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A profound formal distinction exists between the theoretical concepts
which physicists have formed regarding gases and other ponderable bodies
and the Maxwellian theory of electromagnetic processes in so–called empty
space. While we consider the state of a body to be completely determined
by the positions and velocities of a very large, yet finite, number of atoms
and electrons, we make use of continuous spatial functions to describe the
electromagnetic state of a given volume, and a finite number of parameters
cannot be regarded as sufficient for the complete determination of such a
state. According to the Maxwellian theory, energy is to be considered a con-
tinuous spatial function in the case of all purely electromagnetic phenomena
including light, while the energy of a ponderable object should, according
to the present conceptions of physicists, be represented as a sum carried
over the atoms and electrons. The energy of a ponderable body cannot be
subdivided into arbitrarily many or arbitrarily small parts, while the energy
of a beam of light from a point source (according to the Maxwellian theory
of light or, more generally, according to any wave theory) is continuously
spread an ever increasing volume.
The wave theory of light, which operates with continuous spatial func-

tions, has worked well in the representation of purely optical phenomena
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and will probably never be replaced by another theory. It should be kept in
mind, however, that the optical observations refer to time averages rather
than instantaneous values. In spite of the complete experimental confirma-
tion of the theory as applied to diffraction, reflection, refraction, dispersion,
etc., it is still conceivable that the theory of light which operates with con-
tinuous spatial functions may lead to contradictions with experience when
it is applied to the phenomena of emission and transformation of light.
It seems to me that the observations associated with blackbody radia-

tion, fluorescence, the production of cathode rays by ultraviolet light, and
other related phenomena connected with the emission or transformation of
light are more readily understood if one assumes that the energy of light
is discontinuously distributed in space. In accordance with the assumption
to be considered here, the energy of a light ray spreading out from a point
source is not continuously distributed over an increasing space but consists
of a finite number of energy quanta which are localized at points in space,
which move without dividing, and which can only be produced and absorbed
as complete units.
In the following I wish to present the line of thought and the facts which

have led me to this point of view, hoping that this approach may be useful
to some investigators in their research.

1. Concerning a Difficulty with Regard to the The-

ory of Blackbody Radiation

We start first with the point of view taken in the Maxwellian and the electron
theories and consider the following case. In a space enclosed by completely
reflecting walls, let there be a number of gas molecules and electrons which
are free to move and which exert conservative forces on each other on close
approach: i.e. they can collide with each other like molecules in the kinetic
theory of gases.1 Furthermore, let there be a number of electrons which are
bound to widely separated points by forces proportional to their distances
from these points. The bound electrons are also to participate in conserva-
tive interactions with the free molecules and electrons when the latter come

1This assumption is equivalent to the supposition that the average kinetic energies of
gas molecules and electrons are equal to each other at thermal equilibrium. It is well
known that, with the help of this assumption, Herr Drude derived a theoretical expression
for the ratio of thermal and electrical conductivities of metals.
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very close. We call the bound electrons “oscillators”: they emit and absorb
electromagnetic waves of definite periods.
According to the present view regarding the origin of light, the radiation

in the space we are considering (radiation which is found for the case of
dynamic equilibrium in accordance with the Maxwellian theory) must be
identical with the blackbody radiation — at least if oscillators of all the
relevant frequencies are considered to be present.
For the time being, we disregard the radiation emitted and absorbed

by the oscillators and inquire into the condition of dynamical equilibrium
associated with the interaction (or collision) of molecules and electrons. The
kinetic theory of gases asserts that the average kinetic energy of an oscillator
electron must be equal to the average kinetic energy of a translating gas
molecule. If we separate the motion of an oscillator electron into three
components at angles to each other, we find for the average energy E of one
of these linear components the expression

