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Abstract

The main topic of this thesis is integer quadratic prograngwiith applications to prob-
lems arising in the areas of automatic control and commtinita One of the most
widespread modern control principles is the discrete-time¢hod Model Predictive Con-
trol (MPC). The main advantage with MPC, compared to most¢motiontrol principles,
is that constraints on control signals and states can dasihandled. In each time step,
MPC requires the solution of a Quadratic Programming (QBplem. To be able to
use MPC for large systems, and at high sampling rates, agtioin routines tailored for
MPC are used. In recent years, the range of application of k&been extended from
constrained linear systems to so-called hybrid systembritigystems are systems where
continuous dynamics interact with logic. When this extensgomade, binary variables
are introduced in the problem. As a consequence, the QPgmnolbas to be replaced by
a far more challenging Mixed Integer Quadratic ProgramniMtQP) problem. Gener-
ally, for this type of optimization problems, the computaikl complexity is exponential
in the number of binary optimization variables. In modermeoaunication systems, mul-
tiple users share a so-called multi-access channel, wheiaformation sent by different
users is separated by using almost orthogonal codes. $iaamtles are not completely
orthogonal, the decoded information at the receiver iiigcorrelated between differ-
ent users. Further, noise is added during the transmisJiorestimate the information
originally sent, a maximum likelihood problem involvingnlairy variables is solved. The
process of simultaneously estimating the information bgmhultiple users is called mul-
tiuser detection. In this thesis, the problem to efficieatiive MIQP problems originating
from MPC is addressed. Two different algorithms are preskrftirst, a polynomial com-
plexity preprocessing algorithm for binary quadratic peogming problems is presented.
By using the algorithm, some, or all, binary variables candraputed efficiently already
in the preprocessing phase. In simulations, the algorighapplied to unconstrained MPC
problems with a mixture of real and binary control signal$ds also been applied to the
multiuser detection problem, where simulations have shthan the bit error rate can
be significantly reduced by using the proposed algorithnoaspared to using common
suboptimal algorithms. Second, an MIQP algorithm taildi@dVIPC is presented. The
algorithm uses a branch and bound method where the relaxproblems are solved
by a dual active set QP algorithm. In this QP algorithm, thelkdgstems are solved using
Riccati recursions in order to decrease the computatiaraptexity. Simulation results
show that both the QP solver and the MIQP solver proposed loses computational
complexity than corresponding generic solvers.
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Introduction

Already from the very beginning, man has had a wish to comth@homena in her sur-
rounding. Through the years, she has learned how to act amtbraffect things to make
them behave as desired. As this knowledge has grown, moemeels courses of events
have become possible to control. With modern technologypwa kinds of processes
can be controlled. Half a million years ago it was considexteallenging to control fire.
Today, it is considered challenging to control fusion peses and autonomous airplanes.

Without thinking about it, most people are constantly tgyia do things in an optimal
way. It can be anything from looking for discounts to minimithe cost at the weekly
shopping tour, to finding the shortest path between twoscitféhen to choose between a
long queue and a short queue, most people choose the sharnt @rmker to minimize the
time spent in the queue. Most of these everyday problemsofredsby intuition and it
is often not crucial to find the absolutely best solution. Sehare all examples of simple
optimization problems. Unfortunately, there are many inguat optimization problems
not that easy to solve. Optimization is used in many areadsaimdmany cases a very
powerful tool. Common, and more advanced, examples are nomizie the weight of
a construction while maintaining the desired strength dimtd the optimal route for an
airplane to minimize the fuel consumption. In these casesn be impossible to solve
the problems by intuition. Instead, a mathematical algariexecuted in a computer, an
optimization routine, is often applied to the problem.

In this thesis, control is combined with optimization. Thesite is to control op-
timally, in some sense. A common optimal control problemiriswords, to make the
controlled process follow a desired trajectory, while mirding the power applied. Of-
ten, the words process and system are used interchang@atikessical controller found
by optimization is the widely used so-called Linear QuadrRiegulator (LQR). In that
framework, a linear system is assumed to be controlled.dotfme, all systems are, more
or less, non-linear. Therefore, in order to be able to fit itht® LQR framework, they
are treated as approximately linear systems. A very fretjuencurring non-linearity in
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6 1 Introduction

practical applications is that it is not possible to afféw system arbitrarily much. For
example, when using full throttle in a car, the car cannoekate any faster. Such a
limitation is called a constraint. As a consequence, a eésis been to extend LQR to
handle systems with constraints. In the past twenty yeard) an extension has been
developed and it is commonly known as Model Predictive GoifMPC).

When classical physical processes and computers interact, advanced optimiza-
tion problems have to be solved in order to use MPC. In suctesys some ways of
affecting the system can only be made in the notion of on orlofimore advanced ex-
amples, logical rules are embedded in the system. To be aldentrol optimally, the
control has to be aware of these rules and take them into atwdien the optimal action
is being computed. How to solve these more advanced optiimizaroblems is the main
topic of this thesis.

After this popular scientific introduction, a more precisekground is given in Sec-
tion 1.1. The contributions constituting the foundation $ome parts of this thesis are
summarized in Section 1.2. This chapter is concluded by sidlwitline given in Sec-
tion 1.3.

1.1 Background and Motivation

MPC is one of the most widespread modern control principsiun industry. One of
the main reasons for its acceptance is that it combines tifieyadd controlling multi-
variable systems with the ability to easily add constragrisstates and control signals
in the system. One of the main ideas behind MPC is to form@atiescrete-time, finite
horizon, control problem similar to LQR as a Quadratic Pangming (QP) problem. In
the QP framework, linear constraints on control signalssats can easily be formulated
as linear inequalities. In order to get a control signal tplapo the system, in each
discrete time step, a QP problem is solved on-line. Becdugseyitimization is performed
on-line, there is a need for efficient QP optimization roesinAs the optimization routines
get more efficient, and the hardware more powerful, largetesys at faster sampling rates
are possible to control by MPC.

Recently, the interest of using MPC for controlling systerostaining a mix of con-
tinuous dynamics and logical rules has arisen. Unfortuyatgen this problem is for-
mulated as an optimization problem, the resulting optitdzreproblem is no longer a QP
problem but a Mixed Integer Quadratic Programming (MIQR)obem. These problems
involve binary variables, which makes the problem much &atd solve than an ordi-
nary QP problem. Therefore, there has emerged a need faeeffaptimization routines
for MIQP problems. In the state-of-the-art QP solvers for@®Jkhe problem structure
is utilized in order to decrease the computational effoedsel. The need for efficient
optimization routines for MPC involving binary variablesins the main motivation for
this thesis, where MIQP methods tailored for MPC are comeitle

In modern communication systems, several users shareallsd-multi-access chan-
nel, where the information sent by different users is seépdray the use of orthogonal, or
almost orthogonal, codes. In modern communication, tharmnédtion is represented as a
sequence of bits, that is, zeros and ones. At the receinemétural to search for the in-
formation most likely sent by the sender. This problem cafobmulated using statistical
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methods and the resulting problem is an optimization probMhere a quadratic objec-
tive is to be minimized and the optimization variables aeelitis sent by the users. If all
users are considered simultaneously, the problem is a bdeitiDetection (MUD) prob-

lem. Since the bits are examples of binary variables, thdtieg problem is a so-called

Binary Quadratic Programming (BQP) problem, which can besmtered as a special
case of an MIQP problem, but where only binary optimizatiariables are present and
where there are no constraints.

1.2 Contributions

This thesis is based on both previously published, [3, 4a6§ previously unpublished
results.

The first contribution, [3, 4], is a preprocessing algoritfon BQP problems with
applications to MPC:

D. Axehill and A. Hansson. A preprocessing algorithm for MIQP saweith ap-
plications to MPC. InProceedings of the 43th IEEE Conference on Decision and
Control pages 2497-2502, Atlantis, Paradise Island, Bahamas, Dec. 2004.

The second contribution, [6], is the application of the poepssing algorithm to the MUD
problem:

D. Axehill, F. Gunnarsson, and A. Hansson. A preprocessing algorhplicable
to the multiuser detection problem. Rroceedings of RadioVetenskap och Kommu-
nikation Linkdping, Sweden, June 2005.

These contributions form Chapter 5. The third contributga dual active set QP solver
which is presented in Chapter 6. The solver uses Riccatrs@ams in order to efficiently
solve the Karush-Kuhn-Tucker (KKT) systems that arise wthenalgorithm moves to-
wards the optimal solution. Further, it is used as a solvettfe subproblems in a branch
and bound algorithm applicable to MPC involving binary aaies.

1.3 Thesis Outline

This thesis is organized as follows. Chapters 2 to 4 proviaekround information.
Chapter 2 contains the necessary optimization backgroGhapter 3 starts with an in-
troduction to linear MPC, followed by an extension of the noet to Mixed Logical Dy-
namical (MLD) systems. Also, different optimization metlsdor linear MPC as well as
for MPC for MLD systems are surveyed. The chapter is condumethe introduction of
two examples of MLD systems to be used throughout the thigisovides the necessary
background information for Section 5.2 and Chapter 6. Ingféra4, MUD and Code Di-
vision Multiple Access (CDMA) are explained. This chaptioaserves as background
information for Section 5.3. In Chapter 5, a preprocessiggraéhm applicable to BQP
problems is derived and it is applied to MPC and MUD. In Chagtean MIQP solver
based on branch and bound is presented. As a part of the chapheal active set QP
solver tailored for MPC is presented. Finally, Chapter 7 suarizes the conclusions from
different parts of the thesis and proposes some possihlesfektensions.
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Optimization

Optimization is the procedure of finding an optimal solutiora problem. The optimal
solution is the best solution in some sense. In what sensmibe considered best is
given by the choice of the objective function, or cost fuoti The cost function can
for example be chosen as the cost for producing a productoanibe the road distance
between two places. Often there are restrictions on whitltisns that are allowed. For
example, if the shortest road between two places is sougist,niatural to restrict the
possible solutions to those not suggesting breaking thélaproposing a one-way road
in the illegal direction. Such restrictions are called ¢oaists.

In this chapter, basic notions in optimization are presenfehe notation is chosen
similar to the one in [34].

2.1 Introduction and Basic Concepts

This section is opened with three fundamental definitiors cdnvex set, a convex func-

tion and a concave function. The first two definitions aresiilated in Figure 2.1.

Definition 2.1 (Convex set). A setC is convex if for anyz;, zo € C and anyd € [0, 1]
Ox1+(1—0)axs €C (2.2)

Convex sets are thoroughly discussed in, for example, [B4that reference, impor-
tant examples of convex functions are given as well as opasathat preserve convexity.

Definition 2.2 (Convex function). A function f : R™ — R is convex ifdom f is a con-
vex set and if for all, y € dom f and6 € [0, 1]

f0x+ (1 —=0)y) <O0f(x)+(1—0)fy) (2.2)

If this inequality holds strictly whenever # y andf €]0, 1], the functionf is strictly
convex.
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(a) Convex function

T Oxq + (1 — 0) To

(b) Convex set

Figure 2.1: lllustrations of the Definitions 2.1 and 2.2.

Definition 2.3 (Concave function). A function f : R™ — R is concave if- f is convex
and strictly concave if f is strictly convex.

In this thesis, an optimization problem
minimize  fo(z)
xr

subjectto  fi(z) <0, i=1,...,m (2.3)
hi(x)=0, i=1,...,p

wherefy : R" — R, f; : R™ — R andh, : R" — R is said to be on standard form. The
function fy(x) is called the objective function, or cost functiofy(z), ¢ = 1,...,m
denote the inequality constraint functions a@ndx), i = 1,...,p denote the equality
constraint functions. If there are no constraints, the j@mhis said to be unconstrained.
The domain of the optimization problem is the intersectibtihe domains of the objective
function and the constraint functions

m p
D = () dom f; N (") domh; (2.4)
=0 =1

If a pointz € D satisfies all equality constraints and all inequality coaists, it is said
to be feasible. If there exists at least one such point, tbblem is said to be feasible.
Otherwise, the problem is said to be infeasible.

An important special case of (2.3) is when the functigiis), i« = 0,...,m are
convex and the function;(z), i = 1,...,p are affine, that i%;(z) = al' = — b,. Then
(2.3) is called a convex optimization problem. Since theotdye function is convex and
the intersection of the sets defined by the constraints isedgra convex optimization
problem means that a convex function is minimized over a eoset. A fundamental
property of convex optimization problems is that a localijpi solution is also a global
optimal solution.

Define the optimal objective function valpé of (2.3) as

p* =inf {fo(z) | fi(x) <0,i=1,....,m, hy(x)=0,i=1,...,p} (2.5)
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wherep* is allowed to take on the valueisoo and—oo. A point 2* is called an optimal
point, or an optimal solution, to (2.3) if* is feasible andf(z*) = p*. If there exists an
optimal solution to (2.3), the optimal value is said to baiaged, or achieved. If there does
not exist any optimal point, the optimal value is not attdink the problem is unbounded
from below, that i* = —oo, the optimal objective function value is not attained.

—— Example 2.1 |
Consider the unconstrained optimization problem

minimize 22 (2.6)

The optimal solutionig* = 0 and the optimal objective function valpé = 0 is attained.

—— Example 2.2 |

As an example of a problem where the optimal objective faamctialue is not attained,
consider

minimize arctan(x) (2.7)

wherep* = — 7, but the optimal objective function value is not attained.
L

The domain of a convex function can be included in the dedinitf the function by
defining the function value te-co outside the domain

(z) = {f(x), z € dom f 2.8)

0o, x & dom f

Here, f(z) is called the extended-value extension of the convex fangt{z). The do-
main of the unextended function can be recovered by

dom f = {1: | f(z) < oo} (2.9)

In this thesis, all convex functions are assumed extendeath®r important concept is
equivalent problems.

Definition 2.4 (Equivalent problems). Two optimization problems are said to be equiv-
alent if the optimal solution of the two problems coincidettee solution of the first prob-
lem can be trivially computed from the solution of the secprablem and vice versa.

To illustrate Definition 2.4, a simple example of later captcel relevance is shown.

—— Example 2.3 |
Consider the following unconstrained quadratic optim@aproblem

miniwmize Cia?® + Cy (2.10)
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An infinite number of equivalent optimization problems tol@) can be found by varying
Cy; > 0 and(C5. That is, all of them has the same optimal solution. It is exiely
important to realize that they are not the same problems.ekample, in this case the

optimal objective function value varies witty, andCs.
|

One application of equivalent problems is to consider a Bmput equivalent, problem
compared to the original problem. For example, chooéing- 0 reduces problem (2.10)
to a problem with only a pure quadratic term.

2.2 Duality

The concept of duality is very important in optimization.eTdbjective by considering a
dual problem is to get an alternative formulation of the miation problem that is com-

putationally more attractive or has some theoretical §icance, [43]. When discussing
duality, no assumption of convexity has to be made, evengihguch an assumption en-
ables the use of more powerful results. Early work on duédityyon-linear programming

can be found in, for example, [38, 39, 100].

