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ABSTRACT

More embedded systems gain increasing multimedia capabilities, including computer graphics. Although this is mainly 
due to their increasing computational capability, optimizations of algorithms and data structures are important as well, 
since these systems have to fulfill a variety of constraints and cannot be geared solely towards performance. In this paper, 
the  two  most  popular  texture  compression  methods  (DXT1  and  PVRTC)  are  compared  in  both  image  quality  and 
decoding performance aspects. For this, both have been ported to the ePUMA platform which is used as an example of 
energy consumption optimized embedded systems. Furthermore, a new DXT1 encoder has been developed which reaches 
higher image quality than existing encoders.

KEYWORDS

Embedded systems, texture compression

1. INTRODUCTION

Many modern embedded systems were not primarily designed with complex computer graphics in mind, yet are 
supposed to handle graphics as well, e.g. for user interfaces or simple computer games. Since most of these 
systems  are  also  constrained  by  a  comparably  slow bus,  which  is  furthermore  shared  between  different 
computing units, an efficient image and texture compression method with low complexity is in dire need. 

Already in (Beers et al., 1996) the requirements for such a compression method were pointed out: 

• Low complexity of the decoder and high decoding speed 
• Ability to access each pixel in the texture randomly (since objects may be obscured and oriented 

arbitrarily) 
• Lossy compression is tolerable, since a screen image is made up of a multitude of different textures, so 

that a visual loss in one of them is hardly noticeable. Furthermore, lossy compression leads to a higher 
compression factor.

• A great majority of the used textures are or can be generated beforehand, so the encoding speed is 
only of a minor concern.

For embedded systems with limited performance and memory, low complexity is by far the most important 
factor, and vector quantization is a natural choice for this task.

Vector quantization has been used in image compression for several decades. The main idea is that instead 
of using the whole color space, a few colors will be selected which closely represent the colors contained in the 
image. Each pixel is then represented by an index into the list of these colors (the so called codebook). An 
overview of early algorithms can be found in (Nasrabadi and King, 1988). Later examples include (Buhmann et 
al., 1998) and the more recent (Horng et al., 2011).

Adoptions of vector quantization codecs include block truncation coding (Delp and Mitchell, 1979) and 
color cell compression (Campbell et al., 1986), on which most texture compression approaches are based upon. 
Here, the image is divided in non-overlapping blocks of equal size. Each block has an own list of a few colors, 



and further colors are computed by combination of these (see further section 2). The color of each pixel in the 
block is then encoded by an index determining which of these colors should be used. The first commercially 
used texture compression was based on these ideas and was called S3TC at first, but became later the DXT 
family of texture compression standards. Note that the different DXT codecs only differ in the way how they 
handle transparency, which will not be considered in this paper. The way they encode the color information is 
however the same (with the exception of DXT1 if it is used with an alpha channel).

PVRTC  (PowerVR  Texture  Compression),  another  often  used  texture  compression  method,  however 
follows a slightly different, more complicated approach. It was introduced by Fenney (2003) and is aimed 
mainly towards embedded systems with a comparably high graphical performance, which normally includes a 
complete (though often relatively small) GPU. It offers one of the highest image qualities as well.

PVRTC includes an upsampling step: instead of encoding color vectors, two color maps are built which are 
of the size of the original image divided by the blocksize (e.g. if the blocksize is 4x4, the width and the height 
of the color map will  be ¼th of the original  width and height).  During decoding,  the color maps will  be 
upsampled by linear interpolation so that their sizes match the size of the original  image. Each decoded pixel 
can then have the color found at its position in either color map, or a combination of these. This has two 
drawbacks: 

• PVRTC is based on the assumption that the system includes a GPU with a special texture memory that 
offers hardware support for the upsampling step. However, that is not the case for embedded systems 
without or with a too simple dedicated GPU, which increases the runtime of the decoder heavily. 

