

Lecture 4

- Controllability
- Observability
- Controller and Observer Forms
- Balanced Realizations

Operator Interpretation

Define $M: \mathbf{L}_2^m[t_0,t_f] \to \mathbf{R}^n$ by

$$Mu = \int_{t_0}^{t_f} \Phi(t_0, \tau) B(\tau) u(\tau) d\tau$$

Then

$$x(t_f) = \Phi(t_f, t_0)[x(t_0) + Mu]$$

$$(M^*x)(t) = B(t)^T \Phi(t_0, t)^T x$$

$$MM^* = \int_{t_0}^{t_f} \Phi(t_0, \tau) B(\tau) B(\tau)^T \Phi(t_0, \tau)^T d\tau$$

$$= W(t_0, t_f)$$

Controllability

The equation

$$\dot{x}(t) = A(t)x(t) + B(t)u(t), \quad x(t_0) = x^0$$

is called $controllable\ on\ (t_0,t_f),$ if for any x^0 , there exists u(t) such that $x(t_f)=0.$ The matrix function

$$W(t_0, t_f) = \int_{t_0}^{t_f} \Phi(t_0, t) B(t) B(t)^T \Phi(t_0, t)^T dt$$

is called controllability Gramian.

Degree of Controllability

The minimal input, in terms of |u|, to go from $x(t_0)=x_0$ to $x(t_f)=0$ can be used to evaluate degree of controllability.

From Lecture 2: Minimize |u| under the constraint $x_0 + Mu = 0$.

$$= -M^*(MM^*)^{-1}x_0$$
 (if MM^* invertible)

$$|\hat{u}|^2 = x_0^T (MM^*)^{-1} x_0$$
$$= x_0^T W(t_0, t_f)^{-1} x_0$$

Theorem 1: Controllability Criterion

The system $\dot{x}(t)=A(t)x(t)+B(t)u(t)$ is controllable on (t_0,t_f) if and only if $W(t_0,t_f)>0$. The minimal cost $\int_{t_0}^{t_f}|u|^2dt$ to reach 0 from x_0 is $x_0^TW(t_0,t_f)^{-1}x_0$.

Theorem 2: Time-Invariant Controllability

The following four conditions are equivalent:

- (i) The system $\dot{x}(t) = Ax(t) + Bu(t)$ is controllable.
- (ii) $rank[B \ AB \ A^2B \dots A^{n-1}B] = n.$
- (iii) $\lambda \in \mathbf{C}, \, p^T A = \lambda p^T, \, p^T B = 0 \quad \Rightarrow p = 0 \quad \text{(PBH-test)}$
- (iv) rank $[\lambda I A \quad B] = n \quad \forall \lambda \in \mathbf{C}$. (PBH-test)

Popov-Belevitch-Hautus (PBH), see p221.

Notice the Rugh Example 9.6 on p147.

Proof of Theorem 1

Controllability on (t_0,t_f)

 $\forall x_f : \exists u : x(t_f) = 0$

 $\forall x_f : \exists u : x_0 + Mu = 0$

\$

 $\Leftrightarrow \qquad \mathcal{R}(M) = \mathbf{R}^n$

 $\Leftrightarrow \qquad \mathcal{N}(M^*) = \{0\}$

 $\mathcal{N}(MM^*) = \{0\}$

\$

 $\mathcal{N}[W(t_0,t_f)] = \{0\}$

\$

 $W(t_0, t_f) > 0$

\$

Theorem 3: Uncontrollable State Equation

Suppose that 0 < q < n and

$$\operatorname{rank} \begin{bmatrix} B & AB & A^2B & \dots & A^{n-1}B \end{bmatrix} = q < n$$

Then there exists an invertible $P \in \mathbf{R}^{n imes n}$ such that

$$P^{-1}AP = \begin{bmatrix} \hat{A}_{11} & \hat{A}_{12} \\ 0 & \hat{A}_{22} \end{bmatrix} \qquad P^{-1}B = \begin{bmatrix} \hat{B}_{11} \\ 0 \end{bmatrix}$$

where \widehat{A}_{11} is $q \times q$, \widehat{B}_{11} is $q \times m$, and

$$rank[\hat{B}_{11} \quad \hat{A}_{11}\hat{B}_{11}\dots\hat{A}_{11}^{q-1}B_{11}] = q$$

Proof of Theorem 3

Let p_1, \dots, p_q be linearly independent columns from

$$[B \quad AB \dots A^{n-1}B]$$

Let $p_{q+1} \dots p_n$ be additional columns that make

$$P = [p_1 \dots p_q \, p_{q+1} \dots p_n]$$

invertible.

