
A State Machine Design for High Level Control of an

Autonomous Wheel Loader

Niclas Evestedt

January 25, 2011

Abstract

This thesis is done as a part of the Autonomous machine project at Volvo Construction Equipment in

Eskilstuna. The goal is to develop a high level control structure capable of performing one complete

load and haul cycle at NCCs asphalt plant in Kjula at 30% productivity. A state machine which

serially executes the stages necessary to complete the whole cycle is designed and integrated into the

subsystems that are already developed. Due to weather conditions the system were never evaluated

at the asphalt plant, instead a simulated working environment were constructed and the system

reached 37.8% productivity compared to a novice driver at this site. To overcome the issues found

during the development a sketch of a new system, redesigned from scratch, is also included in this

report.

Acknowledgements

I would like to thank Robin Lilja for his nerdy humour that has created many laughs on days were

we saw no hope. I would also like to thank Jonatan Blom who have withstood all my complaints

and questions about the wheel loader during the work and of course Torbjörn Martinsson for his

courage when letting two young students play with his expensive wheel loader!

Contents

1 Introduction 2

1.1 Background . 2

1.2 Problem description . 3

1.2.1 Requirements . 3

1.3 Thesis outline . 3

2 Current system 4

2.1 Hardware design . 5

2.1.1 Sensors . 5

2.2 Software design . 6

2.2.1 PIP8 . 7

2.2.2 PC . 8

2.3 Limitations and drawbacks . 10

2.3.1 Sensors . 10

2.3.2 Software . 10

3 Related work 12

3.1 Introduction . 12

3.2 DARPA Grand Challenge . 13

3.3 Stanley . 13

3.3.1 Hardware . 13

3.3.2 Software . 14

3.3.3 Conclusions . 15

3

Contents

4 Design 17

4.1 The NCC cycle . 17

4.1.1 Translation to pile . 18

4.1.2 Fill bucket . 18

4.1.3 Translation to pocket . 18

4.1.4 Unload bucket . 19

4.2 Design problems . 19

4.3 State machine . 20

4.3.1 Translation to pile . 20

4.3.2 Fill bucket . 21

4.3.3 Translation to pocket . 22

4.3.4 Unload state . 23

4.4 Sitecontroller . 24

4.5 System design . 24

4.5.1 Overview . 25

4.5.2 Vision state machine . 25

4.5.3 Navigation state machine . 26

4.5.4 Main state machine . 27

4.5.5 Top level . 27

4.5.6 NCC cycle . 28

5 Implementation 32

5.1 State machine . 32

5.1.1 .NET State Machine Toolkit . 32

5.1.2 State machine controller . 33

5.2 Supplementary functions . 34

5.2.1 Path planning . 34

5.2.2 Weight estimation . 35

6 Results 36

6.1 Problems and compromises . 36

6.2 Performance evaluation . 37

4

6.2.1 Test setup . 37

6.2.2 Test results . 37

6.3 Conclusions . 39

7 Future work 41

7.1 Proposed system . 41

7.1.1 Interprocess communication . 41

7.1.2 Sensor layer . 42

7.1.3 Perception layer . 42

7.1.4 Planning and control layer . 43

7.1.5 Top level control . 45

7.2 Summary . 46

8 Conclusions and summary 47

References 47

A Circle splines 49

A.1 Circle splines . 49

A.1.1 Algorithm . 49

B UML statemachine 51

B.1 De�nition . 51

B.2 Mealy and Moore . 52

B.3 UML statemachine . 52

B.3.1 Extended state machine . 52

B.3.2 Hierarchically nested states . 53

B.3.3 Entry and Exit actions . 54

B.3.4 Orthogonal regions . 54

C .NET State Machine Toolkit 55

Acronyms

- .NET - A software framework for Microsoft Windows operating systems

- 2D - Two dimensional

- 3-DOF - Three degrees of freedom

- 3D - Three dimensional

- AD - Analogue to digital

- CAN - Controller area network

- DA - Digital to analogue

- DARPA - Defence Advanced Research Projects Agency

- ECU - Electronic control unit

- EKF - Extended Kalman �lter

- GPS - Global positioning system

- I/O - Input/Output

- ID - Identi�cation

- IMU - Inertial measurement unit

- IPC - Inter process communication

- PC - Personal computer

- PID - Proportional-integral-derivative

- PIP8 - A highly integrated and robust Industrial PC

- RPM - Revolutions per minute

- SLAM - Simultaneous localization and mapping

6

Contents

- UKF - Unscented Kalman �lter

- UML - Uni�ed Modelling Language

1

Chapter 1

Introduction

1.1 Background

Volvo CE is one of the largest manufacturers of construction equipment in the world today. The

product line of Volvo machines covers almost any job in the construction industry. The manufactur-

ing and development is spread around the world, in Eskilstuna where this thesis work has been done

Volvo CE has about 2000 employees. About 450 of those are working with research and development

with the main focus on haulers and wheel loaders. This thesis is done at the Emerging Technologies

department which has the role of using cutting edge technology for development of products for the

future market.

Many wheel loaders performs very repetitive work such as loading trucks or moving gravel from

point A to point B. In the future Volvo CE sees a higher demand for more automation of their

machines. In the �rst stage this will help the drivers to get a more comfortable working situation

by introducing more intelligent functions to the machine but the long term goal is to completely

remove the driver, making the whole machine autonomous. To cope with this future demand the

department of Emerging Technologies has started the Autonomous Machine project. The goal is

to have a machine that can work for two hours at 70% productivity compared to human drivers

without human intervention at NCC's asphalt mill in Kjula by 2012. This master thesis is one

part in reaching that goal. Parallel to this thesis there is another student working on a navigation

interface for the machine. We are working towards the same goal but on di�erent parts of the system.

Both parts are needed to make a successful demonstrator.

2

Chapter 1: Introduction

1.2 Problem description

Today the system consists of separately designed subsystems that has control over the machine

functions and the additional sensors. The machine has some form of general control structure

between the subsystems but it's not future proof and hard to overview and maintain. This thesis

will develop a new control structure where the goal is to develop a platform that has a high level

control over the subsystems and prove the design with a demonstrator that will perform at least

one cycle at the asphalt mill in Kjula. The goal is also to make the platform �exible and easy to

maintain for the ease of further development. To achieve these goals a study of the current systems,

control systems for robots in general and the production site in Kjula has been performed.

1.2.1 Requirements

The control structure should be a state machine with the ability to handle certain errors and un-

certain situations. The state machine should have full control over the subsystems and it should

integrate with the already developed subsystems so as much as possible from the old system can be

reused. The new platform should be developed with C++/CLI on the .NET platform. In this stage

of the project the machine is designed for working in restricted areas where no humans are allowed

so there are currently no requirements on safety towards humans.

1.3 Thesis outline

This section gives a brief overview of the content in the chapters of this report.

A presentation and a discussion of the current system is found in chapter 2.

Chapter 3 gives a study of related work done on autonomous systems and a short presentation of

the system used by Stanford University on their car for 2005 Defence Advanced Research Projects

Agency(DARPA) Grand Challenge.

In chapter 4 an investigation of the site at the asphalt plant is done. The structure of the state

machine is also presented.

Chapter 5 explains how the state machine were implemented and integrated into the system.

Chapter 6 continues the report by presenting the results.

In chapter 7 a new system is presented that could solve many of the problems found in the system.

Chapter 8 summarizes the report and presents the conclusions drawn by this work.

3

Chapter 2

Current system

The machine used for this project is a Volvo L120E. It is a midsized wheel loader with a weight of 20

tons, capable of lifting 8 tons during normal operation. It is equipped with articulated steering which

makes the machine very manoeuvrable. Wheel loaders are very versatile machines well suited for

many tasks in di�erent environments. In its standard setup it's equipped with a boom and a tiltable

bucket but there exists a broad range of tools for di�erent work tasks. The model chosen for this

project is well suited for the task because all machine functions except the breaks can be controlled

through one of several electronic control units(ECU). This made the design of the hardware interface

a lot easier.

Figure 2.1: The L120E model used in this project

4

Chapter 2: Current system

2.1 Hardware design

The �rst of several thesis works that has been done for this project designed a hardware interface

for accessing all machine functions and also for reading all sensor values supplied by the machine.

The interface simulates the control signals, such as throttle, steering and bucket manoeuvres, to the

ECUs that usually comes from a control leaver controlled by a human. In this way the system is

easy to disable and all control can be returned to the human operator. For the brake function an

extra electronically controlled brake valve had to be installed.

A rugged industrial PIP8 computer running xPC target, a realtime environment that can down-

load and execute compiled Simulink models, is used to control the low level hardware interface.

The PIP8 is equipped with an Embedded Celeron M CPU running at 1.0GHz, 1GB memory, In-

put/Output(I/O) cards with analogue to digital(AD), digital to analogue(DA) and controller area

network(CAN) bus interfaces which are used to connect to the hardware interface giving the PIP8

full control over the machine functions and sensors. A rugged casing makes the computer suitable

for harsh environments such as the environment in the wheel loader. The main task for the Simulink

model is to execute low level regulators for smooth control of steering, throttle, brake and bucket

manoeuvres but also for noise suppression and pre-�ltering of the sensor readings. The model also

has a bucket �ll controller implemented which is used when �lling the bucket.