E = (R/N) T,

where R denotes the universal gas constant. N denotes the number of
“real molecules” in a gram equivalent, and T the absolute temperature.
The energy E is equal to two-thirds the kinetic energy of a free monatomic
gas particle because of the equality the time average values of the kinetic
and potential energies of the oscillator. If through any cause—in our case
through radiation processes—it should occur that the energy of an oscillator
takes on a time-average value greater or less than E, then the collisions with
the free electrons and molecules would lead to a gain or loss of energy by
the gas, different on the average from zero. Therefore, in the case we are
considering, dynamic equilibrium is possible only when each oscillator has
the average energy E.
We shall now proceed to present a similar argument regarding the inter-

action between the oscillators and the radiation present in the cavity. Herr
Planck has derived2 the condition for the dynamics equilibrium in this case
under the supposition that the radiation can be considered a completely
random process.3 He found

(Eν) = (L
3/8πν2)ρν ,

2M. Planck, Ann. Phys. 1, 99 (1900).
3This problem can be formulated in the following manner. We expand the Z component

of the electrical force (Z) at an arbitrary point during the time interval between t = 0
and t = T in a Fourier series in which Aν ≥ 0 and 0 ≤ αν ≤ 2π: the time T is taken to
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where (Eν) is the average energy (per degree of freedom) of an oscillator
with eigenfrequency ν, L the velocity of light, ν the frequency, and ρνdν
the energy per unit volume of that portion of the radiation with frequency
between ν and ν + dν.
If the radiation energy of frequency ν is not continually increasing or

decreasing, the following relations must obtain:

(R/N) T = E = Eν = (L3/8πν2)ρν ,

ρν = (R/N)(8πν
2/L3) T.

These relations, found to be the conditions of dynamic equilibrium, not only
fail to coincide with experiment, but also state that in our model there can
be not talk of a definite energy distribution between ether and matter. The
wider the range of wave numbers of the oscillators, the greater will be the
radiation energy of the space, and in the limit we obtain

∞
∫

0

ρν dν =
R

N
·
8π

L3
· T

∞
∫

0

ν2 dν =∞.

be very large relative to all the periods of oscillation that are present:

Z =

ν=∞
∑

ν=1

Aν sin
(

2πν
t

T
+ αν

)

,

If one imagines making this expansion arbitrary often at a given point in space at randomly
chosen instants of time, one will obtain various sets of values of Aν and αν . There then
exist for the frequency of occurrence of different sets of values of Aν and αν (statistical)
probabilities dW of the form:

dW = f(a1, A2, . . . , α1, α2, . . .)dA1dA2 . . . dα1dα2 . . . ,

The radiation is then as disordered as conceivable if

f(A1, A2, . . . α1, α2, . . .) = F1(A1)F2(A2) . . . f1(α1)f2(α2) . . . ,

i.e., if the probability of a particular value of A or α is independent of other values of A or
α. The more closely this condition is fulfilled (namely, that the individual pairs of values
of Aν and αν are dependent upon the emission and absorption processes of specific groups
of oscillators) the more closely will radiation in the case being considered approximate a
perfectly random state.
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2. Concerning Planck’s Determination of the Fun-

damental Constants

We wish to show in the following that Herr Planck’s determination of the
fundamental constants is, to a certain extent, independent of his theory of
blackbody radiation.
Planck’s formula,4 which has proved adequate up to this point, gives for

ρν

ρν =
αν3

eβν/T − 1
,

α = 6.10× 10−56,

β = 4.866× 10−11.

For large values of T/ν; i.e. for large wavelengths and radiation densities,
this equation takes the form

ρν = (α/β) ν
2T.

It is evident that this equation is identical with the one obtained in Sec. 1
from the Maxwellian and electron theories. By equating the coefficients of
both formulas one obtains

(R/N)(8π/L3) = (α/β)

or
N = (β/α)(8πR/L3) = 6.17× 1023.

i.e., an atom of hydrogen weighs 1/N grams = 1.62×10−24 g. This is exactly
the value found by Herr Planck, which in turn agrees with values found by
other methods.
We therefore arrive at the conclusion: the greater the energy density and

the wavelength of a radiation, the more useful do the theoretical principles
we have employed turn out to be: for small wavelengths and small radiation
densities, however, these principles fail us completely.
In the following we shall consider the experimental facts concerning

blackbody radiation without invoking a model for the emission and propa-
gation of the radiation itself.