Proof of Theorem 2

 $(i)\Rightarrow(ii)$ If (ii) fails, then after a coordinate change

$$\begin{vmatrix} \hat{x}_1 \\ \hat{x}_2 \end{vmatrix} = Px$$

as in Theorem 3, \hat{x}_2 is unaffected by the input, so (i) fails.

(ii) \Rightarrow (i) If $p^TW(t_0,t_f)p=0$ for some $p\neq 0$, then

$$p^T e^{A(t_0 - t)} B = 0 \quad \forall t \in [t_0, t_f]$$

Differentiation with respect to t at $t=t_0$, gives

$$p^T[B \quad AB \dots A^{n-1}B] = 0,$$

so (ii) fails.

Proof continued

With $[\widehat{A}_1 \ \widehat{A}_2] = P^{-1}AP, \widehat{B} = P^{-1}B$

$$\mathcal{R}(P\widehat{B}) = \mathcal{R}(B) \subset \mathcal{R}([p_1 \dots p_q])$$

$$\Rightarrow \hat{B} = \begin{bmatrix} \hat{B}_1 \\ 0 \end{bmatrix}$$

$$\mathcal{R}(P\widehat{A}_1) = \mathcal{R}(A[p_1 \dots p_q]) \subset \mathcal{R}([p_1 \dots p_q])$$

$$\hat{A}_1 = \hat{A}_{11} = 0$$

Proof continued

- $p^T[B \quad AB \dots A^{n-1}B] = 0$, so (ii) fails. $(ii) \Rightarrow (iii)$ If $p^TA = \lambda p^T$ and $p^TB = 0$ then
- in Theorem 3 and let $p_2{}^T\hat{A}_{22}=\lambda p_2{}^T$ and $p^T=[0 \quad p_2{}^T]P^{-1}.$ (iii) \Rightarrow (ii) If $\operatorname{rank}[B \dots A^{n-1}B] = q < n$ then let P be defined as

Proof continued

Then

$$p^T B = \begin{bmatrix} 0 & p_2^T \end{bmatrix} \begin{bmatrix} \hat{B}_{11} \\ 0 \end{bmatrix} = 0$$

$$p^T A = \begin{bmatrix} 0 & p_2^T \end{bmatrix} \begin{bmatrix} \hat{A}_{11} & \hat{A}_{12} \\ 0 & \hat{A}_{22} \end{bmatrix} P^{-1} = \lambda \begin{bmatrix} 0 & p_2^T \end{bmatrix} P^{-1} = \lambda p^T$$

so (iii) fails.

(iv)
$$\Leftrightarrow$$
 $\{p^T[\lambda - A \ B] = 0 \Rightarrow p = 0\} \Leftrightarrow$ (iii)

13

Observability

The equation

$$\begin{split} \dot{x}(t) &= A(t)x(t), \quad x(t_0) = x^0 \\ y(t) &= C(t)x(t) \end{split}$$

is called observable on $[t_0,t_f]$ if any initial state x^0 is uniquely determined by the output y(t) for $t\in [t_0,t_f]$.

It is called reconstructable on $[t_0, t_f]$ if the state $x(t_f)$ is uniquely determined by the output y(t) for $t \in [t_0, t_f]$.

Reachability

The equation

$$\dot{x}(t) = A(t)x(t) + B(t)u(t), \quad x(t_0) = 0$$

is called $reachable\ on\ (t_0,t_f)$, if for any x_f , there exists u(t) such that $x(t_f)=x_f$. The matrix function

$$W_r(t_0, t_f) = \int_{t_0}^{t_f} \Phi(t_f, t) B(t) B(t)^T \Phi(t_f, t)^T dt$$

= $\Phi(t_f, t_0) W(t_0, t_f) \Phi(t_f, t_0)^T$

is called $\it reachability Gramian.$ If A(t) is continuous, then controllability and reachability are equivalent.

