On the Relation between the Quantum
Mechanics of Heisenberg, Born, and
Jordan, and that of Schrédinger

(Annalen der Physik (4), vol. 79, 1926)

§ 1. Introduction and Abstract

CoNsipERING the extraordinary differences between the starting-points
and the concepts of Heisenberg’s quantum mechanics® and of the
theory which has been designated *undulatory” or * physical ”
mechanics,* and has lately been described here, it is very s e that
these two new theories agree with one another with regard to the known
facts, where they differ from the old quantum theory. 1 refer, in
particular, to the peculiar ‘* half-integralness” which arises in
connection with the oscillator and the rotator. That is really very
remarkable, becanse starting-points, presentations, methods, and in
fact the whole mathematical apparatus, seem fundamentally different.
Above all, however, the departure from classical mechanics in the two
theories seems to ocour in diametrically opposed directions. In
Heisenberg’s work the classical continuous variables are replaced by
systems og discrete numerical quantities (matrices), which J)epend on
& pair of integral indices, and are defined by algebrasc equations. The
authors themselves describe the theory as a *true theory of a dis-
continuum ”.* On the other hand, wave mechanics shows just the
reverse tendency ; it is a step from classical point-mechanics towards
& contnuum-theory. In place of a process described in terms of a
finite number of dependent variables ocourring in a finite number of
total differential equations, we have a continuous field-like process in

! W. Hdmba;g. Mr{ Phys. 33, p. 879, 1925 ; M. Born and P. Jordan, sdem 34,

858, 1925, and 35, p. 557, 1028 (the latter in oollaboration with Heisenberg). I may
B;slhwod,fnrbmﬂty‘uuko,tomphoothe-thmmmuﬁm by berg, and to
quutothahattwmylu"ﬁu&ntmﬂmhgniml.nndﬂ." ting contributions

1925, and idem 110, p. 561, 1928. |
: E. . Parta I. and IL. in this collection. These parts will be continued
ﬂnﬁkhindepndnn ofthoptuentpnpar,whiohisonlyintandodtonmuluunnwﬁng

' « Quantum Mechanios I."" p. 879.
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configuration space, which is governed by a single partial differential
equation, derived from a principle of action. ’F]na principle and this
differential equation replace the equations of motion and the quantum
conditions of the older ‘ classical quantum theory .2

In what follows the very intimate snner comnection between
Heisenberg’s quantum mechanics and my wave mechanics will be
disclosed. From the formal mathematical standpoint, one might well
speak of the sdentity of the two theories. The train of thought in the
proof 18 as follows.

Heisenberg’s theory connects the solution of a problem in quantum
mechanics with the solution of a system of an infinite number of

ebraic equations, in which the unknowns—infinite matrices—are
alhed to the classical position- and momentum-co-ordinates of the
mechanical system, and functions of these, and obey peculiar caleu-
lating rules. (The relation is this: to one position-, one momentum-
co-ordinate, or to one function of these corresponds always one infinite
matrix.)

I will first show (§§ 2 and 3) how to each function of the position-
and momentum-co-ordinates there may be related a matrix in such
& manner, that these matrices, in every case, satisfy the formal cal-
culating rules of Born and Heisenberg (among which I also reckon
the so-called “ quantum condition” or ‘ interchange rule”; see
below). This relation of matrices to functions is general ; it takes no
account of the special mechanical system considered, but is the same
for all mechanical systems. (In other words : the particular Hamilton
function does not enter into the connecting law.) However, the relation
18 still indefinite to a great extent. It arises, namely, from the
auxiiary wniroduction of an arbitrary complete orthogonal system of
functions having for domain enftre configuration (N.B.—not
“ pg-space ”’, but ‘““g-space’). The provisional ieness of the
relation lhies In the fact that we can assign the aumitary réle to an
arbstrary orthogonal system. | B

After matrices are thus constructed in a very general wxgh, 8O a8 to
satisfy the general rules, I will show the following in § 4. The special
system of algebraic equations, which, in a spectal case, connects the
matrices of the position and impulse co-ordinates with the mairia of
the Hamilton function, and which the authors call * equations of
motion ”’, will be completely solved by assigning the auxiliary réle to a
definite orthogonal system, namely, to the system of proper functions
of that partial differential equation which forms the basis of my wave
mechanics. The solution of the natural bou -value problem of this
differential equation is completely equivalent to the solution of Heisen-
berg’s algebraic problem. Al Heisenberg’s matrix elements, which

! My theory was inspired by L. de Broglie, Ann. de Physique 10)3.2.22. 1925

(TM.Puiglm),andbfbmt, far remarks of A. Einstein,
Berl, Ber., 1925, p.D et 0eg. I did not atall any relstion to Heisenberg's theory
at the beginning. I naturally knew about , but was discouraged, if not
repelled, by what a to me as very diffioult of transcendental algebra,

and by the want of perspionity (Anachaulichkeit).
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may interest us from the surmise that they define * transition prob-
abilities ” or ‘“‘line intensities ”’, can. ]::il actually evalua by
differentiation and quadrature, as soon as the boundary-value problem
iuﬂu.olved. Moreover, iIn wave mechanica, these matnx elements, or
quantities that are closely related to them, have the perfectly clear
significance of amplitudes of the ial oscillations of the atom’s
electric moment. The intensity and polarisation of the emitted light
18 thus intelligible on the bass of the Mazwell- Loreniz theory. A
short preliminary sketch of this relationship is given in § 5.

