

Jens Ogniewski

Information Coding Group

Linköpings University

Texture Compression
in

Memory- and Performance-
Constrained

Embedded Systems

Outline

Background / Motivation

DXT / PVRTC texture compression

the ePUMA Platform

Decoding speed comparison

Encoding

Quality comparison

Conclusion / Future work

Background / Motivation

 Modern embedded systems (smartphones, (mobile)
multimedia players, settop-boxes etc.) are supposed to
handle more and more multimedia applications

 Including computer graphics

 These systems are designed towards low cost, low
power consumption

 The number of electronical components and their
complexity need to be restricted

=> small, shared memories, shared memory bus

=> avoid memory accesses

Background / Motivation

 Use texture compression for graphic purposes

 Minimize usage of memory and its bus

 Enable high quality 3D graphics

 Requested characteristic:

 Low decoding complexity, high decoding speed

 Random access

 Lossy compression acceptable

 Encoding speed minor issue

DXT

 Based on S3TC, the first commercial texture
compression available

 Uses vector compression

 n Vectors are represented by a smaller number of m vectors

 Divide texture into 4x4 blocks

 Each pixel in this block is represented by 1 of 4 different
color vectors

 2 of these vectors are “given” vectors, the other 2 are
linearly interpolated, i.e.

c3 = ⅓* c1 + ⅔ * c2

c4 = ⅓* c2 + ⅔ * c1

DXT

 The two “given” vectors are directly encoded, using RGB
565
=> each of these two uses 16 bits

 Each pixel needs 2 bit to select which of the four colors
should represent it
=> 32 bits need for indexing

 64 bits are needed to encode one 4x4 block

 Compression factor of 6 (compared to uncompressed

RGB888)

 Different DXT versions available

 Only differ in how they handle transparency

 Not further discussed here

PVRTC

 Used by Imaginations Technology

 Building highly successful GPUs for embedded systems

 Makes use of the inbuilt linear interpolation hardware

 Encode 2 images whose height and width are both ¼ of
the height / width of the original image

 Decoding: upscale these two images to the original
resolution using linear interpolation

 Each pixel can again choose between four values:

 The values on its position in either of the upscaled images

 A linear combination of these two different values

 Weights of ⅜ and ⅝ are used

PVRTC

 The two images are encoded in RGB555 format

 Again, 16 bits are used to encoded one color vector

 1 bit is reserved to signalize the use of transparency

 Again, 2 bits are needed by each pixel for indexing

=> same compression rate as DXT

 But more complicated decoding process

 Worse random access

 8 color vectors need to be loaded to be able to decode one
block, i.e. 160 bits for one block (instead of only 64 as DXT)

 Mode with a compression rate of 12 also available

 Not considered here

The ePUMA Platform

 Embedded Parallel DSP with Unique Memory
architecture

 Aimed for low cost, low power embedded systems

 Designed mostly for low energy consumption

 Expected to handle 3D graphics as well

 But no dedicated texture memory, no hardware support for
interpolation

 Also limited memory and memory bandwidth

 Texture compression needed

The ePUMA Platform

 8 SIMD cores, one master processor

 Communication between the cores via ringbus

 Via DMA otherwise

 Also used to access the main memory

The ePUMA Platform

 Each SIMD:

 8 16bit datapaths, can be used as 4 32bit datapaths instead

 8bit not supported yet, but will be in future implementations

 80 kB memory

 Can hold 6 64x64 textures, 26 32x32 textures

 The number of textures may be further reduced by memory
alignment, mipmapping, or other data that needs to be stored

=> Dire need for fast, efficient texture compression

Decoding Speed (in cycles)

Task DXT1 PVRTC

Unpacking
Calculation of color the
vectors
Waiting for pipeline to finish

total

3
3
8

14

3
99
8

110

 DXT does not take full advantage of SIMD parallelism

=> in real application difference might be even more
pronounced

Encoding

 3 different encoder:

 PVRTC reference encoder (provided by Imaginations
Technology)

