exists. We provide other
examples in the supplement.

5.1 Gamma Distribution

One of the most widely used rejection sampler is for the gamma distribution.
Indeed, the gamma distribution is also used in practice to generate e.g. beta,
Dirichlet, and Student’s t-distributed random variables. The gamma distribution,
Gam(α, β), is defined by its shape α and rate β.

For Gam(α, 1) with α ≥ 1, Marsaglia and Tsang (2000) developed an efficient
rejection sampler. It uses a truncated version of the following reparameteriza-
tion

z = hGam(ε, α) :=
(
α − 1

3

) (
1 +

ε
√

9α − 3

)3

, (10)

ε ∼ s(ε) := N (0, 1).

When β , 1, we divide z by the rate β and obtain a sample distributed as Gam(α, β).
The acceptance probability is very high: it exceeds 0.95 and 0.98 for α = 1 and
α = 2, respectively. In fact, as α → ∞ we have that π(ε ; θ) → s(ε), which means
that the acceptance probability approaches 1. Figure 1 illustrates the involved
functions and distributions for shape α = 2.

For α < 1, we observe that z = u1/α z̃ is distributed as Gam(α, β) for z̃ ∼ Gam(α +
1, β) and u ∼ U [0, 1] (Devroye, 1986; Stuart, 1962), and apply the rejection sam-
pler above for z̃.
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Figure 2: The correction term of rsvi, and as a result the gradient variance,
decreases with increasing shape α. We plot absolute value of the gradient
of the log-ratio between the target (gamma) and proposal distributions as a
function of ε.

We now study the quality of the transformation in (10) for different values of
the shape parameter α. Since π(ε ; θ) → s(ε) as α → ∞, we should expect the
correction term gcor to decrease with α. We show that in Figure 2, where we
plot the log-ratio (8) from the correction term as a function of ε for four values
of α. We additionally show in Figure 3 that the distribution π(ε ; θ) converges
to s(ε) (a standard normal) as α increases. For large α, π(ε ; θ) ≈ s(ε) and the
acceptance probability of the rejection sampler approaches 1, which makes the
correction term negligible. In Figure 3, we also show that π(ε ; θ) converges faster
to a standard normal than the standardization procedure used in g-rep. We
exploit this property—that performance improves with α—to artificially increase
the shape for any gamma distribution. We now explain this trick, which we call
shape augmentation.

Shape augmentation. Here we show how to exploit the fact that the rejection
sampler improves for increasing shape α. We make repeated use of the trick
above, using uniform variables, to control the value of α that goes into the re-
jection sampler. That is, to compute the elbo for a Gam(α, 1) distribution, we

can first express the random variable as z = z̃
∏B

i=1 u
1

α+i−1
i (for some positive in-

teger B), z̃ ∼ Gam(α + B, 1) and ui
i.i.d.∼ U [0, 1]. This can be proved by induction,

since z̃u
1

α+B−1
B ∼ Gam(α + B − 1, 1), z̃u

1
α+B−1
B u

1
α+B−2
B−1 ∼ Gam(α + B − 2, 1), etc. Hence,

we can apply the rejection sampling framework for z̃ ∼ Gam(α + B, 1) instead
of the original z. We study the effect of shape augmentation on the variance in
Section 5.2.
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Figure 3: In the distribution on the transformed space ε for a gamma distri-
bution we can see that the rejection sampling-inspired transformation con-
verges faster to a standard normal. Therefore it is less dependent on the pa-
rameter α, which implies a smaller correction term. We compare the trans-
formation of rsvi (this paper) with the standardization procedure suggested
in g-rep (Ruiz et al., 2016), for shape parameters α = {1, 2, 10}.

5.2 Dirichlet Distribution

The Dirichlet(α1:K ) distribution, with concentration parameters α1:K , is a K -
dimensional multivariate distribution with K − 1 degrees of freedom. To simu-
late random variables we use the fact that if z̃k ∼ Gam(αk, 1) i.i.d., then z1:K =
(
∑

� z̃�)
−1 (z̃1, . . . , z̃K )	 ∼ Dirichlet(α1:K ).

Thus, we make a change of variables to reduce the problem to that of simulating
independent gamma distributed random variables,

Eq(z1:K ;α1:K )[f (z1:K )] =
∫

f


z̃1:K∑K
�=1 z̃�


K∏

k=1

Gam(z̃k ; αk, 1)dz̃1:K .

We apply the transformation in Section 5.1 for the gamma-distributed variables,
z̃k = hGam(εk, αk), where the variables εk are generated by independent gamma re-
jection samplers. To showcase this, we study a simple conjugate model where the
exact gradient and posterior are available: a multinomial likelihood with Dirich-
let prior and Dirichlet variational distribution. In Figure 4 we show the resulting
variance of the first component of the gradient, based on simulated data from a
Dirichlet distribution with K = 100 components, uniform prior, and N = 100 tri-
als. We compare the variance of rsvi (for various shape augmentation settings)
with the g-rep approach (Ruiz et al., 2016). rsvi performs better even without
the augmentation trick, and significantly better with it.
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Figure 4: rsvi (this paper) achieves lower variance compared to g-rep (Ruiz
et al., 2016). The estimated variance is for the first component of Dirich-
let approximation to a multinomial likelihood with uniform Dirichlet prior.
Optimal concentration is α = 2, and B denotes shape augmentation.

6 Experiments

In Section 5 we compared rejection sampling variational inference (rsvi) with
generalized reparameterization (g-rep) and found a substantial variance reduc-
tion on synthetic examples. Here we evaluate rsvi on a more challenging mo-
del, the sparse gamma deep exponential family (def) (Ranganath et al., 2015).
On two real datasets, we compare rsvi with state-of-the-art methods: automatic
differentiation variational inference (advi) (Kucukelbir et al., 2015, 2016), black-
box variational inference (bbvi) (Ranganath et al., 2014), and g-rep (Ruiz et al.,
2016).

Data. The datasets we consider are the Olivetti faces2 and Neural Information
Processing Systems (nips) 2011 conference papers. The Olivetti faces dataset
consists of 64 × 64 gray-scale images of human faces in 8 bits, i.e., the data is
discrete and in the set {0, . . . , 255}. In the nips dataset we have documents in a
bag-of-words format with an effective vocabulary of 5715 words.

Model. The sparse gamma def (Ranganath et al., 2015) is a multi-layered pro-
babilistic model that mimics the architecture of deep neural networks. It models
the data using a set of local latent variables z�n,k where n indexes observations,
k components, and � layers. These local variables are connected between layers
through global weights w�

k,k′ . The observations are xn,d , where d denotes dimen-

2http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
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Figure 5: rsvi (this paper) presents a significantly faster initial improvement
of the evidence lower bound (elbo) as a function of wall-clock time. The
model is a sparse gamma def, applied to the Olivetti faces dataset, and we
compare with advi (Kucukelbir et al., 2016), bbvi (Ranganath et al., 2014),
and g-rep (Ruiz et al., 2016).

sion. The joint probabilistic model is defined as

z�n,k ∼ Gam

αz,
αz∑

k′ w
�
k,k′ z

�+1
n,k′

 ,

xn,d ∼ Poisson


∑

k

w0
k,d z

1
n,k

 .
(11)

We set αz = 0.1 in the experiments. All priors on the weights are set to Gam(0.1, 0.3),
and the top-layer local variables priors are set to Gam(0.1, 0.1). We use 3 layers,
with 100, 40, and 15 components in each. This is the same model that was studied
by Ruiz et al. (2016), where g-rep was shown to outperform both bbvi (with con-
trol variates and Rao-Blackwellization), as well as advi. In the experiments we
follow their approach and parameterize the variational approximating gamma
distribution using the shape and mean. To avoid constrained optimization we
use the transform θ = log(1 + exp(ϑ)) for non-negative variational parameters θ,
and optimize ϑ in the unconstrained space.

Results. For the Olivetti faces we explore η ∈ {0.75, 1, 2, 5} and show the result-
ing elbo of the best one in Figure 5. We can see that rsvi has a significantly faster
initial improvement than any of the other methods.3 The wall-clock time for rsvi

3The results of g-rep, advi and bbvi where reproduced with permission from Ruiz et al. (2016).
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rsvi B = 1 rsvi B = 4 g-rep
Min 6.0e−4 1.2e−3 2.7e−3

Median 9.0e7 2.9e7 1.6e12
Max 1.2e17 3.4e14 1.5e17

rsvi B = 1 rsvi B = 4 g-rep
Min 1.8e−3 1.5e−3 2.6e−3

Median 1.2e4 4.5e3 1.5e7
Max 1.4e12 1.6e11 3.5e12

Table 1: The rsvi gradient (this paper) exhibits lower variance than g-rep
(Ruiz et al., 2016). We show estimated variance, based on 10 samples, of g-
rep and rsvi (for B = 1, 4 shape augmentation steps), for parameters at the
initialization point ( top) and at iteration 2600 in rsvi (bottom), estimated
for the nips data.

is based on a Python implementation (average 1.5s per iteration) using the auto-
matic differentiation package autograd (Maclaurin et al., 2015). We found that
rsvi is approximately two times faster than g-rep for comparable implementa-
tions. One reason for this is that the transformations based on rejection sampling
are cheaper to evaluate. Indeed, the research literature on rejection sampling is
heavily focused on finding cheap and efficient transformations.

For the nips dataset, we now compare the variance of the gradients between the
two estimators, rsvi and g-rep, for different shape augmentation steps B. In
Table 1 we show the minimum, median, and maximum values of the variance
across all dimensions. We can see that rsvi again clearly outperforms g-rep in
terms of variance. Moreover, increasing the number of augmentation steps B
provides even further improvements.

7 Conclusions

We introduced rejection sampling variational inference (rsvi), a method for de-
riving reparameterization gradients when simulation from the variational distri-
bution is done using a acceptance-rejection sampler. In practice, rsvi leads to
lower-variance gradients than other state-of-the-art methods. Further, it enables
reparameterization gradients for a large class of variational distributions, taking
advantage of the efficient transformations developed in the rejection sampling
literature.