4M. Planck, Ann. Phys. 4, 561 (1901).
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3. Concerning the Entropy of Radiation

The following treatment is to be found in a famous work by Herr W. Wien
and is introduced here only for the sake of completeness.
Suppose we have radiation occupying a volume v. We assume that the

observable properties of the radiation are completely determined when the
radiation density ρ(ν) is given for all frequencies.5 Since radiation of differ-
ent frequencies are to be considered independent of each other when there is
no transfer of heat or work, the entropy of the radiation can be represented
by

S = v

∞
∫

0

ϕ(ρ, ν) dν,

where ϕ is a function of the variables ρ and ν.
ϕ can be reduced to a function of a single variable through formulation of

the condition that the entropy of the radiation is unaltered during adiabatic
compression between reflecting walls. We shall not enter into this problem,
however, but shall directly investigate the derivation of the function ϕ from
the blackbody radiation law.
In the case of blackbody radiation, ρ is such a function of ν that the

entropy is maximum for a fixed value of energy; i.e.,

δ

∞
∫

0

ϕ (ρ, ν) dν = 0,

providing

δ

∞
∫

0

ρdν = 0.

From this it follows that for every choice of δρ as a function of ν

∞
∫

0

(

∂ϕ

∂ρ
− λ

)

δρdν = 0,

where λ is independent of ν. In the case of blackbody radiation, therefore,
∂ϕ/∂ρ is independent of ν.

5This assumption is an arbitrary one. One will naturally cling to this simplest assump-
tion as long as it is not controverted experiment.
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The following equation applies when the temperature of a unit volume
of blackbody radiation increases by dT

dS =

ν=∞
∫

ν=0

(

∂ϕ

∂ρ

)

dρdν,

or, since ∂ϕ/∂ρ is independent of ν.

dS = (∂ϕ/∂ρ) dE.

Since dE is equal to the heat added and since the process is reversible, the
following statement also applies

dS = (1/T ) dE.

By comparison one obtains

∂ϕ/∂ρ = 1/T.

This is the law of blackbody radiation. Therefore one can derive the law
of blackbody radiation from the function ϕ, and, inversely, one can derive
the function ϕ by integration, keeping in mind the fact that ϕ vanishes when
ρ = 0.

4. Asymptotic from for the Entropy of Monochro-

matic Radiation at Low Radiation Density

From existing observations of the blackbody radiation, it is clear that the
law originally postulated by Herr W. Wien,

ρ = αν3e−βν/T ,

is not exactly valid. It is, however, well confirmed experimentally for large
values of ν/T . We shall base our analysis on this formula, keeping in mind
that our results are only valid within certain limits.
This formula gives immediately

(1/T ) = −(1/βν) ln (ρ/αν3)
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and then, by using the relation obtained in the preceeding section,

ϕ(ρ, ν) = −
ρ

βν

[

ln

(

ρ

αν3

)

− 1

]

.

Suppose that we have radiation of energy E, with frequency between ν and
ν + dν, enclosed in volume v. The entropy of this radiation is:

S = vϕ(ρ, ν)dν = −
E

βν

[

ln

(

E

vαν3dν

)

− 1

]

.

If we confine ourselves to investigating the dependence of the entropy on
the volume occupied by the radiation, and if we denote by S0 the entropy
of the radiation at volume v0, we obtain

S − S0 = (E/βν) ln (v/v0).

This equation shows that the entropy of a monochromatic radiation of
sufficiently low density varies with the volume in the same manner as the
entropy of an ideal gas or a dilute solution. In the following, this equation
will be interpreted in accordance with the principle introduced into physics
by Herr Boltzmann, namely that the entropy of a system is a function of
the probability its state.

5. Molecular–Theoretic Investigation of the De-

pendence of the Entropy of Gases and Dilute solu-

tions on the volume

In the calculation of entropy by molecular–theoretic methods we frequently
use the word “probability” in a sense differing from that employed in the
calculus of probabilities. In particular “gases of equal probability” have fre-
quently been hypothetically established when one theoretical models being
utilized are definite enough to permit a deduction rather than a conjecture.
I will show in a separate paper that the so-called “statistical probability” is
fully adequate for the treatment of thermal phenomena, and I hope that by
doing so I will eliminate a logical difficulty that obstructs the application
of Boltzmann’ s Principle. here, however, only a general formulation and
application to very special cases will be given.