Observability Gramian

The matrix function

$$M(t_0, t_f) = \int_{t_0}^{t_f} \Phi(t, t_0)^T C(t)^T C(t) \Phi(t, t_0) dt$$

is called the ${\it observability}\ {\it Gramian}$ of the system

$$\dot{x}(t) = A(t)x(t)$$
$$y(t) = C(t)x(t)$$

Operator interpretation:

$$M(t_0, t_f) = L^*L$$

where $L: \mathbf{R}^n o L_2^m(t_0, t_f)$ with

$$(Lx^{0})(t) = C(t)\Phi(t, t_{0})x^{0}, \quad x^{0} \in \mathbf{R}^{n}$$

Theorem 4: Observability Criterion

The following two conditions are equivalent

- (i) The system defined by $\{A(t), C(t)\}$ is observable on $[t_0, t_f]$.
- (ii) $M(t_0, t_f) > 0$

with unit variance. **Degree of Observability** Consider $y = Lx^0 + e$, where e is white noise

estimate is $|y-Lx^0|$ is minimized for $\hat{x}^0=(L^*L)^{-1}L^*y$ and the variance of the

$$(L^*L)^{-1} = M(t_0, t_f)^{-1}.$$

17

Theorem 6: Unobservable State Equation

Suppose that 0 < l < n and rank = l < n. Then there exists

an invertible $Q \in \mathbf{R}^{n \times n}$ such that

$$Q^{-1}AQ = \begin{bmatrix} \hat{A}_{11} & 0 \\ \hat{A}_{21} & \hat{A}_{22} \end{bmatrix} \quad CQ = \begin{bmatrix} \hat{C}_{11} & 0 \end{bmatrix}$$

 $y(t) = C_{11}x(t)$ is observable. where \hat{A}_{11} is $l \times l$, \hat{C}_{11} is $p \times l$, and the system $\dot{x}(t) = \hat{A}_{11}x(t)$,

Theorem 5: Time-Invariant Observability

The following four conditions are equivalent:

- (i) The system $\dot{x}(t) = Ax(t)$, y(t) = Cx(t) is observable.
- (ii) rank $\begin{bmatrix} C \\ \vdots \\ CA^{n-1} \end{bmatrix} = n.$
- (iii) $\exists p \in \mathbf{C}^n, \lambda \in \mathbf{C}: Ap = \lambda p, Cp = 0$ (PBH-test)
- (iv) rank $\begin{bmatrix} \lambda I A \\ C \end{bmatrix} = n \quad \forall \lambda \in \mathbf{C}.$ (PBH-test)

18

Definition: Controllability Index

column vectors occuring to the left of it in the controllability matrix the smallest integer such that $A^{
ho_j}B_j$ is linearly dependent on the Let $B = [B_1 \ldots B_m]$. For $j = 1, \ldots, m$, the *controllability index* ρ_j is

$$\begin{bmatrix} B & AB & \dots & A^{n-1}B \end{bmatrix}$$

Notation for Controller Form

Given a pair
$$\{A,B\}$$
, with controllability indices $\rho_1,\dots\rho_m$, define
$$M=\begin{bmatrix}M_1\\\vdots\\M_n\end{bmatrix}:=\begin{bmatrix}B_1&AB_1\dots A^{\rho_1-1}B_1&\dots&B_m\dots A^{\rho_m-1}B_m\end{bmatrix}^{-1}$$

$$egin{aligned} P_1 \ dots \ P_1 \ dots \ P_i = \ egin{bmatrix} M_{
ho_1 + \cdots +
ho_i} \ M_{
ho_1 + \cdots +
ho_i} A \ dots \ P_m \end{bmatrix} \end{aligned}$$

Notice that it is rather easy to write Matlab code for this.