• For the decoding of each block 8 different base colors need to be loaded (4 for each color map) instead 
of only 2, thus decreasing the performance of random access and increasing usage of the bus. 

Another texture compression method is ETC (Ericsson Texture Compression, former PACKMAN) which 
was introduced in (Ström and Akenine-Möller, 2005) and refined in (Ström and Petterson, 2007). Here, instead 
of calculating colors based on interpolation a color is given, which is modified based on modifiers contained in 
a codebook. This codebook only contains a luminance component and is fixed, but different ones are available 
which can be chosen on a block-by-block basis. Furthermore, instead of using blocks of size 4x4, 2x4 blocks 
are used in ETC.

Other works on texture encoding specializes on different applications, like (Roimela, 2008) on hdr textures 
(which uses YUV rather than RGB color space) and (Rasmusson et al., 2010) on textures with smooth edges for 
lightmaps.

Although modern graphic cards in desktop computers contain enough memory to make texture compression 
unnecessary,  it  is  at  least  still  very  important  in  embedded  systems  (like  e.g.  mobile  phones,  portable 
multimedia  players,  settop boxes)  due  to  the  memory  limit  and  comparably  slow buses,  which  are  often 
furthermore shared between many different components. An example for these small embedded systems is the 
energy consumption optimized ePUMA (embedded Parallel DSP with Unique Memory Architecture) platform 
(Ragnemalm and Liu, 2010), which consists mainly of a master CPU with 8 tightly coupled SIMD (Single 
Instruction Multiple Data) units which each has access to its own scratchpad memory. 

The remainder of this paper is organized as follows: 2. introduces the ePUMA platform in more detail, 3. 
describes the decoding process for DXT1 and PVRTC, 4. gives an overview of a new encoder for DXT1, 5. 
shows an evaluation and 6. finishes with a discussion and ideas for future work. 

In the following, whenever PVRTC is mentioned, it is referring to its 4bpp mode. The 2bpp mode will not 
be discussed further in this paper. Furthermore, transparency will not be discussed, and therefore both PVRTC 
and DXT1 are only considered in their modes without transparency.

2. THE EPUMA PLATFORM

The ePUMA platform is a processor for embedded systems optimized for low energy consumption, which is 
currently in development and up until now only exists in a simulator. It consists of a master CPU which act as 
controller for 8 SIMD processors which each has 8 parallel 16-bit datapaths. These can alternatively be used as 
4 datapaths of 32-bit width. 8-bit datatypes were not supported yet during the writing of this paper, but are to be 
included in future implementations. An overview of the platform is given in figure 1. In it, N1 to N8 are the 



network nodes which handle  communication between the different  SIMDs, the master CPU and the main 
memory. PM is the program memory, CM a constant memory and PT are permutation tables designed to assist 
fast, parallel and conflict-free accesses to the LVMs (local vector memories) even with irregular addressing.

Figure 1. Overview of the ePUMA platform.

The SIMD units build the DSP subsystem of the platform and serve as its primary computing unit. Apart 
from the main memory, which is globally shared, each SIMD core possesses it own local memory, which can 
be used as a programmer controlled scratchpad. This memory is organized in three so called local  vector 
memories (LVM), which is used to hide the main memory latency. A possibility would be to use one LVM for 
input  data,  one for output data,  and load the input  data for the next task into the third memory.  Another 
possibility would be to use one LVM as input/output for the current task, one as persistent memory, and one to 
write back the output of the former task / load the input for the next task.

Since the processor is not primarily designed to serve as a GPU, it lacks dedicated memories for textures or 
the framebuffer. Thus, these have to be placed in the main and local memories.