Figure 2.2: Picture of PIP8 industrial computer

The PIP8 computer is in turn connected to a PC via TCP/IP. The PC runs Windows XP and is

allocated for non time critical tasks such as high level strategy. The PC has the top level control of the

cycle and acts as a master while the PIP8 acts as a slave and executes the commands supplied from

the PC. The PC also has control over the additional sensors such as global positioning system(GPS),

laser scanner etc. A complete sensor list will be presented in the next section.

2.1.1 Sensors

The machine already has many sensors installed that provide information about the machine. How-

ever to make the machine autonomous additional sensors are required. The additional sensors are

explained in section external sensors below.

5

Chapter 2: Current system

Internal sensors

Below is a list of the most important internal sensors.

- Position sensors: Three potentiometers provides readings for waist, lift and tilt angles.

- Pressure sensors: Pressure sensors provides readings for pressures in the lift and tilt cylin-

ders.

- Velocity sensor: A velocity sensor provides accurate velocity readings.

- RPM sensor: The engine ECU provides a revolutions per minute(rpm) reading.

External sensors

Two additional sensors are added to the machine, one laser scanner and one inertial measurement

unit(IMU) combined with a GPS.

The laser scanner has been installed on the prototype machine for quite a while and the communi-

cation protocol is fully implemented. The scanner used on the machine is a Sick LMS291 capable

of making horizontal scans in 75Hz with a range of 80 meters. To get a three dimensional(3D)

perception of the area the scanner has been mounted on a servo motor that can tilt the scanner in

the horizontal plane.

Figure 2.3: Picture of Sick LMS291

During this thesis an IMU sensor was installed by the student working on the navigation system. The

sensor is a Xsens Mti-G, this sensor provides accurate position and orientation data at high sample

rates. The sensor is equipped with three degrees of freedom(3-dof) gyroscopes, 3-dof accelerometers,

3-dof magnetometers and a GPS sensor. It has onboard processing of the sensors and provides a

fused output from all sensors.

6

Chapter 2: Current system

Figure 2.4: Picture of Xsens's MTI-g IMU sensor

2.2 Software design

The software for the machine is divided into two parts, one part is done in Simulink for the PIP8

computer while the other part for the PC is done in C++/CLI. The work done in this thesis work

mainly considers the software for the PC so the Simulink model for the PIP8 will be explained very

brie�y.

2.2.1 PIP8

As mentioned before the software for the PIP8 is designed in Simulink. The main task for the

Simulink model is to �lter out noise from machine sensors and to run regulators for the machine

functions such as lift, tilt and steering. Simple proportional(P) or proportional-integral(PI) regu-

lators are used and they provide fairly good control in most cases. The Simulink model also has

some high level functions such as a bucket �ll regulator. The bucket �ll regulator is capable of

performing an autonomous bucket �ll sequence if the machine is positioned in front of a pile. A

block for navigation and positioning is being developed in parallel to this thesis by the other thesis

worker [1].

7

Chapter 2: Current system

2.2.2 PC

The current system was designed by a previous thesis worker. The main task was to design a program

capable of performing loading of haulers autonomously, this is called the short loading cycle and

is illustrated in �gure 2.5. To do this a number of subsystems running in di�erent threads were

implemented. The goal of this section is to give an overview of the current system on the PC and

not to go in to details about the implementation.

Figure 2.5: Illustration of the short loading cycle

Overview

The software for the PC is implemented in C++/CLI on the .NET platform. The program is divided

into several threads which each have their own task. A topology of the system is shown in Figure

2.6. Every thread is executed on a speci�ed period, it will do its tasks and then sleep until the next

period starts.

Thread communication

The communication between the threads is done through a mailbox object. The mailbox can be

connected to two di�erent threads, one in each end. The information sent in the mailboxes is a set

of prede�ned messages and each thread has its own set of messages speci�ed. The mail also have a

�eld for data where di�erent variables can be sent. The mailboxes only supply a storage area for the

messages, the thread owning the mailbox must poll the mailbox in order to receive a new message.

8

Chapter 2: Current system

Figure 2.6: Topology of current software system

xPC Host

The communication to the PIP8 computer is always done through this thread. The thread provides

a set of macros for di�erent machine function that can be activated through the mail system but

also function for setting control signals for the controllers. When a mail is received it will decode

the message and send the information to the PIP8 computer where the action will be executed. The

complexity of the macros di�er from turning on the lights to a whole macro for loading a hauler.

Vision thread

The vision thread is responsible for the vision system, in this case the laser scanner. It controls

the communication with the laser scanner but also has a set of vision algorithms that extracts

information from the scan data. In the short loading cycle the laser is used for �nding the location

of the hauler and the pile. The thread receives a message with a request for �nding a pile or �nding

a hauler and runs it's algorithm and returns the result via the mailbox back to the requester.

Orientation task

This thread was reserved for navigation and positioning but nothing is yet implemented.

Supervisor task

The supervisor task was reserved for a watchdog thread but nothing is yet implemented.

9

Chapter 2: Current system

Complete task

This thread is what you can call the intelligence part of the program. It contains a state machine

which controls the �ow during the short loading cycle. The state machine communicates with the

Vision thread and xPC Host thread through the mailboxes and executes the macros in a sequence

speci�ed in the state machine. An example of the �ow in the state machine could be;

- Send a mail to the vision thread to make a search for the loading point in the pile.

- Wait for response from vision thread.

- Request the macro ApproachPileAndFillBucket from the xPC Host at the coordinates received

from the vision system.

- Wait for the macro to �nish.

The state machine will continue with the cycle until it is told to stop.

2.3 Limitations and drawbacks

There are numerous limitations and drawbacks on the current system both in hardware and software

design.

2.3.1 Sensors

The vision system and the positioning of the machine are the two biggest problems for the current

sensor installation. The main limit of the current vision system is the slow update frequency when

scanning in 3D. In order to have full control of the machine in an unload situation it is vital to have

fast continuous feedback of the hauler or pockets location, the current system can not provide this.

The positioning of the machine in the global coordinate frame is also crucial especially when the

machine is navigating without vision feedback. The positioning provided by the new IMU sensor

and the work done by the other thesis worker will hopefully solve this problem.

2.3.2 Software

The current software is designed from bottom and up by a number of previous thesis workers. When

people is in the project for a short time and develops their part of the system it is extremely important

with documentation of the functions that has been developed. One of the biggest problems with

the current system is that there exists almost no documentation, sometimes not even comments

in the source code. This makes it very hard for new people to get an understanding about the

system and a lot of time is spent on �guring out the behaviour of already developed functions. This

10

Chapter 2: Current system

documentation problem exists both in the software for the PIP8 computer and the software on the

PC. Another problem is the lack of a common design strategy for the software. There is no general

plan of how the �nal system should look like and there is no common design speci�cations of how

the interfaces to the low level code blocks should work. This makes the code very unmodular, it is

hard to make changes to the code and to reuse old functions. The system is also very undynamic

due to the extremely large macro functions.

In my opinion the system needs a complete overhaul with a good design plan that is followed from

scratch. Having said that the goal with this master thesis is possible to reach with the current

system but it will not be as dynamic and �exible as a system could be if it was redesigned properly

from scratch.

11

Chapter 3

Related work

3.1 Introduction

During the 80s a lot of research about control systems for autonomous robots were done. A major

breakthrough was when Brooks presented the subsumption architecture [2]. In this architecture

di�erent levels of competence is stacked on top of each other and running asynchronously in parallel.

Figure 3.1 shows the di�erence between brooks approach and the old.

Figure 3.1: Comparison between old architecture and the subsumption architecture[2].

In Brooks design a level has no awareness of the levels above it and the output of a level can

be suppressed by the higher levels. In this way it is easy to add higher level behaviour without

the need of redesign of the lower levels. The subsumption architecture reached it's limit with the

12

Chapter 3: Related work

construction of the robot Herbert [3]. Since then a lot of architectures has been presented, in Three-

Layer Architectures[4] the 3T architecture is presented but also a short historical overview of the

development of control systems. The rest of this chapter is a case study of the 3T related control

system used on Stanford University's car Stanley that won the 2005 DARPA Grand Challenge.

This system was chosen because it is a state of the art control system that obviously proved it's

capabilities by winning the Grand Challenge. The environments in the 2005 challenge are also more

relevant to this thesis than the environments in the more advanced 2007 DARPA Urban Challenge.

The complexity of the DARPA Grand Challenge is not comparable to the easier task that should

be performed by the wheel loader but it should be good inspiration to investigate this state of the

art system.

3.2 DARPA Grand Challenge

DARPA grand challenge is a competition for autonomous vehicles funded by the Defence Advanced

Research Projects Agency. The �rst two races in 2004 and 2005 was held in the Mojave Desert in

the USA. Just before the race the teams were supplied with a waypoint map with the route the cars

were suppose to travel in order to reach the goal. The 2005 route was 210 km through dessert roads

with sharp turns and and three tunnels. Five of the 23 �nalists managed to complete the course,

the winning time of 6 hours and 54 minutes were done by the Stanford University team with their

car Stanley.

3.3 Stanley

This chapter will go through the top level design of the software system and describe how the data

�ows from sensors to actuators. If a more detailed explanation about the di�erent modules and

algorithms is required it can be found in [5] where most of the information in this chapter have been

acquired.

3.3.1 Hardware

Stanley is a modi�ed 2004 Volkswagen Touareg R5 TDI. In order to control the car it has been

equipped with a interface that has control over steering, throttle, brake and gear shift. In the trunk

of the car six Pentium M computers are installed and they communicate over a gigabit Ethernet

connection. A lot of external sensors are also mounted on the roof rack of the car. The sensor list

is found in the next section.