8



If it is reasonable to speak of the probability of the state of a system, and
futhermore if every entropy increase can be understood as a transition to a
state of higher probability, then the entropy S1 of a system is a function of
W1, the probability of its instantaneous state. If we have two noninteracting
systems S1 and S2, we can write

S1 = ϕ1(W1),

S2 = ϕ2(W2).

If one considers these two systems as a single system of entropy S and
probability W , it follows that

S = S1 + S2 = ϕ(W )

and
W =W1 ·W2.

The last equation says that the states of the two systems are independent
of each other.
From these equation it follows that

ϕ(W1 ·W2) = ϕ1(W1) + ϕ2(W2)

and finally
ϕ1(W1) = C ln(W1) + const,

ϕ2(W2) = C ln(W2) + const,

ϕ(W ) = C ln(W ) + const.

The quantity C is therefore a universal constant; the kinetic theory of gases
shows its value to be R/N , where the constants R and N have been defined
above. If S0 denotes the entropy of a system in some initial state and W
denotes the relative probability of a state of entropy S, we obtain in general

S − S0 = (R/N) ln W.

First we treat the following special case. We consider a number (n) of
movable points (e.g., molecules) confined in a volume v0. Besides these
points, there can be in the space any number of other movable points of any
kind. We shall not assume anything concerning the law in accordance with
which the points move in this space except that with regard to this motion,
no part of the space (and no direction within it) can be distinguished from
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any other. Further, we take the number of these movable points to be so
small that we can disregard interactions between them.
This system, which, for example, can be an ideal gas or a dilute solution,

possesses an entropy S0. Let us imagine transferring all n movable points
into a volume v (part of the volume v0) without anything else being changed
in the system. This state obviously possesses a different entropy (S), and
now wish to evaluate the entropy difference with the help of the Boltzmann
Principle.
We inquire: How large is the probability of the latter state relative to the

original one? Or: How large is the probability that at a randomly chosen
instant of time all n movable points in the given volume v0 will be found by
chance in the volume v?
For this probability, which is a “statistical probability”, one obviously

obtains:
W = (v/v0)

n;

By applying the Boltzmann Principle, one then obtains

S − S0 = R (n/N) ln (v/v0).

It is noteworthy that in the derivation of this equation, from which one
can easily obtain the law of Boyle and Gay–Lussac as well as the analogous
law of osmotic pressure thermodynamically,6 no assumption had to be made
as to a law of motion of the molecules.

6. Interpretation of the Expression for the volume

Dependence of the entropy of Monochromatic Ra-

diation in Accordance with Boltzmann’s Principle

In Sec. 4, we found the following expression for the dependence of the
entropy of monochromatic radiation on the volume

S − S0 = (E/βν) ln (v/v0).
6If E is the energy of the system, one obtains:

−d · (E − TS) = pdv = TdS = RT · (n/N) · (dv/v);

therefore
pv = R · (n/N) · T.
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If one writes this in the from

S − S0 = (R/N) ln
[

(v/v0)
(N/R)(E/βν)

]

.

and if one compares this with the general formula for the Boltzmann prin-
ciple

S − S0 = (R/N) lnW,

one arrives at the following conclusion:
If monochromatic radiation of frequency ν and energy E is enclosed by

reflecting walls in a volume v0, the probability that the total radiation energy
will be found in a volume v (part of the volume v0) at any randomly chosen
instant is

W = (v/v0)
(N/R)(E/βν).

From this we further conclude that: Monochromatic radiation of low
density ( within the range of validity of Wien’s radiation formula) behaves
thermodynamically as though it consisted of a number of independent energy
quanta of magnitude Rβν/N .
We still wish to compare the average magnitude of the energy quanta

of the blackbody radiation with the average translational kinetic energy
of a molecule at the same temperature. The latter is 3/2(R/N)T , while,
according to the Wien formula, one obtains for the average magnitude of an
energy quantum

∞
∫

0

αν3e−βν/Tdν

/

∞
∫

0

N

Rβν
αν3e−βν/Tdν = 3(RT/N).