Access to the main memory is quite slow compared to the local  memory and can therefore become a 
bottleneck. Furthermore, the size of the local vector memories is limited, 80kB in the current implementation. 
Considering RGB only and that the pixeldata does not need to be aligned any further, the local memory can 
only hold 6 64x64 textures or 26 32x32 textures. If transparency is to be used, or mipmapping, the number of 
textures the local memory can hold will be further reduced. Considering 2 levels of mipmapping (which should 
be  enough for  most  purposes),  this  is  further  reduced to  only  5 64x64 textures  resp.  21  32x32  textures. 
Additionally, in most applications the local memory cannot be used solely as a texture memory, thus decreasing 
the number of textures it can hold even further.

This induces the need for a good texture compression scheme which minimizes the access to the main 
memory without introducing much runtime for the decoding.  Using DXT1 or PVRTC decreases the size of the 
texture by a factor of 6, thus relaxing memory usage significantly. Ideally, it should be possible to decode the 
textures “on the fly”, directly before they are used, thus eliminating the need of storing the decoded textures.

More information about the ePUMA platform can be found in (Liu et al., 2010) and (Ragnemalm and Liu, 
2010).

3. DECODING

As already mentioned,  modern texture codecs are vector  quantization based,  and use combinations  of the 
encoded color vector to derive additional colors. In most cases 2 colors (c1 and c2) are encoded and 2 other 
ones (c3 and c4) are calculated through their combination, thus giving 4 different colors in total. Intuitively, 
evenly spaced combinations come to mind, i.e.:
 

c3 = * c1 +  * c2 ⅓ ⅔
c4 = * c2 + * c1 ⅓ ⅔



In fact, these are exactly the weights which are used in many different texture compression standards, like 
DXT1. PVRTC on the other hand uses weights of ⅜ and ⅝ instead. This is thought to be more advantageous 
since it more closely resembles the normal distribution: 

c3 = ⅜* c1 + ⅝* c2 
c4 = ⅜* c2 + ⅝* c1

Both PVRTC and DXT1 use 16 bits to encode one color. In PVRTC, the first bit is used to switch the alpha 
channel on or off (i.e. switch between RGB and RGBA). The remaining 15 bits encode the color channels. In 
RGB mode, each of the three channels are described by 5 bits, thus decreasing the resolution by 3 bits per color 
channel from the more common 8 bit. DXT1 on the other hand uses the whole 16 bits for color information, 
giving the green channel a higher precision of 6 bits since the human eye has a higher sensitivity for green than 
for  red and  blue.  The  switch between RGB and RGBA is  a  little  more  complicated in  the DXT coding 
standards, but since the alpha channel is neglected in this report it is not further explained here.

During decoding, the scaling of the compressed colors to convert them back to the 24-bit RGB colorspace 
can be combined with the multiplication of the weights as described above.

Since 4 different  colors are used, 2 bits are needed for the indexing.  The blocksize is set  to 4x4, and 
therefore 32 bits are needed for the indexing of each block. Adding the 32 bits for the 2 color vector gives 64 
bits for each block, or 4 bits per pixel (corresponding to a compression factor of 6). Here the disadvantage of 
PVRTC in terms of random access becomes obvious. Although it uses 4 bits per pixel as well, altogether 160 
bits (8 color vector plus the indexes) need to be loaded to decode one block instead of only 64, due to the 
upsampling step.

4. TEXTURE ENCODING

We have developed and evaluated our own encoder for DXT1 texture compression, called line matching. In the 
following, the encoder will be described, with an evaluation in the next section.

If omitting their spatial position (which is already encoded in the order of the color indices), the pixels of a 
block can be described as points in a three dimensional space, where each of the axes represents one of the 
color channels. The 2 encoded color vectors then span a line in the color space, which includes the calculated 
color vectors as well. A simple (but effective) encoding scheme can then be constructed by first determining the 
best fitting line (i.e. the line which minimizes the sum of its distance to the different colors), and then searching 
along the line to find the points on the line which minimizes the distance to the color values of the current 
block. 