13

Chapter 3: Related work

Sensors

- 5 x SICK laser scanners

- 1 x Color camera

- 2 x 24 GHz RADAR sensors

- 1 x Omnistar HP GPS receiver

- 1 x GPS Compass

- 1 x IMU

3.3.2 Software

The software is built of about 30 modules that run in parallel. The modules is divided into six

layers; sensor interface, perception, control, vehicle interface, user interface and global services.

1. The sensor interface layer is responsible for the communication with the sensors. The

data is time stamped with the time from a synchronized system clock so no distortion between

di�erent data occurs. The layer receives data from each laser scanner at 75Hz, from the camera

at 12Hz, the GPS and GPS compass at 10Hz and the IMU and the vehicles CAN bus in 100Hz.

This layer also has the waypoint map of the course.

2. The perception layer maps sensor data into internal models. The pose of the car is estimated

in this layer by an unscented Kalman �lter(UKF) that provides estimates of the vehicle's

coordinates, orientation and velocities. Three di�erent modules maps the data from the laser

scanners, camera and radar into 2D maps of the environment. The map produced from the

laser data is used in a road �nding module that �nds the center of the road. A road assessment

module uses the IMU to asses the road conditions and uses this to determine a safe forward

speed.

3. The control layer is running the steering, throttle and brake regulators. A path planner

module uses the maps that are produced by the perception layer and creates a path for the

car to follow. This path is then sent to two trajectory following controllers, one for steering

and one for speed control. A top level control module takes input from the user interface and

the emergency stop system and determines the general mode of the vehicle.

4. The vehicle interface layer is the interface to the cars drive-by-wire system. It has control

over the throttle, brake and steering.

5. The user interface layer has a touch screen for system start up and the remote emergency

stop system.

14

Chapter 3: Related work

6. The global services layer provides a set of global services for all modules. It runs a interpro-

cess communication(IPC) server that uses Carnegie Mellon University's interprocess commu-

nication toolkit. The layer also has a database of all vehicle parameters that can be updated

in a consistent way. A health status module monitors the other modules and restarts them if

it detects a problem. This layer is also responsible for clock synchronisation and logging of all

data.

A top level overview of the system can be found in �gure 3.2.

Figure 3.2: Topology view of the software system on Stanley[5].

3.3.3 Conclusions

The sensor equipment on Stanley is far superior to the one available on the wheel loader. However the

environment where the wheel loader will operate is well known and does not have the unpredictable

roads that Stanley has to drive. The price of the sensors is also of key importance if the system will

be sold commercially, the equipment installed on Stanley is almost more expensive than the wheel

loader itself so it would not be feasible to have such a capable sensor system installed on the wheel

loader. The software architecture is what is interesting for this thesis. Stanley's software system

15

Chapter 3: Related work

has no centralized master, instead all modules run at there own pace and information only �ows

in one direction. This increases the information throughput of the system and minimizes latency

problems. The system was built with a design plan where modularity and reliability was of key

importance. The contrast between this system and the system in the wheel loader is huge. In the

wheel loader modules have to ask other modules to perform tasks and then return the answers, this

design strategy has huge latency problems and the information throughput is low because only one

module is active at a time. Stanley's system was developed by dozen of people that has worked with

robotics research for several years so believing that a system of this calibre could be implemented

over the period of a master thesis would be naive. However, understanding the principles in their

design will give inspiration and help in the development of the new system.

16

Chapter 4

Design

To be able to to make a good design for the new system it is important to understand the site where

the machine is supposed to work and the di�erent stages in the working cycle. Several visits to the

asphalt mill has been done to get a better understanding of the site. On the site we have watched

the site during operation and have had some short interviews with the site operators. Torjörn

Martinsson, my supervisor at Volvo, has also provided a lot of information about the working cycle.

With this information a work �ow of the cycle has been constructed. In the following chapter

the working cycle, that henceforth will be referred to as the NCC cycle, will be explained and then

divided into di�erent stages where we can see independent behaviour. These stages will then be used

in the design of the state machine. The system will also contain a simple database with information

about the site and a sitecontroller, these are also explained below.

4.1 The NCC cycle

The asphalt plant needs a constant feed of ingredients during operation. The ingredients are di�erent

kinds of gravel that are stored in big piles near the plant. Depending on the recipe, the plant needs

di�erent amounts of the ingredients. The materials have to be transported from the piles to the

pockets that feed a conveyor belt that in turn feeds the plant with material. There are 12 pockets

and each pocket stores a speci�c ingredient. The wheel loaders task is to transport the material

from the piles and unload the material in the correct pocket. Figure 4.1 shows a schematic overview

of the site. The autonomous machine has to be able to make similar decisions to the ones made

by the human operator during operation. To better understand the di�erent problems that face

the driver during the cycle it was divided into several stages where the problems for each stage was

investigated. The cycle was divided into four main stages; translation to pile, �ll bucket, translation

to pocket and unload bucket, these four main stages where then divided into several sub-stages. The

four main stages are described in detail in the following sections.

17

Chapter 4: Design

Figure 4.1: Overview of the NCC site

4.1.1 Translation to pile

During the translation to pile stage the main objective is to navigate the machine from it's current

position to the desired pile in a safe manner. The �rst part of the translation stage is a simple

translation to the pile area. When the machine is in the correct area the driver has to �nd the

correct pile and then choose a suitable loading point in the pile. When the loading point is located

the driver navigates the machine to this point and positions the machine with the orientation of

the bucket straight for the loading point. A good loading point is a point in the pile where the

neighbouring material lies in a convex arc. The convexity of the pile makes it easier for the bucket

to penetrate the pile and get a good �ll.

4.1.2 Fill bucket

The bucket �ll stage usually starts a couple of meters in front of the pile by letting the bucket scrape

the ground in front of the pile. This is done to prevent the build up of a ramp with the spillage

from previous bucket �lls. The �lling of the bucket is then done by penetrating the pile with the

bucket at the same time as you lift and tilt the bucket to produce a scooping movement. When the

bucket is full the driver leaves the pile by reversing in an arc so a translation towards the pockets is

no longer obstructed by the pile.

4.1.3 Translation to pocket

The di�erence in this stage compared to the translation to pile lies only in deciding a good point

for unload instead of loading. When the pocket area is reached the driver �rst locates the correct

pocket and then navigates the machine to the pocket.

18

Chapter 4: Design

4.1.4 Unload bucket

The unloading procedure is very simple, the driver starts to lift the bucket a couple of meters in front

of the pocket. When the bucket is just in front of the pocket the tilting of the bucket is initiated

and the material falls down into the pocket. When the bucket is empty the machine is reversed in

an arc to position the machine for a new run to the piles.

When the driver is operating the machine this cycle seem to be seamless but still very fast and

accurate. To be able to get the autonomous machine to perform this cycle an analysis of the

software implementation problems that exists in all stages was done.

4.2 Design problems

After the analysis of the NCC cycle a couple of problems can be identi�ed. These problems needs to

be solved and implemented in software in order to get an operational demonstrator. The problems

are listed below.

- Navigation: The machine needs some kind of navigation algorithm that can navigate the

machine from point A to point B. This algorithm is being developed in parallel to this thesis

by the other thesis worker.

- Positioning: To be able to navigate the machine it needs an accurate estimate of its position.

This is done with a number of sensors and this estimation is also under development by the

other thesis worker.

- Path planning: The robot needs to be able to plan paths to the location it want to go to. A

simple path planning solution is included as work for this thesis.

- Obstacle avoidance: When navigating, the machine needs some kind of obstacle avoidance.

In the scope of this thesis the site is considered to be static and no humans are allowed on the

site during operation. Therefore no obstacle avoidance is used in this thesis but the need for

obstacle avoidance in the future is considered in the design.

- Choosing loading point: The choice of loading point is a very important decision to increase

the e�ciency of the machine. Incorrectly chosen loading points a�ects the fuel consumption

and in some cases it could be necessary to re�ll the bucket because of too low �ll rate. A

wisely chosen point should minimize these problems. An algorithm for �nding loading points

is developed as a research project at Örebro University.

- Bucket �ll: When the machine is positioned at the loading point it needs to be able to �ll the

bucket. A regulator for bucket �lling was developed in one of the previous thesis works that

has been done for the project. If the machine is positioned in front of the pile the regulator

can be initiated and it will �ll the bucket.

19

Chapter 4: Design

- Choosing unloading point: The choice of unloading point is a bit easier than the choice of

loading point because the pockets are stationary and always have the same unload point. The

only problem is to identify the correct pocket. The algorithm developed at Örebro University

is also capable of identifying the correct pocket.

- Unloading: The unload sequence can be performed with simple movements of the bucket

and it will be implemented as an unloading macro without any vision feedback. It relies on a

correct positioning of the wheel loader as it approaches the pockets. A more capable unload

function is left for future development.

From the list it can be seen that most problems is either implemented or under development and

with a good coordination of the work a complete system can be implemented during this thesis.

4.3 State machine

The tasks for the state machine is to have a high level control over the subsystems and using these

to make the machine perform the NCC cycle. To identify the states needed in the state machine a

more detailed investigation of the four previously de�ned stages in the cycle was performed. The

focus was to identify the states needed and the entry and exit conditions for each state.