§ 2. The Co-ordination of an Operator and of a Matrix with a Well-
arranged Function-symbol and the Establishment of the Produet Rule

The starting-point in the construction of matrices is given by the
simple observation that Heisenberg’s peculiar calculating laws for
functions of the double set of n quantities, q,, ¢5, - - -, gn; P1» Pa
. « « Pa (position- and canonically conjugate momentum-co-ordinates)
agree exactly with the rules, which o':g?nafy analysis makes linear
dsfferentsal operators obey in the domain of the single set of n variables,

91> G2y - - - qn- So the oco-ordination has to occur in such a manner
that each p; in the function is to be replaced by t}ale operator %&
0

~ Actually the operator a0 18 exchangeable with = where m 18

I
arbitrary, but with ¢, only, if m +!.  The c-per:au.i:t:u;:,Il obtained by
interchange and subtraction when m =/, viz,

(1) | ¢ ¢

- g~ Yogy

when applied to any arbitrary function of the ¢’s, reproduces the

function, s.e. this operator gives tdentsty. This simple fact will be

reflected in the domain of matrices as Heisenberg’s interchange rule.

After this preliminary survey, we turn to systéematic construction.

Since, as noticed above, the interchangeability does not always hold

good, then a definite operator does not correspond uniquely to a
efinite * function in the usual sense ”’ of the ¢'s and p’s, but to a

“ function-symbol written in a definite way . Moreover, since we

can perform only the operations of addition and multiplication with

the operators *a_aﬁg]’ the function of the ¢’s and p’s must be written as a

regular power series In p at least, before-we substitute % for pr. It

1s sufficient to carry out the process for a single term of such a power
series, and thus for a function of the following construction :

(2) Flae, p)=flar - - - 4)P2sPgs - - - )Pr Bg1 - - . Go)Pepr. .
We wish to expreas this as a * well-arranged ! function-symbol *’ and
relate 1t to the following operator,

1 Or “ well-ordered.”
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3 [F, - I=flg, . - q.)K‘Wp( qu)K

A - ﬂu) W
wherein, somewhat more generally than in the preliminary survey,

2, is not replaced by 53- simply, but by K2, and K stands for a

universal constant. As an abbreviation for the operator arising out of
the well-arranged function F, I havemtroduoertrl; symbol [F, « ]

In passing (s.e. only for the purpose of the present proof). The function
(in the usual sense) of ¢, . . . gu, Which is obtained byumngthe
operator on another function (m the usual sense), u(g; . . . ga), Will

be denoted by [F, u]. If @ is another well-umngeg functlon, then
[GF, u] will d&note the function u after the operator of F has
first been used on it, and then the operator of G; or, what is defined
to be the same, when the operator of GF has been used. Of course
this is not generally the same as [F@, u].

Now we connect a mairix with a well- function, like 7,
by means of its operator (3) and of an arbitrary complete orthogonal
system having for its domain the whole of ¢-space. It is done
as follows. For brenty we will sim tfl y write 2 for the group of
variables ¢y, g5, . . . g, 88 i8 usual in the theory of Integral Equations,

and write [ dx for an integral extending over the whole of g-space.
The functions

(4) h(2)Vp(7), U(2)Vp(T), Us(Z)Vp(7) . . . ad inf.

are now to form a complete orthogonal system, normalised to 1. -
Let, therefore, 1n every case

) {[ (e (2 ua)z =0 for i + &
=] for s =k,

Further, it is postulated that these functions vanish at the natural

boundary of ¢ —?sce eneral, infinity) in & way sufficient to cause
the vanshing o io

undn.ry integrals wlnch come in later on as
secondary products after certain integrations by parts.

By the operator (3) we now relate the following mainz,

© F¥ = [p(apu(2)F, wiz)ks,

to the function F represented by (2). (The way of writing the mdlm
on the left-hand side must not s t the idea of * contravariance ”;

from this point of view, here , one index was formerly written
above, and the other below; we wnte the matrix indices above,
because later we m]l also have to write matrix elements, mrrespondmg
to the ¢’s and p’s, where the lowtuf)laoe is already mupled) In
words : a matrix element is computed by multsplysing the function of
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the orthogonsal system denoted by the row-index (whereby we under-

stand always w;, not wv/p), by the “ density function” p, and by
the result arising from using our operator on the orthogonal function
tﬂ)ﬂdlng to the columm-index, and then by sntegrating the whole

domain.!
It is not very difficult to show that additive and mu.ltaphcah ve
combination of well- functions or of the ap pemumnf
works out a8 matrix addition and matrix multiphcation o
matrices. For addition the proof is trivial. For mulinplicatmn the
f runs as follows, Let G be any other well-arranged function,
e F, and

7) G~ [ (2Nl (G, w(2) i,
the matrix correeponding. We wish to form the product matnx
(FGym~ZF¥GH.