21

Comments

form of AK. Reverse statevariable ordering in each block to get the SISO controller

Reveals Structure, Pole Placement,

Minimal Realizations

Theorem 7, Controller form

 $\dot{z}=A^{c}z+B^{c}u$ with $\rho_1, \dots \rho_m$. Then the variable transformation $z = P^c x$ gives Suppose $\dot{x} = Ax + Bu$ is controllable, with controllability indices

 $A^c =$

 $B^c =$

Definition: Observability Index

22

is the smallest integer such that $C_j A^{\eta_j}$ is linearly dependent on the row vectors occuring above it in the observability matrix Let $C^T = [C_1^T \dots C_p^T]^T$. For $j = 1, \dots, p$, the observability index η_j

$$\begin{bmatrix} C \\ CA \\ \vdots \\ CA^{n-1} \end{bmatrix}$$

23

Theorem 8: Observer form

Suppose $\dot{x}=Ax,y=Cx$ is observable, with observability indices $\eta_1,\dots\eta_p$. Then the variable transformation $z=P^ox$ gives $\dot{z}=A^oz+B^ou$ with

 $A^o =$

 $C^o =$

25

Proof of Theorem 9

Let $P=W_r(-\infty,0)=\int_0^\infty e^{A\sigma}BB^Te^{A^T\sigma}d\sigma$. Then $PA^T+AP = \int_0^\infty \frac{\partial}{\partial\sigma}\left(e^{A\sigma}BB^Te^{A^T\sigma}\right)d\sigma$ $= \left[e^{A\sigma}BB^Te^{A^T\sigma}\right]_0^\infty = -BB^T$

The linear operator

$$L(P) = AP + PA^T$$

has $\mathcal{R}(L)=\mathbf{R}^{n\times n}$ so $\mathcal{N}(L)=\{0\}$ and the solution P is unique. (Lyapunov 1893)

The equation for the observability Gramian is obtained by replacing A,B with $A^T,C^T.$

Theorem 9: Time-Invariant Gramian

Let A be exponentially stable. Then, the reachability Gramian $W_c(-\infty,0)$ equals the unique solution P to the matrix equation

$$PA^T + AP = -BB^T$$

Similarly, the observability Gramian $M(0,\infty)$ equals the solution Q of

$$QA + A^TQ = -C^TC$$

Balanced Realization

26

For the stable system (A,B,C), with Gramians P and Q, the variable transformation $\hat{x}=Tx$ gives

$$\hat{P} = TPT^*, \qquad \hat{Q} = T^{-*}QT^{-1}$$

The choice of quadratic R,T, unitary U and diagonal Σ such that

$$Q = R^*R$$
 (Choleski Factorisation)

 $RPR^* = U\Sigma^2U^*$ (Singular Value Decomposition)

$$= \Sigma^{-1/2}U^*R$$

gives

$$\hat{P} = \hat{Q} = \Sigma$$

 $(\hat{A},\hat{B},\hat{C})$ is called a $balanced\ realization$ of the system (A,B,C).

Truncated Balanced Realization

corresponding states are. With elements of Σ measures "how controllable and observable" the Let the states be sorted such that Σ is decreasing. The diagonal

$$\hat{A} = \begin{bmatrix} \hat{A}_{11} & \hat{A}_{12} \\ \hat{A}_{21} & \hat{A}_{22} \end{bmatrix}, \quad \hat{B} = \begin{bmatrix} \hat{B}_{1} \\ \hat{B}_{2} \end{bmatrix}$$

$$\hat{C} = \begin{bmatrix} \hat{C}_{1} & \hat{C}_{2} \end{bmatrix}, \quad \Sigma = \begin{bmatrix} \Sigma_{1} & 0 \\ 0 & \Sigma_{2} \end{bmatrix}$$

 $(\widehat{A}_{11},\widehat{B}_{1},\widehat{C}_{1})$ is called a truncated balanced realization of (A,B,C).

See also R. Johansson: System Modeling & Identification, p236

29

Next week

- Realization from Weighting Pattern
- Realization from Impulse Response
- Realization from Markov Parameters
- Minimal Realizations

31

Example

$$C(sI - A)^{-1}B = \frac{1 - s}{s^6 + 3s^5 + 5s^4 + 7s^3 + 5s^2 + 3s + 1}$$

 $\Sigma = \mathrm{diag}\{1.98, 1.92, 0.75, 0.33, 0.15, 0.0045\}$

$$\widehat{C}(sI - \widehat{A})^{-1}\widehat{B} = \frac{0.20s^2 - 0.44s + 0.23}{s^3 + 0.44s^2 + 0.66s + 0.17}$$

(Done with balreal in MATLAB!)

30