For the first step a total least square approach was chosen, which is known to deliver an overall optimal line 
(up to a certain accuracy), and is used in many other different applications as well. It determines a line of form l 
= s*x + a, with a, l and s a vector, x a scalar. The intercept a is set to the mean color of the block. A matrix M is 
formed which consists of the different colors, each subtracted by the mean. Then a matrix N= 1/n * M * MT is 
built, and decomposed using singular value decomposition (SVD) to the form UΣV*, where U is a 3x3 matrix, 
and Σ a 3x3 diagonal matrix. The slope s of the line l is set to the column vector of U which corresponds to the 
largest absolute value in Σ. During this work, the standard SVD decomposition of the GNU Scientific Library 
was used.

Next, x-values are computed for every color of the block, which lead to the point on the line which is 
nearest to the current color. Both the total highest and the total lowest x-values are kept, and all possible values 
between (and including) these two x-values are then used to create possible candidates for c1 and c2. For each 
candidate pair, the distance between the block after encoding and the original block is computed.

A special case occurs if all values of s are zero, (e.g. when all pixels in the block have the same color). In 
this case c1 and c2 are set to the average, and the second step is left out.

To increase the performance of the encoding, every possible combination of c1 and c2 should only be 
checked once. Since c1 and c2 have a fixed resolution, the candidates have to be quantized during the search, 
and candidates should be rejected immediately,  if they are leading to the same value after quantization as 
another configuration that has already been checked. Furthermore, combinations in which the values for c1 and 
c2 are simply switched should only be evaluated once to avoid unnecessary computations.



Initially, a third step was included in the encoder, which consisted of a fullsearch around the final values c1 
and c2 to find a local optimum. However, this lead to an increase of less than 0.03% in point of the PSNR and 
less than 0.005% in terms of SSIM, and was therefore omitted in the final version. Intuitively, the optimal 
candidates (in Terms of PSNR) for c1 and c2 should lay on the best fitting line, but no proof to this effect is 
known to the authors. The fact that a fullsearch around the final candidates lead to slightly better results is 
however not a contradiction of this assumption either. They might also be introduced by a low accuracy of the 
SVD algorithm, or due to inaccurate rounding and quantization during the search along the best fitting line; in 
the experiments, the encoder proved to be very sensitive to how this was exactly implemented. Furthermore, in 
the case were all pixels contain the same color, setting c1 and c2 to this color is not an optimal solution either, 
since  the calculated values of  c3 and  c4 may actually  reach a higher  resolution than 6 bits,  due to their 
multiplication with non-integer weights.

Table 1. Cycle counts for the decoding of one block with DXT1 and PVRTC

Task DXT1 PVRTC
Unpacking
Calculation of color the vectors
Waiting for pipeline to finish

total

3
3
8

14

3
99
8

110

5. EVALUATION

Decoders for both DXT1 and PVRTC have been implemented for the ePUMA platform. The cycles needed to 
decode one 4x4 block are given in table 1. As suspected, PVRTC needed much longer time for the task, 33 
times if only the time needed to compute the color vectors is taken into account, and nearly 8 times as long for 
the  whole  decoding.  Since  the  last  step (waiting  for  the  pipeline  to  finish)  needs only  to  be  done  once, 
independent on the number of blocks that will be decoded, the performance gain if using DXT1 will probably 
be more than 8 in practice.

Note that it is not necessary to copy the different colors to each pixel, since this can be quite efficiently 
combined with the next step in the graphics processing pipeline. 

Although  decoding  speed  is  the  most  important  criterion  for  a  texture  compression  scheme  used  in 
embedded systems, it is not the only one. To test the image quality of both codecs, several test sequences have 
been encoded and compared. These sequences consist of all  sequences in the MIT vision texture testbench 
(MIT) which contains color images with a resolution of 512x512 resolution. An additional test sequence was 
added containing several standard images (simply called images in the following) which are used in image and 
texture compression, namely the standard Lena picture, the lorikeet picture which is made available by Simon 
Fenney and the Lichtenstein picture which is published under the wikicommons license. All in all, 170 different 
images have been evaluated.