Before writing it, let us transform the expression (6) for F* ag follows.
By a series of integrations by parts, the operator [F, - ]is “revolved ”

from the function wuiz) to the function p(z)ux(z). By the expression
“revolve” (instead of, say, “push ™) I mh to convey that thﬁ
sequence of the operations reverses itself exaotl thereb
boundary integrals, which come in as “b -producta are to

(see above). The “‘revolved™ operator, incl ud.mg the cha oi
sign that acoompanies an odd number of differentiations, be

denoted by [F, - ]. For example from (3) comes

@) [F +1=(-1y . .. Kro Mg, . q.)xa—g—

a0 - - - W= aq‘aq f (a - . 'IQH):

where r=number of differentiations. By applying this symbol, we
have

(6) - Po= [ufa)F, p(zun(a) s
If we now calculate the product matrix, we get
(8) ZFH@"

-z{ [w(=)F, playus(@))dz . [plaId NG, um(z)}z}

- [(F, playnl@)16, un()}dz.
The last equation 18 simply the so-called “ relation of completeneaa

1 More briefly : ¥ is the kth *‘ development coefficient * of the operator used on
the funotion ;.
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of our orthogonal system,! applied to the ** development coefficients
of the functions

(6 um(z)] snd I, p(aun(a)}

Now in (8), let us revolve, by further integrations by parts, the

operator [F, - ]from the function p(z)us(z) back again to the function
[ i;ﬂ-.(ﬂf)], 8o that the operator regains ita oﬁg‘nﬁrm. We clearly
ge

9 (FGy= = ZFuGn f oDy 2)[FG, un(z)dz.
On the left is the (Am)th element of the £:0d110b matrix, and on the

right, by the law of connection (6), stands the (km)th element of the
matrix, corresponding to the well-arranged product FG. Q.E.D.

§ 3. Helsenberg’s Quantum Condition and the Rules for
Partial Differentiation

Since operation (1) gave identity, then corresponding to the well-
arranged function & 4 g

(10} Ds — s

we have the operator, multiplication by K, in accordance with our

law of connection, in which we incorporated a universal constant K.
Hence to function (10) corresponds the matriz

1) (pn-g)® =K [plzp(@)uz)dz=0 for i #k
=K for s=k.
That is Heisenberg’s ““ quantum relation ” if we put
h
12 K=
- Zvesy

and this may be assumed to hold from now on. It is understood that

we could have also found relation (11) by taking the two matrices
allied to ¢; and p;, viz.

(13) g = [ ap(apu(ayiz)ds,
P = K [plaua) i,

multiplying them together in different sequence and subtracting the
two results, s

Let us now turn to the “rules for partial differentiation .
A well-arranged function, like (2), is said to be differentiated partially
with respect to ¢;, when it is differentiated with respect to ¢; without
1 8ee, ¢.g., Coursnt-Hilbert, Methods of Mathematical Phyeics, 1., is

a6 It
important t0 remember that the “mhﬁmﬂmphhm"hrth"g;vﬂvgmt
coeflicients " is valid in every cass, even when the developments themselves do no¢
converge. If thess do converge, then the equivalence (8) is directly evident.
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altering the succession of the factors at each place where ¢; appears in
it, and all these resuits are added.! Then it is easy to show that the
following equation between the operators is valid :

oF 1
(14) |~ EPF-Fm - )
The line of thought is this. Instead of reslly differentiating with
respect to g;, it is very convenient aimplay to prefix p; to the function ;

as it is, p; must finally be replaced by Eﬁ' Obviously I have to divide
by K. Furthermore, when we apply the entire operator to any
function u, the operator % will act not only on that part of ¥ which

:
contains ¢; (as it ought), but also wrongly on the function u, affected
by the entire operator. This mistake s exactly corrected by subtracting
again the operation [Fp;, - 1!
Consider now partial differentiation with respect to a p;. Its
meaning for a well-arranged function, like (2), is a little simpler than

in the case of %, because the p’s only appear as power products.

We imafina every power of p; to be resolved into single factors, e.g.
think of ppym instead of p®, and we can then say: in partial
differentiation with respect to ;, every separate p; that appears in
F is to be dr once, all the other p;'s remaining; all the results
obtained are to be added. What will be the effect on the operator (3) ?

“ Every separate Ka% is to be dropped once, and all the resuits so

obtained are to be added.” ~
I maintain that on this reasoning the operational equation

(15) [g"ﬁ ' =%E[F§':-QLF, - ]

is valid. Actually, I picture the operator [Fq;, - ]as formed and now
attempt to “ push ¢; through F from right to left ”, that means,
attempt to arrive at the operator[g; ¥, -]through successive exchanges

This pushing through meets an obstacle only as often as I come

against a a——a—- With the latter I may not interchange ¢; simply, but

have to rep
d 0
(16) a"‘q*l ~ by' 1 +Q'r—-i
in the interior of the operator. The secondary products of the inter-
change, which are yielded by this “ uniformising ”’, form just the

1 We are na following Heisenberg fai in all these definitions. From
a strictly logical int the following f is tly superfluouns, and we could
have written down rul‘:: (14) and (15) t away, as ﬁhime:l in Hei-enbe:q,
and ht:.nly depen"dd npon the sum and uct rules and ox rule (11) whic
we have proved.