2.2.1 The Lagrange Dual Problem

In the derivation of a dual optimization problem, the Lagjiam L : R"™ x R™ x RP — R
associated with (2.3) plays an important role. The Lagramgs defined as

m D
Lz, A\ v) = fo(x) + > Nifi(z) + Y vihi(w) (2.11)
=1 =1

wheredom L = D x R™ x RP. The variables\; andv; are the Lagrange multipliers
associated with inequality constrairdnd equality constrairit respectively. The vectors
of Lagrange multipliers\ andv are called the dual variables associated with problem
(2.3).

When the Lagrangian is minimized with respect to the primalades for a given
andv, the Lagrange dual functiop: R™ x RP — R

g\ v) = 3irglfDL(az:, \v) = ?}161% (fo(x) + Z)\lfl(x) + Z ylhz(x)> (2.12)
=1 i=1

is obtained.

An important operation conserving convexity propertiethis pointwise infimum of
a set of concave functions, which is a concave function. &Sihe Lagrange dual function
is affine in(\, v), itis precisely a pointwise infimum of a set of concave fumes and is
therefore concave. This holds without any assumptions mfexity of the problem (2.3),
that is, the Lagrange dual function is a concave functioo mshe case when (2.3) is not
a convex problem.

An important property of the Lagrange dual function is thatdny A > 0, the fol-
lowing inequality holds

g\ v) <p* (2.13)
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That is, the dual function gives lower bounds on the optinigéctive function value.
Actually, the dual function gives lower bounds on the ohjecfunction value for all
feasiblex. Wheng(\, v) = —co, the inequality (2.13) still holds, but it is vacuous.

Since (2.13) for\ > 0 gives lower bounds on the optimal objective function valtie,
is interesting to find the pair\, ) that gives the best lower bound. This pair can be found
as the solution to the optimization problem

maximize g(\,v)
Ay (2.14)
subjectto A >0

This problem is called the Lagrange dual problem associaittd(2.3). Note that there
exist different dual problems. Example of other dual foratiains for non-linear programs
are the Wolfe dual, [100], and the Dorn dual for quadratiggpams, [38]. In this thesis,
the Lagrange dual will be used exclusively, hence the woml diil be used, without
ambiguity, as short for the Lagrange dual. To summarizeahmaihology, (2.3) is called
the primal problem and (2.14) is called the dual problem. A& pa,v) is called dual
feasible ifA > 0 andg(\,v) > —oco. Since the objective function to be maximized in
(2.14) is concave and the feasible set is convex, the duiahizattion problem is a convex
problem independently of whether the primal problem (Z3)nvex or not. The optimal
dual objective function value is denotéd.

2.2.2 Weak and Strong Duality

In the previous section, it was seen that by solving the duablpm, the best possible
lower bound on the primal optimal objective function valaade found. The inequality
(2.13) holds specifically for the dual optimal p&i*, »*) and thus

a < p* (2.15)

This inequality is called weak duality. Weak duality holdee if the primal problem is
non-convex and it still holds i#* or p* are infinite. Using the extended-value extension,
infinite values can be interpreted as primal or dual infebts#s. For example, if the
primal is unbounded from below, thatp$ = —oc, it follows from (2.15) thatl* = —oc,
which means that the dual is infeasible. The differepte- d* is called the optimal
duality gap and is always non-negative.

For some problems the inequality (2.15) holds with equgatitst is,

d* = p* (2.16)

which means that the lower bound found from the dual probketight and the duality
gap is zero. This important property is called strong dualinfortunately, strong duality
does not hold in general. It often holds for convex problebus,not necessarily. Con-
ditions guaranteeing strong duality are called constrguiatifications. One well-known
constraint qualification is Slater’s condition. For a coneptimization problem, Slater’s
theorem stated below holds. Let the primal problem be of dine f

minimize  fo(z)
subjectto  fi(x) <0, i=1,...,m (2.17)
Axr=b>
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wherefy, ..., f., are convex functions. Slater’s theorem can then provideitions un-
der which strong duality holds. The domain is assu®ed (", dom f;. The following
two theorems are given without proofs and are based on thastion in [34, p. 226].

Theorem 2.1 (Slater’s theorem)
For the convex optimization probleR.17) strong duality holds if there exists an
x € relint D such that

file)<0,i=1,....m, Ax=0b (2.18)

A verbal formulation of Theorem 2.1 is that if there existictty feasible primal
points, strong duality holds. If some of the inequality domists are affine, then it is
sufficient that a weaker condition holds. Theorem 2.1 carefiaed for the case when
the inequality functions are affine. In that case, the affiregjualities do not need to hold
strictly.

Theorem 2.2 (Slater’s theorem, refined)
For the convex optimization probleR.17) strong duality holds if there exists an
x € relint D such that

filx) <0,i=1,....k, fi(z)<0,i=k+1,....,m, Ar=»> (2.19)
wheref;(z), i = 1,..., k are affine functions.

Remark2.1 If all constraints are affine, andom f; is open, then condition (2.19) in
Theorem 2.2 is reduced to feasibility of the primal problem.

A consequence of Theorem 2.1 and Theorem 2.2 is that the @tiata objective
function value is attained whenewétr > —oo, that is, whenever the dual is feasible.

2.3 Optimality Conditions

In this thesis the so-called Karush-Kuhn-Tucker (KKT) citiods for optimality are used.
In the general setup, they can be used as necessary coadiiooptimality for any
optimization problem with differentiable objective furmt and constraint functions for
which strong duality holds. If the problem is convex they als®o sufficient according to
the following theorem, based on the discussion in [34, pf—244].

Theorem 2.3 (KKT)

Consider the optimization probleif2.3). Assume that it is convex, thdi(x), i =

0,...,m are differentiable and that strong duality holds. Then tbkofving so-called
Karush-Kuhn-Tucker (KKT) conditions are necessary anfigent conditions for* and
(\*,v*) to be primal respectively dual optimal points

filz®) <0, i=1,....,m (2.20a)
hi(z*)=0, i=1,...,p (2.20b)
Af>0, i=1,...,m (2.20c)

N filz*) =0, i=1,....m (2.20d)

Vio(z™) + > N Vfi(@*) + > v Vhi(z*) =0 (2.20e)
1=1 3
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Proof: See [34, p. 244]. O

2.4 Quadratic Programming

As a prelude to this section, a general form of a Quadratigfaraming (QP) problem is
introduced )
minimize §xTHaz: + [T

subjectto  Acx = bge (2.21)

AI.T S bI
wherez € R", H € S%,, f € R" and the rows indg € RP*" are given by the
vectors in{a; € R™ | i € £} and the rows inAz € R™*™ are given by the vectors in
{a; € R" | i € T}. The column vectorés andbz are analogously defined. The s#&ts
and¢ are finite sets of indices. The Lagrange dual function tol(Pcan be found by first
forming the Lagrangian

L(z,\v) = %xTH:E + fT2 + AT (Azz — bz) + T (Agz — be) (2.22)

and then minimizing with respect to the primal variablesac8itheH > 0, the unique
minimizer can be found from the first order necessary andcgeffi conditions of opti-
mality
OL(x, \,v)
ox
Inserting (2.23) into (2.22) gives the following expressfor the dual function

g v) = — % T [AI} H' AT AE] m

=Hr+f+ATN+Alv=0 & 2=—H ' (f+ AT\ + Afv) (2.23)

Ag
1 (2.24)
(T AF AR+ F o) )] - ps
Using (2.14), the dual problem is found to be
ma>A(i’r/nize —% AT 7] [iﬂ H'[AL AT B} ~
A (2.25)

(TH A AR 8E) )] - 5T

1%
subjectto A >0

By changing the sign of the objective function and ignoring tonstant term, (2.25) can

be written as an equivalent (see Definition 2.4) minimizagooblem

S 1 A _ A
minimize - [A" 7] {Aﬂ H'[AL AT [V] +

ST A an) s o[y @

subjectto A >0
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Remark2.2. Note that the optimal solutions of (2.25) and (2.26) coieci@ut, the op-
timal objective functionvaluesdo not generally coincide. This is extremely important
to remember when working with weak and strong duality rasulthese results relate
the optimal objective function value of (2.21) to the optirabjective function value of
(2.25), but not to the optimal objective function value o2@).

The great structural advantage with the dual problem (2 @5]2.26), compared to
the primal problem (2.21), is that the latter only has sim@a-negativity constraints. A
consequence of the simple constraint structure is thatrigaas always a feasible solu-
tion. Furthermore, the simple structure of the constragmigbles the use of the efficient
gradient projection algorithm, which allows more rapid oges to the working set (see
Section 2.4.2) compared to a classical active set algorifi). More advantages of the
dual formulation are presented in Section 2.4.3.

In this thesis, a variant of (2.21) will be of great interest

minimize %[xlT 27 H;I 8} {961} LT 0] [2]

T1,T2 )

subjectto [Ag; Ags] Bl} = be (2.27)
2
[Az1 Azz] Bj <bz

wherez; € R™, z, € R™, H € S andf € R". The dual problem of (2.27) is de-
rived in a similar manner as the dual problem of (2.21), bett&rivation becomes slightly
complicated by the fact that the Hessian is not positive defirfrirst, the Lagrangian is
derived

L(fl,[l?g,A,V)

1 - ~
= §${H1‘1 + fTafl + 2T (AI [ij — bz) +7 (Ag [ij — bg)
(2.28)

1 - -
= §${H$1 + fTﬂfl + /\TAI,l.Il — )\sz + l/TAg,l.Il — Z/Tbg

+ ()\TAI,2 + VTAE,Q) T

The Lagrange dual function is found by minimizing the Lagyian with respect to the
primal variables

g\ v)= inf L(xq1,29,\ V)

z1,22€D

inf 3ol oy + (F7 + AT Azy + 0T Ag1) @y = Aoz — Ve,
z1
= when T Az, + v Ag 5 =0

—o00, otherwise

(2.29)

According to (2.29), ifL is to be bounded from below the following condition has to be
fulfilled

MNAzo+1vTAgp =0 (2.30)
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If (2.30) is inserted into (2.28), the Lagrangian becomesietly convex function ofz1,
A andv. First order necessary and sufficient conditions for oplitpnaith respect tox,
are

OUALAY)  fray 4 4 AT A+ AL v =0 (2.31)
1
or equivalently

ay=—-H"" (f+ AT A+ Ag,ﬂ/) (2.32)

When formulating the dual problem, the implicit constram{2.30) is made explicit by
adding it to the list of constraints. After inserting (2.38}0 (2.29), the dual problem is
concluded to be

. 1 A - A
maimize 3 Rz {Aij H™'[AT, AE] [,/] -

S DN R
- (g ARy +pE ) [))- 3P ey
subjectto A7 A+ Af v =0
A>0

By changing the sign of the objective and removing the corideam, a problem equiva-
lent to the dual problem is

S 1 A ~ A
minimize 3 AT T [Azj H™'[AT, Af4] [,,] +
o B
+ (FPET (AT, AL+ [F bf]) M (2.34)
subjectto A7 A+ Af v =0
A>0

For an extensive bibliography on QP, see [51].

2.4.1 Strong Duality for Convex Quadratic Programming

Early work on duality for QPs can be found in [38], [39] and].3%ince the constraints
of a QP are linear, it follows from Theorem 2.2 that if the painproblem is feasible,
strong duality holds. Sometimes the primal optimal soluti@n be derived from the
dual optimal solution. In those cases, it can sometimes baraageous to solve the dual
problem instead of the primal problem. When the dual optirohlt®n has been found,
it can be used to easily compute the primal optimal solutibtiis approach is used, it is
important to know what will happen in the dual problem if théal problem does not
have any solution. In this section, the primal problem (2&¥d the dual problem (2.33)
are considered. The desirable situation is that the dual@mhas a solution if and only
if the primal problem has a solution. The primal problem édesed has an objective
function that is bounded from below.

Consider feasibility of the primal and the dual problem. Foutually exclusive cases
can occur:
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Case| Primal | Dual
1 Feasible Feasible
2 Infeasible| Infeasible
3 Feasible Infeasible
4 Infeasible| Feasible

Since the problem considered has an objective functionevéiat is bounded from
below and strong duality holds, case 3 can never occur.

From strong duality, in case 1 the primal and dual optimagotdje function values
coincide.

For case 4, it will now be shown that the dual optimal objexfunction value be-
comes unbounded from above. First, a strong alternatiwdtifiesm [34] is needed.

Lemma 2.1
The following two systems of inequalities are strong aktikes

1. Az <b
2.0>0, ATA=0,b"A<0
that is, exactly one of the alternatives holds.
Proof: See [34, pp. 261-262]. O

Theorem 2.4
If the primal problem(2.27)is infeasible, and the dual problefd.33)is feasible, then the
dual problem(2.33)is unbounded from above.

Proof: Consider a QP problem of the type in (2.27) with only inedqyalbnstraints and
defineJp () to be the dual objective function. Assume the dual problemsifée. Then
EDW A£2)\ = 0, A > 0. Further, assume the primal infeasible. Then, from Lemrfa 2.

it follows that3 N\ : X' > 0, ATX =0, bL )\ < 0. Note that

ATN = [Agﬁl] N = (2.35)
A - AT - .
7,2
Since A7, (A + a\') = 0, the sum\ + o\’ is dual feasible for every > 0. It now
holds that
Ip(A+a)) = 7% A+ a)\')T AIJﬁflAgl (A +aX)

Y _ 1 o~ o~
_ (T 14T T A A S|
(FPE AT, +6F) A+ ) = 5 fTH 2.36)
1< ~ < ST v lap- gz
— — XAz T AT A~ (fTH—lAg1 + bg) A= 5 fTHT - abfX
=Jp(\) —abk N — 400, a = +o0
sincebZ )\ < 0, and where the second equality follows frofd ; \’ = 0. The general

case, where equality constraints are included, followsatly from the proof above by
expressing an equality constraint as two inequality cairss. 0
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Case 2 does not need any further investigation since theedasisult is immediate.

Two important conclusions can now be drawn. First, if thel taianfeasible, then the
primal is infeasible. Second, if the dual is feasible, tHemprimal is feasible if and only
if the dual optimal objective function value is bounded frabove.