This work opens the door to other strategies that “remove the lid” from existing
black-box samplers in the service of variational inference. As future work, we can
consider more complicated simulation algorithms with accept-reject-like steps,
such as adaptive rejection sampling, importance sampling, sequential Monte Carlo,
or Markov chain Monte Carlo.
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Abstract

Many recent advances in large scale probabilistic inference rely on
variational methods. The success of variational approaches depends
on (i) formulating a flexible parametric family of distributions, and
(ii) optimizing the parameters to find the member of this family that
most closely approximates the exact posterior. In this paper we present
a new approximating family of distributions, the variational sequen-
tial Monte Carlo (vsmc) family, and show how to optimize it in vari-
ational inference. vsmc melds variational inference (vi) and sequen-
tial Monte Carlo (smc), providing practitioners with flexible, accurate,
and powerful Bayesian inference. The vsmc family is a variational
family that can approximate the posterior arbitrarily well, while still
allowing for efficient optimization of its parameters. We demonstrate
its utility on state space models, stochastic volatility models for finan-
cial data, and deep Markov models of brain neural circuits.

1 Introduction

Complex data like natural images, text, and medical records require sophisti-
cated models and algorithms. Recent advances in these challenging domains
have relied upon variational inference (vi) (Hoffman et al., 2013; Kingma and

239
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Figure 1: Comparing vsmc and the iwae. (a) vsmc constructs a weighted set
of particle trajectories using SMC and then samples one according to the fi-
nal weight. Here, the size of the dot is proportional to the weight, wi

t ; the
gray arrows denote the ancestors, ait−1; and the blue arrows denote the cho-
sen path, b1:T . (b) iwae does the same, but without resampling. This leads
to particle degeneracy as time increases—only one particle has nonneglible
weight at time T . (c) The ELBO suffers from this degeneracy: all are com-
parable when T is small, but as time increases the iwae provides minimal
improvement over standard vb, whereas vsmc still achieves nearly the true
marginal likelihood.

Welling, 2014; Ranganath et al., 2016a). Variational inference excels in quickly
approximating the model posterior, yet these approximations are only useful in-
sofar as they are accurate. The challenge is to balance faithful posterior approxi-
mation and fast optimization.

We present a new approximating family of distributions called variational se-
quential Monte Carlo (vsmc). vsmc blends vi and sequential Monte Carlo (smc)
(Gordon et al., 1993; Kitagawa, 1996; Stewart and McCarty, 1992), providing
practitioners with a flexible, accurate, and powerful approximate Bayesian infer-
ence algorithm. vsmc is an efficient algorithm that can approximate the posterior
arbitrarily well.

Standard smc approximates a posterior distribution of latent variables with N
weighted particles iteratively drawn from a proposal distribution. The idea be-
hind variational smc is to view the parameters of the proposal as indexing a
family of distributions over latent variables. Each distribution in this variational
family corresponds to a particular choice of proposal; to sample the distribution,
we run smc to generate a set of particles and then randomly select one with prob-
ability proportional to its weight. Unlike typical variational families, the vsmc
family trades off fidelity to the posterior with computational complexity: its ac-
curacy increases with the number of particles N , but so does its computational
cost.

We develop the vsmc approximating family, derive its corresponding variational
lower bound, and design a stochastic gradient ascent algorithm to optimize its
parameters. We connect vsmc to the importance weighted auto-encoder (iwae)



1 Introduction 241

(Burda et al., 2016) and show that the iwae lower bound is a special case of the
vsmc bound. As an illustration, consider approximating the following posterior
with latent variables x1:T and observations y1:T ,

p(x1:T | y1:T ) =
T∏
t=1

N (xt ; 0, 1)N (yt ; x2
t , 1)/p(y1:T ).

This is a toy Gaussian state space model (ssm) where the observed value at each
time step depends on the square of the latent state. Figure 1c shows the approxi-
mating power of vsmc versus that of the iwae and of standard variational Bayes
(vb). As the length of the sequence T increases, naïve importance sampling effec-
tively collapses to use only a single particle. vsmc on the other hand maintains
a diverse set of particles and thereby achieves a significantly tighter lower bound
of the log-marginal likelihood log p(y1:T ).

We focus on inference in state space and time series models, but emphasize that
vsmc applies to any sequence of probabilistic models, just like standard smc
(Del Moral et al., 2006; Doucet and Johansen, 2009; Naesseth et al., 2014).

In Section 5, we demonstrate the advantages of vsmc on both simulated and real
data. First, we show on simulated linear Gaussian ssm data that vsmc can out-
perform the (locally) optimal proposal (Doucet and Johansen, 2009; Doucet et al.,
2001). Then we compare vsmc with iwae for a stochastic volatility model on
exchange rates from financial markets. We find that vsmc achieves better poste-
rior inferences and learns more efficient proposals. Finally, we study recordings
of macaque monkey neurons using a probabilistic model based on recurrent neu-
ral networks. vsmc reaches the same accuracy as iwae, but does so with less
computation.

Related Work Much effort has been dedicated to learning good proposals for smc
(Cornebise, 2009). Guarniero et al. (2017) adapt proposals through iterative re-
finement. Naesseth et al. (2015) uses a Monte Carlo approximation to the (locally)
optimal proposal (Doucet and Johansen, 2009). Gu et al. (2015) learn proposals
by minimizing the Kullback-Leibler (kl) from the posterior to proposal using
SMC samples; this strategy can suffer from high variance when the initial SMC
proposal is poor. Paige and Wood (2016) learn proposals by forward simulating
and inverting the model. In contrast to all these methods, vsmc optimizes the
proposal directly with respect to KL divergence from the smc sampling process
to the posterior.

vsmc uses auxillary variables in a posterior approximation. This relates to work
in vi, such as Hamiltonian VI (Salimans et al., 2015), variational Gaussian pro-
cesses (Tran et al., 2016), hierarchical variational models (Ranganath et al., 2016b),
and deep auxiliary variational auto-encoders (Maaløe et al., 2016). Another ap-
proach uses a sequence of invertible functions to transform a simple variational
approximation to a complex one (Dinh et al., 2014; Rezende and Mohamed, 2015).
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All of these rich approximations can be embedded inside vsmc to build more
flexible proposals.

Archer et al. (2015); Johnson et al. (2016) develop variational inference for state
space models with conjugate dynamics, while Krishnan et al. (2017) develop vari-
ational approximations for models with nonlinear dynamics and additive Gaus-
sian noise. In contrast, vsmc is agnostic to the distributional choices in the dy-
namics and noise.

Importance weighted auto-encoders (Burda et al., 2016) obtain the same lower
bound as variational importance sampling (vis), a special case of vsmc. How-
ever, vis provides a new interpretation that enables a more accurate variational
approximation; this relates to another interpretation of iwae by Bachman and
Precup (2015); Cremer et al. (2017). Variational particle approximations (Saeedi
et al., 2014) also provide variational approximation that improve with the num-
ber of particles, but they are restricted to discrete latent variables.

Finally, the log-marginal likelihood lower bound (6) was developed concurrently
and independently by Maddison et al. (2017) and Le et al. (2017). The difference
with our work lies in how we derive the bound and the implications we explore.
Le et al. (2017); Maddison et al. (2017) derive the bound using Jensen’s inequality
on the smc expected log-marginal likelihood estimate, focusing on approximate
marginal likelihood estimation of model parameters. Rather, we derive (6) as a
tractable lower bound to the exact evidence lower bound (elbo) for the new vari-
ational family vsmc. In addition to a lower bound on the log-marginal likelihood,
this view provides a new variational approximation to the posterior.

2 Background

We begin by introducing the foundation for variational sequential Monte Carlo
(vsmc). Let p(x1:t , y1:t) be a sequence of probabilistic models for latent (unob-
served) x1:t and data y1:t , with t = 1, . . . , T . In Bayesian inference, we are inter-
ested in computing the posterior distribution p(x1:T | y1:T ). Two concrete exam-
ples, both from the time-series literature, are hidden Markov models and state
space models (Cappé et al., 2005). In both cases, the joint density factorizes
as

p(x1:T , y1:T ) = f (x1)
T∏
t=2

f (xt | xt−1)
T∏
t=1

g(yt | xt),

where f is the prior on x, and g is the observation (data) distribution. For most
models computing the posterior p(x1:T | y1:T ) is computationally intractable, and
we need approximations such as vi and smc. Here we construct posterior approx-
imations that combine these two ideas.

In the following sections, we review variational inference and sequential Monte
Carlo, develop a variational approximation based on the samples generated by
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smc, and develop a tractable objective to improve the quality of the smc varia-
tional approximation. For concreteness, we focus on the state space model above.
But we emphasize that vsmc applies to any sequence of probabilistic models, just
like standard smc (Del Moral et al., 2006; Doucet and Johansen, 2009; Naesseth
et al., 2014).

Variational Inference In variational inference we postulate an approximating fam-
ily of distributions with variational parameters λ, q(x1:T ;λ). Then we minimize
a divergence, often the kl divergence, between the approximating family and
the posterior so that q(x1:T ;λ) ≈ p(x1:T | y1:T ). This minimization is equivalent to
maximizing the elbo (Jordan et al., 1999),

L(λ) = Eq(x1:T ;λ) [log p(x1:T , y1:T ) − log q(x1:T ;λ)] . (1)

vi turns posterior inference into an optimization problem.

Sequential Monte Carlo smc is a sampling method designed to approximate a se-
quence of distributions, p(x1:t | y1:t) for t = 1 . . . T with special emphasis on the
posterior p(x1:T | y1:T ). For a thorough introduction to smc see Doucet and Jo-
hansen (2009); Doucet et al. (2001); Schön et al. (2015).

To approximate p(x1:t | y1:t) smc uses weighted samples,

p(x1:t | y1:t) ≈ p̂(x1:t | y1:t) ,
N∑
i=1

wit∑
` w

`
t

δxi1:t
, (2)

where δX is the Dirac measure at X.

We construct the weighted set of particles sequentially for t = 1, . . . , T . At time
t = 1 we use standard importance sampling xi1 ∼ r(x1). For t > 1, we start each
step by resampling auxiliary ancestor variables ait−1 ∈ {1, . . . , N } with probabil-

ity proportional to the importance weights wjt−1; next we propose new values,
append them to the end of the trajectory, and reweight as follows:

resample ait−1 ∼ Categorical(w
j
t−1/

∑
` w

`
t−1)

propose xit ∼ r(xt | x
ait−1
t−1 ),

append xi1:t = (x
ait−1
1:t−1, x

i
t),

reweight wit = f (xit | x
ait−1
t−1 ) g(yt | xit )/r(xit | x

ait−1
t−1 ).

We refer to the final particles (samples) xi1:T as trajectories. Panels (a) and (b)
of Figure 1 show sets of weighted trajectories. The size of the dots represents
the weights wit and the arrows represent the ancestors ait−1. Importance sampling
omits the resampling step, so each ancestor is given by the corresponding particle
for the preceding time step.
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The trajectories xi1:T and weights wiT define the smc approximation to the poste-
rior. Critically, as we increase the number of particles, the posterior approxima-
tion becomes arbitrarily accurate. smc also yields an unbiased estimate of the
marginal likelihood,

p̂(y1:T ) =
T∏
t=1

1
N

N∑
i=1

wit . (3)

This estimate will play an important role in the vsmc objective.