52 WAVE MECHANICS

desired ‘;grt\ial differential coefficients ”’, as is easily seen. After the
fmahing- ugh process is finished, the operator [g;II, « ] still remains
eft over. It would be superfluous and therefore is exphcitly sub-
tractéd mn (15). Hence (15) is proved. The equations (i4) and (15),
which have been proved for operators, naturally hold unclumged
for the matrices onging to the right-hand and left-hand sides,
because by (6) one matrix, and one only, belongs to one linear operator
(after the system uiz) has been chosen once for all).l

§ 4. The Solution of Helsenberg’s Equations of Motion

We have now shown that matrices, constructed according to
definitions (3) and (6) from well-arranged functions by the agency of
an arbitrary, complete orthogonal system (4), satisfy all Heisenberg's
calculating rules, including the intemhmn(ﬂlé). Now let us

consider a special mechanical problem, chs ised by a definite
Hamilton function '
(17) Higs, 12).

The authors of quantum mechanics take this function over from

ordinary mechanics, which naturally does not give it in a * well-
” form ; for in ordinary analysis no stress is laid on the
sequence of the factors. They therefore * normalise” or * sym-
metricalise " the function in a definite manner for their purposes.
For example, the usual mechanical function gzp;* is replaced gy |

Hoa'se + up®)

1Inpn:lmitmybanotodthstthouonrmntthisthmmil&hotmo,ntlmt
ih the sense t certainly not more than one linear differential operator can belong to
& given mairiz, acoording to our connecting Iaw (6), when the orthogonal and
the density function are prescribed. Forin(ﬂ),latthof“’ah:nsiwn.ht[ » *] be the
linear operator we are seeking and which we presume to exsat, let ¢(z) be a function
Becssinsy, but otherwise arbitzacy.  Then tho rosion o cogerentinble we often as
, but ) ' . o8 0 applied to
functions ¢(z) and [F, ua(x)] yields the following :

Jolz)e(=)(F, un(z)]d==§{/ Hz)e(zIudz)z . [zIud2)F, walz) e},
The right-hand side can be regarded as definitely known, for in it oocur only develop-

ment coeflicients of ¢(x) and the ibed matrix elements #'*. By “ revolving "
(sce above), we can change the left-hand side into the kth development coefficient of
the function
(F, o2)p(=)]
Az}

Thus all the development coefficients of this function are uniquely fixed, and thus so is
the function iteelf (Courant-Hilbert, p. 37). Since, however, p(x) was fixed before-
hand and ¢(z) is & quite arbitrary function, we can say : the result of the action of
the revolved operator on an arbiirary function, provided, of course, it can be submitted
to the operator at all, is fixed uns the matrix F*, This can only mean that
the revolved operator is uniquely fi for the notion of * operator ” is logically identical
- with the whole of the results of ita aotion. By revolving the revolved operator, we
'obtain uniquely the operator we have ht, iteelf.
Ithtobonotodthatthedoﬁdo%o&tha funotions which appear is not
nocessarily postulated-—we have not proved that a linear operator, corresponding to
sn arbitrary matrix, always exists.
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or by PrdiPr

or by Y2'n + v + i),

which are all the same, according to (11). This function is then * well-
arranged ', i.e. the sequence of the factors is inviolable. I will not
enter into the general rule for symmetricalising here ;! the idea, if I
understand it aright, is that H% is to be a ds mairsz, and in

. other respects the normalised function, regarded as one of ordmm:ﬁ
e wi

analysis, is to be identical with the one originally given.? W
sati ym;;hese demands in a direct manner, TE

en the authors postulate that the matrices ¢, p;* shall satisfy
an infinite system of equations, as “‘ equations of motion ”, and to
begin with they write this system as follows :

(18) (%ﬁ)“-(%)“ 1=1,2,8,...n
(%)"..(_%g)“ i, k=1,2,3, ... ad inf

The upper pair of indices signifies, as before in F¥, the respective
element of the matrix belonging to the well-arranged function in
question. The meaning of the partial differential coefficient on the

right-band side has just been explained, but not that of the & appearing

on the left. By it the authors signify the following. It is to gwe a
series of numbers

(19) Vi Ve Vg Vg, « . . ad inf,,
such that the above equations are fulfilled, when to the Rdt_is ascribed

the mea.ni.n.i: multiplication of the (sk)th matrix element by 274/ -1
(v¢—w). Thus, in particular, -

(%)ﬁ- 2mv = 1(v; - v ;