For PVRTC, the reference encoder provided by Imagination Technologies (PVRTC) was used. For DXT1, 
we used both our own encoder, as described in section 3, and an open source implementation called Squish 
(Squish). Squish is considered to reach high image quality and is close to the implementation used by NVIDIA 
in their texture encoding solution.

Apart from signal-to-noise ratio, the mean structural integrity (SSIM) (Wang et al.,  2004) has also been 
computed for all images. SSIM is designed as a difference index for luminance, contrast and structure between 
two images. Its calculated value varies between -1 (completely different) to +1 (perfect match). A standard 
window size of 8 was chosen for SSIM, and all possible image patches have been tested.

The mean results for the different sequences for both SNR and SSIM are presented in table 2. The standard 
deviation for  each is  given in  parentheses.  As can be  seen,  while  neither  algorithm performs  best  in  all 
sequences, line matching lead to the best overall result. A further subjective evaluation of the image quality is 
left to the reader. For that, encoded versions of an example image is give in figure 2 along with the difference 
images in figure 3. The difference images contain the squared difference between the original image and each 
encoded image.



According to our tests, PVRTC does not give a noticeably better image quality than the DXT1. In some 
extreme cases it even introduces visible artifacts, as can be seen in the sky of figure 2. Although the used 
PVRTC encoder could be optimized for better image quality, it is doubtful if the quality will ever compensate 
for the much higher decoding complexity.  Therefore,  we conclude that  DXT1 is the preferable choice for 
texture encoding.

Table 2. PSNR and SSIM for the used encoders – PVRTC reference encoder, line matching and squish. Higher values are 
better, standard deviations are given in parentheses. The respective best results are marked in red.

Testsequence PSNR SSIM

Bark
Brick
Buildings
Clouds
Fabric
Flowers
Food
Grass
Images
Leaves
Metal
Misc
Paintings
Sand
Stone
Terrain
Tile
Water
WheresWaldo
Wood

average

PVRTC ref.
27.86 (3.07)
30.73 (2.41)
29.78 (2.19)
34.45 (0.02)
24.82 (2.51)
29.98 (3.36)
27.18 (4.82)
23.62 (4.67)
30.47 (0.34)
26.81 (3.73)
21.90 (1.13)
28.90 (2.97)
27.70 (2.19)
29.46 (1.65)
28.48 (2.55)
34.20 (0.72)
30.25 (2.40)
31.65 (2.87)
26.30 (1.15)
31.77 (3.38)

28.45 (4.05)

Line matching
28.04 (3.25)
31.21 (2.38)
30.59 (2.28)
35.51 (0.15)
25.20 (2.41)
29.86 (2.95)
26.61 (4.80)
23.95 (4.48)
30.71 (0.81)
26.70 (3.67)
22.54 (1.00)
29.26 (3.21)
27.16 (2.23)
29.21 (1.69)
28.64 (2.61)
34.59 (0.83)
30.66 (2.66)
32.23 (3.17)
25.81 (0.79)
31.77 (4.41)

28.60 (4.12)

Squish
27.86 (3.07)
30.94 (2.27)
30.73 (2.01)
34.60 (0.11)
25.21 (2.35)
29.62 (2.86)
26.50 (4.48)
23.96 (4.31)
30.47 (0.77)
26.46 (3.55)
22.63 (1.03)
29.05 (3.17)
26.81 (2.21)
29.07 (1.66)
28.36 (2.50)
33.98 (0.76)
30.42 (2.55)
31.81 (2.98)
25.59 (0.86)
31.32 (4.26)

28.39 (3.93)

PVRTC ref.
0.980 (0.006)
0.978 (0.004)
0.978 (0.003)
0.967 (0.002)
0.974 (0.005)
0.982 (0.004)
0.982 (0.005)
0.980 (0.003)
0.976 (0.008)
0.982 (0.004)
0.972 (0.003)
0.980 (0.003)
0.977 (0.007)
0.981 (0.004)
0.973 (0.009)
0.985 (0.001)
0.977 (0.006)
0.979 (0.003)
0.984 (0.004)
0.984 (0.005)

