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ABSTRACT

The market for games for mobile phones/tablets is probably the fastest growing in the whole computer game industry. 
Although many of these games feature graphics which were out of reach for these systems not long ago, their quality is  
still far from what can be reached on modern PCs, and many algorithms used in PCs are a bad fit for these systems. For 
example, volumetric particle systems are very difficult to simulate and render in realtime on modern smartphones/tablets. 
This paper presents the first work on particle system simulation and rendering on embedded systems in realtime. This  
was achieved by approximating volumetric systems by 2D-systems and by using a novel, physically motivated yet simple  
particle motion model instead of a computational complex solver for e.g. Navier-Stokes equations.
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Figure 1: Example particle effects taken from the demo: 1a  (left) fire, 1b  (middle) smoke and 1c (right) water

1. INTRODUCTION

The visualization of particle effects  has been a topic of much interest  since the beginnings of computer 
graphics, and many approaches have been presented, most of which use volumetric particle systems, e.g. 
(Wrenninge  et  al.,  2010).  These  are  based  on particle  movement  in  a  so  called  voxel  grid,  which  is  a 
discretized, closed space (realized e.g. by 3D-textures). However, these grids use a very large amount of 
memory, and thus several approaches have been suggested for their effective compression like octrees (Laine 
& Karras,  2011),  trading  lower  memory  footprint  for  higher  runtime.  To render  the  particles,  different 
methods are used depending on the exact effect that should be simulated, e.g. Marching Cubes (Lorensen & 
Cline, 1987) for liquids or light transport for smoke/clouds , e.g. (Hadwiger et al., 2009).



Most of the recent work concentrates on reducing the runtime, for example by introducing precomputing 
like Kun Zhou et al. (2008) or Yubo Zhang et al. (2012), or by modification of the grid, e.g. (Horvath & 
Geiger, 2009) or (Selleg et al., 2005). These approaches can run in realtime on contemporary PCs, however 
not on embedded systems, since modern smartphones/tablets have a different architecture. Here, the CPU and 
the GPU, but also all other integrated systems like communication, I/O etc. share the same memory and the  
same bus, which therefore become a bottleneck. This has however big advantages in energy savings and cost,  
and is thus unlikely to change. The GPUs are highly optimized towards size and energy consumption, but 
often have to render to high resolution screens.  This means that graphic algorithms have to be carefully 
optimized for runtime, but especially for memory consumption. For particle effects, most designers use so 
called  particle  systems,  which  in  these  cases  mean  several  (often  animated)  billboards  moving  in 
predetermined or partly-random patterns, as described in e.g. (Harris & Lastra, 2001). A few papers have 
presented  volumetric  rendering for  embedded displays,  like Moser & Weiskopf 82008) or  Rodriguez & 
Alcocer (2012), omitting however the simulation part needed for animated particle effects. Furthermore, the 
reported frame-rate of typically only a few frames per second is too low for real-time applications like games, 
and these works do not include popular effects, like lightning or advection (a method to introduce small-scale  
details through random noise which is offset by a turbulence field, see e.g. (Neyret, 2003) or (Qizhi Yu,  
2011). Finally, Krüger & Westermann (2005) and in Guay et al. (2011) suggested the use of a 2-dimensional 
approximation to emulate a full volumetric system. This is based on the observation that a fairly good result 
can be achieved solely by knowing how many particles  any possible ray from the observer  through the 
particle system would hit. Due to its low complexity, this is the approach we use here as well.  We further  
optimize their work by using a physically motivated model with much less complexity instead of a Navier-
Stokes solver as applied by them. Furthermore, Krüger & Westermann (2005) use a 2-dimensional flow field,  
but move the particles in 3D, and Guay et al. (2011) introduce a fake depth during the simulation, while here  
no depth is  used at  all  during simulation, thus reducing  simulation time.  Also, Guay et  al.  (2011) only  
described fire and it is unclear if their approach can be used for other effects as well, while we present here  
different particle effects proving the versatility of our approach. 

To the best of our  knowledge this is the first work where particle effects where generated on embedded  
systems by the simulation of particle movements.