The proposal distribution r(xt | xt−1) is the key design choice. A common choice is
the model prior f—it is known as the bootstrap particle filter (bpf) (Gordon et al.,
1993). However, proposing from the prior often leads to a poor approximation
for a small number of particles, especially if xt is high-dimensional. Variational
smc addresses this shortcoming; it learns parameterized proposal distributions
for efficient inference.

3 Variational Sequential Monte Carlo

We develop vsmc, a new class of variational approximations based on smc. We
first define how to sample from the vsmc family and then derive its distribu-
tion. Though generating samples is straightforward, the density is intractable.
To this end, we derive a tractable objective, a new lower bound to the elbo, that
is amenable to stochastic optimization. Then, we present an algorithm to fit the
variational parameters. Finally, we explore how to learn model parameters using
variational expectation–maximization.

To sample from the vsmc family, we run smc (with the proposals parameterized
by variational parameters λ) and then sample once from the empirical approxi-
mation of the posterior (2). Because the proposals r(xt | xt−1 ;λ) depend on λ, so
does the smc empirical approximation. Algorithm 1 summarizes the generative
process for the vsmc family.

The variational distribution q(x1:T ;λ) marginalizes out all the variables produced
in the sampling process, save for the output sample x1:T . This marginal comes
from the joint distribution of all variables generated by vsmc,

φ̃(x1:N
1:T , a

1:N
1:T−1, bT ;λ) =

[ N∏
i=1

r(xi1 ;λ)
]

︸           ︷︷           ︸
step 2

·
T∏
t=2

N∏
i=1

[
w
ait−1
t−1∑
` w

`
t−1︸     ︷︷     ︸

step 7

r(xit | x
ait−1
t−1 ;λ)

]
︸            ︷︷            ︸

step 8

[
wbTT∑
` w

`
T

]
︸    ︷︷    ︸

step 13

.

(4)

(We have annotated this equation with the steps from the algorithm.) In this joint,
the final output sample is defined by extracting the bT -th trajectory x1:T = xbT1:T .
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Algorithm 1: Variational Sequential Monte Carlo

Require: Targets p(x1:t , y1:t), proposals r(xt | xt−1 ;λ), and number of particles N .

1: for i = 1 . . . N do
2: Simulate xi1 from r(x1 ;λ)
3: Set wi1 = f (xi1) g(y1 | xi1)/r(xi1 ;λ)

4: end for
5: for t = 2 . . . T do
6: for i = 1 . . . N do

7: Simulate ait−1 with Pr(ait−1 = j) = w
j
t−1∑

` w
`
t−1

8: Simulate xit from r(xt | x
ait−1
t−1 ;λ)

9: Set xi1:t = (x
ait−1
1:t−1, x

i
t)

10: Set wit = f (xit | x
ait−1
t−1 ) g(yt | xit )/r(xit | x

ait−1
t−1 ;λ)

11: end for
12: end for
13: Simulate bT with Pr(bT = j) = w

j
T/

∑
` w

`
T

14: return x1:T , x
bT
1:T

Note that the data y1:T enter via the weights and (optionally) the proposal dis-
tribution. This joint density is easy to calculate, but for variational inference we
need the marginal distribution of x1:T . We derive this next.

Let bt , a
bt+1
t for t ≤ T −1 denote the ancestors for the trajectory x1:T returned by

Algorithm 1. Furthermore, let¬b1:T be all particle indices not equal to (b1, . . . , bT ),
i.e. exactly all the particles that were not returned by Algorithm 1. Then the
marginal distribution of x1:T = xb1:T

1:T = (xb1
1 , x

b2
2 , . . . , x

bT
T ) is given by the following

proposition.

Proposition 1. The vsmc approximation on x1:T is

q(x1:T | y1:T ;λ) = p(x1:T , y1:T )E
φ̃
(
x
¬b1:T
1:T ,a

¬b1:T−1
1:T−1 ;λ

) [p̂(y1:T )−1
]
. (5)

Proof: See the supplementary material A.1.

This has an intuitive form: the density of the variational posterior is equal to
the exact joint times the expected inverse of the normalization constant (c.f. (3)).
While we can estimate this expectation with Monte Carlo, it yields a biased esti-
mate of log q(x1:T | y1:T ;λ) and the elbo (1).
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The surrogate elbo. To derive a tractable objective, we develop a lower bound to
the elbo that is also amenable to stochastic optimization. It is

L̃(λ) ,
T∑
t=1

Eφ̃(x1:N
1:t ,a

1:N
1:t−1 ;λ)

log

 1
N

N∑
i=1

wit


 = E [log p̂(y1:T )] (6)

We call L̃(λ) the surrogate elbo. It is a lower bound to the true elbo for vsmc
or, equivalently, an upper bound on the kl divergence. The following theorem
formalizes this fact:

Theorem 1 (Surrogate elbo). The surrogate elbo (6), is a lower bound to the
elbo (1) when q is defined by (5), i.e.

log p(y1:T ) ≥ L(λ) ≥ L̃(λ).

Proof: See the supplementary material A.2.

The surrogate elbo is the expected smc log-marginal likelihood estimate. We
can estimate it unbiasedly as a byproduct of sampling from the vsmc variational
approximation (Algorithm 1). We run the algorithm and use the estimate to per-
form stochastic optimization of the surrogate elbo.

Stochastic Optimization. While the expectations in the surrogate elbo are still not
available in closed form, we can estimate it and its gradients with Monte Carlo.
This admits a stochastic optimization algorithm for finding the optimal varia-
tional parameters of the vsmc family.

We assume the proposals r(xt | xt−1;λ) are reparameterizable, i.e., we can simu-
late from r by setting xt = h(xt−1, εt ;λ), εt ∼ s(εt) for some distribution s not a
function of λ. With this assumption, rewrite the gradient of (6) by using the re-
parameterization trick (Kingma and Welling, 2014; Rezende et al., 2014),

∇L̃(λ) = grep + gscore (7)

grep = E [∇ log p̂(y1:T )] ,

gscore = E
[
log p̂(y1:T )∇ log φ̃(a1:N

1:T−1 | ε
1:N
1:T ;λ)

]
.

This expansion follows from the product rule, just as in the generalized repa-
rameterizations of Ruiz et al. (2016) and Naesseth et al. (2017). Note that all xit ,
implicit in the weights wit and p̂(y1:T ) are now replaced with their reparameteriza-
tions h( · ;λ). The ancestor variables are discrete and cannot be reparameterized—
this can lead to high variance in the score function term, gscore from (7).

In Section 5, we empirically assess the impact of ignoring gscore for optimization.
We empirically study optimizing with and without the score function term for a
small state space model where standard variance reduction techniques, explained
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below, are sufficient. We lower the variance using Rao-Blackwellization (Ran-
ganath et al., 2014; Robert and Casella, 2004), noting that the ancestor variables
at−1 have no effect on weights prior to time t,

gscore =
T∑
t=2

E

log
p̂(y1:T )
p̂(y1:t−1)


N∑
i=1

∇ log
w
ait−1
t−1∑
` w

`
t−1


 . (8)

Furthermore, we use the score function ∇ log φ̃(a1:N
1:T−1 | ε

1:N
1:T ;λ) with an estimate

of the future log average weights as a control variate (Ranganath et al., 2014).

We found that ignoring the score function term gscore (8) from the ancestor vari-
ables, leads to faster convergence and very little difference in final elbo. This
corresponds to approximating the gradient of L̃ by

∇L̃(λ) ≈ E [∇ log p̂(y1:T )] = grep. (9)

This is the gradient we propose to use for optimizing the variational parameters
of vsmc. See the supplementary material A.3 for more details, where we also
provide a general score function-like estimator and the control variates.

Algorithm. We now describe the full algorithm to optimize the vsmc variational
approximation. We form stochastic gradients ∇̂L̃(λ) by estimating (9) using a
single sample from s( · )φ̃( · | · ;λ). The sample is obtained as a byproduct of sam-
pling vsmc (Algorithm 1). We use the step-size sequence Adam (Kingma and Ba,
2015) or ρn proposed by Kucukelbir et al. (2017),

ρn = η · n−1/2+δ ·
(
1 +
√
sn

)−1
,

sn = t
(
∇̂L̃(λn)

)2
+ (1 − t)sn−1, (10)

where n is the iteration number. We set δ = 10−16 and t = 0.1, and we try different
values for η. Algorithm 2 summarizes this optimization algorithm.1

Variational Expectation Maximization. Suppose the target distribution of interest
p(x1:T | y1:T ; θ) has a set of unknown parameters θ. We can fit the parameters
using variational expectation–maximization (vem) (Beal and Ghahramani, 2003).
The surrogate elbo is updated accordingly

log p(y1:T ; θ) ≥ L̃(λ, θ) (11)

where the normalization constant p(y1:T ; θ) is now a function of the parame-
ters θ. Note that the expression for L̃(λ, θ) is exactly the same as (6), but where
the weights (and potentially proposals) now include a dependence on the mo-
del parameters θ. Analogously, the reparameterization gradients have the same

1Reference implementation using Adam is available at github.com/blei-lab/variational-smc.
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Algorithm 2: Stochastic Optimization for vsmc

Require: Data y1:T , model p(x1:T , y1:T ), proposals r(xt | xt−1 ;λ), number of
particles N

Ensure: Variational parameters λ?

1: repeat
2: Estimate the gradient ∇̂L̃(λn) given by (9)
3: Compute stepsize ρn with (10)
4: Update λn+1 = λn + ρn∇̂L̃(λn)
5: until convergence

form as (9). We can maximize (11), with respect to both θ and λ, using stochastic
optimization. With data subsampling, vsmc extends to large-scale datasets of
conditionally independent sequences (Hoffman et al., 2013; Titsias and Lázaro-
Gredilla, 2014).

4 Perspectives on Variational SMC

We give some perspectives on vsmc. First, we consider the vsmc special cases
of N = 1 and T = 1. For N = 1, vsmc reduces to a structured variational ap-
proximation: there is no resampling and the variational distribution is exactly
the proposal. For T = 1, vsmc leads to a special case we call variational impor-
tance sampling, and a reinterpretation of the iwae (Burda et al., 2016), which we
explore further in the first half of this section.