4.3.1 Translation to pile

The translation to pile state is illustrated in �gure 4.2. The distances Rdocking, Rnr and dvision will

be determined through experiments. The translation to pile is divided into two substates.

Translation to pile area

The �rst substate in this state will be called translation to pile area. In this state the machine will

navigate on a prede�ned path from the pockets to the pile area. When the machine is at distance

dvision from the docking point the vision system will be activated. The machine will continue on the

prede�ned path at the same time as the vision system will try to �nd and identify the pile. If no

pile is found before the machine has reached the docking point the machine will stop and do small

movements until the pile is found. If the vision system has locked on the pile and the docking point

has been reached a state transition to dock loading point will occur.

Dock loading point

In this state the vision system will try to �nd a suitable loading point. When a point is found the

machine will calculate a path to this point and start to navigate towards the point. The vision

system will continuously search for a better point in the area around the �rst located point. If the

20

Chapter 4: Design

Figure 4.2: Illustration of the translation to pile state.

system �nds a better point a new path will be calculated to this point. The vision system will try

to �nd better points until the point of no return is reached. When this point is reached the vision

system will be turned o� and the machine will continue to navigate towards the last found loading

point. When this point is reached the translation to pile state is �nished. A transition to the �ll

bucket state will now occur.

4.3.2 Fill bucket

The �ll bucket state is illustrated in �gure 4.3. The �ll bucket state starts at the loading point, at

Figure 4.3: Illustration of the �ll bucket state.

21

Chapter 4: Design

this point the machine should be positioned so the bucket �ll regulator can be activated. The bucket

�ll regulator will be activated and the state machine will transition to the �lling bucket state.

Filling bucket

In this state the bucket �ll regulator will try to �ll the bucket. The regulator can run in to some

problems such as stalling etc. If a problem occurs a transition to a error handling state will occur.

If the regulator �nishes without problems a transition to weight estimation state will occur.

Weight estimation

The weight in the bucket will be estimated to see if the bucket has a high enough �ll grade. If the

bucket is not full enough it should be emptied and a new �ll should be performed. If it's full a

transition to the undock pile state will occur.

Undock pile

In this state the machine will reverse to the undock point. The undock point is a prede�ned point

in the global frame where the machine is supposed to undock the pile. When the point is reached a

transition to translation to pocket will occur.

4.3.3 Translation to pocket

The translation to pocket state is shown in �gure 4.4. The translation to pocket state is also divided

Figure 4.4: Illustration of the translation to pocket state.

22

Chapter 4: Design

into two substates.

Translation to pocket area

This state is almost identical to the translation to pile. The di�erence between the states is that

the vision system tries to locate the pockets instead of the pile. When the machine has reached the

docking point and has a lock on the pockets a state transition to dock unloading point will occur.

Dock loading point

This state starts at the docking point, because the pockets are stationary they always have the same

unload point. The vision system will locate the pockets and send the unload point corresponding

to the correct pocket to the navigation system. When the machine has reached the unload point it

will transition to the unload state.

4.3.4 Unload state

An illustration of the unload state is shown in �gure 4.5. This state starts at the unload point and

Figure 4.5: Illustration of the unload state.

the machine should be positioned in front of the pocket. The unload sequence will be activated and

a transition to the unloading state will occur.

Unloading

In this state the machine will empty the material in the pocket. When the bucket is emptied a

transition to the undock pocket will occur.

23

Chapter 4: Design

Undock pocket

In the undock pocket state the machine will reverse in an arc to the undock point to prepare for the

translation back to the piles. When the point is reached the cycle will restart by a transition back

to the translation to pile state.

The cycle and states presented in the previous sections is the main task for the state machine to

perform. This can be implemented in numerous ways. One of the goals for the new design was to

make the implementation �exible and easy to maintain for future development. To achieve this a

good base structure is critical. Another requirement was the ability for good error handling. Even

though the implementation presented in this thesis will not handle all kinds of errors and uncertain

situations it is important to incorporate a common error handling strategy in the base structure.

4.4 Sitecontroller

During production the operators need to be able to give instructions to the machine, such as which

pile to dig from and witch pocket to put it in. The sitecontroller is mostly allocated for future

development and it's role is to monitor the �ll grade of the pockets and then give instructions to

the machine so the current recipe can be followed. Another future task for the sitecontroller is to

monitor the progress and speed of the working cycle. If the machine is falling behind schedule it's

the sitecontrollers role to tell the machine to speed up. There will always be a tradeo� between fuel

e�ciency and the working speed so sometimes it might be smarter to reduce the production rate in

the asphalt plant instead. In this design the sitecontroller will only contain a hardcoded working

schedule that contains a number of workorders. Every workorder contains information about which

pile to dig and which pocket to unload to. Waypoint roads between piles and pockets and the undock

points is stored in a small database that is used by the state machine when navigating.

4.5 System design

There are many standards for state machine design. In the traditional state machines Mealy or Moore

design is often used. These designs work for small problem but for bigger problems state explosion

often occurs. In appendix B an introduction to state machines and a more detailed presentation of

the Uni�ed Modelling Language(UML)-state machine can be found. The UML-state machine will

be used in the design because of its �exibility, the concept of hierarchically nested states and that

it's used in many state machine development toolkits. To reduce complexity the new design will

incorporate three newly designed state machines that will work together with the old system. The

base design for the system is described in the following sections.

24

Chapter 4: Design

4.5.1 Overview

As mentioned before the new design will have three state machines working together; the main state

machine, the navigation state machine and the vision state machine. The main state machine can

be considered the master while the other two are slaves. The division of the state machines were

done to reduce complexity and make it easier to have parallel functions running simultaneously. An

overview of the system is found in �gure 4.6.

Figure 4.6: Overview of the integration of the state machines in the system.

4.5.2 Vision state machine

The vision state machine has control over the vision system. The vision system can run two di�erent

algorithms one for �nding pockets and one for �nding loading points in a pile. The vision state

machine is very simple and is shown in �gure 4.7.

The vision state machine remains in idle until a scan request is received. Activate vision will be

entered as soon as a request is received, in this state a scan request will be sent to the vision computer

and as soon as a con�rmation is received the scanning state will be entered. In the scanning state

there are two substates; wait for data and send data. Wait for data waits for a new data event from

the vision system, when this event is received the send data state is entered. The send data state

will relay the information to the main state machine and then enter wait for data again as soon as

a con�rmation is received from the main state machine. It will remain in the scanning state until

the main state machine sends a stop scanning event. When this event is received the vision system

will be deactivated and idle will be entered.

25

Chapter 4: Design

Figure 4.7: State chart of the vision state machine.

4.5.3 Navigation state machine

The navigation state machine has control over the interface to the navigation system. The navigation

state machine has two modes; one for navigation in the global coordinate frame and one for navigating

in the local frame. The local frames origo is set in the front axis of the machine at the start of a

local navigation request. The navigation state machine is shown in �gure 4.8.

Figure 4.8: State chart of the navigation state machine.

The navigation state machine is very similar to the vision state machine. It remains in idle until it

receives a navigation request. Depending on the type of request the state machine has two paths.

A global request will trigger a transition to send global path, in this state a waypoint list will be

downloaded from the database and then relayed to the navigation system in the PIP8. When the

list is sent successfully it will enter and remain in the navigating state until it receives a navigation

complete event. The navigation state machine will return to idle and relay the navigation complete

event to the main state machine. A local request will trigger a transition to the send local path state,

in the request message a desired point will be included in the data �eld of the message, a path to

26

Chapter 4: Design

this point will be calculated and sent to the navigation system. This mode will usually be used for

shorter precision navigation in the range of 20-30 meters.

4.5.4 Main state machine

The main state machine is the one that has a high level control over the cycle and the machine. The

main state machine is too big to explain in total right away so it will be explained in sections. The

main state machine is built up of several layers and the top level can be seen in �gure 4.9.

Figure 4.9: Top level states of the main state machine.

4.5.5 Top level

The top level mostly concerns initialization of the computers and the machine. The Init XPC state

is responsible for initializing the PIP8 computer by downloading the Simulink model. If this is

successful the idle state will be entered otherwise the master error state is entered were a restart

can be initiated. The idle state waits for a manual command to start the machine, when the start

event is received start machine will be entered. The start machine state will try to start the machine

if it's not already turned on, if this is successful the operation state will be entered. If the start

sequence fails the master error state is entered. In the operation state there are three substates;

Standby, NCC and Short loading cycle, the user can choose if the machine should perform the NCC

cycle or the short loading cycle. The short loading cycle is not implemented in this thesis. Standby is

entered if the user sends a standby command, this will interrupt the cycle and it has to be restarted.

27

Chapter 4: Design

The top level state also has a state for shutting down the machine and a state for handling master

errors. A master error is a critical error where operation can not continue and has to be stopped.

4.5.6 NCC cycle

The NCC state is the state that has the control over the NCC cycle. It is divided into the di�erent

stages that was explained in the previous sections. In �gure 4.10 the top level of the NCC state can

be seen. The �rst state, receive next workorder, will check the workorder queue for a workorder and

if there is a workorder in the queue it will be executed by entering translation to pile. If the queue

is empty standby will be entered.