2.4.2 Active Set Methods

An inequality constrained QP can be solved either using tamior point method or an
active set method. In this text the focus will be on an actatensethod. A well-known
example of an active set method for linear programs is th@lsixnmethod. As soon
will be apparent, the notion “active set” allude to the wag thethod works. To solve
an equality constrained QP is rather straightforward. Ativacet solver reduces the
problem of solving the inequality constrained problem ttvisg a sequence of equality
constrained problems. In this text, a step in this solutiequence will be referred to
as a QP iteration. The material presented in this sectioassdon [77] and [43]. The
problem to be solved is of the type in (2.21), withe S’} . However, in each QP iteration
an equality constrained QP with < n number of constraints is considered:

o 1, .
minimize -z Hx +

z v He v [T (2.37)
subjectto Ax =10

whereA € R™*"™ has full row rank, that isank A = m. If A does not have full row rank,
the constraints are either inconsistent or some consdraietredundant in which case they
can be deleted without changing the solution to the problésing the equationlz = b,

m variables can be eliminated from the problem by express$iamtin the othen — m
remaining variables. Choose matridés= R"*™ andZ € R"*("~™ such thafy Z]

is nonsingular. FurtherZ andY should fulfil AY = I and AZ = 0. That is, one
solution toAxz = b is given byz = Y'b. Since this solution, in general, is non-unique, an
arbitrary solution tadx = b can be written as

©=Yb+ Zay (2.38)

wherezy € R™ ™. The linearly independent columns 4f can be interpreted as a
basis for the nullspace of. If (2.38) is inserted into (2.37), the following unconstied
optimization problem is obtained

minimize 3232 HZwz + (f + HYb) Zaz + 30"YTHYb+ fTYb  (2.39)
Note that the last two terms in the objective function arestamts and can therefore be
omitted. The result is an equivalent optimization problehick can be identified as a QP
on the form (2.21) without constraints. The mat#iX H Z is considered as the Hessian
of the reduced problem and is called the reduced Hessiaprdfeerties is of importance
when solving (2.37).

The vectorY'b was chosen to benesolution of Az = b, that is, in many cases there
is freedom in this choice. This freedom can be used to chbasgch that good numerical
properties are obtained.
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The KKT conditions for an optimization problem on the form32) can be written as
a system of linear equations

sfl=0 v k=1 e

The following lemma taken from [77] gives sufficient condits for non-singularity of
the KKT matrix K.

Lemma 2.2

Let A have full row rank and assume that the reduced-Hessian matfiG Z is positive
definite. Then the KKT matrik in (2.40)is non-singular and there is a unique pair of
vectors(z*, v*) satisfying(2.40)

Proof: See [77, 445]. O

Actually, a more powerful result can be shown. The followihgorem is taken
from [77].

Theorem 2.5
Suppose that the conditions of Lemma 2.2 are satisfied. Teeretctorz™ satisfying
(2.40)is the unique global solution dR2.37)

Proof: See [77, p. 446]. O
Before inequality constraints are considered, a definibidhe active set is necessary.

Definition 2.5 (Active set). The set
A@@)=eu{ieT |a]z =0} (2.41)
wherez is any feasible point, is called the active set:at

The active set in optimumA(z*), is called the optimum active set. An active set
solver has a set containing the indices of the constraiatsatte treated as equality con-
straints in the current iteration. This set is called thekivay set and is in iteratior
denotedV;,. If A(z*) would have been known in advance, the problem could have been
solved as an equality constrained problem of the type (2\8figre the constraints are
those being indexed bhyl(z*). If an active set solver is supplied with an initial working
setWW,, which does not differ much fromd(z*), the problem can often be quickly solved.
This idea is used in so-called warm starts, where informdtiom a previous optimal so-
lution is used to quickly reoptimize after a minor changeh® problem. Unfortunately,
A(x*) is in general not known in advance. Thereforg, has to be initialized in some
way. This can be done by making a guessidt*), or simply by takingV, = £.

As previously mentioned, in a QP solver a sequence of eguaitstrained problems
of the type in (2.37) is solved. Between the solution of eaathgroblem, an inequality
constraint is either added to the working set or removed filoenworking set. After the
working set has been changed, a new optimization probleheiséquence is considered.
This is done by solving the corresponding KKT system of thgetin (2.40). Therefore, it
is necessary to solve systems of this type efficiently. Foege QP solvers there exist a
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number of different methods for how this can be performed.tf® problems considered
in this thesis, the KKT system has a special structure, wiiakes it possible to solve it
using Riccati recursions. Thus, the standard methods arguneeyed in this text. Some
references to standard methods are, for example, [77] &jd [4

It is important that all rows indexed by, are linearly independent, otherwise the
constraints are either inconsistent or redundant. If ggsiirement is fulfilled foiV,, the
algorithm to be presented guarantees that it will also H@l&a for W, in all subsequent
iterations, [77].

Let x5, be a feasible solution to the constraints indexed/By in iterationk. It is
not known whethesg:;, minimizes the objective function subject to the constsaintexed
by Wy or not. Further, lett;; denote the optimal solution subject to the constraints
indexed byW,.. The step necessary to take fram to reachz is then calculated as
Pk = Tpy1 —xg. If £y is feasible with respect to all constraints in the originalpem,
xr+1 IS computed according te,.1 = &r41. Otherwiseay, in xx11 = zr + axpr has
to be chosen as large as possible in the inteffyal] under the constraint that,; is
feasible. Since;, andZ satisfy the constraints Wy, so does:y,1 since

Aw, T = Aw, (T + ap (B4 — 1))

i (2.42)
= Akak + oy (Awkﬂfk-_;,_l — Akak) = ka

This follows from the fact thatlyy, 11 = by, andAyy, x, = by, , independently of
ay. The matrixA4,y, and the vectob,y, contain the rows corresponding to the constraints
in the current working set. Hence, after a step of arbitrangth in the directiod;;; —

x, the resulting point is always feasible with respectta. If o < 1, there is an
inequality constraint blocking the way towards the optimu@onsider the inequality
constraint with index. It can be written aa? (z + arpr) = al 21, + aral pr < b;. If
aiTpk, < 0, the constraint remains to be fulfilled for an arbitrary > 0. On the contrary,

if al'pr > 0, . has to fulfill

T
b — a; xy,

aiTPk
Of course, if the optimum has been reached before a conshiaicks the searchy;, is
chosen tal. Summarizinggqy, is chosen as

b; —aF
Q= min {1, min (ZTalxk> } (2.44)
i¢Wi,al pp>0 a; Pk

wherep, = &r11 — x. The constraints for which the minimum in (2.44) is achiewesd
called the blocking constraints. Two extremes are whignr= 1 or o, = 0. The first one
is already discussed, the second one occurs if there eristg &V, such thau? z;, = b;,
that is, constraint is active inx;,, anda’ py > 0. The new working se¥Vj., is formed
by adding a blocking constraint to the old working $&},.. The procedure is repeated,
and new constraints are added until,; = z;. When this occursg, minimizes the
objective function over the working s&éV,. The Lagrange multipliers for the equality
constrained problem are now computed. A difference betwdemgrange multiplier for
an equality constraint and an inequality constraint is thaan inequality constraint, the
multiplier must be non-negative. Consequently)jf > 0, Vi € W, N Z, then the

ap <

(2.43)
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Lagrange multipliers for all inequality constraints tregtas equality constraints in the
last subproblem, are feasible. As a result, the KKT condit@x20c) is fulfilled forzy,.
Lagrange multipliers for inequality constraints not in tiverking set, are set to zero.
If there exists an indey € W, N Z such thatﬁ\j < 0, the KKT condition (2.20c) is
not fulfilled and the objective function value can be deceedsy dropping constraint
from the working set. This conclusion can be drawn from d&ityi analysis. If there
exist negative multipliers, the index corresponding to oh&hem is removed from the
working set and a new subproblem with this constraint rerdasesolved. In [77], it is
shown that this strategy generates a search direction imetkitesubproblem that is feasible
with respect to the dropped inequality constraint. Evemugioit is possible to drop any
of the constraints corresponding to a negative multiptieg, most negative multiplier is
often chosen in practice. This choice can be motivated usémgitivity analysis. From
this analysis it follows that the decrease in the objectinection value when a constraint
is dropped is proportional to the multiplier associatechwlitat constraint.

In every QP iteration, the KKT conditions (2.20a) and (2.2&te fulfilled because the
initial point z is feasible and all subsequent are chosen such that primal feasibility is
maintained. The complementary slackness condition (2.@(dlfilled by the construc-
tion of the active set algorithm. In every iteratiaty; fulfills the KKT condition in
(2.20e) with all\;, i ¢ W, N T set to zero. If the signs of all multipliers corresponding
to inequality constraints in the current working set are-negative, then also the KKT
condition (2.20c) is fulfilled. In this case, all KKT conditis are fulfilled and hence a
global optimal solution to the problem has been foundHlfe S, then the unique
global optimal solution has been found.

When implementing an active set QP algorithm, it is common &kerthe variable
substitutionp = %11 — zx, and formulate the subproblems directlyzin However, in
Algorithm 2.1, 2,14 is explicitly computed instead of. Apart from this modification,
Algorithm 2.1 is similar to the algorithm given in [77]. Inithreference, convergence
properties of the algorithm are discussed. This discusagmcovers cycling of the active
set algorithm, which means that a sequence of additions aletiahs of constraints to
and from the working set is repeated without the algorithnkingaany progress towards
the optimum. If not detected and aborted, this sequenceéeated until the maximum
allowed number of iterations is reached. There are proesdio handle cycling, but
according to [77], most QP implementations simply ignoeebssibility of cycling.

An active set algorithm requires a feasible initial paigt One approach is to use
a so-called Phase | method, where a linear optimizationl@nolis solved to generate a
feasible starting point for the QP. Another approach is ®the big-M method, where
the constraint infeasibility is penalized by adding a wédghinfinity norm of the amount
of infeasibility to the objective function.

2.4.3 Dual Active Set Quadratic Programming Methods

The QP method presented in Section 2.4.2 is a primal feaatilee set method. This
means that it starts in a primal feasible point. Primal feitii is thereafter maintained in
all subsequent QP iterations. The main drawback with thegdrinethod is that a primal
feasible starting point has to be obtained before the adptization can start. As
described in Section 2.4.2, if a feasible starting poinhcae obtained by, for example,
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Algorithm 2.1 Active set QP algorithm for convex QP

Compute a feasible starting poing.
Define the maximum number of iterationsfas,...
SetW, to be a subset of the active constraintgat
k:=0
while k < kyq. dO
Given W, computety,; ;.
if jjk-—i—l = Tk then
Compute Lagrange multipliets.
if \; >0, Vi € W, NTthen

T* =z
STOP
else
j = argmin 5\j
JEWRNT
Tg41 = Tk
Wit == Wi\ {j}
end if
else

Computex;, according to (2.44).
Thy1 = Tg + ag (Tpr1 — Tx)
if a, < 1then

Set; to be the index of one of the blocking constraints.

Wit = We U{j}
else
Wit == Wy
end if
end if
ki=k+1
end while
No solution was found i, iterations.
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practical knowledge of the problem, a Phase | algorithm aamiplied to find such a
point. According to [48], the authors computational expece indicates that on average
between one-third to one-half of the total effort neededtaeesa QP with “typical primal
algorithms” is spent in Phase I. Comparing the primal QP jerokin (2.21) and the dual
QP problem in (2.25), it is clear that it is easier to find a fielasstarting point to the
dual problem than to the primal problem. For example, thgioris always a feasible
starting point to the dual problem. To find a feasible stgrfinint to the primal problem,
the in general more difficult constraints in (2.21) have tdudélled. A dual method is
particularly suitable for Sequential Quadratic Programgn(iSQP), where several similar
inequality constrained QPs are solved sequently, [78].0Adiag to the same reference,
if the suggested initial working set is unsuitable, it calatieely easy be adjusted. In
a primal algorithm, if the initial working set is not feas#hit might be necessary to start
over from an empty working set. Another important advantfgedual active set method
is that the dual inequality constraints cannot be degeasiate the gradients of the non-
negativity constraints in (2.25) are linearly independé&ir specific methods, this claim
is supported by the references [65], [43] and [48]. Accaydim[77], the simple structure
of the constraints in the dual problem enables efficient dsthe gradient projection
method when solving the dual problem. The advantage with@dignt projection method,
compared to a classical active set method as the one prdsamdgorithm 2.1, is that
rapid changes to the working set are allowed. As a consegué¢he number of QP
iterations can be reduced.

Early work on dual active set methods for QP can be found if §%l [94]. The
method presented in [65] is built on Dorn’s dual of the typeeventhe primal variables
have been eliminated. When the primal variables are eliméhtite result is a dual prob-
lem of the form (2.26) with onl\-variables present. The method can be interpreted as an
active set method where dual feasibility is maintainedfuthe active set iterations in
the search for a dual optimal point. Because of the simplettre of the constraints, the
origin is always found to be a feasible initial solution. 3lis true for all dual methods
if the dual looks like (2.25). In (2.33), also the equalitynstraints have to be fulfilled
by the starting point. In [65], a finite solution to the duabplem is required, which can
be interpreted, by weak duality, as a requirement for prif@asibility. In [94], a dual
method built on the so-called simplex method for quadratigpamming by Dantzig and
van de Panne is presented. As the name of the algorithm tedicne method reduces
to the ordinary simplex method for linear programming if thessian is zero. Readers
interested in this early QP method are referred to the findtqfahe article, which cov-
ers this primal method. In the second part, the method isexppd the Dorn dual of a
QP. According to [48], the dual method in [94] cannot handatgbfems where the primal
is infeasible. This problem can though be eliminated usherhodification proposed
in [48].

A more recent dual active set algorithm for strictly conveRs(s presented in [48]. In
this method, primal problems like (2.21) are solved in sobfgms where only a subset
of the inequality constraints are present. In each itemati@iolated primal constraint is
added to the working set and the corresponding subproblesoligd. If the subprob-
lem is infeasible, the entire optimization problem is fouade infeasible. This can be
explained by the fact that in the optimal solution there rmegtexist any violated con-
straints. Consequently, if it turns out that it is not pokstb clear all constraint violations,
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while maintaining the subproblems feasible, the optinizaproblem is not feasible. If
the new subproblem is feasible, the working set is updatddrenprocedure is continued.
A difference with this algorithm compared to [65] and [94thst the former does not ex-
plicitly form the dual problem. The “duality” in the algohiin can be said to stem from
the fact that it maintains dual feasibility instead of prirfeasibility during the changes
to the active set. The algorithm usually starts in the uncaimed primal optimum and
is generally able to take advantage of a good initial esgnedtthe solution, [43]. The
algorithm is equivalent to a primal algorithm applied to theal problem, [43, 48]. In
the reference, both the method presented in [65] and theawgitesented in [94] are
compared to the algorithm. According to [48], the algorithrasented in the cited refer-
ence is more efficient and more numerically stable than [B4drawback with the dual
algorithm is also mentioned. If the Hessian is ill-conditol, numerical problems might
occur since the dual algorithm starts from the unconstchm@imum. The numerical
properties of the algorithm presented in [48] are furthearexed in [78], where an ex-
tension to handle ill-conditioned problems is presentatitae algorithm is compared to
two primal QP solver§PSCOL andVEQR2A. In [31], the algorithm is extended to the pos-
itive semidefinite case. In [7], the QR factorization use{4) is replaced by the use of
a Schur complement (as in [61]) for block elimination of thK Kmatrix. This enables
the use of solvers for linear equation systems utilizingofgm structure. To be able to
more easily adapt to a specific application, the code is ewritth object oriented C++.
The routine is calledPSchur . As a conclusion, it can be noticed that the method based
on [48], seems to have good numerical properties, as welbbag gerformance. It should
however be mentioned that the method does not allow for relpéshges in the working
set, which is invited by the simple constraint structurehia dual QP problem.