If the entropy of monochromatic radiation depends on volume as though
the radiation were a discontinuous medium consisting of energy quanta of
magnitude Rβν/N , the next obvious step is to investigate whether the laws
of emission and transformation of light are also of such a nature that they
can be interpreted or explained by considering light to consist of such energy
quanta. We shall examine this question in the following.

7. Concerning Stokes’s Rule

According to the result just obtained, let us assume that, when monochro-
matic light is transformed through photoluminescence into light of a different
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frequency, both the incident and emitted light consist of energy quanta of
magnitude Rβν/N , where ν denotes the relevant frequency. The transfor-
mation process is to be interpreted in the following manner. Each incident
energy quantum of frequency ν1 is absorbed and generates by itself–at least
at sufficiently low densities of incident energy quanta – a light quantum of
frequency ν2; it is possible that the absorption of the incident light quanta
can give rise to the simultaneous emission of light quanta of frequencies
ν3, ν4 etc., as well as to energy of other kinds, e.g., heat. It does not matter
what intermediate processes give rise to this final result. If the fluorescent
substance is not a perpetual source of energy, the principle of conservation
of energy requires that the energy of an emitted energy quantum cannot be
greater than that of the incident light quantum; it follows that

R βν2/N ≤ R βν1/N

or
ν2 ≤ ν1.

This is the well–known Stokes’s Rule.
It should be strongly emphasized that according to our conception the

quantity of light emitted under conditions of low illumination (other con-
ditions remaining constant) must be proportional to the strength of the
incident light, since each incident energy quantum will cause an elementary
process of the postulated kind, independently of the action of other incident
energy quanta. In particular, there will be no lower limit for the intensity
of incident light necessary to excite the fluorescent effect.
According to the conception set forth above, deviations from Stokes’s

Rule are conceivable in the following cases:
1. when the number of simultaneously interacting energy quanta per

unit volume is so large that an energy quantum of emitted light can receive
its energy from several incident energy quanta;
2. when the incident (or emitted) light is not of such a composition that

it corresponds to blackbody radiation within the range of validity of Wien’s
Law, that is to say, for example, when the incident light is produced by a
body of such high temperature that for the wavelengths under consideration
Wien’s Law is no longer valid.
The last-mentioned possibility commands especial interest. According

to the conception we have outlined, the possibility is not excluded that a
“non-Wien radiation” of very low density can exhibit an energy behavior
different from that of a blackbody radiation within the range of validity of
Wien’s Law.
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8. Concerning the Emission of Cathode Rays

Through Illumination of Solid Bodies

The usual conception that the energy of light is continuously distributed over
the space through which it propagates, encounters very serious difficulties
when one attempts to explain the photoelectric phenomena, as has been
pointed out in Herr Lenard’s pioneering paper.7

According to the concept that the incident light consists of energy quanta
of magnitude Rβν/N , however, one can conceive of the ejection of electrons
by light in the following way. Energy quanta penetrate into the surface
layer of the body, and their energy is transformed, at least in part, into
kinetic energy of electrons. The simplest way to imagine this is that a light
quantum delivers its entire energy to a single electron: we shall assume that
this is what happens. The possibility should not be excluded, however, that
electrons might receive their energy only in part from the light quantum.
An electron to which kinetic energy has been imparted in the interior of

the body will have lost some of this energy by the time it reaches the surface.
Furthermore, we shall assume that in leaving the body each electron must
perform an amount of work P characteristic of the substance. The ejected
electrons leaving the body with the largest normal velocity will be those that
were directly at the surface. The kinetic energy of such electrons is given by

R βν/N − P.