Then, we think of sampling from vsmc as sampling a highly optimized smc ap-
proximation. This means many of the theoretical smc results developed over the
past 25 years can be adapted for vsmc. We explore some examples in the second
half of this section.

Variational Importance Sampling (VIS). The case where T = 1 is smc without any
resampling, i.e., importance sampling. The corresponding special case of vsmc
is vis. The surrogate elbo for vis is exactly equal to the iwae lower bound (Burda
et al., 2016).

This equivalence provides new intuition behind the iwae’s variational approx-
imation on the latent variables. If we want to make use of the approximation
q(x1:T ;λ?) learned with the iwae lower bound, samples from the latent variables
should be generated with Algorithm 1, i.e. vis. For vis it is possible to show
that the surrogate elbo is always tighter than the one obtained by standard vb
(equivalent to vis with N = 1) (Burda et al., 2016). This result does not carry
over to vsmc, i.e. we can find cases when the resampling creates a looser bound
compared to standard vb or vis. However, in practice the vsmc lower bound
outperforms the vis lower bound.
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Figure 2: Example of vis q(x ; λ) approximating a multimodal p(x | y) with a
Gaussian proposal r(x ; λ).

Figure 2 provides a simple example of vis applied to a multimodal p(x | y) ∝
N (x ; 0, 1)N (y ; x2/2, ex/2) with a normal proposal r(x ; λ) = N (x ; µ, σ2) and a ker-
nel density estimate of the corresponding variational approximation q(x ; λ). The
number of particles is N = 10. Standard vb with a Gaussian approximation only
captures one of the two modes; which one depends on the initialization. We see
that even a simple proposal can lead to a very flexible posterior approximation.
This property is also inherited by the more general T > 1 case, vsmc.

Theoretical Properties. The normalization constant estimate of the smc sampler,
p̂(y1:T ), is unbiased (Del Moral, 2004; Naesseth et al., 2014; Pitt et al., 2012). This,
together with Jensen’s inequality, implies that the surrogate elbo E[log p̂(y1:T )]
is a lower bound to log p(y1:T ). If log p̂(y1:T ) is uniformly integrable it follows
(Del Moral, 2004), as N →∞, that

L̃(λ) = L(λ) = log p(y1:T ).

This fact means that the gap in Theorem 1 disappears and the distribution of the
trajectory returned by vsmc will tend to the true target distribution p(x1:T | y1:T ).
A bound on the kl divergence gives us the rate

KL
(
q(x1:T ; λ)

∥∥∥∥ p(x1:T | y1:T )
)
≤ c(λ)

N
,

for some constant c(λ) < ∞. This is a special case of a “propagation of chaos”
result from Del Moral (2004, Theorem 8.3.2).

We can arrive at this result informally by studying (5): as the number of particles
increases, the marginal likelihood estimate will converge to the true marginal
likelihood and the variational posterior will converge to the true posterior. Hug-
gins and Roy (2017) provide further bounds on various divergences and metrics
between smc and the target distribution.
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Figure 3: (Left) Mean and spread of the stochastic gradient components
gscore (8) and grep (9), for the scalar linear Gaussian model on four ran-
domly generated datasets, where the number of particles is N = 2. (Right)
Log-marginal likelihood (log p(y1:T )) and elbo as a function of iterations for
vsmc with biased gradients (blue) or unbiased gradients (red). Results for
four different linear Gaussian models.

vsmc and T . Like smc, variational sequential Monte Carlo scales well with T .
Bérard et al. (2014) show a central limit theorem for the smc approximation
log p̂(y1:T ) − log p(y1:T ) with N = bT , where b > 0, as T →∞. Under the same
conditions as in that work, and assuming that log p̂(y1:T ) is uniformly integrable,
we can show that

KL
(
q(x1:T ; λ)

∥∥∥∥ p(x1:T | y1:T )
)
≤ −E

[
log

p̂(y1:T )
p(y1:T )

]

−−−−−→
T→∞

σ2(λ)
2b

, 0 < σ2(λ) < ∞.

The implication for vsmc is significant. We can make the variational approxima-
tion arbitrarily accurate by setting N ∝ T , even as T goes to infinity. The supple-
ment shows that this holds in practice; see A.4 for the toy example from Figure 1.
We emphasize that neither standard vb nor iwae (vis) have this property.

5 Empirical Study

Linear Gaussian State Space Model The linear Gaussian ssm is a ubiquitous model
of time series data that enjoys efficient algorithms for computing the exact pos-
terior. We use this model to study the convergence properties and impact of
biased gradients for vsmc. We further use it to confirm that we learn good pro-
posals. We compare to the bootstrap particle filter (bpf), which uses the prior as
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a proposal, and the (locally) optimal proposal that tilts the prior with the likeli-
hood.

The model is

xt = Axt−1 + vt ,

yt = Cxt + et ,

where vt ∼ N (0, Q), et ∼ N (0, R), and x1 ∼ N (0, I). The log-marginal likelihood
log p(y1:T ) can be computed using the Kalman filter.

We study the impact of the biased gradient (9) for optimizing the surrogate elbo
(6). First, consider a simple scalar model with A = 0.5, Q = 1, C = 1, R = 1, and
T = 2. For the proposal we use r(xt | xt−1 ;λ) = N (xt ;λ + 0.5xt−1, 1), with x0 ≡ 0.
Figure 3 (left) shows the mean and spread of estimates of gscore (8), with control
variates, and grep (9), as a function of λ for four randomly generated datasets.
The optimal setting of λ is where the sum of the means is equal to zero. Ignor-
ing the score function term gscore (8) will lead to a perturbation of the optimal
λ. However, even for this simple model, the variance of the score function term
(red) is several orders of magnitude higher than that of the reparameterization
term (blue), despite the variance reduction techniques of Section 3. This vari-
ance has a significant impact on the convergence speed of the stochastic opti-
mization.

Next, we study the magnitude of the perturbation, and its effect on the surrogate
elbo. We generate data with T = 10, (A)ij = α|i−j |+1 for α = 0.42, Q = I , and
R = I . We explored several settings of dx = dim(xt), dy = dim(yt), and C. Sparse
C measures the first dy components of xt , and dense C has randomly generated
elements Cij ∼ N (0, 1). Figure 3 (right) shows the true log-marginal likelihood
and elbo as a function of iteration. It shows vsmc with biased gradients (blue)
and unbiased gradients (red). We choose the proposal

r(xt | xt−1 ;λ) = N
(
xt | µt + diag(βt)Axt−1,diag(σ2

t )
)
.

with λ =
{
µt , βt , σ

2
t

}T
t=1

, and set the number of particles to N = 4. Note that
while the gradients are biased, the resulting elbo is not. We can see that the final
vsmc elbo values are very similar, regardless of whether we train with biased
or unbiased gradients. However, biased gradients converge faster. Thus, we use
biased gradients in the remainder of our experiments.

Next, we study the effect of learning the proposal using vsmc compared with
standard proposals in the smc literature. The most commonly used is the bpf,
sampling from the prior f . We also consider the so-called optimal proposal,
r ∝ f · g, which minimizes the variance of the incremental importance weights
(Doucet and Johansen, 2009). Table 1 shows results for a linear Gaussian ssm
when T = 25, Q = 0.12I , R = 1, dx = 10, and dy = 1. Because of the relatively
high-dimensional state, bpf exhibits significant bias whereas the optimal pro-
posal smc performs much better. vsmc outperforms them both, learning an
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Table 1: elbo for bpf, smc with (locally) optimal proposal, and vsmc. The
true log-marginal likelihood is given by log p(y1:T ) = −236.9.

bpf Optimal smc vsmc
elbo −6701.4 −253.4 −237.8

Table 2: elbo for the stochastic volatility model with T = 119 on exchange
rate data. We compare vsmc (this paper) with iwae and structured vi.

Method elbo

Structured vi 6905.1

N = 4
iwae 6911.2
vsmc 6921.6

N = 8
iwae 6912.4
vsmc 6935.8

N = 16
iwae 6913.3
vsmc 6936.6

accurate proposal that results in an elbo only 0.9 nats lower than the true log-
marginal likelihood. We further emphasize that the optimal proposal is unavail-
able for most models.

Stochastic Volatility A common model in financial econometrics is the (multivari-
ate) stochastic volatility model (Chib et al., 2009). The model is

xt = µ + φ(xt−1 − µ) + vt ,

yt = β exp
(xt

2

)
et ,

where vt ∼ N (0, Q), et ∼ N (0, I), x1 ∼ N (µ, Q), and θ = (µ, φ, Q, β). (In the mul-
tivariate case, multiplication is element-wise.) Computing log p(y1:T ; θ) and its
gradients for this model is intractable, we study the vem approximation to find
the unknown parameters θ. We compare vsmcwith iwae and structured vi. For
the proposal in vsmc and iwae we choose

r(xt | xt−1 ;λ, θ) ∝ f (xt | xt−1 ; θ)N (xt ; µt ,Σt),

with variational parameters λ = (µ1, . . . , µT ,Σ1, . . . ,ΣT ). We define the variational
approximation for structured vi to be q(x1:T ;λ, θ) =

∏T
t=1 r(xt | xt−1 ;λ, θ).

We study 10 years of monthly returns (9/2007 to 8/2017) for the exchange rate
of 22 international currencies with respect to US dollars. The data is from the
Federal Reserve System. Table 2 reports the optimized elbo (higher is better)
for different settings of the number of particles/samples N = {4, 8, 16}. vsmc
outperforms the competing methods with almost 0.2 nats per time-step.
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In theory we can improve the bound of both iwae and vsmc by increasing the
number of samples N . This means we can first learn proposals using only a few
particles N , for computational efficiency. Then, at test time, we can increase N
as needed for improved accuracy. We study the impact of increasing the num-
ber of samples for vsmc and iwae using fix θ� and λ� optimized with N = 16.
Figure 4 shows that the gain for iwae is limited, whereas for vsmc it can be
significant.

100 200 300 400 500

N

6910

6920

6930

6940

6950

6960

E
L

B
O VSMC

IWAE

Figure 4: The estimated elbo for vsmc (this paper) and iwae , with confi-
dence bands, as a function of the number of particles N for fix θ�, λ� .

Deep Markov Model An important problem in neuroscience is understanding dy-
namics of neural circuits. We study a population of 105 motor cortex neurons
simultaneously recorded in a macaque monkey as it performed reaching move-
ments (c.f. Gao et al., 2016). In each trial, the monkey reached toward one of
fourteen targets; each trial is T = 21 time steps long. We train on 700 trials and
test on 84.