 SQUISH: DXT, using a clusterfit approach, an open-source
implementation of NVIDIAs reference encoder

 Line matching: an own encoder for DXT

Encoding

 Line matching

 Consider the color-values of the block as points in the RGB
color space

 The 4 color-vectors used in DXT form a line in this space

Then:

 Find line in color space with minimizes the sum of distances
between the line and the color values

 Using a standard singular-value-decomposition

 Search for candidates of the two directly encoded vectors
on this line

 Do a local search around the final candidates to find a(local)
optimum

 Needed due to approximations and rounding errors during the
SVD and the search along the line

 Also if color values in the block are very similar

 Removing this step does not significantly reduce the objective
quality or the encoder runtime

Encoding

 Squish

 Uses principal axis instead of line which minimizes
distances

Quality Comparison

Squish – PSNR: 31.24, SSIM: 0.984

Quality Comparison

Line matching – PSNR: 31.51, SSIM: 0.985

Quality Comparison

PVRTC – PSNR: 30.63, SSIM: 0.982

Quality Comparison

Squish – PSNR: 31.24, SSIM: 0.984

Quality Comparison

Line matching – PSNR: 31.51, SSIM: 0.985

Quality Comparison

PVRTC – PSNR: 30.63, SSIM: 0.982

Quality Comparison, Results (PSNR)
Task Squish Line matching PVRTC

Bark
Brick
Buildings
Clouds
Fabric
Flowers
Food
Grass
Images
Leaves
Metal
Misc
Paintings
Sand
Stone
Terrain
Tile
Water
WheresWaldo
Wood

total

27.86
30.94
30.73
34.60
25.21
29.62
26.50
23.96
30.47
26.46
22.63
29.05
26.81
29.07
28.36
33.98
30.42
31.81
25.59
31.32

28.39

28.04
31.21
30.59
35.51
25.20
29.86
26.61
23.95
30.71
26.70
22.54
29.26
27.16
29.21
28.64
34.59
30.66
32.23
25.81
31.77

28.60

27.86
30.73
29.78
34.45
24.82
29.98
27.18
23.62
30.47
26.81
21.90
28.90
27.70
29.46
28.48
34.20
30.25
31.65
26.30
31.77

28.45

Quality Comparison, Results (SSIM)

Task Squish Line matching PVRTC

Bark
Brick
Buildings
Clouds
Fabric
Flowers
Food
Grass
Images
Leaves
Metal
Misc
Paintings
Sand
Stone
Terrain
Tile
Water
WheresWaldo
Wood

total

0.980
0.980
0.983
0.971
0.978
0.982
0.981
0.981
0.973
0.981
0.977
0.980
0.974
0.979
0.974
0.981
0.980
0.980
0.981
0.982

0.979

0.981
0.981
0.983
0.974
0.980
0.983
0.981
0.981
0.975
0.983
0.977
0.981
0.976
0.981
0.978
0.984
0.981
0.982
0.983
0.984

0.980

0.980
0.978
0.978
0.967
0.974
0.982
0.982
0.980
0.976
0.982
0.972
0.980
0.977
0.981
0.973
0.985
0.977
0.979
0.984
0.984

0.979

Conclusion

 Texture compression is essential for embedded systems
for 3D graphic applications

 Decoding of DXT in realtime is possible on the ePUMA
platform, enabling the use of 3D graphics albeit the
comparably small local memory

 PVRTC does not deliver an improved quality over DXT
with the current standard-encoder

 The presented line matching encoder for DXT delivered
the overall best quality of all presented encoder, in terms
of both PSNR and SSIM

 Even if the PVRTC standard-encoder could be improved,
a possible quality gain will probably still not justify the
much higher decoding complexity

Future Work

 Optimize encoder (especially towards speed, removal of
blocking artifacts)

 Transparency

 Comparison with Ericsson texture compression

 Optimized Texture compression scheme

 Longterm goal: a full 3D renderer on ePUMA

Questions?

Thank you very much!

www.liu.se