Figure 4.10: State chart of the top level in the NCC cycle

Translation to pile

In �gure 4.11 an overview of this state can be seen. The �rst two substates are responsible for

navigating the machine to the pile area. In the request navigation to pile state it will check the

current workorder to see which pile it is supposed to navigate to. The pile number in the workorder

will be sent to the navigation state machine which will check the database and download the waypoint

path to the pile. This path will be sent to the navigation system and a message that the list has

been received correctly will be sent. The navigating to pile substate is a wait state which waits for

a message that the machine has completed the navigation. When this message is received it will

enter the docking pile state. This state has two substates, wait for pile pos and send data to navSM.

When this state is entered it will activate the vision system which will start looking for dig points

in the pile. When a position is received the send data to navSM state will be entered. The position

28

Chapter 4: Design

Figure 4.11: State chart of the translation to pile state

will be sent to the navigation state machine where a path to that position will be calculated and

sent to the navigation system. New paths will be calculated every time a new position is received

and this will go on until the wanted position is reached. The vision system will now be deactivated

and a bucket �ll will be initiated.

Fill bucket

Figure 4.12: State chart of the �ll bucket state

In �gure 4.12 an overview of the �ll bucket state can be seen. In the �rst substate a bucket �ll

request will be sent to the XPC host. If the command is received correctly an acknowledgement

will be sent back. The state machine will now enter the �lling bucket state where it will wait for

the bucket �ll sequence to �nish. The weight in the bucket will now be estimated and depending

on the �ll grade two di�erent paths can be taken. If the �ll grade is too low it will request a move

to a retake position. When this position is reached it will reenter the request bucket�ll state and

the bucket �ll sequence is repeated. When a bucket with a good �ll grade is achieved it will enter

the request undock state. In this state the undock point for the pile will be downloaded from the

29

Chapter 4: Design

database and sent to the navigation state machine. A path will be calculated to this point and when

the undock point is reached the translation to pocket state will be entered.

Translation to pocket

Figure 4.13: State chart of the translation to pocket state

The translation to pocket state is identical to the translation to pile state except that the vision

system will use the algorithm for �nding pockets instead of piles. This state can be seen in �gure

4.13.

Unload bucket

Figure 4.14: State chart of the unload bucket state

The unload bucket state is very small and can be seen in �gure 4.14. In the request unload state a

request for the unload sequence will be sent. When the request has been received it will wait for the

bucket to unload. When the bucket is unloaded a undock sequence identical to the one in the bucket

�ll state will be performed. The undock point for the pocket will be downloaded from the database

30

Chapter 4: Design

and sent to the navigation state machine where a path will be calculated. When the undock point

is reached the cycle is completed and the receive next workorder state is entered.

31

Chapter 5

Implementation

In this chapter the implementation of the state machine is described but also a set of smaller

supplementary functions that were needed to perform the cycle.

5.1 State machine

To decrease implementation time we decided that we should use some kind of state machine de-

velopment environment. A graphical development environment would be preferred but after some

investigation no suitable environment was found that was compatible with C++/CLI. A implemen-

tation compatible with C++/CLI was a requirement because the rest of the project already was

developed in this language. However a non graphical open source toolkit was found that could be

modi�ed to work together with the rest of the system. A short introduction to the toolkit can be

found in Appendix C.

5.1.1 .NET State Machine Toolkit

In the implementation a separation between the architecture of the state machine and the application

code was wanted to make it easier to modify and change the structure of the state machine without

the need of changing any other code. To achieve the separation the state machine only communicates

tasks through the mailbox system and does not run any application code itself. Some modi�cations

to the toolkit were necessary to make this integration to the reset of the system and these are

described in the next section.

32

Chapter 5: Implementation

Modi�cations

Two modi�cations were done to the toolkit. The state machine needed a way to communicate

through the mailbox system so a handle to the mailsystem were added. A time control system that

monitors the time in each state was also added to the toolkit. Every state is given a timeout period

that is de�ned in the construction of a state. Entry times is then registered when a state is entered,

the time spent in the state can then be calculated and compared to the timeout period. When a

state is exited the total time spent in the state is calculated and stored in a time report. The time

report is then put on a queue where a logging system will read and log the information to disk.

5.1.2 State machine controller

A control structure was built around the state machine with the task of reading the mailboxes,

monitor the times in the states and log debug information to disk. The controller is running in its

own thread and is executed on a prede�ned period. Three methods is run every time the controller

executes; CheckTimeOuts, DispatchEvents and TimeLogger. The structure of the controller is shown

in Figure 5.1.

Figure 5.1: Overview of the state machine controller.

33

Chapter 5: Implementation

CheckTimeOuts

This method is responsible for the time monitoring. Every state has a timeout time de�ned and a

maximum number of timeouts that is allowed to happen in that state. The method calculates how

long the current state has spent and compares it to its de�ned timeout time. If it has spent more

time than allowed a timeout event is triggered. If the current state has timed out more times than

its allowed a timeout error event is triggered. All states is handled in a generic manner and its up

to the state machine to handle the timeout events. In most cases a state will just reenter itself on a

timeout and a timeout error event usually produces a master error.

DispatchEvents

The state machine can have a number of mailboxes connected to di�erent systems. The task for

this method is to check all mailboxes and relay the events to the statemahine. Some events contains

data, in those cases the data is also relayed to the state machine.

TimeLogger

The time logger reads the timereport queue in the state machine and writes the report to a log�le.

All three state machines were implemented using this structure and only changes in the de�nition

of the state machine were required. The toolkit also provides a structured way of creating the state

machine de�nition which makes it easy to change or create new state machines if needed in the

future.

5.2 Supplementary functions

Some smaller functions that were needed to perform the cycle were also implemented. A path

planner for shorter distances and a weight estimator had to be implemented to complete the cycle.

5.2.1 Path planning

A path planning algorithm using circle splines were implemented and a description of the algorithm

can be found in appendix A. The implemented function takes the current position of the wheel

loader, a desired position and a desired heading as arguments. The algorithm creates a smooth

waypoint path between the positions that can be sent to the navigation system. It can also be used

to make a smooth path between a sparse waypoint map. The algorithm was �rst implemented in

MATLAB and then translated to C++. The output from the algorithm can be seen in �gure 5.2

and �gure 5.3. The algorithm has no vehicle model included so the paths can be impossible to follow

therefore it is important to supply the algorithm with feasible arguments.

34

Chapter 5: Implementation

0 5 10 15 20 25
−10

−5

0

5

10
Creation of splines

[m
]

0 5 10 15 20 25
−10

−5

0

5

10

[m]

[m
]

Inital heading
of machine

Wanted heading
of machine

Rear axel
Mid tap Front axel

Figure 5.2: Algorithm used to create a path to a wanted position.

0 5 10 15 20 25
−10

−5

0

5

10
Creation of splines

[m
]

0 5 10 15 20 25
−10

−5

0

5

10

[m]

[m
]

1

2

3

4

5

6

7

8

Figure 5.3: Algorithm used to smooth a sparse waypoint list.

5.2.2 Weight estimation

To get a estimate of the �ll grade after a bucket �ll a very simple weight estimator was created. The

estimator moves the bucket to a prede�ned position and reads the pressure of the lift cylinders. A

function then calculates the weight from the read pressure. The function was obtained by reading

the pressure with di�erent weights in the bucket and doing a linear regression between the points.

The function was not perfectly linear in all regions but it is accurate enough to distinguish a good

�ll from a bad �ll.

35

Chapter 6

Results

In this chapter I present the results from this thesis. It will begin with a section about problems and

compromises that had to be done along the way to get a working demonstrator. The performance of

the demonstrator was investigated in a simulated working environment and the results are presented

below.

6.1 Problems and compromises

During the development we ran in to a number of problems which forced us to deviate from the

design plan presented in chapter 4. The major changes were done in the way the machine docks

the piles and pockets. The problems occurred when the scanner were scanning continuously and

waypoint lists were calculated and sent to the PIP8. The network implementation in the PIP8

computer were not fast enough to receive waypoint lists at these speeds so the continuous scanning

had to be removed. In the new docking procedure a global navigation takes the machine all the

way to the docking point were only one scan is taken. A loading point is extracted from the scan

and a path to the point is calculated and sent to the navigation system. The same procedure is

done for the unloading point in the pocket. In this way all responsibility is put on the navigation

system to follow the path and take the machine to the correct point. The navigation system proved

to be reliable enough if the machine were positioned in a good point about 20 meters in front of the

pile or pocket. A reliable navigation were most important when unloading in the pocket because a

bad navigation would cause a unload of the bucket beside the desired pocket and cause a mixture

of di�erent type of materials in the pockets. When �lling the bucket a navigation miss would only

cause the machine to �ll the bucket in a non optimal point which is not as critical as missing the

pocket.

36

Chapter 6: Results

6.2 Performance evaluation

6.2.1 Test setup

The original plans to do a demonstration at the asphalt plant in Kjula had to be abandoned due to

the weather conditions during the last months of this thesis. The plant were covered in snow and

the roads used to get the machine to the site were too slippery to drive. Instead a simulated site

were constructed at Volvo's Customer Center in Eskilstuna. The customer center has a big area

with some piles but it has no pockets so a wooden pocket were constructed. The test setup is shown

in �gure 6.1 and should be good enough to make a proof of concept.

−40 −20 0 20 40 60 80 100
−140

−120

−100

−80

−60

−40

−20

0

East [m]

N
or

th
 [m

]

Start / Stop
Pocket

Pile

GPS
EKF

Figure 6.1: The test site at Volvo Demonstration facility

On site the performance of the system were compared to the performance of a novice driver. By

comparing the times it took for the human and the autonomous system to complete four cycles on

the test site the productivity could be evaluated. Times were measured and compared for all four

main states of the cycle and the results are presented in the next section.