We use recurrent neural networks to model both the dynamics and observations.
The model is

xt = µθ(xt−1) + exp (σθ(xt−1)/2) vt,

yt ∼ Poisson (exp (ηθ(xt))) ,

where vt ∼ N (0, I ), x0 ≡ 0, and µ, σ, η are neural networks parameterized by
θ. The multiplication in the transition dynamics is element-wise. This is a deep
Markov model (Krishnan et al., 2017).

For inference we use the following proposal for both vsmc and iwae,

r(xt | xt−1, yt ; λ) ∝ N
(
xt ; µxλ(xt−1), exp

(
σx
λ(xt−1)

))

× N
(
xt ; µyλ(yt), exp

(
σ
y
λ (yt)

))
,

where µx, σx, µy, σy are neural networks parameterized by λ, and the proposal
factorizes over the components of xt . Figure 5 illustrates the result for dx = {3, 5, 10}
with N = 8. vsmc gets to the same elbo faster.
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Figure 5: The estimated elbo of the neural population test data as a function
of iterations for vsmc (this paper) and iwae, for dx = {3, 5, 10} and T = 21.

6 Conclusions

We introduced the variational sequential Monte Carlo (vsmc) family, a new vari-
ational approximating family that provides practitioners with a flexible, accu-
rate, and powerful approximate Bayesian inference algorithm. vsmc melds vari-
ational inference (vi) and sequential Monte Carlo (smc). This results in a varia-
tional approximation that lets us trade-off fidelity to the posterior with computa-
tional complexity.
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Appendix

A Variational Sequential Monte Carlo – Supplementary
Material

A.1 Proof of Proposition 1

We start by noting that the distribution of all random variables generated by the
vsmc algorithm is given by

φ̃(x1:N
1:T , a

1:N
1:T−1, bT ;λ) =

wbTT∑
` w

`
T

N∏
i=1

r(xi1 ;λ) ·
T∏
t=2

N∏
i=1

w
ait−1
t−1∑
` w

`
t−1

r(xit |x
ait−1
t−1 ;λ). (12)

We are interested in the marginal distribution

q(x1:T ;λ) , φ̃(x1:T ;λ) = Eb1:T
[φ̃(xb1:T

1:T , b1:T ;λ)].

A key observation is that the distribution of b1:T | x1:T , the conditional distribu-
tion of the ancestral path of the returned particle, is uniform on {1, . . . , N }T . Thus
we get

q(x1:T ;λ) =
φ̃(xb1:T

1:T , b1:T ;λ)

φ̃(b1:T | x1:T ;λ)
=

1
N−T

∑
a
−b1:T−1
1:T−1

∫
φ̃(xb1:T

1:T , x
¬b1:T
1:T , a¬b1:T−1

1:T−1 ;λ) dx¬b1:T
1:T ,

(13)

where

1
N−T

φ̃(xb1:T
1:T , x

¬b1:T
1:T , a¬b1:T−1

1:T−1 ;λ) = N T wb1
1∑
` w

`
1

r(xb1
1 ;λ)

T∏
t=2

wbtt∑
` w

`
t

r(xbtt | x
bt−1
t−1 ;λ)

·
N∏
i=1
i,b1

r(xi1 ;λ) ·
T∏
t=2

N∏
i=1
i,bt

w
ait−1
t−1∑
` w

`
t−1

r(xit |x
ait−1
t−1 ;λ)

= p(xb1
1 , y1)

T∏
t=2

p(xb1:t
1:t , y1:t)

p(xb1:t−1
1:t−1 , y1:t−1)

T∏
t=1

1
1
N

∑
` w

`
t

·
N∏
i=1
i,b1

r(xi1 ;λ)

·
T∏
t=2

N∏
i=1
i,bt

w
ait−1
t−1∑
` w

`
t−1

r(xit |x
ait−1
t−1 ;λ)

= p(xb1:T
1:T , y1:T )

T∏
t=1

1
1
N

∑
` w

`
t

· φ̃(x¬b1:T
1:T , a¬b1:T−1

1:T−1 ;λ).
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We insert the above expression in (13) and we get

q(x1:T ;λ) = p(xb1:T
1:T , y1:T )

∑
a
¬b1:T−1
1:T−1

∫  T∏
t=1

1
N

N∑
i=1

wit


−1

· φ̃(x¬b1:T
1:T , a¬b1:T−1

1:T−1 ;λ) dx¬b1:T
1:T

= p(xb1:T
1:T , y1:T )E

φ̃(x
¬b1:T
1:T ,a

¬b1:T−1
1:T−1 ;λ)


 T∏
t=1

1
N

N∑
i=1

wit


−1 . (14)

�

A.2 Proof of Theorem 1

The evidence lower bound (elbo), using the above result about the distribution
of q(x1:T ;λ), is given by

L(λ) = Eq(x1:T ;λ) [log p(x1:T , y1:T ) − log q(x1:T ;λ)]

= −
∫ p(xb1:T

1:T , y1:T )E
φ̃(x

¬b1:T
1:T ,a

¬b1:T−1
1:T−1 ;λ)

 1∏T
t=1

1
N

∑N
i=1 w

i
t

 ·

· logE
φ̃(x

¬b1:T
1:T ,a

¬b1:T−1
1:T−1 ;λ)

 1∏T
t=1

1
N

∑N
i=1 w

i
t


dxb1:T

1:T . (15)

Note that −t log t is a concave function for t > 0, this means by the conditional
Jensen’s inequality we have −E[t] logE[t] ≥ −E[t log t]. If we apply this to (15) we
get

L(λ) ≥
∫

E
φ̃(x

¬b1:T
1:T ,a

¬b1:T−1
1:T−1 ;λ)

 p(xb1:T
1:T , y1:T )∏T

t=1
1
N

∑N
i=1 w

i
t

T∑
t=1

log

 1
N

N∑
i=1

wit


dxb1:T

1:T

= Eφ̃(x1:N
1:T ,a

1:N
1:T−1 ;λ)

 T∑
t=1

log

 1
N

N∑
i=1

wit


 = L̃(λ),

where the last step follows because q(x1:T ;λ) is the marginal of φ̃(x1:N
1:T , a

1:N
1:T−1 ;λ).

�

A.3 Stochastic Optimization

For the control variates we use

T∑
t=2

ctEs( · )φ̃( · | · ;λ)

 N∑
i=1

∇ logw
ait−1
t−1 −

N∑
`=1

w`t−1∑
m w

m
t−1
∇ logw`t−1


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where

ct = Es( · )φ̃( · | · ;λ)

 T∑
t′=t

log

 1
N

N∑
i=1

wit′


 .

In practice we use a stochastic estimate of ct .

For T = 2 we can use a leave-one-out estimator of the ancestor variable score
function gradient

N∑
i=1

Es( · )φ̃( · | · ;λ)

log

N − 1
N

∑N
`=1 w

`
2∑

j,i w
j
2


∇ logw

ai1
1 −

N∑
`=1

w`1∑
m w

m
1
∇ logw`1


 .

Score Function Gradient Below we provide the derivation of a score function-like
estimator that is applicable in very general settings. However, we have found that
in practice the variance tends to be quite high.

∇L̃(λ) = ∇Eφ̃(x1:N
1:T ,a

1:N
1:T−1 ;λ) [log p̂(y1:T )]

= Eφ̃(x1:N
1:T ,a

1:N
1:T−1 ;λ)

[
∇ log p̂(y1:T ) + log p̂(y1:T )∇ log φ̃(x1:N

1:T , a
1:N
1:T−1 ;λ)

]
,

with

∇ log p̂(y1:T ) = ∇
T∑
t=1

log

 1
N

N∑
i=1

wit

 =
T∑
t=1

N∑
i=1

wit∑
` w

`
t

∇ logwit ,

and

∇ log φ̃(x1:N
1:T , a

1:N
1:T−1 ;λ)

=
N∑
i=1

∇ log r(xi1 ;λ) +
T∑
t=2

∇ log r(xit |x
ait−1
t−1 ;λ) + ∇ logw

ait−1
t−1 −

N∑
`=1

w̄`t−1∇ logw`t−1


 .

A.4 Scaling With Dimension

In this section we study how the methods compare on a simple toy model defined
by

p(x1:T , y1:T ) =
T∏
t=1

N (xt ; 0, 1)N (yt ; x2
t , 1).

We study the data set yt = 3,∀t. Figure 6 shows the result when we let the number
of samples in importance weighted auto-encoder (iwae) (variational importance
sampling (vis)) and vsmc grow with the dimension N = 2T . For low T the
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(a) λiwae = λ�vb (b) λiwae = λ�vsmc

Figure 6: elbo, for standard vb, iwae, and vsmc, as a function of the di-
mension T of a toy problem. Here we set the number of samples in iwae
and vsmc to be N = 2T .

optimal parameters for iwae are close to λ�
vsmc. On the other hand for high T ,

the optimal parameters for iwae are close to those of standard variational Bayes
(vb), i.e. λ�

vb. Figure 6 indicates that just by letting N ∝ T , vsmc can achieve
arbitrarily good approximation of p(x1:T | y1:T ) even if T →∞. This holds, under
some regularity conditions, even if p(x1:T , y1:T ) is a state space model (Bérard
et al., 2014). This asymptotic approximation property is not satisfied by vis, we
see in Figure 6 that the approximation deteriorates as T increases. Note that this
does not hold if the dimension of the latent space, i.e. dim(xt), tends to infinity
rather than the number of time points T .



Bibliography 259

Bibliography

E. Archer, I. Memming Park, L. Buesing, J. Cunningham, and L. Paninski. Black
box variational inference for state space models. arXiv:1511.07367, November
2015.

Philip Bachman and Doina Precup. Training deep generative models: Variations
on a theme. In NIPS Approximate Inference Workshop, 2015.

Matthew J. Beal and Zoubin Ghahramani. The variational Bayesian EM algorithm
for incomplete data: with application to scoring graphical model structures.
Bayesian statistics, 2003.

Yuri Burda, Roger Grosse, and Ruslan Salakhutdinov. Importance weighted au-
toencoders. In International Conference on Learning Representations, 2016.

Jean Bérard, Pierre Del Moral, and Arnaud Doucet. A lognormal central limit the-
orem for particle approximations of normalizing constants. Electronic Journal
of Probability, 2014.

Olivier Cappé, Eric Moulines, and Tobias Rydén. Inference in Hidden Markov
Models. Springer-Verlag New York, 2005.

Siddhartha Chib, Yasuhiro Omori, and Manabu Asai. Multivariate Stochastic
Volatility, pages 365–400. Springer Berlin Heidelberg, Berlin, Heidelberg,
2009.

