
REALTIME PARTICLE SYSTEM SIMULATION AND
RENDERING IN EMBEDDED SYSTEMS

Jens Ogniewski, Ingemar Ragnemalm
Information Coding Group, Linköpings University

581 83 LINKÖPING, Sweden
{jenso||ingis}@isy.liu.se

ABSTRACT

The market for games for mobile phones/tablets is probably the fastest growing in the whole computer game industry.
Although many of these games feature graphics which were out of reach for these systems not long ago, their quality is
still far from what can be reached on modern PCs, and many algorithms used in PCs are a bad fit for these systems. For
example, volumetric particle systems are very difficult to simulate and render in realtime on modern smartphones/tablets.
This paper presents the first work on particle system simulation and rendering on embedded systems in realtime. This
was achieved by approximating volumetric systems by 2D-systems and by using a novel, physically motivated yet simple
particle motion model instead of a computational complex solver for e.g. Navier-Stokes equations.

KEYWORDS

Particle effects, Embedded Systems, Real-time, Computer Games

Figure 1: Example particle effects taken from the demo: 1a (left) fire, 1b (middle) smoke and 1c (right) water

1. INTRODUCTION

The visualization of particle effects has been a topic of much interest since the beginnings of computer
graphics, and many approaches have been presented, most of which use volumetric particle systems, e.g.
(Wrenninge et al., 2010). These are based on particle movement in a so called voxel grid, which is a
discretized, closed space (realized e.g. by 3D-textures). However, these grids use a very large amount of
memory, and thus several approaches have been suggested for their effective compression like octrees (Laine
& Karras, 2011), trading lower memory footprint for higher runtime. To render the particles, different
methods are used depending on the exact effect that should be simulated, e.g. Marching Cubes (Lorensen &
Cline, 1987) for liquids or light transport for smoke/clouds , e.g. (Hadwiger et al., 2009).

Most of the recent work concentrates on reducing the runtime, for example by introducing precomputing
like Kun Zhou et al. (2008) or Yubo Zhang et al. (2012), or by modification of the grid, e.g. (Horvath &
Geiger, 2009) or (Selleg et al., 2005). These approaches can run in realtime on contemporary PCs, however
not on embedded systems, since modern smartphones/tablets have a different architecture. Here, the CPU and
the GPU, but also all other integrated systems like communication, I/O etc. share the same memory and the
same bus, which therefore become a bottleneck. This has however big advantages in energy savings and cost,
and is thus unlikely to change. The GPUs are highly optimized towards size and energy consumption, but
often have to render to high resolution screens. This means that graphic algorithms have to be carefully
optimized for runtime, but especially for memory consumption. For particle effects, most designers use so
called particle systems, which in these cases mean several (often animated) billboards moving in
predetermined or partly-random patterns, as described in e.g. (Harris & Lastra, 2001). A few papers have
presented volumetric rendering for embedded displays, like Moser & Weiskopf 82008) or Rodriguez &
Alcocer (2012), omitting however the simulation part needed for animated particle effects. Furthermore, the
reported frame-rate of typically only a few frames per second is too low for real-time applications like games,
and these works do not include popular effects, like lightning or advection (a method to introduce small-scale
details through random noise which is offset by a turbulence field, see e.g. (Neyret, 2003) or (Qizhi Yu,
2011). Finally, Krüger & Westermann (2005) and in Guay et al. (2011) suggested the use of a 2-dimensional
approximation to emulate a full volumetric system. This is based on the observation that a fairly good result
can be achieved solely by knowing how many particles any possible ray from the observer through the
particle system would hit. Due to its low complexity, this is the approach we use here as well. We further
optimize their work by using a physically motivated model with much less complexity instead of a Navier-
Stokes solver as applied by them. Furthermore, Krüger & Westermann (2005) use a 2-dimensional flow field,
but move the particles in 3D, and Guay et al. (2011) introduce a fake depth during the simulation, while here
no depth is used at all during simulation, thus reducing simulation time. Also, Guay et al. (2011) only
described fire and it is unclear if their approach can be used for other effects as well, while we present here
different particle effects proving the versatility of our approach.

To the best of our knowledge this is the first work where particle effects where generated on embedded
systems by the simulation of particle movements.

2. 2D PARTICLE SIMULATION

As already pointed out, memory usage should be minimized as much as possible in embedded systems.
Simulating the particle movement in 2D leads to a low memory footprint since only two 2D arrays are
needed to save the data, one for the particles and one for the pressure field. We suggest here to remove the
pressure field as well, so that the whole system uses only one single array, which will be called a particle-
field in the following. Each cell of the field can contain 0 to 255 particles, which was chosen so that the
whole field can be saved in a single color-channel of a texture. This also means that the simulation can be
done in one single step, instead of integrating the pressure field first and then moving the particles
accordingly in a second step. However, since no pressure field exist the particles have to be moved in a
different way, and for that we chose a force-based approach in this work.