In the body is charged to a positive potential Π and is surrounded by
conductors at zero potential, and if Π is just large enough to prevent loss of
electricity by the body, if follows that:

Πǫ = Rβν/N − P

where ǫ denotes the electronic charge, or

ΠE = Rβν − P ′

where E is the charge of a gram equivalent of a monovalent ion and P ′ is
the potential of this quantity of negative electricity relative to the body.8

7P. Lenard, Ann. Phys., 8, 169, 170 ( 1902).
8If one assumes that the individual electron is detached from a neutral molecule by

light with the performance of a certain amount of work, nothing in the relation derived
above need be changed; one can simply consider P ′ as the sum of two terms.
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If one takes E = 9.6× 103, then Π · 10−8 is the potential in volts which
the body assumes when irradiated in a vacuum.
In order to see whether the derived relation yields an order of magnitude

consistent with experience, we take P ′ = 0, ν = 1.03×1015 (corresponding to
the limit of the solar spectrum toward the ultraviolet) and β = 4.866×10−11.
We obtain Π·107 = 4.3 volts, a result agreeing in order magnitude with those
of Herr Lenard.9

If the derived formula is correct, then Π, when represented in Cartesian
coordinates as a function of the frequency of the incident light, must be
a straight line whose slope is independent of the nature of the emitting
substance.
As far as I can see, there is no contradiction between these conceptions

and the properties of the photoelectric observed by Herr Lenard. If each
energy quantum of the incident light, independently of everything else, de-
livers its energy of electrons, then the velocity distribution of the ejected
electrons will be independent of the intensity of the incident light; on the
other hand the number of electrons leaving the body will, if other conditions
are kept constant, be proportional to the intensity of the incident light.10

Remarks similar to those made concerning hypothetical deviations from
Stokes’s Rule can be made with regard to hypothetical boundaries of validity
of the law set forth above.
In the foregoing it has been assumed that the energy of at least some of

the quanta of the incident light is delivered completely to individual elec-
trons. If one does not make this obvious assumption, one obtains, in place
of the last equation:

ΠE + P ′ ≤ Rβν.

For fluorescence induced by cathode rays, which is the inverse process
to the one discussed above, one obtains by analogous considerations:

ΠE + P ′ ≥ Rβν.

In the case, of the substances investigated by Herr Lenard, PE 11is always
significantly greater than Rβν, since the potential difference, which the cath-
ode rays must traverse in order to produce visible light, amounts in some
cases to hundreds and in others to thousands of volts.12 It is therefore to

9P.Lenard, Ann. Phys. 8, pp. 163, 185, and Table I, Fig. 2 (1902).
10P. Lenard, Ref. 9, p. 150 and p. 166–168.
11Should be ΠE (translator’s note).
12P. Lenard, Ann. Phys., 12, 469 (1903).
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be assumed that the kinetic energy of an electron goes into the production
of many light energy quanta.

9. Concerning the Ionization of Gases by Ultravi-

olet Light Solid Bodies

We shall have to assume that, the ionization of a gas by ultraviolet light, an
individual light energy quantum is used for the ionization of an individual
gas molecule. From this is follows immediately that the work of ionization
(i.e., the work theoretically needed for ionization) of a molecule cannot be
greater than the energy of an absorbed light quantum capable of producing
this effect. If one denotes by J the (theoretical) work of ionization per gram
equivalent, then it follows that:

R βν ≥ J.

According to Lenard’s measurements, however, the largest effective wave-
length for air is approximately 1.9× 10−5 cm: therefore:

R βν = 6.4 · 1012 erg ≥ J.

An upper limit for the work of ionization can also be obtained from the
ionization potentials of rarefied gases. according to J. Stark13 the smallest
observed ionization potentials for air (at platinum anodes) is about 10 V.14

One therefore obtains 9.6 × 1012 as an upper limit for J , which is nearly
equal to the value found above.
There is another consequence the experimental testing of which seems

to me to be of great importance. If every absorbed light energy quantum
ionizes a molecule, the following relation must obtain between the quantity
of absorbed light L and the number of gram molecules of ionized gas j:

j = L/Rβν.

If our conception is correct, this relationship must be valid for all gases
which (at the relevant frequency) show no appreciable absorption without
ionization.

13J. Stark, Die Electrizitët in Gasen (Leipzig, 1902, p. 57)
14In the interior of gases the ionization potential for negative ions is, however, five times
greater.
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