0.979 (0.006)

Line matching
0.981 (0.003)
0.981 (0.002)
0.983 (0.002)
0.974 (0.000)
0.980 (0.004)
0.983 (0.002)
0.981 (0.004)
0.981 (0.000)
0.975 (0.005)
0.983 (0.003)
0.977 (0.002)
0.981 (0.002)
0.976 (0.007)
0.981 (0.002)
0.978 (0.007)
0.984 (0.001)
0.981 (0.005)
0.982 (0.002)
0.983 (0.002)
0.984 (0.002)

0.980 (0.005)

Squish
0.980 (0.003)
0.980 (0.002)
0.983 (0.002)
0.971 (0.000)
0.978 (0.004)
0.982 (0.002)
0.981 (0.004)
0.981 (0.000)
0.973 (0.001)
0.981 (0.003)
0.977 (0.002)
0.980 (0.001)
0.974 (0.007)
0.979 (0.002)
0.974 (0.007)
0.981 (0.001)
0.980 (0.004)
0.980 (0.003)
0.981 (0.004)
0.982 (0.002)

0.979 (0.005)

6. CONCLUSION AND FUTURE WORK

Two  different  popular  texture  decoders  were  implemented  for  the  ePUMA platform,  namely  DXT1  and 
PVRTC. Both have been compared in decoding time and image quality. As suspected, the more complicated 
PVRTC leads to a much higher decoding time, nearly 8 times higher, which might in reality be even higher still 
since only the decoding of one block at a time was considered, thus rendering an efficient use of the pipeline 
impossible in the case of DXT1. In fact, the DXT1 decoder is fast enough to enable decoding “on-the-fly”, i.e. 
to decode the texture directly before it is used and therefore eliminating the need of storing the decoded textures 
in the local memory.

A comparison of quality aspects of the encoded images shows that PVRTC does not produce an overall 
better image quality over DXT1. Rather, our new encoder for DXT1, introduced in this paper, leads to the best 
results. Furthermore, the results were very close and each encoder produced high quality images. Therefore, the 
much higher decoding complexity of PVRTC is hard to justify. And even an optimized PVRTC encoder with 
higher image quality is not likely to change that. Therefore, the authors recommend the use of DXT1 as texture 
codec for  embedded systems.  Note that  the different  encoding schemes of  the DXT family  use the same 
encoding of the color channel, thus the results of this paper can be directly applied to its other members as well.

The line matching encoder was not much optimized for a fast encoding speed. Although it should be fast 
enough for all possible non-realtime application (on average the encoding of one image took 21.4s during the 
experiments), further optimization is possible and desirable. Especially the search along the best fitting line 
could be improved, which might even heighten the quality slightly. A SVD algorithm which is more optimized 
to this application (e.g. which omits the calculation of unnecessary values) should lead to better results as well.



Furthermore, although the overall  graphical  quality is high, blocking artifacts can occur. Note that this 
problem does not occur if using PVRTC, since neighboring blocks share color values due to the upsampling 
process. However, another encoding approach for DXT1, which encodes several neighboring blocks at once 
might solve this problem, although this might come with the price of reduced signal-to-noise ratio.

For simplicity, this paper concentrated on pure color images and did not include transparency. Another 
analysis should be done with this in mind to find out which of the different DXT1 transparency modes that 
delivers the best results. This could also be compared to the way PVRTC handles transparency. A comparison 
with the ETC texture compression could be done as well.
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Figure 2. Original (top left), encoded with PVRTC (up right), encoded with squish (bottom left) and with line matching 
(bottom right).

Figure 3. Sum of squared differences between original and encoded image for PVRTC (left), line matching (middle) and 
squish (right).