6.2.2 Test results

In �gure 6.2 the paths driven by the human and the autonomous system can be seen. At the pile a

problem with the autonomous system can be observed.

A bug in the vision system produced faulty loading points so the machine never �lled the bucket in

the pile, however the bucket �ll sequence were performed in the air. The time di�erence between this

37

Chapter 6: Results

−40 −20 0 20 40 60 80 100
−140

−120

−100

−80

−60

−40

−20

0

East [m]

N
or

th
 [m

]

Start / Stop

Pocket

Pile

Human

Autonomous

Figure 6.2: Comparison between the human driver and the autonomous system

behaviour and a correct �ll sequence in the pile is considered too be small enough to be neglected.

Other di�erences can be observed in the undocking procedures at the pile and pocket. The human

1 2 3 4 5
0

25

50

75

100

125

150

175

200

225

250

275

300

320
Time in each state

[s
]

Human

Machine

Translation to
 pile

Fill bucket Translation to
 pocket

Unload Total cycle
 time

Figure 6.3: Comparison between the human driver and the autonomous system

driver performs more compact and aggressive undock patterns compared to the autonomous system

thus saving a lot of time. Because the navigation system has problems navigating sharp manoeuvres

the undock points were chosen so smooth and longer undock paths would be calculated and this is

why the system performs longer undock sequences. The time and speed di�erences in the four states

of the cycle are shown in �gure 6.3 and �gure 6.4. From �gure 6.4 it can be seen that the human

driver never stops completely for longer periods while the autonomous system have long stops at

38

Chapter 6: Results

0 20 40 60 80 100

−10

0

10

20

30

[s]

[k
m

/h
]

0 50 100 150 200 250 300

−10

0

10

20

30

[s]

[k
m

/h
]

Translation to pile

Translation to pile Bucket fill Translation to pocket Unload

Translation to pocket

Human driver

Autonomous system

Bucket fill Unload

Figure 6.4: Speed comparison between human driver and the autonomous system.

several parts of the cycle. The stops are needed when the machine takes a scan of the environment

and if these could be removed a lot of time could be saved. The human speed is also more smooth

and it almost looks like the whole cycle is done in one sweep compared to the more choppy speed

curve of the autonomous system. The speed both in reverse and forward are faster when the driver

performs the cycle however the speed of the autonomous system are limited so a safe operation is

ensured.

The productivity of the autonomous system were calculated by dividing the mean cycle time for

the human by the mean cycle time of the autonomous system. The calculations showed that the

productivity of the autonomous system were 37.8% compared to a novice driver thus the productivity

goal of 30% for this thesis has been reached.

6.3 Conclusions

When looking at the diagram in �gure 6.3 it can be seen that the states that took the least amount of

time for the human are the states that takes the longest time for the autonomous system. Especially

looking at the unload state it can be seen that the autonomous system uses �ve times more time to

unload the bucket compared to the human. The state contains fast localisation of the pocket and

precision navigation towards it at the same time as a well synchronised movement of the bucket is

performed, for the human novice driver this is not a problem and the unloading can be performed in

a fast and smooth way. The autonomous system solves these problems in a serial way which takes

a lot more time than the parallel processing done by the human. Not much time were put on the

development of the unload sequence so a redesign of the unload sequence can speed up the cycle a

lot. More time could also be saved easily by implementing more aggressive undock patterns both

39

Chapter 6: Results

at the pocket and the pile. In the translation states it can be seen in �gure 6.2 that the human

and autonomous system drives on approximately the same paths so the only way to save time in

these states is to increase the speed. The navigation system has been tested at higher speeds with

promising results but unleashing a 20 ton machine at high speeds with only a human controlled

emergency break can result in dangerous situations. I believe that the productivity of the system

could be increased to 50%-60% with some simple �xes but the real issue that has no simple �x is

the reliability and robustness of the system.

40

Chapter 7

Future work

After working with this system for the last �ve month I still believe that the base structure of the

whole system needs to be reorganised in a more modular and structured system to be able to reach

the robustness and reliability goals for the future. We have proved that the current system is capable

of performing a simple NCC cycle but to reach the speed and reliability needed for continuous work

at a site it is not �t. The state machine designed in this thesis is built upon the old system and

still have the same latency and information throughput problems as the old one. To overcome these

problems the sensor and especially the laser scanner information needs to be processed and fed

through the system in a di�erent way. In this chapter I will present a new system design that I think

will be able to solve the problems of the old system. The system is just a sketch and is inspired by

Stanley's system presented in chapter 3.

7.1 Proposed system

In this section I will explain the structure of the proposed system and it can be seen in �gure 7.1.

The system is built up of the same layers as Stanley's; the sensor layer, the perception layer and the

planning and control layer. All modules run in parallel witch increases the information throughput

and make the system more dynamic than the serial structure of the state machine.

7.1.1 Interprocess communication

One of the �rst changes that should be done is the way the threads are communicating. To min-

imize complexity the system should run the same operating system on all computers so a general

interprocess communication service can exist throughout the whole system. Easy and fast access to

sensor data must be built in to the system in order to get continuous processing of the sensor data.

I believe that the IPC system has a key role so a thorough research of di�erent IPC toolkits should

41

Chapter 7: Future work

Figure 7.1: Schematic overview of the proposed system

be performed. A comparison of di�erent IPC toolkits can be found in [6] and may be used as a start

to �nd a suitable toolkit.

7.1.2 Sensor layer

The sensor layer is responsible for reading sensor data and perform pre�ltering of the data. The

data is then distributed through the system via the IPC service. The reading and pre�ltering will be

performed in the PIP8 computer and then communicated to the PC where it is distributed through

the IPC service. To avoid time skew of the data the data needs to be timestamped with a common

system clock that is synchronized throughout the system. The sensor layer also contains a map of

the site. This map could be a 3D scan of the site done with the laser scanner.

7.1.3 Perception layer

The perception layer consists of �ve modules; the map builder, obstacle detection, object detection,

pose estimation and bucket pose estimation.

Map builder

In the current system the scans are thrown away as soon as the calculations are complete. Due to

the static environment of the site this is a huge waste of information. In this system the map builder

is constantly fed with the scans form the laser. The laser scanner should be pointed about 20 meters

42

Chapter 7: Future work

in front of the machine and use the translation to produce a 3D perception of the environment. It

uses this information and a SLAM algorithm together with the 3D map of the site to produce a

more updated version of the map. The simultaneous localization and mapping(SLAM) algorithm

will also supply the location of the machine in the 3D map and this information is sent to the pose

estimation.

Obstacle detection

Obstacle detection is a very hard problem but as a start this module can be used to detect static

obstacles such as bumps and holes in the ground. During navigation the laser scanner should be

pointed so it scans a line about 20 meters in front of the machine. The height di�erences can then

be used to detect obstacles and non drivable terrain. Information about upcoming obstacles will be

sent to the local path planner.

Pose estimation

The pose estimation is responsible for �nding the machines position and orientation in the coordinate

frame. The current system uses an Extended Kalman �lter(EKF) to fuse the readings from the

di�erent sensors. The �lter is already prepared to use the positions supplied by the SLAM algorithm

and should be su�cient for the future.

Object detection

The object detection is used to �nd objects such as the pocket or a hauler. This function is only

active during a unload sequence and the obstacle detection need to be turned o� while this module

is active. The location of objects is then forwarded to the local path planner.

Bucket pose estimation

This module is responsible for estimating the position of the bucket. Today the bucket position is

represented by the lift angle and the tilt angle. This gives no information about where the bucket tip

is so a conversion from the angles to the actual positions in the Cartesian coordinate frame would

be more intuitive.

7.1.4 Planning and control layer

This layers consists of a planning part and a control part. The planning part has a knowledge about

the site and can plan ahead. The control part then has the low level control of the machine and is

supplied with commands from the planner. The planning part is run on the PC computers while

43

Chapter 7: Future work

the controllers is run on the PIP8 computer. The controllers in the PIP8 only provides a simple

interface where control signals can be streamed down to the regulators.

Pile manager

In the current system the search for a dig point is initiated when the machine has reached the pile

area and a scan is received. This is both a waste of time and information, the job for the pile

manager is to use the 3D scan of the site and prepare a set of suitable dig points in advance. In this

way the pile manager can also control the structure of the pile so the machine does not dig in the

same area every time. The information about the most suitable dig point is then supplied to the

global path planner.

Global path planner

The global path planner uses the 3D map of the site and creates roads between the pockets and

the piles. It has information about the most suitable dig points form the pile manager so it can

create paths straight to the dig point in every pile. A bucket �ll and unload activation point is also

programmed into the path so a state change can occur when they are reached. The roads are then

recalculated every time something changes. The roads are then supplied to the local path planner.

Local path planner

The local path planner is the one that sews all the information together. It uses the road created

by the global path planner as a high level navigation goal but it also uses the information from the

obstacle handler to make small course changes if necessary. The local path planner �nds a drivable

path in the area 20-30 meters in front of the machine and produces steer and velocity commands to

the controllers so the path can be followed. During a unload sequence it receives the location of the

pocket or hauler from the object detector and calculates a path for the bucket which is supplied to

the bucket controller.

Steer controller

The steer controller receives a stream of commands from the local path planner. The controller

regulates the waist angle of the machine and the commands are executed without any concern so

it's up to the local path planner to create feasible commands.