An infeasible active set solver for problems with simple hdsi on variables is pre-
sented in [63]. It is actually not based on a dual method, toshares the property of
not enforcing primal feasibility during the iterations. like a dual method, it does not
enforce dual feasibility either. In the derivation of thethws, the Hessian is assumed
positive definite. In the article, the results for discretiznfinite-dimensional optimal
control problems in [27, 28] are generalized to a general @mdlation.

The dual problem to a QP is considered in several books. Saarames are [77],
[43] and [10].

2.5 Mixed Integer Quadratic Programming

Mixed Integer Quadratic Programming (MIQP) is a speciakaaisMixed Integer Non-
Linear Programming (MINLP). At a first glance, the MIQP preinl looks similar to the
ordinary QP problem (2.21). There is however one importé#fagrénce. The optimiza-
tion variables are not only allowed to be real valued, bui alteger valued. This “slight”
modification turns the easily solved QP problem, intoMdR-hard problem, [101]. A
common special case of MIQP is when the integer variables@rstrained to be or 1.

To use a precise notation, this problem is called a Mixed Biqguadratic Programming
(MBQP) problem. The standard notation for MBQP seems, &t lieathe control liter-
ature, to be MIQP. In what follows, the problem studied wil &h MBQP, but to keep
the standard notation, it will be denoted MIQP. A survey ddeisng Quadratic Integer
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Programming (QIP) can be found in [98].

2.5.1 Problem Definition

The mathematical definition of an MIQP problem is
—_ 1
minimize —aeTHz + fTz
zERme % {0,1}"b 2
subjectto  Acx = bg
AIJ’J S bI

(2.45)

wheref € R*T" andH ¢ Sic+””. Further, letAg, Az, bg andbz be defined as in
(2.21) withn = n. + ny,.

There exist several methods for solving MIQP problems. The fnost commonly
used methods for these kind of problems are, [16]:

Cutting plane methods

Decomposition methods

Logic-based methods
e Branch and bound methods

Several authors claim that branch and bound is the best ohdétihanixed integer pro-
grams, [16]. In [44], a branch and bound method is compard&@etoeralized Benders
Decomposition (GBD), Outer Approximation (OA) and LP/QRéd branch and bound.
The conclusion in this reference is that branch and bourteeistiperior method for solv-
ing MIQP problems. With a few exceptions, branch and bourahisrder of magnitude
faster than any of the other methods. An important explanat why branch and bound
is so fast is that the QP subproblems are very cheap to solkis ig not the case for
general MINLP, where several QP problems have to be solveddh node in the branch
and bound tree. In the MINLP case there exist important grobtlasses where branch
and bound is not the best method. A review of different meshafdsolving MIQP prob-
lems can be found in [98]. There exist several software fuisg MIQP problems. For
MATLAB, free software like XLMIP or migp.mcan be used. A commonly used com-
mercial software is CPLEX.

2.5.2 Branch and Bound

If computational burden is not considered, the most sttédghard approach to compute
the optimal solution to an optimization problem involvinigéry variables is to enumerate
all possible combinations of the binary variables, and &mhesuch combination, compute
the optimal solution of any real variables also includedhie problem. Thereafter, the
objective function values are compared and the solutioeplutions, generating the best
objective function value is taken as the optimal solutioowdver, for problems involving
many binary variables the computational burden will becawerwhelming, since the
number of combinations of the binary variableg1s.
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Figure 2.2: This figure shows an example of a binary search tree for twarpin
variables,xz1 andxzs. In each node, represented as an ellipse, the corresponding
feasible se8; is shown. The symbol is used to denote that this variable is free to
be eithe® or1.

The conclusion from this introductory discussion is tharéhis a need for an algo-
rithm that can find the optimal solution without enumeratailgpossible combinations
of the binary variables. One such algorithm is branch andpwhere it is most often
sufficient to explicitly enumerate onlsomeof the possible combinations. Unfortunately,
the worst case complexity is still exponential and the nunabeombinations necessary
to enumerate, and solve an optimization problem for, is lepraldependent. Most of the
derivation of and the motivation for the branch and bounditlgm come from [101]
and [45].

Denote the feasible set of the optimization problem comemi§. In the branch and
bound methodsS is split into X smaller sets such that

s=Js (2.46)

This partitioning is performed in several steps. The pgartihg is at first coarse, but is
in later steps more and more refined. The partitioning carepeesented using a tree
structure. An example of a tree is given in Figure 2.2. The imeFigure 2.2 is a so-called
binary search tree, which is a special case of a generallstarcand is the type of tree
of interest for the MIQP problems considered in this text.e Eilipses in the tree are
called nodes. The rows of nodes in the tree are called leVéls.top node is called the
root node. In a binary search tree, all nodes except the riadée bottom of the tree

have two nodes connected to the lower side of the node. Theseddes are called the
children of the node above, and the node above is called tlem{paode of the two child

nodes. Note that the root node does not have a parent noddar8inthe nodes at the

bottom of the tree do not have any children. These nodes #desl daaves. One of the

features of branch and bound is that the entire tree is natkifimm the beginning. Only

the parts of the tree needed in the solution process are égdan

The optimal solution over the s&tcan be computed by optimizing over the smaller
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sets separately according to

2" = minimize fo(z), i € {1,..., K}
z€eS;
, . i (2.47)
z"= min {z"}
i€{1,....K}

The optimal solution oves$ is found as the optimal solution to the subproblem with the
lowest optimal objective function value. Note that the kEsin the tree in Figure 2.2
contain the different combinations of the binary varialitest have to be investigated if
S in the example is to be explored by complete enumeration.céleitis clear that if
it is necessary to solve all of the problems represented &yetives, there is no gain in
using the branch and bound method. The important questiangwer is whether it is
possible to use the structure of the tree in order to redueadmber of leaves necessary
to explore.

To simplify what follows, make the following definitions:

e P; denotes the optimization subproblem over theS%et

e N, denotes the node containitg.

e 2* is the optimal objective function value ovér

e 2™ is the optimal objective function value for subproblétn

e z denotes a global upper bound of the objective function vayeglobal it is meant
it is valid for the entire tree. It is achieved by the best knd&asible solution so
far, which is denoted by and is usually called the incumbent.

e 2z’ denotes a local lower bound of the objective function vaRelocal it is meant
that it is valid only for the subtree with root nodé.

The key idea to reduce the computational effort needed isrtgpaite upper and lower
bounds for the optimal objective function value for the swlpfems in the nodes. Often,
these bounds can be used to prune entire subtrees, whicts rtiedirthese subtrees do
not have to be considered any more, since it can be conclidédhe optimal solution
cannot be found in any of them. Further, these bounds are easibr to compute than
to solve the original problem to optimality. Pruning can béeipreted as an implicit
enumeration, and is therefore highly desirable. An exarmpthe use of the bounds is
shown in Figure 2.3. The original problem is to minimize thHgeative function over
the setS. This problem is split into two subproblems. In one subpeabithe binary
variablex; is fixed to0 and in the other it is fixed ta. In Figure 2.3, the upper and
the lower bound for a node are indicated as a super- and adabiaspectively for the
circle representing the node. The computation of the bododproblem P over the
setS gives an upper bound d) and a lower bound of. ProblemP is split into two
subproblems?, and P, over the setsS; andS;. The upper bound foF, is 5 and the
lower bound ist. Further, the upper bound fdr, is 7 and the lower bound i6. Since
the best possible objective function value o$grdoes not even reach the worst possible
value overS,, it is no use continuing working witt; . Therefore, the subtree with; as
the root node can be pruned. Another useful case occursigittually possible to solve
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Figure 2.3: This figure is used to illustrate how bounds can be used toepnodes.
Assume that the tree originates from a minimization probl8mce the upper bound
overS, is lower than the lower bound ovér;, S; cannot contain the optimal solu-
tion.

a subproblem to optimality rather than just to compute bsurld that case, a feasible
solution to the original problen® has been found and the optimal objective function
value for the subproblem is an upper bound f6r Further, the subtree containing this
node can be pruned, since the objective function value ¢d@imnproved by a reduction
of the feasible set. Another reason for pruning is if the%es empty.

Summarizing, there exist at least three different posgdslifor pruning a subtree with
root noden;.

1. Infeasibility:S; = 0.
2. Optimality: An optimal solution to the subproblem is falin
3. Dominancez’ > z.

Note that if case occurs, and it:"* < z, the global upper bound should be updated.
It also important to note that ¥ < z, andz? is not feasible inS;, the node cannot be
pruned.

To be able to apply the above scheme in practice, it has todidatehow to compute
the upper and lower bounds. Usually, upper bounds are fawna ihteger feasible solu-
tions and lower bounds are found from relaxations or dualityMIQP, relaxations can
be created by relaxing the integer constraints to intervaktraints. That is, if the binary
variable indexed by is relaxed, the constraint

is replaced by
zj €[0,1] (2.49)

In an MIQP solver built on branch and bound, ordinary cotiséd QP problems are
solved in the nodes. As the method makes progress down imgbgfixed integer vari-
ables are eliminated from the problem. This means that the&beu of optimization vari-
ables in the relaxed subproblems decreases by one for eatipéssed on the way down
in the tree. Note that when a variable has been fixed to ditbet after a branch on that
variable, this constraint is not relaxed in the nodes furtiwevn in the tree.

It is important to understand what properties of a probleat ¢an be found from a
relaxation of the problem. First, if the relaxed problemrigeasible, then the original



30 2 Optimization

problem is infeasible. This can be used for pruning accgrthrl above. Second, the op-
timal objective function value of a relaxation is lower thtae optimal objective function
value of the original problem. Third, if an optimal solutiohthe relaxed problem is fea-
sible in the original problem, then this solution is also @timal solution to the original
problem. This can be used to prune according to 2 above. IMIQ® case, if an optimal
solution of a relaxation of problerR; satisfies the binary constraints for subprobl&m
an optimal solution to the unrelaxed probléinhas been found. Since this solution also
is feasible in the optimization problem ow§y an upper bound fot* has been found. In
this thesis, the relaxation d?; is denoted byP~, and the relaxed solution hy. The
relaxation of the ses; is denotedS;*.

In a branch and bound method, there are several paramettrshaites that may
affect the performance drastically. Two important pararsetre the choice of the next
node to solve and the choice of the branch variable. The thaest common criteria for
node selection are

e Depth first
e Breadth first
e Best first

In depth first, the next node to solve is chosen as one of tHe ohdes of the current
node. This process is continued until a node is pruned. Afteode is pruned the so-
called backtracking starts. Backtracking is the procedfigning back, towards the root
node, in the search for a node with an unconsidered child.node advantage with this
strategy is that the search goes down quickly in the treectwisi good because integer
feasible solutions to the relaxed problems are more lilkeebpipear deep down in the tree.
Another advantage is that similar problems are solved suesgly, making it easy to
perform warm starts of the QP solver. A disadvantage withlviategy is that it is likely
that many nodes have to be considered before optimality egwdven. Depth first with
backtracking is the default setting in most commercial sode

In breadth first, all nodes at each level have to be considegéate a node in a new
level can be considered. It is used as a basis for node seldwturistics and for certain
estimates.

In best first, the next problem to consider is chosen as thewithethe lowest lower
bound so far. The advantage with this node selection ariteis that the number of
subproblems to solve is minimized.

Choosing which node selection criterion to use is not sttfégward. Usually, em-
pirical studies have to be performed in order to choose tls¢ dxéerion for a specific
application. It is also common to use a mix of depth first anst fiest in order to prove
optimality as well as to find better feasible solutions.

The next important parameter is how to select the next viariatbranch. A common
choice is to let the user provide a set of priorities. In thege; each integer variable is
assigned a relative importance. When the system is abouatehy it chooses the integer
variable with the highest assigned priority among the ietegariables with fractional
optimal relaxed values. Other approaches are to brancheowattiable with the lowest
index, or the integer variable with the largest or smallesttfonal part in the solution of
the relaxed problem, [15].
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It is also common to be able to specify which of the branchesxpdore first. In the
binary case, the choice is between the branch where thélaitaset td) and the branch
where it is set td.

According to [44], solving the subproblems using a duahacsiet method offers the
most straightforward way to exploit the structure introelddy the branching procedure.
After a branch, the solution to the parent problem is in gelhefeasible in the child
problems. But, a dual feasible starting point for the childigbems is directly available
from the dual solution of the parent problem. Consequeitt/possible to warm start the
active set solver using information from the solution to plaeent problem. Warm starts
are further discussed in Section 3.3.2. Also, since a dusleaset method is an ascend
method generating dual feasible points, it can use an upperdas a cut-off value for
terminating the QP solver prematurely, [44].

According to [101], active set methods (the reference dmrsithe linear program-
ming case) is preferable for solving the relaxed problenmtsamch and bound. For very
large problems, Interior Point (IP) algorithms can be usesidlve the first subproblem,
but in the subsequent subproblems an active set methoddsheuised.

An important step in a commercial branch and bound code ipriygrocessing step.
In the preprocessing step the formulation is checked to basible” and as strong as
possible given the available information, [101]. A stroongifiulation is a formulation that
gives a tight lower bound on the optimal objective functiaiue. The basic operations in
preprocessing is to quickly detect and eliminate redundanstraints and variables, and
to tighten bounds if it is possible. A smaller and tightenfiotation is preferred, since the
number of nodes necessary to consider, and the dimensitie stibproblems, might be
reduced.

This section is concluded with a formal algorithm for brarzetd bound for binary
variables. This is found in Algorithm 2.2. How subproblente aut on the list and
retrieved from the list is decided by the choice of the nodecs®n criterion and the
branching priority. If it, in some way, is possible to eadilyd an upper bound on the
optimal objective function value, this bound can be usecdhitialize the global upper
boundz.

2.6 Binary Quadratic Programming

Binary Quadratic Programming (BQP) can be considered aamase of MIQP, where
only binary variables are present. In this thesis, two foofflBQP problems are consid-
ered. A property shared by both forms is that no constranetpeesent. The first problem
formulation has a pure quadratic objective

minimize  o* He (2.50)

whereH < S™. The second form is a generalization of (2.50)

minimige 3o’ Ho + [Ta (2.51)

where a linear term has been incorporated in the objectivetifon.
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Algorithm 2.2 Branch and bound for binary variables
Z =400
Z := void
Add P to LIST.
while length(LIST) > 0 do
PopP; from LIST.
Solve PP = 2 andz’.
if S/* = 0 then
No feasible solution exists fap;.
else ifz’ > zthen
There exists no feasible solution Bf which is better tharz.
else ifz! € S; then
«' is integer feasible and is therefore optimal als@jn

zZ = gi
T:=zx
else

Spllt S; into SiO andSil.
PUShPZ'O andP;; to LIST.
end if
end while

The BQP problem is known to h&7P-hard, [62]. Most algorithms for this kind of
problems either focus on producing approximative solionon only handling various
special cases of the general problem, [46]. Some approxiena¢uristic algorithms can
be found in, for example, [62], [11], [72] and [47].