(‘—i,%)& =2y — ¥(v; - e,

The series of numbers (19) is not defined in any way beforehand, but

?ﬂher with the matrix elements ¢/i*, *, they form the numerical

f mowns of the system of equations (18). e latter assumes the
orm |

(20)

(Ve — v ) =';1;( Hq, -q: H)
(18°) ]
(vi —vi)pi* =3( Hp, - p H)

L * Quantum Mechanics I.”” p. 873 f seg.
* The siricler postulation—*shall {lﬁl the same quantum.mechanical equations
of motion ''—1I conaider too narrow. It arises, in my opinion, from the fact that the
nqthmmnﬂmthomlmhmprﬁmwiﬁrwdalmwﬂeq.'l—vhiohh
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when we utilise the explanation of the symbols (20), and the calculating
rules (14) and (15), and take account of (12).
We must thus satisfy this system of etiuatium, and we have no

means at our disposal, other than the suitable choice of the orthogonal
system (4), which intervenes in the formation of the matrices. 1 now
assert the following : _ |

1. The equations (18°) will in general be satisfied if we choose as
the orth system the proper ons of the natural boundary
value problem of the following partial differential equation,

(21) —[H, ¢]+ E¢=0.

Js is the unknown function of ¢,, ¢y, . . ., ¢n; F is the proper value

parameter. Of course, as density function, p(z) appears that function

of ¢, . . ., qn, by which equation (21) must be multiplied in order to

mj(e it self-adjoint. The quantities »; are found to be equal'to the

proper values B divided by A. H*® becomes a diagonal matrix, with
= E}.

2. 1f the symmetricalising of the funotion H has been effected in a
suitable way—the process of Tmetrica]jsing, in my opinion, has not
hitherto been defined uniquely—then (21) s identical with the wave
equation which 18 the basss of my wave mechanmcs.! _

Assertion 1 is almost directly evident, if we provisionally lay aside
the questions whether equation (21) gives rise at all to an intelligible
boundary value problem with the domain of enmtire g-space, and
whether it can always be made self-adjoint through multiplication by
a suitable function, etc. These questions are oly settled under
heading 2. For now we have, according to (21) an the definitions of

proper values and functions,
(22) [H, wi]=Ew,
and thus from (6) we get

BY = [ p(ajui@) H, uz)lz = B plajui (=)
(23) =0 forl+k
= E; for I-k,
and, for example,

(H@)* = ZH™g™* = Eigi®*
(24) { S

(qH)* = ZgimHmt = Eygi*,

so that the right-hand side of the first equation of (18’) takes the value

Ei- E
(25) : 7 k‘ma.

Similarly for the second equation. Thus everything asserted under 1
18 proved.

1 Equation (18%), Part II.
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Let us turn now to assertion 2, which is, that there is agreement
between the negatively taken operator of the Hamilton function (suit-
:ll_:}{ netricalised) and the wave operator of wave mechanics, I

firgt illustrate by a simple example why the procees of sym-
metricalisation seems to me to be, in the first instance, not unique.
Let, for one degree of freedom, the ordinary Hamilton function be

(26) H =§(p* +4").

Then it is admltteg that we can m function, just as it stands,
uncha over to “ quantum ics” as & * well-arranged *
function. But we can also, and seemingly indeed with as much right
to begin with, apply the well-arranged function

@n =i/ @p+eb),

where f(g) is a funotion arbitrary within wide limits. f(g) would a
in this case as a “ density function ” p(z). (26) is quite evidenﬂ;m
a special case of (27), and the guestion arises, whether (and how) it

is at all ible to distinguish the special case we are ooncerned
with, ¢.c. for more complicated H-functions. Confining ourselves to

power products only of the gi's (where we could then simply prohibit
the “ production of denominators ”’) would be most imongeym'gnt just

in the most important applications. Besides, I believe that does not

derivation of the wave equation in a form suited to the present

| 40 . 0 tae p rpose,
confining myself to the case of classical mechani thout relativi
and magnetic fields). Let, therefore, s (withou i

(28) H = Tgs, p2) + Vig),

I being a quadratic form in the p3’s. Then the wav ti be
dedblﬁ ! from the following vaﬁ’:tion problem, CCRHon R

(3-?;-3[ {:‘T';T(fh %)**-!"V(q;)}cﬁ,‘*dz-m

(29) Y with the subsidiary condition

J.-fqﬁ'A,-*da;-l.