2. 2D PARTICLE SIMULATION

As already pointed out, memory usage should be minimized as much as possible in embedded systems. 
Simulating the particle  movement in 2D leads to a low memory footprint  since only two 2D arrays are  
needed to save the data, one for the particles and one for the pressure field. We suggest here to remove the  
pressure field as well, so that the whole system uses only one single array, which will be called a particle-
field  in the following. Each cell of the field can contain 0 to 255 particles, which was chosen so that the  
whole field can be saved in a single color-channel of a texture. This also means that the simulation can be  
done  in  one  single  step,  instead  of  integrating  the  pressure  field  first  and  then  moving  the  particles  
accordingly in a second step. However,  since no pressure field exist the particles have to be moved in a  
different way, and for that we chose a force-based approach in this work.

In the real world, the movement of particles are governed by a number of different forces. The most 
prominent include inertia (i.e. along the current trajectory), diffusion (from places where a lot of particles  
reside to places where fewer particles are), and external forces (e.g. gravity). Apart from these 3 forces, we 
added a random force as well to emulate other and small-scale effects. We found that this approach has the 
additional advantage that choosing the blend-weights of these forces helps to control the simulation and thus 
makes it easy for the designer to create the desired effect.

Of course, each simulated particle represents a high number of real particles. Thus, the movement of each  
particle in the simulated system can be seen as the average movement of all particles it presents. Therefore, a  
more accurate simulation would be received if several particles, that travel along the same movement vector,  
would be allowed to travel in slightly different paths. This could be described by e.g. a gauss distribution. 
Here, we suggest to use a cosine function instead as an approximation, since all forces (except for diffusion) 
can be represented by vectors. Thus, the dot-product between the force vector and a candidate direction can  
be used for the force-calculation.



This  has  the  additional  advantages  that  it  can  be  computed  fast  in 
GPUs and that it guarantees that particles will be moved even if the force 
vectors do not align exactly with any of the candidate directions.

For the diffusion, simply the difference is used between the number of 
particles  in  the starting cell  of  the candidate  direction and the number 
contained in the finishing cell of the candidate direction.

To simplify  calculations,  all  particles  are  allowed to  move only  to 
neighboring cells. Also, during simulation the forces between a cell and 
its 8 neighbors are calculated only once for the each cell,  not for each 
particle that the cell contains. This also means that an average direction 
vector is used for the inertia calculation, which can be saved comfortably 
in 2 color-channels of the particle field texture.

Since the forces are calculated separately for each direction, particles 
will be moved to a number of different neighbors, based on the strength of 
the  calculated  forces.  In  traditional  approaches  however  only  few 
directions  would  be  used,  and  therefore  the  particles  spread  out  more 
quickly using our approach.

An overview of the different  forces and the resulting movements is 
given in figure 2b-2f. The particle field used has a size of 32x32. 2a shows 
the initial state, the others the system after 15 simulation steps.

3. EVALUATION

To test the method it was implemented on a Nexus 10, which is a tablet  
running  Android  on  a  Samsung  Exynos  5  Dual  processor.  The  GPU 
included in this chip, a Mali T-604, is by the time of this writing a better 
middle class GPU for embedded systems. Comparing it to concurrent PC 
graphics-cards,  its  limitation  can  be  clearly  seen.  While  current  PC 
graphics-cards  can have more than 3000 cores  running at  more than 1 
GHz, as well as up to 4 Gbyte dedicated memory, the Mali T-604 has 4 
cores running at 533 Mhz, and has to share the main memory (2Gbyte in 
this case) with the CPU and all other circuits integrated in the chip. Thus, 
it is not surprising that the Nexus 10 reaches only 8006 at the Icestorm 
benchmark, which puts it in the middle class of mobile device (the current 
maximum reached  by  a  mobile  device  is  11346).  By  comparison,  the 
middle class graphic card NVIDIA GeForce GTX 660 reaches 137246, or 
more than 17 times the performance of the Nexus 10. The highest value 
reached on a PC is (to the knowledge of the authors) 167203, but it should 
be  pointed  out  that  the  benchmark  is  slightly  biased  towards  low 
performance systems since it  does not take advantage of many features 
that high-end cards offer.

Three  different  systems  are  included  in  the  demo:  fire,  smoke and 
water (see figure 1 for example pictures). The sizes of the used particle-
fields were 64x64 for the water and the smoke and 32x32 for the fire.