In the real world, the movement of particles are governed by a number of different forces. The most
prominent include inertia (i.e. along the current trajectory), diffusion (from places where a lot of particles
reside to places where fewer particles are), and external forces (e.g. gravity). Apart from these 3 forces, we
added a random force as well to emulate other and small-scale effects. We found that this approach has the
additional advantage that choosing the blend-weights of these forces helps to control the simulation and thus
makes it easy for the designer to create the desired effect.

Of course, each simulated particle represents a high number of real particles. Thus, the movement of each
particle in the simulated system can be seen as the average movement of all particles it presents. Therefore, a
more accurate simulation would be received if several particles, that travel along the same movement vector,
would be allowed to travel in slightly different paths. This could be described by e.g. a gauss distribution.
Here, we suggest to use a cosine function instead as an approximation, since all forces (except for diffusion)
can be represented by vectors. Thus, the dot-product between the force vector and a candidate direction can
be used for the force-calculation.

This has the additional advantages that it can be computed fast in
GPUs and that it guarantees that particles will be moved even if the force
vectors do not align exactly with any of the candidate directions.

For the diffusion, simply the difference is used between the number of
particles in the starting cell of the candidate direction and the number
contained in the finishing cell of the candidate direction.

To simplify calculations, all particles are allowed to move only to
neighboring cells. Also, during simulation the forces between a cell and
its 8 neighbors are calculated only once for the each cell, not for each
particle that the cell contains. This also means that an average direction
vector is used for the inertia calculation, which can be saved comfortably
in 2 color-channels of the particle field texture.

Since the forces are calculated separately for each direction, particles
will be moved to a number of different neighbors, based on the strength of
the calculated forces. In traditional approaches however only few
directions would be used, and therefore the particles spread out more
quickly using our approach.

An overview of the different forces and the resulting movements is
given in figure 2b-2f. The particle field used has a size of 32x32. 2a shows
the initial state, the others the system after 15 simulation steps.

3. EVALUATION

To test the method it was implemented on a Nexus 10, which is a tablet
running Android on a Samsung Exynos 5 Dual processor. The GPU
included in this chip, a Mali T-604, is by the time of this writing a better
middle class GPU for embedded systems. Comparing it to concurrent PC
graphics-cards, its limitation can be clearly seen. While current PC
graphics-cards can have more than 3000 cores running at more than 1
GHz, as well as up to 4 Gbyte dedicated memory, the Mali T-604 has 4
cores running at 533 Mhz, and has to share the main memory (2Gbyte in
this case) with the CPU and all other circuits integrated in the chip. Thus,
it is not surprising that the Nexus 10 reaches only 8006 at the Icestorm
benchmark, which puts it in the middle class of mobile device (the current
maximum reached by a mobile device is 11346). By comparison, the
middle class graphic card NVIDIA GeForce GTX 660 reaches 137246, or
more than 17 times the performance of the Nexus 10. The highest value
reached on a PC is (to the knowledge of the authors) 167203, but it should
be pointed out that the benchmark is slightly biased towards low
performance systems since it does not take advantage of many features
that high-end cards offer.

Three different systems are included in the demo: fire, smoke and
water (see figure 1 for example pictures). The sizes of the used particle-
fields were 64x64 for the water and the smoke and 32x32 for the fire.

Figure 2: Example to illustrate the
different steps of the suggested
approach:
1st row: 2a (left) input particle
field, 2b (right) movement
according to entropy,
2nd row: 2c (left) movement along
a common direction, 2d (right)
random movement,
3rd row, 2e (left) all three forces
combined, 2f (right) with additional
inertia,
4th row, 2g (left) 2f drawn using
linear interpolation, 2h (right) noise
in a 8x8 texture repeated 4x4 times,
5th row, 2i (left) calculated
advection, 2j (right) 2g and 2i
blended together (1:1)

Although for some cases a 2-dimensional particle effect might be enough, e.g. a fire in a fireplace, in
most cases depth needs to be introduced during rendering. This can be done e.g. by displacement mapping,
which has the additional advantage that the designer can choose roughly which shape the object should have.
The water and the smoke in the demo are rendered using this method, the latter one using a spheroid as basic
shape. The fire was rendered purely as a texture on an otherwise unmodified spheroid. 1922 triangles were
used for the fire, 7938 for the smoke, and 9660 for the water.

The particle-fields are also used to generate the textures projected onto the particle objects, and advection
was added in case of the fire and the water. The average movement vectors included in the particle field were
used as turbulence field for the advection. For the random noise, it was chosen to use a noise texture, which

is a texture that contains random values and is a common solution for advection. This has the additional
advantage that the noise can be custom tailored for the effect that should be reached, e.g. in the case of the
fire it proved to be advantageous to have many high values concentrated in parts of the noise-texture and
lower values in the rest, since this leads to more flame-like structures. Finally, to reduce memory
consumption, noise textures of very small sizes are used, and repeated several times instead. The advection
process is illustrated in figure 2g-2j.