Anabove,]dzafands for[ .o fdﬁ oo Agn; Ap~—tis the reciprocal

jofthcquarerootofthedieonmmantofthequndmﬁoform T. Ths

actor must not be omsited, because otherwise the whole procees would
not be invariant for point transformations of the ¢’s! By all means
another ?w function of the ¢’s might appear as a factor, s.c. a
function which would be invariant for a point transformation of the q’s.
(For A,, as is known, this is not the case.  Otherwise we could omit A, -+,

if this extra function was given the value A,t.)
If we indicate the derivative of 7' with respect to that argument,

! Equations (28) and (24) of Part 1.
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which originally was p, by the suffix s, we obtain, as the result of the ' the well-known manner. Also the vanishing of the proper functions at
variation, 0= 87, — BST) | }- the boundary generally occurs to an adequate degree, even if relations
(0=#(3/, - among certasn of the integrals (6) are present, which necessitate a

_ [ B 3.[ A AT (Q’h %)] | Investigation, and into which I will not enter at present. (It

(30) B rompl ? h X has to do with those matrix elements in the Kepler problem which,
according to Heisenberg, correspond to the transition from one

+(Vigy) - E)Ap‘*lﬁ}&ﬁdz ; . hyperbolic orbit to another.) |

_ Ay ' * . I have confined myself here to the case of classical mechanics,

the Eulerian variation equation thus runs : without magnetic fields, because the relativistic magnetic generalisa-
o 3 o - tion does not seem to me to be sufficiently clear yet. But we can

(31) #’1 )Y B?{A’- *T,.(qh EED) ~ Vigehp + Eyp=0. | | scarcely doubt that the complete parallel between the two new quantum

Lt _ _ _ | theories will still stand when this generalisation is obtained.

It is not difficult to see that this equation has the form of (21) if we | We conclude with a general observation on the whole formal
remember our law connecting the operators, and consider | apparatus of §§ 2, 3, and 4. The basic orthogonal system was regarded
(32) T(gn, 72) = =0T, (g1 P2) | a3 an absolutely discrete system of functions. Now, in the most
o | important applications this is not the case. Not only in the hydrogen

the Eulerian equation for homogeneous functions, applied to the | atom but also in heavier atoms the wave equation (31) must possess
uadratic form 7. In actual fact, if we detach the operator from & continuous proper value spectrum as well as a line spectrum.
&ﬁ left side of (31), with the proper value term Ky removed, and The former manifests itself, for example, in the continuous optyoal
o A0 o (32 btain the : spectra which adjoiv the limit of the series. It appeared better,

replace in it Ty gy - by ps then according to (32) we o _ | pg:hm&mﬂy, not to bu:ﬁeﬁgil;lhe formulae and the line of thought
: : : _ 0 of variation : wi generalisation, though it is indeed indispensable. The chief
lﬁg&?:iy zfeﬁzf‘mﬂgo:u%%‘(lﬁ; da%ﬁm s'ihmmﬁm ”» -: alm of this paper 18 to work out, in the clearest manner posaible, the
v Eo i p%:ra o wmhi b es it self-adjoint (except possibly for s | formal connection between the two theories, and this is certainly not
common factor) ‘and makes it invariant for point transformations, and changed, in any essential point, by the appearance of a continuous
which I would like to maintain, as long as are no definite reasons spectrum. An important precaution that we have always observed
e a unmder tha in (29) of the additional factor, -_ 3 nc&t to postulate, without further investigation, the convergence ot
v mppeuantimon od as possible, and for a definite form of the latter. | e _e:helult)iment In & series of proper functions. This precaution is

Henoce the solution of the whole system of matrix equations of @ Sepeciay cemanced by the acoumulation of the proper values at a
He; Born and Jordan is reduced to the natur:? boundary :: Jinite pownt (viz. the hmit of the series). This accumulation is most
wale pro Fenir o1 differential equation. If we have : Intimately connected with the appearance of the centinuous spectrum.

solved the boundary value problem, then by the use of (6) we can

calculate by differentiations and quadratures every matrix element we 3 5. Comparison of the Two Theories. Prospect of a Classical Under-

- o A L r

are intérested m. j standing of the Intensity and Polarisation of the Emitted Radiation
As an illustration of what is to be understood by the natural If the two theories—I might reasonably have used the singular—
boundary value problem, .. by the natural boundary ﬁfefndm;’om ﬂ:;’ should ! be tenable in the form just givenf t.e. for more complicated
the natural of oo_n.ﬁfmtaon 8pace, ‘F:h gy rewer ol systems as well, then every discussion of the superiority of the one
worked examples.® It invariably turns out that Gél:ltm‘ﬂl mﬂmﬁ z £ over the other has only an illusory object, in a certain sense. For
disltmt. bo Car for;ll;oa W.Ei;ha‘ ‘d.lﬂare_n_ f;.glut: aon T.]I;m | 3?‘ are cor:fletaly equivalent from the mathematical point of view,

0 e On o . - ¢ » . . .

only dlo“to e ol b1e o unda.ry. ,°°nd1_c of those Immm hanical orob- | v ca.llc ulca::l :n'y be a question of the subordinate point of convenience

lems with whi m?ﬂmvmﬁemmqmmtpdm tlge | 1 Thereis a resson for leaving this question The two theories initiall
domain of - the position co-ordinates 18 al_'blﬁmlly limited (example : ' hkethmnrgymﬂnumﬁommﬁmmhm;miiowhthnmtmtdth{-
a molecule in & * vessel "), then an essential allowance must. be made ; polensial arives from the interaction of pexticles, of which perhaps one, at least,
for this limitation by the introduction of suitable potential energies in ?mfy:‘om i;::v;“ mwm ﬂlng)u fm ge mt, on M:;:: :! ti: w mase
1 Cf. aleo Ansn. d. Phye. 719, p. 362 and p. 510 (i.e. Parts L. and IL). ;‘ | tithmhngupmﬂbhhhh-nmﬂomordjmrymhmimthomm{