After a reformulation, several combinatorial optimizatiproblems such as the max-
imum cut problem, the maximum clique problem, the maximumexepacking problem
and the maximum independent set problem can all be writt&(d3 problems, [72].
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In this chapter, Model Predictive Control (MPC) and hybgidtems on the Mixed Logical

Dynamical (MLD) form are introduced. In Section 3.1, basi®®is presented and the
problem is formulated as an optimization problem. In Sec82, MLD systems are

introduced and their range of application is discussedthEurcontrol of MLD systems

is considered. Optimization in MPC is discussed in Secti@n Bhe chapter is concluded
with Section 3.4, where two examples of systems on MLD form @esented. These
examples will be used as benchmark problems throughouh#sést

3.1 Model Predictive Control

Model Predictive Control (MPC) has been used in a broad spmobf applications for a
long time. Itis hard to say exactly when MPC was invented goabably the first patent
was granted to Martin-Sanchez in 1976, [70]. An early acadeublication containing
the basic ideas was presented by Propoi 1963, [70]. Therelsmesome methods sim-
ilar to MPC, but with different names. One of the most welblm is Dynamic Matrix
Control (DMC), [35].

The most commonly used variant of MPC is so-called linear MRI@zre the dynam-
ics is linear and a quadratic objective similar to the oneduse_inear Quadratic (LQ)
control is used. A difference compared to LQ is that it is giegsible to consider linear
constraints on the states and control signals. With the Wioedr in front of MPC, it is
emphasized that a linear model of the controlled systemasd.ué discrete-time linear
time-invariant model on state space form is given by

z(t+1) = Az(t) + Bu(t)

y(t) = C(t) -

wheret € Zis the discrete time;(t) € R™ is the statey(t) € R™ is the control input and

33
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y(t) € R? is the controlled output. The objective, or performance snes, to minimize
is a quadratic function like
N—-1

J(to) = Z (lly(to +s) = 7(to + S)H2Qe + [lu(to + S)HQQU )
s=0

+ly(to + N) —r(to + N)||Z;ﬂ

(3.2)

whereQ. € S, andQ, € ST, andr(t) € RP” is the reference signal. Often, the
constraints are defined as

Hy()ult) + Hy(8)z(t) + h(t) <0 (3.3)

A common variant of the constraint formulation (3.3) is ttowal constraints involving
states and control signals from different time steps. Thadlifitation enables the use of,
for example, rate limits on states or control signals. Hawethis can also be enabled
in the formulation in (3.3) by augmenting the state vectahwtates and control signals
from previous time instants. In this thesis, the speciakadsMPC when there are no
inequality constraints like (3.3) is called the unconsieai MPC problem.

In MPC, the future behavior of the system is predictédime steps ahead. In this
context, prediction means that a system model like (3.1)seduo calculate how the
system will react to control inputs and thereby what will pep in the future if a certain
control input is applied to the system. Not surprising¥yis called the prediction horizon,
which in practice is chosen long enough to cover a normaktesut of the controlled
system.

There are several different ways to cast (3.1), (3.2) ar®) (h the form of a formal
optimization problem. The most common variants are preskand evaluated in [67]. If
the system is linear and the objective is quadratic, thdtiegwoptimization problem is a
QP (see Section 2.4), for which there exist well developdtropation routines. Hence,
for linear MPC the optimization problem is considered easgdlve. In this thesis two
formulations are used where the difference lies in the ssrtion of the dynamics. In
the first formulation in (3.4), the dynamics is representedguality constraints

1 0 0 0] [x
minimize 5 xT uT T |0 Qu 0] |u
X,u,e 0 0 Qe
. A B 0 b
subject to [C 0 —I] = H (3.4)

and in the second formulation in (3.5), the statasd control erroe have been eliminated
using the equality constraints.

minimize %uT (SLCTQ.CSy +Qu) u+ (SLCTQ. (CSyz0 — R) )T u
subjectto  (H,S, + Hy)u < —h —H,S,z0

(3.5)
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Prediction

t, t,+N

Figure 3.1: In this figure, an example of a control input) and the corresponding
controlled outpuy(t) is given. The controller is about to compute the control aign
in time ty. The figure illustrates how the behavior of the system is jpted N
steps. In the predicted interval, the dotted predictedututan be compared with
the dashed actual output. As a consequence of unknownlastees and modeling
errors, these curves do not completely coincide.

Algorithm 3.1 Basic MPC controller

1: Measure or estimate the state of the controlled procg&s time instant.

2: Obtainu by minimizing (3.2) with respect ta subject to the constraints (3.1), (3.3)
and the initial constraint(to) = xo.

3: Apply the first element(to) in u to the controlled process.

4. Setty := to + 1 and repeat the procedure.

The notation and the derivations of the formulations candumd in Appendix B. The
two optimization problems are equivalent, but from a corapabal view (3.4) gives a
sparse optimization problem witiV + 1) (n + p) + Nm optimization variables, while
(3.5) gives a dense optimization problem withn variables.

In order to get closed-loop control, the approach abovees urs a receding horizon
fashion, which means that the prediction interval is moved step forward after each
completed optimization. After the optimization has beerfgrened, only the first con-
trol signal in the optimal control signal sequence compuseapplied to the system and
the others are ignored. In the next time step, a new optiinizas performed and the
procedure is repeated. Due to modeling errors and unknaostartiances, the predicted
behavior and the actual behavior of the system do not usoathpletely coincide. Such
errors are, if they are sufficiently small, handled by thedfieeek in the algorithm. The
procedure is visualized in Figure 3.1 and the conceptupbsiee summarized in Algo-
rithm 3.1. In this thesig,, in (3.2) is often assumed zero.

An already explored extension to linear MPC is non-lineaiQVPhis extension han-
dles non-linear systems and a general non-linear norm iolifetive function. Unfortu-
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nately, the resulting optimization problem is more diffidol solve in general.

A special case of non-linear MPC is to handle systems desthiiartly by logics.
These are called hybrid systems and provides a unified frankefer describing pro-
cesses evolving according to continuous dynamics, disaghamics and logic rules,
[20]. This class of systems is especially important wheryaiveg and controlling sys-
tems arising in the growing interaction between physicatpsses and digital controllers.

A survey covering both linear and non-linear MPC is found7ih][ A reference book
covering most of MPC is [70].

3.2 Mixed Logical Dynamical Systems

Mixed Logical Dynamical (MLD) systems is one way of desanipian important class
of hybrid systems defined by linear dynamic equations stibgetinear mixed integer

inequalities, that is, inequalities involving both contirus and binary variables. Binary
variables are sometimes also denoted logical or 0-1 vasablhe MLD description is

a very general model class capable of describing a broadrapeof systems. In this

thesis, only discrete-time systems are considered.

3.2.1 Background

The initial interest in hybrid systems has been concerriat¢he field of verification and
safety analysis, for which many results and techniques@seavailable, [22]. In [16], an
MPC framework used for systems described by physical lavgg¢ Irules and operating
constraints is presented. An important part of this framé&weonsists of the definition of
MLD systems. This class of systems includes linear hybridesys, finite state machines,
some classes of discrete event systems, constrained $ip&tams and non-linear systems
which can be exactly or approximately described by pieceVinear functions.

Although the MLD description is quite new, there are sevamglications for MLD
systems reported in the literature. For example, in [16]ddscribed how the by-products
from a steel-works are used to produce electric power. Iera@produce the electricity,
the by-products are burnt in furnaces. Not all furnaces e¢an bll by-products, so the
MPC controller has to choose which furnaces to use to be ahled as much of the by-
products as possible and limit the use of non-by-produdtrin of heavy oil. In [41] and
[42] a power plant is modeled as an MLD system and controliedrbMPC controller.
In this application, the flaps and gates are controlled bylisgndiscrete commands to
stepper motors. The dynamics of the different subsystemssvaith the logical state
of the model and there is also a desire to use the actuatdnsavgertain priority. An-
other example motivating the use of the MLD description is #pplication is that some
elements cannot be opened or closed for an arbitrarily shoet In [5], an Adaptive
Cruise Control (ACC) problem for heavy vehicles is studiédthe reference, an MPC
controller is used to control the distance to the vehicleamtf of the ACC equipped ve-
hicle. The main difficulty in the problem is to prohibit sintatheous use of throttle and
brakes. This condition can easily be formulated by intragye mixed integer linear in-
equality, which is a linear inequality involving real anchary variables. Other examples
of systems requiring a hybrid model are systems with binantrol signals as valves and
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hatches.

3.2.2 The MLD System Description

An MLD system can be described by the following linear relas, [16],

A(t)x(t) + By (t)u(t) + Bs(t)d(t) + B.(t)z(t)

C(t)x(t) + Dy (t)u(t) + Ds(t)o(t) + D, (t)z(t) (3.6)
Hy(t)u(t) + Hy (t)x(t) + h(t) < Hs(t)6(t) + Ha(t)2(t)

z(t+1)
y(t)

+
+

wheret € Z and

x(t) = [%(t)} » xe(t) € R, ap(t) € {0,1}™, n = ne +ny 3.7)
(1)

denotes the state of the system, partitioned into contisstatesc.(¢) and logical (bi-

nary) states:;(t). The controlled output is

v =[] w0 R w0 O p=ptn @B)

The control input is also partitioned similarly

u(t) = {Z;gﬂ , uc(t) € R™e )y (t) € {0,1}™, m = m. + my (3.9)
whereu.(t) denotes the continuous inputs amglt) the logical inputs. Finallyj(t) €
{0,1}™ andz(t) € R" represent auxiliary logical and continuous variableseetpely.
In order to be able to use a notation as uniform as possibteigimout the thesis, the
notation in (3.6) has been slightly modified compared to the osed in [16]. If the
desired finite alphabet is not binary as here, it can alway®ted using binary variables.
MLD systems is jusbneway of modeling hybrid systems, [13]. In [21], the formal
equivalence between MLD systems and Piecewise Affine (PWgtfems is established.
In [58, 59], the equivalence between the following five abessf hybrid systems is, under
certain conditions, established: MLD systems, Linear Clemgntarity (LC) systems,
Extended Linear Complementarity (ELC) systems, PWA systamd Max-Min-Plus-
Scaling (MMPS) systems. The equivalence result between Blgystems and PWA
systems is refined in [36]. The important result of thesevedences is that derived theo-
retical properties and tools can easily be transferred somclass to another, [24]. Each
of these subclasses has its advantages. For optimal cantiaitate estimation, the MLD
description is proposed, while most other hybrid technscare built on a PWA represen-
tation, [13]. Also, simulation of hybrid systems can be parfed much more easily in
PWA form compared to in MLD and LC form. Even though differémtoretically equiv-
alent forms exist, it is not necessarily an easy task to abrfinen one form to another.
For example, transforming from PWA to MLD is easy but the otliay around can have
high computational complexity, [13]. The note [13] presesm efficient conversion algo-
rithm from MLD to PWA form. In [16], it is shown how differenypes of systems can be
rewritten as explicit MLD systems.
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One way of modeling a system on MLD form is to by hand derive alehon the
form (3.6). In that case, it might be necessary to convergildescription to an MLD
description. How this is performed is discussed in [73]. Ateraative approach is to
create the MLD formulation automatically by using the higliel modeling language
HYSDEL (Hybrid Systems Description Language), [92].

3.2.3 Controlling MLD Systems

In [16], both optimal control and receding horizon estiroatfor MLD systems is dis-
cussed. The control signal is found by minimizing a quadrpérformance criterion of
the form

N-1
JALD = ; lu(s) = us(s)llg, +16(s) = 65(s)llgy, + ll(5) = 25 (), (3.10)

+l2(s) =z (s)ll, + ly(s) — s ()ll5,
subject tox(0) = z¢, 2(N) = xf(N) and dynamics (3.6), whee@, € ST, , Qs € S,

Q. € S, Q, € ST, andQ, € S%. The variables in (3.10) with subscrigtdenote
reference signals. This MPC problem can be rewritten as éimiation problem as
described for linear MPC in Section 3.1. Consequentlyglgea choice between a sparse
formulation similar to the one in (3.4) or a dense formulatimilar to the one in (3.5).
Independently of the formulation chosen, the optimizafwoblem can be solved as a
Mixed Integer Quadratic Programming (MIQP) problem, [16].

As in linear MPC, the algorithm is implemented in a recedingon fashion. The
difference is that it is much more complicated to find themjpticontrol signal sequence,
since the system is neither linear nor smooth, [16]. One wWagducing the computa-
tional complexity is to use tailored MIQP solvers. This igher discussed in Section 3.3.
The control law found is in the literature sometimes refén@as a Mixed Integer Pre-
dictive Control (MIPC) law, [16].

Interesting work is presented in [79], where the geometrigcture of the solution
to MPC problems with finite input constraint sets is studi@dinite input constraint set
means that the control signal may be chosen only from a filpteahet and not contin-
uously as usually. An important special case is when thergbsignal is constrained to
be binary. The main idea in the approach is to treat the pnolae a norm minimiza-
tion problem. By making a variable substitution in order & the “right coordinates”,
the norm becomes the Euclidean norm and the minimizatiorbegperformed by vec-
tor quantization of the unconstrained solution. It is pethout in [80] that the solution
obtained when directly quantizing the unconstrained smiuis different from the one
obtained when the variable substitution first is performed.

3.2.4 Moving Horizon Estimation for MLD Systems

The MLD structure is useful not only for control. The modelsture can also be used
for estimation of states and faults in hybrid systems, [18]difference compared to
the control problem is that the horizon extends backwardsrig, that is, at timeé, the
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interesting quantities are estimated at times priggtorhe computational complexity is
also here a great problem.

The problem of system identification of hybrid systems isradsled in [23]. Often,
also these problems end up in either a Mixed Integer Lineagidmming (MILP) prob-
lem or an MIQP problem.

3.3 Optimization in Model Predictive Control

Since the MPC algorithm is executed on-line, it is of grelav@nce to be able to quickly
solve the optimization problem in step 2 in Algorithm 3.1lislthe amount of time con-
sumed in step 2 that limits the use of MPC. As the optimizatmurtines get more effi-
cient, implementations at faster sampling rates, on sltasdware and for larger systems
is possible. For linear MPC, solvers with high performandstdoday. To be able to in-
crease performance, the structure of the optimizationlprolcan be used, [82]. Because
of the increased complexity, this is even more importanMtPC. The extension of the
QP problem that has to be solved is an MIQP problem. It cargxample, be solved us-
ing a branch and bound algorithm where QP relaxations avedah the nodes. Branch
and bound is further described in Section 2.5.2.