Throttle/Brake controller

To have a good throttle and brake control is important in order to have full control of the machine.

The controller needs to have simultaneous control of both brake and throttle and then use both

44

Chapter 7: Future work

brake and throttle to produce the desired output. The controller has two input control parameters,

the desired velocity and a desired rpm for the engine. The rpm control signal is supplied by the

bucket control system which sometimes need a higher rpm to be able to lift the bucket at the desired

speed. This controller is probably one of the more advanced in this system due to the nonlinear

behaviour of the brake. A good model must be developed and a lot of research is probably needed

to get a working regulator.

Bucket controller

The bucket controller controls the movement of the bucket. Just like the steer controller it has a

stream of control signals that is executed without concern. If the speed of the bucket is too low it will

be regulated by desiring a higher rpm from the throttle and brake controller. To get very accurate

control of the nonlinear hydraulic system a lot of research is needed, however I don't believe that

extremely accurate control of the bucket is necessary to reach the goals. Non of the tasks performed

with the bucket needs very accurate control if enough safety margin is used.

Bucket �ll controller

Some modi�cations should be performed to the bucket �ll controller so it works together with the

rest of the system. The current controller has full control over velocity, rpm, steering and the bucket

which makes it work as a separate part of the system and this makes the design a bit messy. During

a bucket �ll in the new system the local path planner will still be responsible for the movement of

the machine and the bucket �ll controller will only send commands to the bucket controller. In this

way the bucket �ll controller gets a clean interface and works together with the system instead as a

separate system.

7.1.5 Top level control

If the design of the system was done in this way the toplevel control of the system could be simpli�ed

a lot. The statemachine only needs four states in this design and only provides a high level goal to

the system. The statemachine receives a workorder from the site controller containing a pile ID and

a pocket ID. During the translation to pile state it gives the pile ID to the global path planner that

in turn supplies the local path planer with the path to that pile. When the bucket �ll activation

point is reached it will change state to the bucket �ll state. In this state the obstacle avoidance is

ignored and the bucket �ll regulator is activated. When the bucket �ll is complete the translation

to pocket state will supply the global path planner with a pocket ID and a navigation to this point

will start. When the unload activation point is reached the obstacle avoidance is ignored but the

object detection is activated. The local path planner will now calculate a path both for the machine

and for the bucket in order to unload the bucket.

45

Chapter 7: Future work

7.2 Summary

In this chapter I presented a new design that can make the system more �exible and dynamic. To

implement the full design a lot of development and research must be done but if the design is followed

it can be implemented in steps with simpler blocks that can be easily changed when a new module

is developed. If only one part of this system would be implemented I believe that the map builder

and pile manager would have the most positive impact on the current system. The current systems

spends a lot of time just waiting to get the pile examined when this already could have been done

while we were navigating to the pile.

46

Chapter 8

Conclusions and summary

The system performed quite well and the productivity goals were met, however problems with

robustness and reliability can be found in the system. I believe that the productivity of the system

could be increased by simple means to around 50%-60% but to solve the problems with robustness

and reliability I see the need for a redesign where considerations about robustness is taken into

account from the bottom and up. To achieve safe operation and to be able to increase the velocity

during navigation a continuous vision feedback stream is needed so the navigation does not solely

depend on waypoint paths and a correct positioning of the machine.

Modularity and �exibility of the design are also important for the ease of future development. The

developed system in this thesis o�ers some more �exibility but yet again I believe that a redesign is

necessary to get the �exibility wanted for the future.

Even though there are many issues with the system one must keep in mind that the Autonomous

Machine project was never started with the intention to build a commercial system but to show that

it's possible to build autonomous machines with work only done by students. However I believe that

the system could be a lot more organized and structured if documentation were created continuously

and a complete design plan with the di�erent systems were developed from the beginning. We have

proved that it's possible to perform a complete cycle but a lot of work is needed before we see

autonomous wheel loaders on site. Autonomous machines might be the next big revolution in the

construction equipment industry and to fall behind now might leave you there for good therefore I

hope more funding is given to this project so the research can continue.

47

Bibliography

[1] Robin Lilja. Localisation and Navigation of an Autonomous Wheel Loader. Thesis work at

Malardalen University, l 2011.

[2] Rodney A. Brooks. A Robust Layered Control System For A Mobile Robot, March 1986.

[3] Jonathan Connell. A Colony Architecture for an Arti�cial Creature. Massachusetts Institute of

Technology Arti�cial Intelligence Laboratory, l 1989.

[4] Gat Erann. Three-layered architectures. AI-based mobile robots: Case studies of successful robot

systems, pages 195�210, 1998.

[5] S. Thrun, M. Montemerlo, H. Dahlkamp, D. Stavens, A. Aron, J. Diebel, P. Fong, J. Gale,

M. Halpenny, G. Ho�mann, K. Lau, C. Oakley, M. Palatucci, V. Pratt, P. Stang, S. Strohband,

C. Dupont, L.-E. Jendrossek, C. Koelen, C. Markey, C. Rummel, J. van Niekerk, E. Jensen,

P. Alessandrini, G. Bradski, B. Davies, S. Ettinger, A. Kaehler, A. Ne�an, and P. Mahoney.

Stanley: The Robot that Won the DARPA Grand Challenge. Journal of Field Robotics, 23:

661�692, June 2006.

[6] Jay Gowdy. A Qualitative Comparison of Interprocess Communications Toolkits for Robotics,

2000.

[7] Jane Yen Carlo H. Sequin, Kiha Lee. Fair, G2- and C2-continuous circle splines for the interpo-

lation of sparse data points. Computer-Aided Design, 37:201�211, 2005.

[8] http : //en.wikipedia.org/wiki/UML_state_machine.

48

Appendix A

Circle splines

A.1 Circle splines

Circle splines can be used if you have N points and want to calculate a smooth path between these

point. In [7] they present an algorithm for circle splines that uses a trigonometric circle blending

technique. This appendix is a short summary of this article. The concept is shown in �gure A.1. To

Figure A.1: Picture of the PIP8 industrial computer

calculate the path between point p2 and p3 we need the previous and following point. Two circles

are then created, one which intersects points p1, p2 and p3 and one that intersects points p2, p3 and

p4. These circles are then blended with a weighting function that gives higher weight to circle one

close to point p2 and gives a higher weight to circle two closer to point p3. In this way a smooth arc

is created with the tangents in the end points pointing towards points p1 and p4. The algorithm is

described in detail in the next section.

A.1.1 Algorithm

The problem formulation is shown in �gure A.2.

We start by calculating the unit vectors:

49

Appendix A: Circle splines

Figure A.2: Picture of the PIP8 industrial computer

~a =
pi − pi−1

|pi − pi−1|
~b =

pi+1 − pi
|pi+1 − pi|

~c =
pi+1 − pi−1

|pi+1 − pi−1|
(A.1)

~d =
pi+2 − pi+1

|pi+2 − pi+1|

~e =
pi+12 − pi
|pi+2 − pi|

Next we calculate the tangent angles at pi and pi+1:

τi = arccos (~a • ~c)

τi+1 = arccos (~e • ~d) (A.2)

The blending between the two tangent angles is done with the trigonometric blending function:

τ(u) = τi cos
2(uπ/2) + τi+1 sin

2(uπ/2) (A.3)

Where u is a parameter that goes from 0 to 1. A point P (u) on the arc between pi and pi+1 can

now be described as a distance f(u) from point pi and a deviation angle φ(u) form ~b with the

parametrized equations. This can be seen in �gure A.2(b).

f(u) = b
sin(uτ(u))

sin(τ(u))
(A.4)

φ(u) = (1− u)τ(u) (A.5)

By running this algorithm on all your points and then adding the produced arcs you get a smooth

curve that travels through all points.

50

Appendix B

UML statemachine

B.1 De�nition

A general de�nition of a state machine is: "a state machine is any device that stores the status of

something at a given time and can operate on input to change the status and/or cause an action or

output to take place for any given change". With this de�nition a state machine can be anything

from a light switch to a complete airplane control system. A state machine is said to be built up of

the following elements.

- A set of states

A set of input events

-- A set of output actions

- A function that maps states and input to output actions

- A function that maps states and inputs to states

- A description of the initial state

A state is a unique condition in which the state machine can exist during its life time. For the case

of a light switch the states can be as simple as on and o�. An event is something that happens to

the state machine, it can be the event that someone pushes the button on the light switch. The

function that maps the states and inputs to states is a list of transitions; a transition describes how

the state machine should behave in response to an event based on its current state. For the light

switch di�erent transitions occurs when the button is pressed depending on which state the machine

is currently in, if it is in state on the transition is to state o� and vice versa. The function that

maps states and inputs to output actions is a list of actions that should be performed for a given

state and input, in the light switch case di�erent actions should be performed depending on state

51

Appendix B: UML statemachine

and event. If the switch is in its o� state and a button pressed event is triggered the machine should

transition to the on state and perform a power on action. There are a number of de�ned types of

actions that can be performed:

- Entry action: This action is performed when a state is entered

Exit action: This action is performed when a state is exited

-- Input action: This action is performed depending on present state and input conditions

- Transition action: This action is performed during a transition

B.2 Mealy and Moore

State machines are often divided into two basic models, either a Mealy or a Moore machine. There

is a di�erence between the two but one model can always be converted into the other, the choice

of model will have in�uence on the design but you can't say one is better than the other. In fact

a mix between the two is often used in practice. In the de�nition of a Moore machine there only

exists Entry actions which makes the output only depend on the current state. A Mealy machine

only uses Input actions which makes the output depend on both the state and input. The Moore

machine often needs more states that the Mealy machine.