' In Parts I and I1. of oollection. m'MMWw.HM“pdntuhngu"mmﬂyuundodMMﬁhnﬁm,




58 WAVE MECHANICS

To-day there are not a fau]gaiciats who, like Kirchhoff and
Mach, rd the task of physi eory a8 being merely a mathe-
matical description (as economical as possible) of the empirical con-
nections between observable quantities, s.e. a description which repro-
duces the connection, as far as possible, without the intervention of
unobservable elements. On this view, mathematical equivalence has
almost the same meaning as physical equivalence. In the present
case there might perhaps appear to be a certain superiority in the
matrix representation use, through its stifling of intuition, it
does not tempt us to form space-time {uctures of atomic processes,
which must perhaps remain uncontrollable. In this connection, how-
ever, the foﬂ?)rwing NW to the proof of equivalence given
above is in ing. The equivalence actually exists, and it also
exists conversely. Not only can the matrices be constructed.from the
proper functions as shown above, but also, conversely, the functions
can be constructed from the numerically given matrices. Thus the
functions do not form, as it were, an arbitrary and special * fleshly
clothing " for the bare matrix skeleton, provided to pander to the
need for intuitiveness. This really would establish the superiority of
the matrices, from the epistemological point of view. We suppose
that in the equations

(33) g = [ z)iz

the left-hand sides are given numerically and the functions u(z)
are to be found. (XN. E—The “ density function” is omitted for
simplicity ; the uy(x)’s themselves are to be orthogonal functions for the
reeent.) We may then calculate by matrix multiplication (without,
y the way, any “ revolving ”, ¢.e. integration by parts) the following
in Is,

(34) [PepsiopuaNa,

where P(z) signifies any power product of the ¢s. The totality of
these in(_) g:ufrhen ffl‘:d k Ere fixed, forms what is called the
totality of the ‘‘ moments” of the function ui(z)u(z). And it is
lmown that, under very general assumptions, a function is determined
uniquely by the totality of its moments. So all the products
ui2)u(z) are uniquely fixed, and thus also the squares wuy(x)%

and therefore also w(z) itself. The only arbitrariness lies in the

supplementary detachment of the density function p(z), e.g. *sin 6
in polar co-ordinates. No false step is to be feared there, certainly
not 8o far as epistemology 1s concerned. _
Moreover, the validity of the thesia that mathematical and physical
equivalence mean the same thing, must itself be qualified. Let
us think, for example, of the two expressions for the electrostatic

energy of a system of charged conductors, the space integral } f Kdr
and the sum $Ze; ¥V taken over the conductors, The two expreasions
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are compietely equivalent in electrostatics ; the one may be derived
from the other by integration by parts: Nevertheless we intentionally
prefer the first and say that i correctly localises the energy in space.
In the domain of electrostatics this preference has admittedly no
justification. On the contrary, it is-due simply to the fact that the
first exdpresaion remains useful in electrodynamics also, while the
second does not. |

We cannot yet say with certainty to which of the two new quantum
theories preference should be given, from thes point of view. As the
natural advocate of one of them, I will not be blamed if I frankly—
and perhaps not wholly impartially—bring forward the arguments in
its favour.

Leaving aside the special optical questions, the problems which
the course of development of atomic dynamics brings up for considera-
tion are presented to us by a?enm‘ ental physics in an eminently
intuitive form ; as, for example, how two colliding atoms or molecules
rebound from one another, or how an electron or m-{mrticle is diverted,
When it is shot through an atom with a given ve ocity and with the
initial path at a given Ferpenditmlar distance from the nucleus. In
order to treat such problems more particularly, it is necessary to survey
clearly the transition between macroscopic, perceptual mechanics and
the micro-mechanics of the atom. I have lately? explained how I
picture this transition. Micro-mechanics appears as a refinement of
macro-mechanics, which is necessitated by the geometrical and
mechanical smallness of the objects, and the transition is of the same
nature as that from geometrical to physical optics. The latter is
demanded as soon as the wave length is no longer very great com-
Ela;ed with the dimensions of the objects investigated or with the

imensions of the space inside which we wish to obtain more accurate
information about the light distribution. To me it seems extra-
ordinarily difficult to tackle problems of the above kind, as long
as we feel obliged on epistemological grounds to repress intuition
In atomic dynamics, and to operate only with such abstract ideas as
transition probabilities, energy levels, etc.