J. Cornebise. Adaptive Sequential Monte Carlo Methods. PhD thesis, University
Pierre and Marie Curie–Paris 6, 2009.

C. Cremer, Q. Morris, and D. Duvenaud. Reinterpreting importance-weighted
autoencoders. arXiv:1704.02916, April 2017.

Pierre Del Moral. Feynman-Kac Formulae: Genealogical and interacting particle
systems with applications. Springer-Verlag New York, 2004.

Pierre Del Moral, Arnaud Doucet, and Ajay Jasra. Sequential monte carlo sam-
plers. Journal of the Royal Statistical Society: Series B (Statistical Methodol-
ogy), 2006.

Laurent Dinh, David Krueger, and Yoshua Bengio. Nice: Non-linear independent
components estimation. arXiv:1410.8516, 2014.

Arnaud Doucet and Adam M Johansen. A tutorial on particle filtering and
smoothing: Fifteen years later. Handbook of nonlinear filtering, 12(656-704):
3, 2009.

Arnaud Doucet, Nando De Freitas, and Neil Gordon. An introduction to sequen-
tial Monte Carlo methods. In Sequential Monte Carlo methods in practice.
Springer-Verlag New York, 2001.



260 Paper H Variational Sequential Monte Carlo

Yuanjun Gao, Evan W Archer, Liam Paninski, and John P Cunningham. Linear
dynamical neural population models through nonlinear embeddings. In Ad-
vances in Neural Information Processing Systems, 2016.

Neil J. Gordon, David J. Salmond, and Adrian F. M. Smith. Novel approach to
nonlinear/non-Gaussian Bayesian state estimation. Radar and Signal Process-
ing, IEE Proceedings F, 140(2):107 –113, April 1993.

Shixiang Gu, Zoubin Ghahramani, and Richard E Turner. Neural adaptive se-
quential Monte Carlo. In Advances in Neural Information Processing Systems,
2015.

Pieralberto Guarniero, Adam M. Johansen, and Anthony Lee. The iterated aux-
iliary particle filter. Journal of the American Statistical Association, 112(520):
1636–1647, 2017.

M. D. Hoffman, D. M. Blei, C. Wang, and J. Paisley. Stochastic variational infer-
ence. Journal of Machine Learning Research, 14:1303–1347, May 2013.

J. H. Huggins and D. M. Roy. Sequential Monte Carlo as approximate sampling:
bounds, adaptive resampling via ∞-ESS, and an application to particle Gibbs.
arXiv:1503.00966v2, March 2017.

Matthew Johnson, David K Duvenaud, Alex Wiltschko, Ryan P Adams, and
Sandeep R Datta. Composing graphical models with neural networks for struc-
tured representations and fast inference. In Advances in Neural Information
Processing Systems, 2016.

M. I. Jordan, Z. Ghahramani, T. S. Jaakkola, and L. K. Saul. An introduction to
variational methods for graphical models. Machine Learning, 37(2):183–233,
November 1999.

D. P. Kingma and M. Welling. Auto-encoding variational Bayes. In International
Conference on Learning Representations, 2014.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
In International Conference on Learning Representations, 2015.

Genshiro Kitagawa. Monte Carlo filter and smoother for non-Gaussian nonlinear
state space models. Journal of computational and graphical statistics, 5(1):1–
25, 1996.

R. Krishnan, U. Shalit, and D. Sontag. Structured inference networks for nonlin-
ear state space models. In Thirty-First AAAI Conference on Artificial Intelli-
gence, 2017.

Alp Kucukelbir, Dustin Tran, Rajesh Ranganath, Andrew Gelman, and David M.
Blei. Automatic differentiation variational inference. Journal of Machine
Learning Research, 18(1):430–474, January 2017. ISSN 1532-4435.



Bibliography 261

T. A. Le, M. Igl, T. Jin, T. Rainforth, and F. Wood. Auto-Encoding Sequential
Monte Carlo. arXiv:1705.10306, May 2017.

Lars Maaløe, Casper Kaae Sønderby, Søren Kaae Sønderby, and Ole Winther. Aux-
iliary deep generative models. In International Conference on Machine Learn-
ing, 2016.

C. J. Maddison, D. Lawson, G. Tucker, N. Heess, M. Norouzi, A. Mnih, A. Doucet,
and Y. Whye Teh. Filtering variational objectives. In Advances in Neural Infor-
mation Processing Systems, 2017.

Christian A. Naesseth, Fredrik Lindsten, and Thomas B Schön. Sequential Monte
Carlo for graphical models. In Advances in Neural Information Processing
Systems, 2014.

Christian A. Naesseth, Fredrik Lindsten, and Thomas B Schön. Nested sequen-
tial Monte Carlo methods. In International Conference on Machine Learning,
2015.

Christian A. Naesseth, Francisco J. R. Ruiz, Scott W. Linderman, and David M.
Blei. Reparameterization gradients through acceptance-rejection sampling al-
gorithms. In Proceedings of the 20th International Conference on Artificial
Intelligence and Statistics, 2017.

Brooks Paige and Frank Wood. Inference networks for sequential Monte Carlo in
graphical models. In International Conference on Machine Learning, 2016.

Michael K. Pitt, Ralph dos Santos Silva, Paolo Giordani, and Robert Kohn. On
some properties of Markov chain Monte Carlo simulation methods based on
the particle filter. Journal of Econometrics, 2012.

Rajesh Ranganath, Sean Gerrish, and David M. Blei. Black box variational infer-
ence. In Artificial Intelligence and Statistics, 2014.

Rajesh Ranganath, Adler Perotte, Noémie Elhadad, and David Blei. Deep sur-
vival analysis. In Proceedings of the 1st Machine Learning for Healthcare Con-
ference, pages 101–114, 2016a.

Rajesh Ranganath, Dustin Tran, and David M. Blei. Hierarchical variational mo-
dels. In International Conference on Machine Learning, 2016b.

D. J. Rezende and S. Mohamed. Variational inference with normalizing flows. In
International Conference on Machine Learning, 2015.

D. J. Rezende, S. Mohamed, and D. Wierstra. Stochastic backpropagation and
approximate inference in deep generative models. In International Conference
on Machine Learning, 2014.

Christian Robert and George Casella. Monte Carlo Statistical Methods. Springer
Texts in Statistics. Springer, 2004.



262 Paper H Variational Sequential Monte Carlo

Francisco J. R. Ruiz, Michalis K. Titsias, and David M. Blei. The generalized
reparameterization gradient. In Advances in Neural Information Processing
Systems, 2016.

Ardavan Saeedi, Tejas D Kulkarni, Vikash Mansinghka, and Samuel Gershman.
Variational particle approximations. arXiv preprint arXiv:1402.5715, 2014.

Tim Salimans, Diederik P. Kingma, and Max Welling. Markov chain Monte Carlo
and variational inference: Bridging the gap. In International Conference on
Machine Learning, 2015.

Thomas B. Schön, Fredrik Lindsten, Johan Dahlin, Johan Wågberg, Christian A.
Naesseth, Andreas Svensson, and Liang Dai. Sequential Monte Carlo meth-
ods for system identification. In Proceedings of the 17th IFAC Symposium on
System Identification (SYSID), Oct 2015.

Leland Stewart and Perry McCarty, Jr. Use of Bayesian belief networks to fuse con-
tinuous and discrete information for target recognition, tracking, and situation
assessment. In Proc. SPIE, volume 1699, pages 177–185, 1992.

Michalis Titsias and Miguel Lázaro-Gredilla. Doubly stochastic variational Bayes
for non-conjugate inference. In Proceedings of the 31st International Confer-
ence on Machine Learning, 2014.

Dustin Tran, Rajesh Ranganath, and David M. Blei. The variational Gaussian
process. In International Conference on Learning Representations, 2016.



PhD Dissertations
Division of Automatic Control

Linköping University

M. Millnert: Identification and control of systems subject to abrupt changes. Thesis
No. 82, 1982. ISBN 91-7372-542-0.
A. J. M. van Overbeek: On-line structure selection for the identification of multivariable
systems. Thesis No. 86, 1982. ISBN 91-7372-586-2.
B. Bengtsson: On some control problems for queues. Thesis No. 87, 1982. ISBN 91-7372-
593-5.
S. Ljung: Fast algorithms for integral equations and least squares identification problems.
Thesis No. 93, 1983. ISBN 91-7372-641-9.
H. Jonson: A Newton method for solving non-linear optimal control problems with gen-
eral constraints. Thesis No. 104, 1983. ISBN 91-7372-718-0.
E. Trulsson: Adaptive control based on explicit criterion minimization. Thesis No. 106,
1983. ISBN 91-7372-728-8.
K. Nordström: Uncertainty, robustness and sensitivity reduction in the design of single
input control systems. Thesis No. 162, 1987. ISBN 91-7870-170-8.
B. Wahlberg: On the identification and approximation of linear systems. Thesis No. 163,
1987. ISBN 91-7870-175-9.
S. Gunnarsson: Frequency domain aspects of modeling and control in adaptive systems.
Thesis No. 194, 1988. ISBN 91-7870-380-8.
A. Isaksson: On system identification in one and two dimensions with signal processing
applications. Thesis No. 196, 1988. ISBN 91-7870-383-2.
M. Viberg: Subspace fitting concepts in sensor array processing. Thesis No. 217, 1989.
ISBN 91-7870-529-0.
K. Forsman: Constructive commutative algebra in nonlinear control theory. Thesis
No. 261, 1991. ISBN 91-7870-827-3.
F. Gustafsson: Estimation of discrete parameters in linear systems. Thesis No. 271, 1992.
ISBN 91-7870-876-1.
P. Nagy: Tools for knowledge-based signal processing with applications to system identi-
fication. Thesis No. 280, 1992. ISBN 91-7870-962-8.
T. Svensson: Mathematical tools and software for analysis and design of nonlinear control
systems. Thesis No. 285, 1992. ISBN 91-7870-989-X.
S. Andersson: On dimension reduction in sensor array signal processing. Thesis No. 290,
1992. ISBN 91-7871-015-4.
H. Hjalmarsson: Aspects on incomplete modeling in system identification. Thesis No. 298,
1993. ISBN 91-7871-070-7.
I. Klein: Automatic synthesis of sequential control schemes. Thesis No. 305, 1993.
ISBN 91-7871-090-1.
J.-E. Strömberg: A mode switching modelling philosophy. Thesis No. 353, 1994. ISBN 91-
7871-430-3.
K. Wang Chen: Transformation and symbolic calculations in filtering and control. Thesis
No. 361, 1994. ISBN 91-7871-467-2.
T. McKelvey: Identification of state-space models from time and frequency data. Thesis
No. 380, 1995. ISBN 91-7871-531-8.
J. Sjöberg: Non-linear system identification with neural networks. Thesis No. 381, 1995.
ISBN 91-7871-534-2.
R. Germundsson: Symbolic systems – theory, computation and applications. Thesis
No. 389, 1995. ISBN 91-7871-578-4.