Tailored solvers for MPC are not only interesting for MPC lgggdions. They can
also be used for state estimation, fault detection and eatifin, see for example [17].

3.3.1 Quadratic Programming

In many applications, even linear MPC is considered contjmually expensive. At each
time step, either a QP of the form (3.4) or (3.5) has to be sbl@ne way of speeding up
the solution of the optimization problem is to use QP solt&itered for MPC, where the
special structure of the KKT system is used to decrease timpleaity of the algorithm.
Basically two approaches can be used. First, general methtiltzing the structure in
block-banded equation systems can be used. Second, Riecatsions can be used.
In [61], an active set method utilizing Riccati recursions $olving parts of the KKT
system is used. The method is first derived for linear MPC lprab, and then extended
to non-linear problems. A similar method is presented in [Rhe special structure of
the problem has also been used in Interior Point (IP) methddg$102], an IP solver
utilizing block-bandedness is presented. The approackfised in [103], where the
feasible IP method has been replaced by an infeasible |Pohelh the reference, also an
active set method utilizing the block-banded structureésented. No actual performance
comparison between the two methods is presented, but aetiveethods are considered
to be more suitable for warm starts. This is further discd$s&ection 3.3.2. In [55], an
infeasible primal-dual IP method utilizing Riccati redorss for the computation of the
search directions has been applied to robust MPC. In [30jaRicecursions have been
used in an interior point solver for stochastic programmiB@QP methods using active
set and IP solvers utilizing problem structure are presemtg86]. Another reference
on the same topic is [29]. One way of establishing stabildy MPC is to introduce
an ellipsoidal terminal state constraint [L05]. The rasgltoptimization problem is a
variant of a QP, namely a Quadratically Constrained QuadkRabgram (QCQP). After
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rewriting the QCQP into a Second Order Cone Program (SOGRshown in [105] how
Riccati recursion can be used to decrease the complexiheafdlculations of the search
directions in the IP algorithm. In [95, 96], the Riccati resion is thoroughly derived and
itis applied to IP LP solvers for solving MPC problems withdar objective function. A
summary of different optimization formulations of MPC, aswme optimization routines
suitable for optimization problems originating from MP@nde found in [99].

A thorough comparison between four QP solvers for MPC coofrthe cross direc-
tional control in a paper machine is performed in [9]. Theoes compared are one
primal IP method, one primal active set method and two dutieaset methods. The
methods found to perform best are the primal active set lhgoQPOPT and the dual
active set algorithn@QPSchur . QPSchur is the method proposed in the paper and it
turns out to be the overall winner. In this method the stategbminated and the banded
structure of the reduced Hessian matrix is utilized. Thaperty is a result of the highly
structured process considered. According to the authacsalR methods as presented in
[82] are not suitable for this process, since the dimendityraf the state vector is high.
It can also be noticed that the prediction horizon is veryisfibree steps or less). Since
the bandedness of the reduced Hessian matrix is reduced peeifiiction horizon grows
larger than one, the usefulness of a solver optimized fodedmatrices decreases. A
thorough description aPSchur can be found in [7].

Another way of reducing the on-line computational effotbiprecalculate the control
law. Briefly, the procedure can be explained as given the sfahe system, the controller
gain is retrieved from a table. The control law has been cdetpaff-line by solving a
multi-parametric programming problem, where multi-paeftic means that the problem
depends on a vector of parameters [91]. This type of MPC enatferred to as explicit
MPC. A drawback with explicit MPC is that the complexity oktlstate space partition
often increases rapidly with the number of states [53]. &foee, several approaches
have been developed in order to reduce the complexity. Sefieeences are [53, 54,
90, 91]. Apart from being a tool for reducing the on-line cartgiional effort required,
the solution from explicit MPC can give insight into the beioa of the controller in
different regions of the state space [25], for example aegivhere saturation occurs can
be detected. A summary of the theory behind explicit MPC faadratic objective is
found in [26]. The counterpart for problems with linear attjee is found in [25].

In [32], an efficient algorithm based on a combination of dyiaprogramming and
multi-parametric quadratic programming for the off-lireaulations of the explicit MPC
control law is described.

3.3.2 Active Set versus Interior Point

In comparison with active set methods, IP methods are sdid freferable for problems
with large values ofV, [102]. This statement is motivated by claiming that the banmof
active set iterations is proportional to the number of c@asts, which in turn are propor-
tional toN. Each QP iteration involves the solution of a narrow-bartegr system with
complexityO(N). The total complexity is therefore expected to®eN?), [102]. The
reference then comments that an alternative solution iseéaso-called gradient projec-
tion algorithm, but rejects this alternative because otthaplex nature of the constraints
involving both states and control signals. According to][Zfie purpose with gradient
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projection algorithms is to accelerate the solution predgsallowing rapid changes to
the active set, but they are most efficient when there are lomiynd constraints on the
variables. That is, MPC problems involving only upper anddobounds on the control
input is expected to be possible to solve efficiently by a igrtdprojection algorithm.
The computational complexity for the IP algorithm presdrite[102] is betweer©O (V)
and (’)(Ng). The main motivation for using IP algorithms for large pebk is that a
fixed price is being paid for the number of active constraif@s On the other hand, the
active set algorithm is a combinatorial algorithm whichtie tvorst case has a complexity
higher than polynomial, [50]. When the number of active caists is small, the active
set algorithm is expected to perform better than an IP dlyori while when the num-
ber of active constraints is large, the IP algorithm is expe&t¢o perform better than the
active set algorithm. Other references also proposingdBrahms for large-scale MPC
problems are [1, 50]. In these references they are used ibication with a Sequential
Quadratic Programming (SQP) solver for non-linear MPC.

Even though the complexity for a standard implementatioaroéctive set solver is
higher than for a corresponding IP solver, there is at leastimportant advantage with
an active set algorithm. Often in MPC, several similar otation problems are to be
solved. It is then possible to use information from the sotubf a previous problem in
order to be able to quickly find the solution to a slightly nfatl problem. This procedure
is called warm start (or hot start). According to [103], eetset methods gain more from
warm starts than IP methods. According to [8], warms stdiflspgesent many open
questions for IP methods. The motivation for the effectaanof the active set method
when using warm starts is that if the optimal active set isasinknown, often only a
few active set iterations are required to reach the optimialeset, [103]. Based on this
fact, it seems natural to choose an active set approach vevenas similar optimization
problems are to be solved consecutively. Unfortunately,ldst solution is not always
feasible in the new problem. In [103], this is pointed out dsavback with the presented
primal active set solver. In this reference, an infeasiBlalgorithm is also considered.
The latter algorithm handles infeasible starting pointdait problems. A similar idea
is used in [74, 76], where an infeasible active set algorithpresented. This algorithm
can activate and deactivate entire blocks of constraintgglone active set iteration.
This idea is similar to the gradient projection algorithnurtRer, it focuses on removing
infeasibilities occurring early in the predicted intervdlhe authors claim that this will
give better suboptimal solutions if the algorithm is premnaly aborted, [75]. Since the
algorithm works with an infeasible primal, it is possibleuse the unconstrained solution
as an initial solution to the optimization problem, thafiisding a primal feasible solution
is no problem.

A conclusion from this discussion is that the best algorithinen solving several sim-
ilar optimization problems is an active set algorithm, whéan handle primal infeasible
starting points.

3.3.3 Mixed Integer Quadratic Programming

When ordinary linear MPC is extended to MIPC, a Mixed IntegergPamming (MIP)
problem has to be solved. Often, these are classifiei7asard. This means that, in
worst case, the solution time grows exponentially with thenber of integer variables.
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Integer programming problems can be solved by “brute fonoe¥aning that all possible
solutions are enumerated and the best possible solutians fare finally presented as the
optimal ones. Note that since the problem is non-convexetireght exist more than one
optimal solution.

In [16], a commercial Fortran package has been used as an BUIY&. The package
is capable of coping with both dense and sparse MIQP probld&ims control problems
considered normally lead to sparse optimization problentéch means that a solver
utilizing sparsity is preferable.

In [22], a branch and bound strategy based on reachabilitlysis is presented. Com-
pared to an ordinary branch and bound MIQP solver, the dlguaris, according the au-
thors, neither a depth first nor a breadth first method, bbierad best first method. In
the performance test presented in the article, the derilgedithm needs to solve half as
many QPs as if an ordinary branch and bound MIQP solver haal tssd.

One approach to a branch and bound algorithm that aims aklgycuning entire
subtrees is described in [17]. The algorithm presentediwréa for optimal control or
estimation problems for MLD systems. The main motivationtf@ algorithm is the ob-
servation that for many systems the binary variables selcloamge over the prediction
horizon. For example, binary variables can be associatddasnditions on the contin-
uous states, that i§(t) = 1] < [z(¢) > 0]. Also, if the binary variables represent the
existence of irreparable faults in the system, they can atmieange once during the
prediction horizon. Based on this knowledge, the main idih thie algorithm is to first
solve the subproblems where the binary variables switchifeas. In the article, the tai-
lored method is compared to the standard tree explorintegies breadth first and depth
first. When the proposed algorithm is used on a test probleemtimber of QPs solved
in the subproblems is approximately reduced by a factor 4. nAéheolver is used for
a real-time implementation, the time available for retingva solution is limited. If the
branch and bound algorithm has not terminated in time, iesrdble to get an accept-
able suboptimal solution. The test made in [17] shows trebtitside first tree exploring
strategy produces, for MPC applications, better suboptaolations as compared to the
other two standard strategies if the limitation is the nundf&Ps solved.

An alternative to the ordinary branch and bound algorithmpresented in [14]. The
algorithm is built on a combination of Constraint Programgn{CP) and MIP. By letting
the CP solver deal with the logic part of the problem, it is ander necessary to refor-
mulate the logic part into mixed integer inequalities arelgtructure in the logic part can
therefore be kept.

The idea of keeping the structure of the logic part of the tiybystem is also the
key to the algorithm proposed in [60]. The motivation is wiaerautomaton is converted
into mixed integer inequality constraints, the relaxedopems in the branch and bound
algorithm become unnecessary loose. To get a tighter it&daxaew equality constraints
are introduced.

In [12], so-called temporal Lagrangian decomposition hesnbused to split the hy-
brid MPC problem in time, into several smaller subprobleffise separation in time is
performed by Lagrangian relaxation of the dynamic constsatonnecting the state be-
fore and after a split point. When this approach is used, thegbisubproblems can be
solved independently for a fixed value of the Lagrange miigtip associated with the in-
terconnection constraints. Unfortunately, in practice dfgorithm has to iterate between
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solving the primal subproblems and the Lagrange multiplesnnecting the subprob-
lems. Even though not presented in the paper, the iteratveepure is expected to be
computationally expensive. Some more general referente@composition techniques
in optimization can be found in, for example, [87] and [64].

Another attempt to reduce the complexity of the MIQP problenfound in [89],
where the original MLD model is split into several smallebswdels, each valid in a
certain region of the state space where some or all binaighlas are remaining constant.
The result is an MIQP problem with fewer binary variablesdampute.

In [20] explicit MPC is extended to MLD systems. The perforroa criterion in the
reference is not the 2-norm, but the 1-norm anddatx@orm. The optimization problem
that has to be solved off-line is in this case a multi-paraim®tILP (mp-MILP). A similar
paper is [19]. A thorough reference on the subject multapeatric MIQP is [40], where
theory and algorithms for mp-QP, mp-LP and mp-MIQP are priesk

According to [33], a drawback with multi-parametric mixeddger programming is
that the solver does not exploit the structure of the opticealtrol problem. In the ref-
erence, a more efficient algorithm based on solving the eliséime Hamilton-Jacobi-
Bellman equation is proposed. This equation is solved usimglti-parametric quadratic
programming solver.

A survey of constrained optimal control in general and djedly the explicit solu-
tion is found in [52].

3.4 Two Examples of Mixed Logical Dynamical Sys-
tems

In this section two simple examples of MLD systems are givElmese systems are used
throughout the thesis as benchmark examples for the digwsito be presented in later
sections.

3.4.1 Mass Position Control

In this example, a mass is controlled in one dimension by spagate forces. One force,
u., IS possible to control continuously and the othegr, is applied binary with a certain
magnitude and direction. The statgsandx,, are the velocity of the mass and the position
of the mass, respectively. The continuous-time state spe®eription is given by

. 0 0 1 =5| |u.
m:[l 0}“[0 0] M (3.11)

y:[O l]x

To obtain a discrete-time system on the form (3.6), zerordrdiel sampling can be used.

3.4.2 Satellite Attitude Control

In this example, a satellite control problem is presentdt Jatellite controls its attitude
by accelerating a reaction wheel inside the satellite anasinyg external thrusters. When
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Ty, T2

Figure 3.2: This figure illustrates the mass modeled®111) wherex, denotes the
velocity of the massy, the position of the mass,. a continuously controlled force
andu,, a binary controlled force.

the wheel is accelerated a counter torque is produced. ¢rakadjustments in the same
direction are made, the angular velocity of the wheel finb#gomes very high. To be
able to slow down the wheel without affecting the attitudeltef satellite, the external
thrusters have to be used to compensate when the wheel etbrak

The wheel is assumed to be controlled continuously by arnraemgine. Its control
signal is denoted:.. The satellite is also assumed to be equipped with two exttern
thrusters, one in each direction. These are assumed to beltehbinary, that is, either
they give full thrust or no thrust at all. The binary contrarsals for the thrusters are
denotedy; ; anduy o.

A continuous-time state space description for the systeth satellite attituder,
satellite angular velocity:; and internal wheel velocity; is

0 1 0 0 0 O Ue
=10 0 Ojz+ |25 1 —1| |up1
0 0 O —10 O 0 Up,2
y = I3z (3.12)

To obtain a discrete-time system on the form (3.6), zerordrdil sampling can be used.
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T

Figure 3.3: This figure illustrates the satellite modeled($112), wherex, is the

satellite attitudey is the satellite angular velocity ang the angular velocity of
the reaction wheel. The control signals airg u,, anduy 2, which control the
electric engine and the two oppositely directed thrustespectively.
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Multiuser Detection in a Code
Division Multiple Access System

Already in early telegraph systems, it was possible for taersito share a common chan-
nel. In these systems the channel was an ordinary wire. Tbemation from one user
was coded by changes in the polarity and the information fiteerother user was coded
by changing the absolute values. This is an example of ag gardti-access communi-
cation system, where several users share a common chamalely, There are numerous
examples of such communication systems. Two common exanapéemobile phones
transmitting to a base station and local area networks.