An especially important question—perhaps the cardinal question of
all atomic dynainics—is, as we know, that of the mg between the
dynamic process in the atom and the electromagnetic field, or whatever
has to appear in the place of the latter. Not only is there connected
with this the whole complex of questions of dispersion, of resonance-
and secondary-radiation, and of the natural breadth of lines, but, in
addition, the specification of certain quantities in atomic dynamics,
such as emission frequencies, line intensities, etc., has only a mere
dogmatic meaning until this coupling is described mathematically in
some form or other. Here, now, the matrix representation of atomic
dynamics has led to the conjecture that in fact the electromagnetic
field also must be represented otherwise, namely, by matrices, so that
the coupling may be mathematically formulated.” Wave mechanics

! Part IT.
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shows we are not compelled to do this in any case, for the mechanical
field scalar (which I geanote by ) is perfectly capable of entering
into the unchanged Maxwell-Lorentz equations between the electro-
etic field vectors, as the ‘‘ source  of the latter; just as, con-
- versely, the electrodynamic potentials enter into the coefficients of
the wave equation, which defines the field scalar.! In any case, it is
worth while attempting the representation of the coupling in such a
way that we bring into the un Maxwell-Lorentz equations
as four-current a four-dimensional vector, which has been suitably
derived from the mechanical field scalar of the .electronic motion
(perhaps through the medium of the field vectors themselves, or the
potentials). There even exists a hope that we can represent the wave
equation for iy equally well as a consequence of the ell-Lorentz
equations, namely, as an equation of continuity for electricity. The
difficulty in regard to the problem of several electrons, which mainly
lies in the fact that ¢ is s function in configuration space, not in real
space, must be mentioned. Nevertheless I would like to discuss the
one-electron problem a little further, showing that it may be possible
to give an extraordinarily clear interpretation of intensity and
polarisation of radiation in this manner. |
Let us consider the picture, on the wave theory, of the hydrogen
atom, when it i8 in such a state that the field Y is given by a
series of discrete proper functions, thus :

(35) ¢=§ceux(¢):ﬂ{__l n

(z stands here for three variables, e.g. 7, 8, ¢ ; the c3's are taken as real
and it is correct to take the real part). We now make the assumption
that the space density of electricity 18 given by the real part of

(36) -ﬁ%"?-

The bar ia to denote the conjugate complex function. We then
calculate for the space density, |
- .E — Eﬂ | » 2“‘
(37) space denmty=-211;l2 iom—, (@) tim( Z) 81N T(E,,—E;),
where the sum is to be taken once only over every combination (k, m).
Only term d}ﬁﬁwm enter (37) as frequencies. The former are so
low that the lengtlr of the corresponding ether wave is large compared
1 Bimilar ideas are K. Lanczos in an interesting note that has just

:Epeuod (Zeschr. |. Phya. 35, p. 812, 1926%; This note is aleo valuable as showi

at Heisenberg’s atomio dynamics is capable of a continuous interpretation as

However, Lanczos’ work has fewer ts of contact with the tmkthsnnt'-
first it was thought to have. The ion of his system, which was
provisionally left quite indefinite, is not to be sought by the idea that in some

way the nunthSn,u)dImmmbeﬂm'edwiththonm'l
function of our wave equation (21) or (31). For this Green’s function, if it exists, has
the quantum levels themsolves as proper values. Onthe other hand, it is required
that ozos’ function should have the reciprocals of the quantum lovels as proper

i i . g ——_—
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with atomic dimensions, that is, com with the region within
which (37) is markedly different from zero.! The mdiatir:Elcan there-
fore be estimated simply b{vthe dipole moment which according to (37)
the whole atom i e multiply (37) by a Cartesian co-ordinate
¢, and by the “ density function ™ p(z), (r*sin 8 in the present case)
and integrate over the whole space. According to (13), we get for the
component of the dipole moment in the direction g,

Ex—-Ey . 2nt
38 - k L -
(38) Mq 21:-( E’...;GMP F— sil T(E"' E;).
Thus we really get a “ Fourier development ” of the atom’s electric
moment, in which only term differencas appear as frequencies. The
Heisenberg matrix elements ¢/ come into the coefficients in such a
manner that their co-operating influence on the intensity and polarisa-

- tion of the part of the radiation concerned is completely intelligible

on the grounds of classical electrodynamics

The present sketch of the mechanismn of radiation is far from com-
pletely satisfactory and is in no way final. Assumption (36) makes
use, somewhat freely, of comglax calculation, in order to put to one
side undesired components of vibration whose radiation cannot be

investigated at all in the simple way used for the dipole moment of

the entire atom, because the corresponding ether wave lengths (about

0-01 A) lie far below atomic dimensions. Moreover, if we integrate
over all space, then by (5) th;:lpm density (37) gives zero and not,
e

as 18 required, a finite value, dent of the time, which requires
to be normalised to the electronic cplf:r nolusion, for com

ge. In conclusion, for complete-
ness, account should be taken of etic radiation, since if thEre 18

& spatial distribution of electric currents, radiation is possible without

the appearance of an electric moment, ¢.g. with a frame aerial.
Neverl;h_eleas 1t appears t0 be a well-founded hope that a real

understanding of the nature of emitted radiation will be obtained on

the basis of one of the two very similar analytical : 1
have been sketched here. ytical mechanisms which

(Received March 18, 1926).

! Ann. d. Phys. 79, p. 371, 1928, i.c. beginning of § 2, Part 1. here.