The rendering was done in two different resolutions, 2560x1600 (which is the currently highest resolution
available in tablets), as well as 1280x800, which is a high-end resolution of smaller tablets and smartphones
at the time of this writing. For comparison, the iPhone 5 has 1136x640. The timing results are summarized in
table 1. The time needed to render the ground is given as comparison; it uses 2386 triangles and 3 different
textures depending on its height (with linear interpolation at the borders), but no other effects. These values
include overhead like sending variables from the main program to the shader, and were taken from the
viewpoint which (on average) lead to the worst result.

Looking at the numbers it is noticeable how close the values for the different simulations are, which is
especially interesting since the particle-field of the fire is only 1/4th of the size of the other ones. Not
surprisingly the smoke was rendered fastest, since its shader does not include much more than the actual
geometry calculation, while the water fared worst due to its complicated advection scheme and its high
number of triangles.

Table 1: Average simulation and rendering times, as well as the theoretical frame-rates of each system, which were
calculated as (1s-10*ts)/tr, with ts the simulation and tr the rendering time, since the simulations run at a constant 10 fps.

Simulation Rendering 2560x1600 Theo. fps 2560x1600 Rendering 1280x800 Theo. fps 1280x800

Water 3.83 ms 46.1 ms 20.9 17.2 ms 55.9

Fire 3.42 ms 28.2 ms 34.2 10.5 ms 92

Smoke 4.12 ms 11.8 ms 81.3 6.92 ms 139

Ground - 10.6 ms 94.3 7.14 ms 140

4. CONCLUSION & FUTURE WORK

A method was presented that shows how particle systems can be simulated and rendered in realtime on
embedded systems, by approximating a volumetric system with a 2-dimensional one, and by using a novel
highly efficient model for the particle movement. This method could prove very useful to include advanced
particle effects in games for smartphones, tablets and similar systems. Performance is adequate for the target
systems, but further optimizations are possible. We also aim for a unified system, where a designer would be
given the possibility to control the look of the simulation and of the rendering by setting only a couple of
parameters. Although this is already the case for the smoke and water simulations, we need to find further
generalizations to eliminate the differences between the various cases to achieve this.

REFERENCES

Guay, M., Colin, F., Egli, R., 2011. Screen Space Animation of Fire. Proceeding of SIGGRAPH Asia 2011 Sketches
Hadwiger, M., Patric Ljung, P., Salama, C.R., Ropinski,T, 2009. Advanced illumination techniques for GPU-based

volume raycasting. Proceedings of ACM SIGGRAPH 2009 Courses, Article No. 2
Harris, M.J., Lastra, A., 2001. Real-Time Cloud Rendering. Proceedings of EUROGRAPHICS 2001, vol. 20, no. 3
Horvath, C., Geiger, W., 2009.: Directable, high Resolution Simulation of Fire on the GPU. ACM Transactions on

Graphics 28, 3, Article 41
Krüger, J., Westermann, R., 2005. GPU simulation and rendering of volumetric effects for computer games and virtual

environments. Proceedings of Eurographics

Kun Zhou, Zhong Ren, Lin, S., Hujun Bao, Baining Guo, Heung-Yeung Shum, 2008. Real-Time Smoke Rendering
Using Compensated Ray Marching. ACM Transactions on Graphics 27, 3, Article 36

Laine, S., Karras, T., 2011. Efficient Sparse Voxel Octrees. IEEE Transactions on Visualization and Computer Graphics,
vol. 17 , iss. 8, pp. 1048-1059

Lorensen, W.E., Cline, H.E., 1987. Marching cubes: A high resolution 3D surface construction algorithm. Proceedings of
the 14th annual conference on Computer graphics and interactive techniques (SIGGRAPH), pp. 163-169

Moser, M., Weiskopf, D., 2008. Interactive volume rendering on mobile devices. Vision, Modeling, and Visualization
Neyret, F., 2003. Advected Textures. Eurographics / Siggraph Symposium of Computer Animation, pp. 147-153
Qizhi Yu, Neyret, F., Bruneton, E., Holzschuch, N., 2011. Lagrangian Texture Advection: Preserving both Spectrum and

Velocity Field. IEEE Transactions on Visualization and Computer Graphics, vol. 17, no. 11 pp. 1612-1623
Rodriguez, M. B., Alcocer, P.P.V., 2012. Practical Volume Rendering in Mobile Devices. Advances in Visual Computing
Selle, A., Rasmussen, N., Fedkiw, R., 2005. A Vortex Particle Method for Smoke, Water and Explosions. SIGGRAPH

2005, ACM TOG 24, pp. 910-914
Wrenninge, M., Bin Zafar, N., Clifford, J., Graham, G., Penney, D., Kontkanen, J., Tessendorf, J., Clinton, A., 2010.

Volumetric Methods in Visual Effects. SIGGRAPH 2010 Course Notes
Yubo Zhang, Zhao Dong, Kwan-Liu Ma, 2012. Realtime volume rendering using precomputed photon mapping.

Proceedings of the ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games (I3D '12), p. 217