Figure 2: Example to illustrate the 
different  steps  of  the  suggested 
approach: 
1st  row:  2a  (left)  input  particle 
field,  2b  (right)  movement 
according to entropy, 
2nd row: 2c (left) movement along 
a  common  direction,  2d  (right) 
random movement, 
3rd  row,  2e  (left)  all  three  forces 
combined, 2f (right) with additional 
inertia, 
4th row,  2g  (left)  2f  drawn using 
linear interpolation, 2h (right) noise 
in a 8x8 texture repeated 4x4 times, 
5th  row,  2i  (left)  calculated 
advection,  2j  (right)  2g  and  2i 
blended together (1:1)

Although for some cases a 2-dimensional particle effect might be enough, e.g. a fire in a fireplace, in 
most cases depth needs to be introduced during rendering. This can be done e.g. by displacement mapping, 
which has the additional advantage that the designer can choose roughly which shape the object should have.  
The water and the smoke in the demo are rendered using this method, the latter one using a spheroid as basic 
shape. The fire was rendered purely as a texture on an otherwise unmodified spheroid. 1922 triangles were 
used for the fire, 7938 for the smoke, and 9660 for the water.

The particle-fields are also used to generate the textures projected onto the particle objects, and advection 
was added in case of the fire and the water. The average movement vectors included in the particle field were  
used as turbulence field for the advection. For the random noise, it was chosen to use a noise texture, which 



is a texture that contains random values and is a common solution for advection. This has the additional  
advantage that the noise can be custom tailored for the effect that should be reached, e.g. in the case of the 
fire it proved to be advantageous to have many high values concentrated in parts of the noise-texture and  
lower  values  in  the  rest,  since  this  leads  to  more  flame-like  structures.  Finally,  to  reduce  memory  
consumption, noise textures of very small sizes are used, and repeated several times instead. The advection  
process is illustrated in figure 2g-2j.

The rendering was done in two different resolutions, 2560x1600 (which is the currently highest resolution 
available in tablets), as well as 1280x800, which is a high-end resolution of smaller tablets and smartphones 
at the time of this writing. For comparison, the iPhone 5 has 1136x640. The timing results are summarized in  
table 1. The time needed to render the ground is given as comparison; it uses 2386 triangles and 3 different 
textures depending on its height (with linear interpolation at the borders), but no other effects. These values  
include overhead  like sending variables  from the main program to the shader,  and were  taken from the 
viewpoint which (on average) lead to the worst result.

Looking at the numbers it is noticeable how close the values for the different simulations are, which is  
especially  interesting since the particle-field of  the fire  is  only 1/4th of  the size  of the other  ones.  Not 
surprisingly the smoke was rendered fastest, since its shader does not include much more than the actual  
geometry calculation,  while  the water  fared  worst  due to its  complicated advection scheme and its  high 
number of triangles.

Table 1: Average simulation and rendering times, as well as the theoretical frame-rates of each system, which were 
calculated as (1s-10*ts)/tr, with ts the simulation and tr the rendering time, since the simulations run at a constant 10 fps.

Simulation Rendering 2560x1600 Theo. fps 2560x1600 Rendering 1280x800 Theo. fps 1280x800

Water 3.83 ms 46.1 ms 20.9 17.2 ms 55.9

Fire 3.42 ms 28.2 ms 34.2 10.5 ms 92

Smoke 4.12 ms 11.8 ms 81.3 6.92 ms 139

Ground - 10.6 ms 94.3 7.14 ms 140

4. CONCLUSION & FUTURE WORK

A method was presented that  shows how particle systems can be simulated and rendered in realtime on 
embedded systems, by approximating a volumetric system with a 2-dimensional one, and by using a novel 
highly efficient model for the particle movement.  This method could prove very useful to include advanced  
particle effects in games for smartphones, tablets and similar systems. Performance is adequate for the target 
systems, but further optimizations are possible. We also aim for a unified system, where a designer would be 
given the possibility to control the look of the simulation and of the rendering by setting only a couple of  
parameters. Although this is already the case for the smoke and water simulations, we need to find further 
generalizations to eliminate the differences between the various cases to achieve this.
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