P. Pucar: Modeling and segmentation using multiple models. Thesis No. 405, 1995.
ISBN 91-7871-627-6.
H. Fortell: Algebraic approaches to normal forms and zero dynamics. Thesis No. 407,
1995. ISBN 91-7871-629-2.
A. Helmersson: Methods for robust gain scheduling. Thesis No. 406, 1995. ISBN 91-7871-
628-4.
P. Lindskog: Methods, algorithms and tools for system identification based on prior
knowledge. Thesis No. 436, 1996. ISBN 91-7871-424-8.
J. Gunnarsson: Symbolic methods and tools for discrete event dynamic systems. Thesis
No. 477, 1997. ISBN 91-7871-917-8.
M. Jirstrand: Constructive methods for inequality constraints in control. Thesis No. 527,
1998. ISBN 91-7219-187-2.
U. Forssell: Closed-loop identification: Methods, theory, and applications. Thesis No. 566,
1999. ISBN 91-7219-432-4.
A. Stenman: Model on demand: Algorithms, analysis and applications. Thesis No. 571,
1999. ISBN 91-7219-450-2.
N. Bergman: Recursive Bayesian estimation: Navigation and tracking applications. Thesis
No. 579, 1999. ISBN 91-7219-473-1.
K. Edström: Switched bond graphs: Simulation and analysis. Thesis No. 586, 1999.
ISBN 91-7219-493-6.
M. Larsson: Behavioral and structural model based approaches to discrete diagnosis. The-
sis No. 608, 1999. ISBN 91-7219-615-5.
F. Gunnarsson: Power control in cellular radio systems: Analysis, design and estimation.
Thesis No. 623, 2000. ISBN 91-7219-689-0.
V. Einarsson: Model checking methods for mode switching systems. Thesis No. 652, 2000.
ISBN 91-7219-836-2.
M. Norrlöf: Iterative learning control: Analysis, design, and experiments. Thesis No. 653,
2000. ISBN 91-7219-837-0.
F. Tjärnström: Variance expressions and model reduction in system identification. Thesis
No. 730, 2002. ISBN 91-7373-253-2.
J. Löfberg: Minimax approaches to robust model predictive control. Thesis No. 812, 2003.
ISBN 91-7373-622-8.
J. Roll: Local and piecewise affine approaches to system identification. Thesis No. 802,
2003. ISBN 91-7373-608-2.
J. Elbornsson: Analysis, estimation and compensation of mismatch effects in A/D convert-
ers. Thesis No. 811, 2003. ISBN 91-7373-621-X.
O. Härkegård: Backstepping and control allocation with applications to flight control.
Thesis No. 820, 2003. ISBN 91-7373-647-3.
R. Wallin: Optimization algorithms for system analysis and identification. Thesis No. 919,
2004. ISBN 91-85297-19-4.
D. Lindgren: Projection methods for classification and identification. Thesis No. 915,
2005. ISBN 91-85297-06-2.
R. Karlsson: Particle Filtering for Positioning and Tracking Applications. Thesis No. 924,
2005. ISBN 91-85297-34-8.
J. Jansson: Collision Avoidance Theory with Applications to Automotive Collision Mitiga-
tion. Thesis No. 950, 2005. ISBN 91-85299-45-6.
E. Geijer Lundin: Uplink Load in CDMA Cellular Radio Systems. Thesis No. 977, 2005.
ISBN 91-85457-49-3.
M. Enqvist: Linear Models of Nonlinear Systems. Thesis No. 985, 2005. ISBN 91-85457-
64-7.
T. B. Schön: Estimation of Nonlinear Dynamic Systems — Theory and Applications. The-
sis No. 998, 2006. ISBN 91-85497-03-7.



I. Lind: Regressor and Structure Selection — Uses of ANOVA in System Identification.
Thesis No. 1012, 2006. ISBN 91-85523-98-4.
J. Gillberg: Frequency Domain Identification of Continuous-Time Systems Reconstruc-
tion and Robustness. Thesis No. 1031, 2006. ISBN 91-85523-34-8.
M. Gerdin: Identification and Estimation for Models Described by Differential-Algebraic
Equations. Thesis No. 1046, 2006. ISBN 91-85643-87-4.
C. Grönwall: Ground Object Recognition using Laser Radar Data – Geometric Fitting,
Performance Analysis, and Applications. Thesis No. 1055, 2006. ISBN 91-85643-53-X.
A. Eidehall: Tracking and threat assessment for automotive collision avoidance. Thesis
No. 1066, 2007. ISBN 91-85643-10-6.
F. Eng: Non-Uniform Sampling in Statistical Signal Processing. Thesis No. 1082, 2007.
ISBN 978-91-85715-49-7.
E. Wernholt: Multivariable Frequency-Domain Identification of Industrial Robots. Thesis
No. 1138, 2007. ISBN 978-91-85895-72-4.
D. Axehill: Integer Quadratic Programming for Control and Communication. Thesis
No. 1158, 2008. ISBN 978-91-85523-03-0.
G. Hendeby: Performance and Implementation Aspects of Nonlinear Filtering. Thesis
No. 1161, 2008. ISBN 978-91-7393-979-9.
J. Sjöberg: Optimal Control and Model Reduction of Nonlinear DAE Models. Thesis
No. 1166, 2008. ISBN 978-91-7393-964-5.
D. Törnqvist: Estimation and Detection with Applications to Navigation. Thesis No. 1216,
2008. ISBN 978-91-7393-785-6.
P-J. Nordlund: Efficient Estimation and Detection Methods for Airborne Applications.
Thesis No. 1231, 2008. ISBN 978-91-7393-720-7.
H. Tidefelt: Differential-algebraic equations and matrix-valued singular perturbation.
Thesis No. 1292, 2009. ISBN 978-91-7393-479-4.
H. Ohlsson: Regularization for Sparseness and Smoothness — Applications in System
Identification and Signal Processing. Thesis No. 1351, 2010. ISBN 978-91-7393-287-5.
S. Moberg: Modeling and Control of Flexible Manipulators. Thesis No. 1349, 2010.
ISBN 978-91-7393-289-9.
J. Wallén: Estimation-based iterative learning control. Thesis No. 1358, 2011. ISBN 978-
91-7393-255-4.
J. D. Hol: Sensor Fusion and Calibration of Inertial Sensors, Vision, Ultra-Wideband and
GPS. Thesis No. 1368, 2011. ISBN 978-91-7393-197-7.
D. Ankelhed: On the Design of Low Order H-infinity Controllers. Thesis No. 1371, 2011.
ISBN 978-91-7393-157-1.
C. Lundquist: Sensor Fusion for Automotive Applications. Thesis No. 1409, 2011.
ISBN 978-91-7393-023-9.
P. Skoglar: Tracking and Planning for Surveillance Applications. Thesis No. 1432, 2012.
ISBN 978-91-7519-941-2.
K. Granström: Extended target tracking using PHD filters. Thesis No. 1476, 2012.
ISBN 978-91-7519-796-8.
C. Lyzell: Structural Reformulations in System Identification. Thesis No. 1475, 2012.
ISBN 978-91-7519-800-2.
J. Callmer: Autonomous Localization in Unknown Environments. Thesis No. 1520, 2013.
ISBN 978-91-7519-620-6.
D. Petersson: A Nonlinear Optimization Approach to H2-Optimal Modeling and Control.
Thesis No. 1528, 2013. ISBN 978-91-7519-567-4.
Z. Sjanic: Navigation and Mapping for Aerial Vehicles Based on Inertial and Imaging
Sensors. Thesis No. 1533, 2013. ISBN 978-91-7519-553-7.



F. Lindsten: Particle Filters and Markov Chains for Learning of Dynamical Systems. The-
sis No. 1530, 2013. ISBN 978-91-7519-559-9.
P. Axelsson: Sensor Fusion and Control Applied to Industrial Manipulators. Thesis
No. 1585, 2014. ISBN 978-91-7519-368-7.
A. Carvalho Bittencourt: Modeling and Diagnosis of Friction and Wear in Industrial
Robots. Thesis No. 1617, 2014. ISBN 978-91-7519-251-2.
M. Skoglund: Inertial Navigation and Mapping for Autonomous Vehicles. Thesis
No. 1623, 2014. ISBN 978-91-7519-233-8.
S. Khoshfetrat Pakazad: Divide and Conquer: Distributed Optimization and Robustness
Analysis. Thesis No. 1676, 2015. ISBN 978-91-7519-050-1.
T. Ardeshiri: Analytical Approximations for Bayesian Inference. Thesis No. 1710, 2015.
ISBN 978-91-7685-930-8.
N. Wahlström: Modeling of Magnetic Fields and Extended Objects for Localization Appli-
cations. Thesis No. 1723, 2015. ISBN 978-91-7685-903-2.
J. Dahlin: Accelerating Monte Carlo methods for Bayesian inference in dynamical models.
Thesis No. 1754, 2016. ISBN 978-91-7685-797-7.
M. Kok: Probabilistic modeling for sensor fusion with inertial measurements. Thesis
No. 1814, 2016. ISBN 978-91-7685-621-5.
J. Linder: Indirect System Identification for Unknown Input Problems: With Applications
to Ships. Thesis No. 1829, 2017. ISBN 978-91-7685-588-1.
M. Roth: Advanced Kalman Filtering Approaches to Bayesian State Estimation. Thesis
No. 1832, 2017. ISBN 978-91-7685-578-2.
I. Nielsen: Structure-Exploiting Numerical Algorithms for Optimal Control. Thesis
No. 1848, 2017. ISBN 978-91-7685-528-7.
D. Simon: Fighter Aircraft Maneuver Limiting Using MPC: Theory and Application. The-
sis No. 1881, 2017. ISBN 978-91-7685-450-1.
C. Veibäck: Tracking the Wanders of Nature. Thesis No. 1958, 2018. ISBN 978-91-7685-
200-2.