In this chapter, mobile phone networks are considered. Whkérga radio chan-
nel, several users may coexist by assigning different #aqies to each one of them.
This multi-access technique is called Frequency Divisiaultile Access (FDMA). In
common GSM networks, a multi-access technique called TimisiDn Multiple Access
(TDMA) is used. In TDMA, each user is assigned a time-slot inch it is allowed to
transmit. Both these approaches have in common that no imamneone user may occupy
a given time-frequency slot. In the third generation (3Gpiteocommunication systems,
a multi-access method called Code Division Multiple Acq€i3MA) is used. In CDMA,
the users are assigned different signature sequences Jémggences are used to separate
the information sent by a specific user from the informatient$y other users and it can
be compared with a specific frequency in FDMA and a specifietgiot in TDMA. An
important difference is that in CDMA, the signature sequsmaverlap both in time and in
frequency. Two advantages of CDMA compared to TDMA and FDMAhat it is more
spectrum efficient and it allows more easily for dynamicaldwidth allocation.

4.1 Multiuser Detection

Multiuser Detection (MUD) is the process of demodulatindtiple users sharing a com-
mon multi-access channel. A first approach is to demodu&atk eser independently and

47
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to treat the signal from other users as additive Gaussiasenf88]. An improvement to
this strategy is to use the known correlation between usettsei demodulation process.
Better performance can be achieved if the detector makendiselikely decision, which
formally is achieved by solving a Maximum Likelihood (ML)adslem. When the opti-
mum multiuser detection problem is cast on the form of an Mabpem, it requires the
solution of a Binary Quadratic Programming (BQP) problemfdgtunately, these prob-
lems are generally known to b¥P-hard (see Section 2.6). If the signature sequences
produce a cross-correlation matrix with some special siras, the problem can however
sometimes turn out to have lower complexity, [83, 85, 93].

Many contributions to the area of multiuser detection hdveaaly been published.
The objective is to find an algorithm which solves the mukiudetection problem in
reasonable time in order to make a real-time implementatissible. So far, this has been
done either by restricting the class of possible crossetatipn matrices or by employing
a sub-optimal procedure. In [93], an algorithm with polynahtomplexity has been
derived for systems with only negative cross-correlatiohsimilar requirement on the
cross-correlation matrix is found in [83], where the migudetection problem is solved
with a polynomial complexity algorithm if the cross-coa#gbn between the users are
non-positive. Another paper also dealing with a special<t# cross-correlations is [85],
where a polynomial complexity algorithm is derived for theese of identical, or a few
different, cross-correlations between the users. Thdrawagk in the field of approximate
algorithms for multiuser detection is found in [88]. SeValifferent algorithms, optimal
as well as sub-optimal, are presented and evaluated in [5&. sub-optimal algorithm
local search is evaluated in [57]. Branch and bound methoelsnaestigated in [69].
Another near optimal approach is presented in [66]. Alsowb#-known Kalman filter
has been applied to the problem. This approach is presen{é8]i

4.2 Synchronous Code Division Multiple Access

In this section, a synchronous CDMA model is presented. dtde shown how the mul-
tiuser detection problem can be formulated as a BQP problem.

4.2.1 System Model

Consider a CDMA channel simultaneously usediyusers. The symbol length is as-
sumed to b&” seconds. Each user is assigned a certain signature seqaeswealled
chip sequence. The chip sequence is a sequence consisti¥igchbips, each taking a
value from{—1,+1}. The constaniV is known as the spreading factor, spreading gain
or processing gain, [97].

The notation used in this thesis is chosen similar to the ged in [97]. The channel
model used is the so-called K-user channel which consistiseofum of K" antipodally
modulated synchronous signature waveforms embedded itivedahite Gaussian noise

K
y(t) = Agbesi(t) + on(t), t € [0,7] (4.1)
k=1

where
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e y(t) € Risthe received signal.

e si(t) € Ris the deterministic signature waveform assigned to éseormalized
to have unit energy, that is,

T
/ sp(t)dt =1 (4.2)
0
Because the waveforms are assumed to be zero outside thalrte?’], there is
no inter-symbol interference.

e A; € R is the received amplitude of the signal from ugernd thereforeA? is
referred to as the energy of user

e b, € {—1,+1} is the data bit transmitted by user

e n(t) € N(0,1) with cov (n(t),n(7)) = d(n — 7) is the Gaussian noise added to
the channel.

The similarity of different sighature waveforms is expesssn terms of the cross-
correlation defined by

T
b = [ sitrs ) de (4.3)
0

At the receiver, the signal(t) in (4.1) is received. After the reception, the procedure
of separating the information sent by different users kedimthat procedure, low cross-
correlation between the different signature sequenceseifsill The separation procedure,
called despreading, is performed by matched filters acegridi

y1= [ y(t)s1(t)dt
/

(4.4)
T
YK = /y(t)sK(t) dt
0
Using (4.1), (4.2) and (4.3), outpyt in (4.4) can be written as
k= Arbi + > Ajbipik + n (4.5)

i#k
where

T
p— / n(t)si(t) dt € N(0,0%) (4.6)
0
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Using vector notation, this can be written more compactly as
y=RAb+n (4.7)
whereR is the normalized cross-correlation matrix
T
T | S1 (1) S1 (1)
R= dt (4.8)
0 SK(t) SK(t)
whose diagonal elements are equal to one and is symmetrinegative definite, and
where
T
Y= [ylv"'7yK]
b=[by,...,.bx]" (4.9)
A =diag (Ay,...,AK)
If the signature sequences are orthogonal, thgn= 0, wheneveri # j. The non-
orthogonal sequences usually give low cross-correlatien ¢hough the users might not

be synchronized. Common choices of such sequences are &pléreces and Kasami
sequences, [97]. Furthermore, the unnormalized crosslatipn matrix is denoted as

H = ARA (4.10)

Because only the synchronous case is treated in this tmesiater-symbol interference
will occur. Hence, it is only necessary to consider one timstant and therefore time
indext ony, b andn is suppressed.

4.2.2 Derivation of the BQP Problem

The matched filter output is described by equation (4.7).ofdiog to [97], the bits most
likely sent by the users are given by the soluthao the ML problem

. 1 T K 2
maximize  exp { — 5. In (y(t) > bkAksk(t)) dt (4.11)
Alternatively, it is equivalent to maximize
T
Q(b) =2 /
0
(4.12)

where A, H, b andy are defined in (4.9) and (4.10). By altering the sign of thescbj
tive and dividing it by two, the optimization problem can levritten as an equivalent
minimization problem

K T
ZAkbksm)] vy~ [
k=1 0

K 2
> Akbksk(t)] dt = 26" Ay — b" Hb
k=1

s s 11T _ T AT
brer}{%lirillz}g( 50" Hb—y A% (4.13)

After a variable substitution, this problem can be idendifis a BQP problem on the form
(2.51).



A Preprocessing Algorithm for Mixed
Integer Quadratic Programming

In this chapter, a preprocessing algorithm applicable t&B@blems is presented. The
algorithm is derived in Section 5.1. In two steps, the alfponiis extended to handle an
unconstrained special case of an MIQP problem, where megtingality constraints nor
inequality constraints are present.

In Section 5.2, the algorithm is used for preprocessing dRlproblems originating
from unconstrained MPC problems involving binary contighals. Furthermore, in Sec-
tion 5.3, the algorithm’s applicability to BQP problems &ed in a detector for Multiuser
Detection (MUD). When the algorithm is applied to the MUD pieah, it not only works
as a preprocessing algorithm, but it also shows some impiqutaperties of the solution
to the problem.

5.1 A Preprocessing Algorithm for BQP and MIQP
Problems

In this section, a polynomial complexity preprocessingpatgm for BQP problems and
unconstrained MIQP problems is derived. A preprocessiggrahm is an algorithm that
processes the optimization problem in the step prior to tieeiowhich the actual solver is
applied. Because the algorithm to be presented in thisseetiecutes in polynomial time
and the BQP solver, generally, executes in exponential, tiheerequired CPU time can
be reduced if the optimal value of variables can be computeddy in the preprocessing
step.

Most algorithms for solving BQP problems either focus ondui@ing approximative
solutions or only on handling various special cases of tiieg# problem. The algorithm
presented here belongs to the latter type of algorithmsreéferences to BQP algorithms,
see Section 2.6.

Except for problems with particular structures, the MIQBlggem is known to have

51
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exponential worst case complexity, [17]. One way of redgdhre average complexity is
to use an algorithm that in most cases can find the global optinvithout enumerating
all possible solutions. A popular algorithm to use when isg\VMIQP problems is the
branch and bound algorithm. For a thorough discussion ab@utch and bound, see
Section 2.5.2. In this chapter, it is investigated if thefpenance of the branch and
bound algorithm can be increased by using preprocessing.NIQP problems without
constraints are considered. Previous work in the area girpcessing for the MIQP
problem is found in, for example, [84].

The derivation of the main result is performed in three stépshe first part of Sec-
tion 5.1.2, a BQP problem of the form (2.50) is consideredhtnsecond part, this result
is extended to a BQP problem of the form (2.51). After the fendénsion, which is pre-
sented in Section 5.1.3, the algorithm can be applied tol@nabof the form (5.3). After
this extension, the preprocessing algorithm can be usathfmonstrained MPC problems
involving both binary and real-valued control signals.

5.1.1 The BQP and MIQP Problems

For convenience, the two BQP problem formulations (2.5@) @51) from Section 2.6
are repeated below, followed by an unconstrained specsal c&(2.45).

migimize 2" Hs (5.2)
e e 1,.T T
minimize o Ho+ [Ta (5.2)

whereH € S™. Finally, an unconstrained version of (2.45),

PP 1.7 T
minimize se' He + f'x
veRmex {01} 2 (5.3)

whereH € S"=™" and the optimization vectarcontains:,. real andn, binary variables.
For future reference, define

where

0, i#j
HZ‘*J‘ =max (0,H,;; — Hy i;)
H; =min (0,H;; — Haj)

)

Hi, i=j
Hd,ij:{ ! /

(5.5)

5.1.2 Preprocessing for the BQP Problem

To begin with, the case when all elementseiare binary is considered. The problem is
then of BQP type, which is a purely combinatorial problem.rdentioned in Section 5.1,
a characteristic property of many combinatorial problesthat they in general are very
hard to solve exactly, because of the computational coritpl/§X2]. To be able to solve
large problem instances, either an approximate algoritheome special structure in the
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problem has to be exploited. If the structure of the problemmsied it might be possible to
solve the problem exactly in reasonable time.

The algorithm presented in this section makes it possibpé&ed up the solution of
a certain class of BQP problems. For this class of problemsaltjorithm produces an
exact solution for one or more variables in polynomial tifRer each binary variable the
algorithm delivers one out of three possible results the optimal valug) is the optimal
value or nothing can be said for sure.

The preprocessing algorithm is based on the following tesul

Theorem 5.1
For a BQP problem of typés.1), an optimal value of one or more componenisan be
found in polynomial time if for somee {1,...,n;} any of the following conditions is
satisfied

(i) : Hy; > -2 Z;”il H;;

(ZZ) : H“ S —2 Zjil H;g

If any of the conditionsi) or (i4) is satisfied for a certain value of an optimal value of
x; IS given by

1, if (i2) holds

)

b {o, if (i) holds

Proof: Consider optimization problem (5.1). Denote the objedtirection byQ(x) and
rewrite it as follows

ny  MNp
Q(z)=2"Hx = Z Z Hijazix; (5.6)
i=1 j=1
wherez;,z; € {0,1}, Vi,j = {1,...,np}. For eachi € {1,...,n,} the objective
function@Q(z) can be written as
ny
Q(I) = H”I,IZ —|— QIZ ZH”IJ —|— gi(:cl,xg, e ,.Ij,_l,l‘i_i_l, e ,Inb)
j=1

7 (5.7)

np
— (H“ —+ 22 Hz-j:cj)mi =+ gi(achxg, R T N T (PO 7l'nb)
j=1
J#i
whereg; is a function that is independent of and where the last equality follows from
the fact that:? = z; whenz; € {0, 1}. Define

ny
hi(z1, 22, i1, Tig1, -+, Tn,) = Hig + 22 Hijx; (5.8)

j=1

i

Note thath; is independent of;. With this definition, the objective function can be
written as

Q(x) = hi(xl,xg, SRS o7 J T o7 BT ,xnb)l‘,‘ +gi(1‘1,l‘2, SRS CF I TN o7 NS B ,mnb)
(5.9)
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Denote an arbitrary optimal solution to (5.1) by = [a:{, . ,x;b]T. Note that since
the feasible sefx | ; = {0,1}, i = 1,...,np} is non-convex, there is not necessarily a
unique optimum to (5.1). For convenience, introduce

hi )

* * * * *
= hi(x], 25, ..., @], T, T,
* * * Lk * *
9; = gi(x7, 25, ..., @], T ... 7:rnb)

(5.10)

Note that if the optimal solutior; is non-unique, there is ong and oneh; associated
with each optimal solution. It now follows that

i s . g5, if hY >0
= min hjz; + g; = : 5.11
min Q(z) = min hizi g {h;+g;, it by <0 &1
From (5.11) the conclusion can be drawn that
0, if b >0
x; =q0orl, if h;=0 (5.12)
1, if by <0

Unfortunately,h; is usually not known before the optimal solution
(7,25, ... 2], @y, T ]T is known. A solution to this problem is to try to make

) my

an estimate of;. To simplify the notation, define
jant

x (5.13)
1

It now holds thath; < h} < h;, for all h} corresponding to, possibly different, optimal
solutions. From this observation the following implicattocan be stated

=
A

= h; <0

hr <0
BEKIS (5.14)
=h; >0

=hi >0

S

> 1> >
Vol
o o o o

Note that, ifh} has the same sign for all optimal solutions, the componghias a unique
optimal solution. By combining (5.12) and (5.14), the fallng conclusion can be drawn
about the optimal value af;

0, h; >0 (x; unique)
0, hi; =0 (z} not necessarily unique)
z; =0o0rl, h;=h; =0 (z}notunique) (5.15)
1, h; =0 (zf not necessarily unique)
1, h; <0 (zf unique)
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Note that ifh; = h; = 0, then the coefficient in front af; is zero. Thus, this case is
not of practical interest. If the uniqueness propertiehiefdolution is not of interest, it is
possible to reduce the five cases in (5.15) to two cases

. J0, h;i >0 (z} notnecessarily unique) (5.16)
Y1, <o («F not necessarily unique) '
From (5.5) and (5.8) it follows that
— b
hi = max hi = max H”—F2ZHUZ‘]
xr xr j:l
j#i (5.17)

ng np

— H.. o= H +

=H;; + 2mgx ZHUZ‘] =H;;+2 ZHij
j=1 j=1
J#i

where the last equality follows from the fact that the sign#gf determines whether the

maximizingz; is 0 or 1. Analogously it follows that

ny
j=1
Finally, Equation (5.16) can be written on the desired form
. )0, Hi+ 22;?;1 H; >0 Hy > —2 2;11 H  (4)
L, Hy +2Y 00 Hf <0& Hy < =230 HY o (i)

(5.19)

From (5.19) it is clear that the computational complexityh# testgi) and(ii) is poly-
nomial in the number of variables, that isnp. O

Now the result is extended to problems of type (5.2).