B.3 UML statemachine

To overcome the main limitations of the traditional state machine UML has introduced an extended

de�nition introducing new concepts such as hierarchically nested states and orthogonal regions.

Below some useful additions are explained.

B.3.1 Extended state machine

In the UML standard an extended state machine is a machine that is supplemented with some

variables and guards. A guard is a simple Boolean evaluation that has to be true or false before a

transition or action is allowed to happen. To give an example of a system where variables and guards

are good to use we can think of a system that counts the number of keystrokes from a keyboard and

after 10000 strokes the system tells the user to take a break. To implement this without variables

we would need over 10000 states, one state for every number of strokes hit so far. This becomes

unpractical very fast but with the use of a guard and variable the system can be implemented as in

Figure B.1:

52

Appendix B: UML statemachine

Figure B.1: Picture of the PIP8 industrial computer

B.3.2 Hierarchically nested states

The biggest addition to the UML state machine compared to the traditional state machine is the

concept of hierarchically nested states. The concept is pretty simple; states can contain states called

substates so a nested structure of states can be created. A state that contains states is called a

composite state. This makes it harder to say which state the machine is in because it can actually

be in several states at the same time, its superstates and substate. A superstate is a state above

the current state in the hierarchy. The nesting provides a great way of sharing behaviour among

several states. An event in a nested state machine is �rst handled by the substate, if the substate

has no description of how to handle the event the event will be sent to its superstate where it might

be handled. An event can be sent all the way to the top of the hierarchy but the handling always

starts in the current state and gets sent up the tree. A calculator example is explained below??.

If we were to design the calculator using a traditional state machine we would get a design as in

Figure B.2: As we can see a lot of transitions are the same no matter which state you are currently

Figure B.2: Implementation of calculator using traditional state machine design.

in. In this case you have to specify the transitions in every states transition table. The C and OFF

events are certainly states that are shared between all the states, this is a typical situation where

the advantages of a nested structure is shown. In �gure B.3 a nested design of the same calculator

are shown. In this design we see that there is one super state, ON and its di�erent substates that

handles the actual calculator. Here the only state that needs to handle the C and OFF state is

the superstate ON. If a C or OFF event occurs the current substate have no speci�cation of how

53

Appendix B: UML statemachine

Figure B.3: Implementation of calculator using nested state machine design.

to handle that event and therefore the event is sent to its super state, ON, where it is handled in

the correct manner. This structure gives the opportunity to program the state machine with the

concept of programming by di�erence. Instead of creating a new state every time, you only de�ne

the di�erences from its super state. This type of inheritance is called behavioural inheritance.

B.3.3 Entry and Exit actions

Every state in the UML standard can have an entry action which is executed on entrance to the

state and an exit action which is executed when exiting the state. Regardless of how the state is

entered or exited the actions will always execute. This provides a great way of dealing with the

initialization and cleanup in every state. When programming a UML state machine the allocation

and deallocation of memory would be a great examples of how to use these actions.

B.3.4 Orthogonal regions

An orthogonal region gives a composite state the ability to be in two independent states at the same

time. This is used when you have behaviour that is completely independent from each other in the

same super state. An example of this could be a keyboard, it has two independent regions. One

region for the numerical keypad which can be both in arrow or numerical mode and one region for

the main keyboard which can be in the modes caps locked or default mode. In �gure 6 this system

is shown. Here the states in the orthogonal regions can change independent of each other. This is

Figure B.4: Example of orthogonal states.

often implemented in software using a threaded design.

54

Appendix C

.NET State Machine Toolkit

The toolkit has no fancy name but it implements most of the functions described in the UML-

statemachine and it is easy to use. The toolkit was developed by Leslie Sanford and released under

the CPOL licence which allows use of the code in commercial projects. To get a taste of how

the toolkit works I will explain it through a small example. We will look at a automatic door

statemachine. The door can either be in state opened or closed and the door can be opened if's in

the closed state or closed if it's in the opened state.

First we de�ne the base of the statemachine. To start with we de�ne the identi�cation number for
each state and for each event by de�ning two enumerations, StateID and EventID. We then de�ne
the AutomaticDoor class which inherits the behaviour from the ActiveStateMachine that is de�ned
in the toolkit. When this is done we de�ne a constructor, the states and �nally the entry and exit
methods for each state. The code can be found below.

enum class StateID{Open , Closed } ;

enum class EventID{Close , Open} ;

public r e f class AutomaticDoor : ActiveStateMachine

{

public :

AutomaticDoor () ;

private :

State ^Open , ^Closed ;

void EntryOpen (void) ;

void EntryClosed (void) ;

void ExitOpen (void) ;

void ExitClosed (void) ;

}

The next stage is to implement what we de�ned before. In the constructor the behaviour of the

55

Appendix C: .NET State Machine Toolkit

statemachine is de�ned. To start with we instantiate the states and give them a handle to a entry
and a exit method that will be called when the state is entered and exited. The transitions between
states is then easily de�ned by binding a transition to a event in each state. The structure of the
state machine is now complete.

AutomaticDoor (){

Open = gcnew State ((int) StateID : : Open , gcnew EntryHandler (this ,&EntryOpen) ,

gcnew ExitHandler (this ,&ExitOpen)) ;

Closed = gcnew State ((int) StateID : : Closed , gcnew EntryHandler (this ,&EntryClos

ed) , gcnew ExitHandler (this ,&ExitClosed)) ;

Trans i t i on t rans ;

t rans = new Trans i t i on (Closed) ;

Open . Trans i t i on s .Add((int) EventID . Close , t rans) ;

t rans = new Trans i t i on (Open) ;

Closed . Trans i t i on s .Add((int) EventID .Open , t rans) ;

I n i t i a l i z e (Closed) ;

}

void EntryOpen (void){

Console : : WriteLine ("Enter ing Open") ;

}

void EntryClosed (void){

Console : : WriteLine ("Enter ing Closed ") ;

}

void ExitOpened (void){

Console : : WriteLine (" Exi t ing Opened") ;

}

void ExitClosed (void){

Console : : WriteLine (" Exi t ing Closed ") ;

}

}

The state machine can now be used by creating a instance of the automatic door and sending events
to it.

void Main(s t r i n g [] a rgs)

{

AutomaticDoor ad = new AutomaticDoor () ;

l s . Send ((int) AutomaticDoor . EventID .Open) ;

l s . Send ((int) AutomaticDoor . EventID . Close) ;

l s . Send ((int) AutomaticDoor . EventID .Open) ;

56

Appendix C: .NET State Machine Toolkit

l s . Send ((int) AutomaticDoor . EventID . Close) ;

}

The output from the code above is shown here.

Enter ing Closed

Exi t ing Closed

Enter ing Open

Exi t ing Opened

Enter ing Closed

Exi t ing Closed

Enter ing Open

Exi t ing Opened

Enter ing Closed

57

	Titlepage
	Abstract
	Acknowledgements
	1 Introduction
	1.1 Background
	1.2 Problem description
	1.2.1 Requirements

	1.3 Thesis outline

	2 Current system
	2.1 Hardware design
	2.1.1 Sensors

	2.2 Software design
	2.2.1 PIP8
	2.2.2 PC

	2.3 Limitations and drawbacks
	2.3.1 Sensors
	2.3.2 Software

	3 Related work
	3.1 Introduction
	3.2 DARPA Grand Challenge
	3.3 Stanley
	3.3.1 Hardware
	3.3.2 Software
	3.3.3 Conclusions

	4 Design
	4.1 The NCC cycle
	4.1.1 Translation to pile
	4.1.2 Fill bucket
	4.1.3 Translation to pocket
	4.1.4 Unload bucket

	4.2 Design problems
	4.3 State machine
	4.3.1 Translation to pile
	4.3.2 Fill bucket
	4.3.3 Translation to pocket
	4.3.4 Unload state

	4.4 Sitecontroller
	4.5 System design
	4.5.1 Overview
	4.5.2 Vision state machine
	4.5.3 Navigation state machine
	4.5.4 Main state machine
	4.5.5 Top level
	4.5.6 NCC cycle

	5 Implementation
	5.1 State machine
	5.1.1 .NET State Machine Toolkit
	5.1.2 State machine controller

	5.2 Supplementary functions
	5.2.1 Path planning
	5.2.2 Weight estimation

	6 Results
	6.1 Problems and compromises
	6.2 Performance evaluation
	6.2.1 Test setup
	6.2.2 Test results

	6.3 Conclusions

	7 Future work
	7.1 Proposed system
	7.1.1 Interprocess communication
	7.1.2 Sensor layer
	7.1.3 Perception layer
	7.1.4 Planning and control layer
	7.1.5 Top level control

	7.2 Summary

	8 Conclusions and summary
	References
	A Circle splines
	A.1 Circle splines
	A.1.1 Algorithm

	B UML statemachine
	B.1 Definition
	B.2 Mealy and Moore
	B.3 UML statemachine
	B.3.1 Extended state machine
	B.3.2 Hierarchically nested states
	B.3.3 Entry and Exit actions
	B.3.4 Orthogonal regions

	C .NET State Machine Toolkit