	Abstract
	Populärvetenskaplig sammanfattning
	Acknowledgments
	Contents
	I Background
	1 Introduction
	1.1 Data and machine learning
	1.1.1 Data
	1.1.2 Machine learning

	1.2 Contributions
	1.2.1 Elements of sequential Monte Carlo
	1.2.2 Sequential Monte Carlo for graphical models
	1.2.3 Nested sequential Monte Carlo
	1.2.4 Variational Monte Carlo

	1.3 Thesis outline
	1.4 Publications

	2 Probabilistic machine learning
	2.1 Modeling
	2.2 Inference
	2.3 Decision

	3 Approximate inference
	3.1 Monte Carlo methods
	3.1.1 The Monte Carlo idea
	3.1.2 Rejection sampling

	3.2 Variational inference
	3.2.1 The variational idea
	3.2.2 Coordinate ascent variational inference
	3.2.3 Stochastic gradient variational inference
	3.2.4 Variational expectation-maximization


	4 Concluding remarks
	Bibliography

	II Publications
	A Elements of Sequential Monte Carlo
	1 Introduction
	1.1 Historical Background
	1.2 Probabilistic Models and Target Distributions
	1.3 Example Code
	1.4 Outline

	2 Importance Sampling to Sequential Monte Carlo
	2.1 Importance Sampling
	2.2 Sequential Monte Carlo
	2.3 Analysis and Convergence

	3 Learning Proposals and Twisting Targets
	3.1 Designing the Proposal Distribution
	3.2 Adapting the Target Distribution

	4 Discussion
	A Proof of Unbiasedness
	B Taylor and Unscented Transforms
	Bibliography

	B Capacity estimation of two-dimensional channels using Sequential Monte Carlo
	1 Introduction
	2 Two-dimensional channel models
	2.1 Constrained channels and PGM
	2.2 High-dimensional undirected chains

	3 Sequential Monte Carlo
	3.1 Estimating the partition function using fully adapted SMC
	3.2 SMC samplers and Forward Filtering/Backward Sampling

	4 Experiments
	5 Conclusions
	Bibliography

	C Sequential Monte Carlo for Graphical Models
	1 Introduction
	2 Graphical models
	3 Sequential Monte Carlo
	3.1 Sequential decomposition of graphical models
	3.2 Sequential Monte Carlo for PGMs
	3.3 Estimating the partition function

	4 Particle MCMC and partial blocking
	5 Experiments
	5.1 Classical XY model
	5.2 Likelihood estimation in topic models
	5.3 Gaussian MRF

	6 Conclusion
	Bibliography

	D Nested Sequential Monte Carlo Methods
	1 Introduction
	2 Background and Inference Strategy
	2.1 Sequential Monte Carlo
	2.2 Adapting the Proposal Distribution

	3 Proper Weighting and Nested Importance Sampling
	3.1 Exact Approximation of the Proposal Distribution
	3.2 Modularity of Nested IS

	4 Nested Sequential Monte Carlo
	4.1 Fully Adapted SMC Samplers
	4.2 Fully Adapted Nested SMC Samplers
	4.3 Backward Simulation and Modularity of NSMC

	5 Practicalities and Related Work
	6 Experimental Results
	6.1 Gaussian State Space Model
	6.2 Non-Gaussian State Space Model
	6.3 Spatio-Temporal Model – Drought Detection

	Bibliography

	E High-dimensional Filtering using Nested Sequential Monte Carlo
	1 Introduction
	2 Sequential probabilistic models
	2.1 Markov random fields
	2.2 Spatio-temporal state space models

	3 Methodology
	3.1 Fully Adapted Sequential Monte Carlo
	3.2 Leveraging Forward Filtering–Backward Simulation
	3.3 Nested Sequential Monte Carlo
	3.4 Constructing t-1M, t and tM
	3.5 Theoretical Justification
	3.6 Modularity and implementation aspects

	4 Numerical Results
	4.1 Gaussian Model
	4.2 Soil Carbon Cycles
	4.3 Mixture Model

	A General Nested Sequential Monte Carlo
	B Theoretical Results
	B.1 Proof of Theorem 1
	B.2 Proof of Proposition 2
	B.3 Proposition 3

	C Experiments
	C.1 Comparison with Independent Resampling Particle Filter

	Bibliography

	F Interacting Particle Markov Chain Monte Carlo
	1 Introduction
	2 Background
	2.1 Sequential Monte Carlo
	2.2 Particle Gibbs

	3 Interacting Particle Markov Chain Monte Carlo
	3.1 Theoretical Justification
	3.2 Using All Particles
	3.3 Choosing P

	4 Experiments
	4.1 Linear Gaussian State Space Model
	4.2 Nonlinear State Space Model

	5 Discussion and Future Work
	A Proof of Theorem 1
	Bibliography

	G Reparameterization Gradients through Acceptance-Rejection Sampling Algorithms
	1 Introduction
	2 Variational Inference
	3 Reparameterizing the Acceptance-Rejection Sampler
	3.1 Reparameterized Rejection Sampling
	3.2 The Reparameterized Rejection Sampler in Variational Inference
	3.3 Full Algorithm

	4 Related Work
	5 Examples of Acceptance-Rejection Reparameterization
	5.1 Gamma Distribution
	5.2 Dirichlet Distribution

	6 Experiments
	7 Conclusions
	Bibliography

	H Variational Sequential Monte Carlo
	1 Introduction
	2 Background
	3 Variational Sequential Monte Carlo
	4 Perspectives on Variational SMC
	5 Empirical Study
	6 Conclusions
	A Variational Sequential Monte Carlo – Supplementary Material
	A.1 Proof of Proposition 1
	A.2 Proof of Theorem 1
	A.3 Stochastic Optimization
	A.4 Scaling With Dimension

	Bibliography




 
 
    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: fix size 6.890 x 9.843 inches / 175.0 x 250.0 mm
     Shift: none
     Normalise (advanced option): 'original'
      

        
     32
            
       D:20070320125831
       708.6614
       S5-utfall
       Blank
       496.0630
          

     Tall
     0
     0
     No
     635
     395
     None
     Up
     0.0000
     0.0000
            
                
         Both
         AllDoc
              

       PDDoc
          

     Uniform
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9b
     Quite Imposing Plus 2
     1
      

        
     280
     279
     280
      

   1
  

    
   HistoryItem_V1
   DefineBleed
        
     Range: all pages
     Request: bleed all round 14.17 points
     Bleed area is outside visible: no
      

        
     0.0000
     0
     0.0000
     14.1732
     0
     0
     581
     343
     0.0000
     Fixed
            
                
         Both
         AllDoc
              

       PDDoc
          

     0.0000
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9b
     Quite Imposing Plus 2
     1
      

        
     280
     279
     280
      

   1
  

    
   HistoryItem_V1
   StepAndRepeat
        
     Trim unused space from sheets: no
     Allow pages to be scaled: no
     Margins: left 0.00, top 0.00, right 0.00, bottom 0.00 points
     Horizontal spacing (points): 0 
     Vertical spacing (points): 0 
     Crop style 1, width 0.30, length 5.67, distance 14.17 (points)
     Add frames around each page: no
     Sheet size: 8.268 x 11.693 inches / 210.0 x 297.0 mm
     Sheet orientation: tall
     Layout: rows 0 down, columns 0 across
     Align: centre
      

        
     0.0000
     14.1732
     5.6693
     1
     Corners
     0.2999
     ToFit
     0
     0
     0.7000
     0
     0 
     0
     0.0000
     0
            
       D:20071003103129
       841.8898
       a4
       Blank
       595.2756
          

     Tall
     589
     352
     0.0000
     C
     0
            
       PDDoc
          

     0.0000
     0
     2
     1
     0
     0 
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9b
     Quite Imposing Plus 2
     1
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: fix size 6.496 x 9.449 inches / 165.0 x 240.0 mm
     Shift: none
     Normalise (advanced option): 'original'
      

        
     32
            
       D:20180201112958
       680.3150
       S5
       Blank
       467.7165
          

     Tall
     1
     0
     No
     320
     313
     None
     Down
     28.3465
     0.0000
            
                
         Both
         89
         AllDoc
         186
              

       CurrentAVDoc
          

     Uniform
     25.5118
     Bottom
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9b
     Quite Imposing Plus 2
     1
      

        
     0
     280
     279
     280
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: fix size 6.890 x 9.843 inches / 175.0 x 250.0 mm
     Shift: none
     Normalise (advanced option): 'original'
      

        
     32
            
       D:20070320125831
       708.6614
       S5-utfall
       Blank
       496.0630
          

     Tall
     0
     0
     No
     635
     395
     None
     Up
     0.0000
     0.0000
            
                
         Both
         AllDoc
              

       PDDoc
          

     Uniform
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9b
     Quite Imposing Plus 2
     1
      

        
     280
     279
     280
      

   1
  

    
   HistoryItem_V1
   DefineBleed
        
     Range: all pages
     Request: bleed all round 14.17 points
     Bleed area is outside visible: no
      

        
     0.0000
     0
     0.0000
     14.1732
     0
     0
     581
     343
     0.0000
     Fixed
            
                
         Both
         AllDoc
              

       PDDoc
          

     0.0000
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9b
     Quite Imposing Plus 2
     1
      

        
     280
     279
     280
      

   1
  

    
   HistoryItem_V1
   StepAndRepeat
        
     Trim unused space from sheets: no
     Allow pages to be scaled: no
     Margins: left 0.00, top 0.00, right 0.00, bottom 0.00 points
     Horizontal spacing (points): 0 
     Vertical spacing (points): 0 
     Crop style 1, width 0.30, length 5.67, distance 14.17 (points)
     Add frames around each page: no
     Sheet size: 8.268 x 11.693 inches / 210.0 x 297.0 mm
     Sheet orientation: tall
     Layout: rows 0 down, columns 0 across
     Align: centre
      

        
     0.0000
     14.1732
     5.6693
     1
     Corners
     0.2999
     ToFit
     0
     0
     0.7000
     0
     0 
     0
     0.0000
     0
            
       D:20071003103129
       841.8898
       a4
       Blank
       595.2756
          

     Tall
     589
     352
     0.0000
     C
     0
            
       PDDoc
          

     0.0000
     0
     2
     1
     0
     0 
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9b
     Quite Imposing Plus 2
     1
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: fix size 6.496 x 9.449 inches / 165.0 x 240.0 mm
     Shift: none
     Normalise (advanced option): 'original'
      

        
     32
            
       D:20180201112958
       680.3150
       S5
       Blank
       467.7165
          

     Tall
     1
     0
     No
     320
     313
    
     None
     Down
     28.3465
     0.0000
            
                
         Both
         89
         AllDoc
         186
              

       CurrentAVDoc
          

     Uniform
     25.5118
     Bottom
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9b
     Quite Imposing Plus 2
     1
      

        
     0
     280
     279
     280
      

   1
  

 HistoryList_V1
 qi2base