Corollary 5.1
For a BQP problem of typé5.2), an optimal value of one or more componegnisan be
found in polynomial time if for somee {1,...,n;} any of the following conditions is
satisfied
(i) : Hiy > =2f; =235 H;
(i) H;; < =2f; — 22;11 H:;
If any of the condition$:) or (i7) is satisfied for a certain value @f an optimal value of
x; is given by
0, if (4) holds
“"Z\1, if (#) holds

Proof: The result follows directly from Theorem 5.1 by observingtth

Qx) = %xTHx + ffe=a" (H—i—2;11ag(f)> x

for z; € {0,1}. O

(5.20)
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5.1.3 Preprocessing for the MIQP Problem

If the z-vector is allowed to contain both real and binary variabtese BQP problem
becomes an MIQP problem. In this section, the problem israsduo be of the type
(5.3) and thex-vector is assumed to be of the form

)

T =

2 (5.21)
x. € R™, 1, € {0,1}™

The objective function can be expressed as

_ 1 T T,.. 1 T T H.. He| |z T 71 [T

Qz) = 3% Hr+ fx= 5 [:cc zb] HT  Hyl | + [fc b ] ) (5.22)
AssumeH .. positive definite. If all components in had been real, it would have been
straightforward to use first order necessary and sufficientlitions for optimality from
Theorem 2.3 to calculate an explicit optimal solution to pneblem. When some of the
components ir: are binary this is no longer possible. However, the optitpatbnditions
mentioned can still be used to compute the optimal valueseofdal variables as a func-
tion of the binary variables. The expression for the optineal variables is then given
by

we = —Hg' (Hary + [e) (5.23)

Substitute this expression into (5.22). The resultingrojation problem is a pure BQP
problem. The objective function, disregarding constamhte can be written as

1 -~ ~ 1 _ _ T

ibeH!L”b + flay & §$bT (Hw — HLH Hey) 2y + (fy — HLHZ fe) zp (5.24)

In the calculations the symmetry &f and H~' has been used. When the objective
function is written on the form (5.24), Corollary 5.1 can Ipphed.

5.1.4 Implementation

Theorem 5.1 and Corollary 5.1 can be used in a straightfarwary to implement a pre-
processing algorithm for BQP problems. In its simplest ieersthe conditiongi) and
(7) are tested for eache {1,...,n,}. When a condition is satisfied for a certain value
of ¢, an optimal value of the corresponding componenhas been found. Practical ex-
perience shows that if the preprocessing algorithm is impl&ed in this straightforward
fashion it becomes rather conservative, and as a resudh ofily few variables are possi-
ble to compute by preprocessing.

To increase the number of variables possible to computesiprprocessing step, the
algorithm can be enhanced in two steps. Both steps are Ipaiit the idea to tighten the
boundsh; andh;. In the first step, any optimal values found forare used in the sub-
sequent computations for elements remaining to be compiteel algorithm, including
this first improvement, is presented in Algorithm 5.1. In Heeond step, after the condi-
tions have been tested once for each optimization variahkkjf there are more variables
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Algorithm 5.1 BQP Preprocessing

r:=-1,, // Variables not conputed are assigned value —1.
H:=H
f=r

fori=1ton,do )

s = H(i,i) +2f(i) + 2372, H™ (i, )
sti=H(i,i) + 2f (i) + 2372, H* (i, )

if st < 0then
i(i):=1
[i=f+H(,0)
H(:;,i)=0

else ifs~ > 0 then
(i) =0
H(:,i):=0

end if

end for

remaining to be computed, a BQP problem of lower dimensiaoistructed by incorpo-

rating the knowledge gained from previous computationss ptocedure is repeated for
smaller and smaller BQP problems until either no new vagislohn be computed during
an iteration or until the optimal value for all variables hetproblem have been found.
This implementation of the algorithm is referred to as thierdted implementation” and is
presented as Algorithm 5.2. Both improvement steps rasgharper tests, since optimal
values replace the worst case estimates previously used.

After the preprocessing algorithm has terminated, an argliMIQP solver, or BQP
solver, may be applied to compute any remaining variablepedding on the time avail-
able, the method used in the second step can either prodtioeabgolutions or sub-
optimal solutions.

5.2 Application of the Preprocessing Algorithm to
Model Predictive Control

In this section, Algorithm 5.2 is applied to the unconsteaitMPC problem when binary
control signals are present. To be able to apply the prepsiag algorithm to this MPC
problem, it has to be formulated as an optimization problenthe form (5.3). This is
discussed in Section 5.2.1. Results from simulations asemted in Section 5.2.2.

5.2.1 Using Preprocessing

The results from Section 5.1.3 is in this section appliedtarzconstrained MPC problem.
In this problem, it is desirable to find the control signhalseioce that minimizes a certain
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Algorithm 5.2 BQP lIterative Preprocessing

z:=-1,, /1 Variables not conputed are assigned value —1.
Tus :={i|i€Z,1<i<ny}

Htm,p = H

ftmp = f

while Z,,, # 0 do
Computez(Z,) by using Algorithm 5.1 withH = H,,,,, andf = fi,,
ng = {i]i € ZLys,z(i) # -1}
if (ns > 0) and (Z,s # 0) then
I, = {i| 2(i) # -1}
Htmp = H(IuS7Ius)
ftm;v = HT(ISvIuS)j(IS) + f(IuS)
else
STOP
end if
end while

criterion for a system on a form similar to (3.6) but with somatrices equal to zero

2(t + 1) = Aw(t) + Byu(t)

y(t) = Cx(t) (5:29)

where ;
By = [Bu, By, ut)=[ul(t) uf(t)] (5.26)

HereB,, is splitinto one part for continuous control signals and faméinary control sig-
nals. Furthermorey.(t) € R™< denotes real-valued control signals andt) € {0, 1}
denotes binary control signals. The signél) € R? denotes the controlled output.

The objective function to minimize is of the type (3.10), buérminal state weight has
been included. The optimization problem can be written enftlim (3.5), by applying
a similar procedure as in Appendix B. By ignoring constamid dividing the objective
function by two, it can be written on the form (5.22) with

Te = Ue
Ty = Up
Hee = S. CTQ.CSu. + Qu.,
Hep = S CTQ.CS,, (5.27)

be = SZBCTQeCSub + Quh
fc = ;{CCTQG (CSJxO - I’)
fb = SgbCTQe (CSxxO - r)
whereu,, uy, Sz, Su,, Su,, C, Qe, Qu, @andQ,, are defined in analogy with Appendix B

andz is the measured or estimated state of the system. The optiotizoroblem can
then of course also be expressed as a BQP problem on the f&#).(5
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If the control signals are ordered according to their apgeae in time, it can be seen
that the H-matrix gets a structure where the magnitude of the matgrehts descent
by the distance to the diagonal. How fast the magnitude ofrtatxix elements descent
seems to be dependent of the position of the poles of thedaitautisystem. For example,
stable real poles give a non-oscillating fade off while cterppoles give an oscillating
fade off. Unstable real poles also give elements that fatleTdis behavior is subject to
further investigation. This structure of tii&-matrix in the MPC problem makes it easier
to satisfy conditior(s) or (i¢) in Corollary 5.1.

5.2.2 Simulation Results

In this section, Algorithm 5.2 is used as an optimizationppoeessing algorithm in a
mixed integer predictive controller applied to the examsgeesented in Section 3.4. In
both examples, the problem has been solved using threeatiffapproaches and the cor-
responding computational times are presented in a tabkppnoach |, an ordinary MIQP
solver has been used. In Approach I, real variables have bkminated, as described
in Section 5.1.3, before an ordinary MIQP solver has beed.use other preprocessing
has been performed. By doing this reformulation of the grohh.. variables less have to
be computed in each node in the branch and bound tree. Thig done completely for
free. The expressions fdf and f have to be calculated. In the examples, these calcula-
tions are included in the solution times presented. In awedld MPC problem, some of
these calculations could probably have been re-used imaea@nsecutive, or all, MPC
optimizations. Finally, in Approach Ill, real variablesvegfirst been eliminated accord-
ing to Section 5.1.3 and then the preprocessing algorithsnblean applied to compute
as many variables as possible. Generally, any variablesréreaining are computed us-
ing an ordinary MIQP, or BQP, solver. In the examples in tieist®n, the preprocessing
algorithm determines the optimal value of all variables.er&fore, the MIQP solver is
actually never used in Approach lll. In all three approachestightly modified version
of the MIQP solvenri gp. mpresented in [15] has been used. To be able to make a fair
comparison, all available combinations of the settingsttrod” and "branchrule” in the
solver have been tested. In the table, only the shortedicolime achieved is presented.
For further information of available settings, see [15].

The preprocessing algorithm can be implemented in sevéfateht ways. In
MATLAB, an implementation with vectorized expressions has beteiormance than
one with for-loops. The code imi gp. mis not vectorized. Therefore, to be able to make
a fair comparison between the MIQP solver and the preproggatgorithm, the tests of
the conditions from Corollary 5.1 in the preprocessing atgm are performed one row
at a time by using for-loops.

All tests have been performed on a Sun UltraSPARC-Ile 500 Mtttz 640 Mb RAM
running SunOS 5.8 and MLAB version 6.5.1. The time measurements have been per-
formed using the MTLAB functionst i ¢ andt oc.

Mass Position Control

The control problem described in this section is the masgipogontrol problem intro-
duced in Section 3.4.1. In this example, the position of tlassris supposed to follow a
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Position Reference Tracking Continuous and Binary Control Signals

3 4 1 2
t[s] t[s]

Figure 5.1: The left plot shows how the position of the mass, (solid), follows
the sampled reference signal(starred), when the calculated optimal control signal
sequence is applied to the continuous model of the systemright plot shows the
control signalsy.. (solid) andu, (dashed). Note that. is scaled in the plot.

reference signal which ig¢) = 10sin(t). The stater; is the velocity of the mass and the
statex, is the position. To obtain a system on the form (5.25), zedzohold sampling
has been used with the sampling tithé s. The problem is solved over a time horizon
of 50 steps. The control signal cost is chosen in a way thaemalbeneficial to use the
binary control signal, when it is possible. The cost functised in this example is of the
type described in Section 5.2.1, with

Qe = 100, Quc =1, Qub =1 (528)

The initial state is
21(0) = 5andz3(0) =0 (5.29)

The result is shown in Figure 5.1. The computational timeofaimizing 50 real and 50

binary variables is presented in Table 5.1. The tree expimstrategy used in the first and
second approaches was the standard breadth first stratbgynolle selection strategy
was chosen to "max”, see [15]. This combination of settings wne of the best choices
available for this problem (the exploring strategies btididst, best first and normalized
best first gave approximately the same performance). Irhihet approach, all 50 binary

variables were determined by Algorithm 5.2. It can be natit®at the computational

time is reduced with a factor of about 180, compared to usipgréach |.

Table 5.1: Performance tests.

Optimization method  Solution time [s]
Approach | 15.861
Approach Il 4.618
Approach Il 0.0868
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Attitude Reference Tracking Continuous and Binary Control Signals

randxl

0:5 1 1:5 2 0 0:5 1 115 2
t[s] t[s]

Figure 5.2: The left plot shows how the attitude of the satellite,(solid), follows
the sampled reference signal(starred), when the calculated optimal control signal
sequence is applied to the continuous model of the systemright plot shows the

control signalsy.. (solid), ;1 (dashed) and, » (dash-dotted).

Satellite Attitude Control

The control problem described in this section is the sétedititude control problem

introduced in Section 3.4.2. The states of the system argechio be the satellite attitude
x1, the satellite angular velocity, and the internal wheel velocitys. To obtain a system

on the form (5.25), zero order hold sampling with the sangplime 0.1 s has been used.
The time horizon used is 20 samples. The cost function ustnisiexample is of the type

described in Section 5.2.1, with

Q. = diag (0.5-10%,107%,107"), Qu, =10, Q,, =101, (5.30)

The initial state is
x1(0) =0, 22(0) = 0 andz3(0) =0 (5.31)

In this example, the reference signal for the attitude ofghtellite is a step function
with the amplitude).5. The reference signals for the other states are chosendo Zee
optimal control signal sequence and the attitude of thélgaie shown in Figure 5.2. The
computational time for optimizing 20 real and 40 binary &htes is found in Table 5.2.
The tree exploring strategy used in the first and second appes was ordinary depth
first, and the node selection strategy was chosen to "mi’[Eg]. This combination of
settings was the best choice available for this problemhisxéxample the preprocessing
algorithm determined 40 out of 40 binary variables. The cotafonal time was reduced
with a factor of about 275, compared to Approach I.

5.3 Application of the Preprocessing Algorithm to
Multiuser Detection

In this section, it is shown how to apply Algorithm 5.2 to th&B problem (4.13) and
how the result can be interpreted.
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Table 5.2: Performance tests.

Optimization method  Solution time [s]

Approach | 11.449
Approach Il 6.916
Approach Il 0.0414

5.3.1 Using Preprocessing

In order to be able to apply the preprocessing algorithmogianization problem (4.13)
has to rewritten on the BQP form (5.2). Note especially theaio of the optimization
variablez. In order to convert (4.13) to an optimization problem withdyy variables,
the following variable substitution is performed

b=2b—-1 (5.32)

whereb € {0,1}%,b € {~1,+1}%, 1 denotes a column vector with all elements equal
to one andX is the number of simultaneous users in the system. Using)m@&glecting
constant terms and dividing by 4, the objective functiondiri8) can be rewritten as

T = e
5bTHb +fTh (5.33)

where ) )
f= 7}11 - §Ay (5.34)

The problem is now on the form (5.2), on which preprocessarglie performed.

5.3.2 Interpretation of the Result

Using the notation in the multiuser detection problem, theditions() and(iz) in Corol-
lary 5.1 can after simplification be written as

Aiyi < =325 [Hijl (2) (5.35)
Ayi > Zj;ﬁi |Hij| (iz)

Combining (5.32) and (5.35), it follows that the optimal @w®oofb; is given by

—1, if (¢) holds
b; = 5.36
' {1, if (4¢) holds (536

An interpretation of the conditions in (5.35) is that the safrthe non-diagonal terms
represents the maximum sum of interference energy posaffagting user. Because
all terms in the sum always are positive, it can be interprateif all users sent the worst
possible choice froj—1, +1}. If A,y; is larger than this maximum known disturbance
energy, then it is most likely that usesent the symbal. Analogously, ifA;y; is smaller
than the negative maximum known disturbance energy, thismibst likely that usetf
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>
Ayi
723'757‘, |Hu| 0 Zj;&?‘, |H7J|

Figure 5.3: This figure shows the decision regions for the preprocessipgrithm,
when the non-iterative Algorithm 5.1 is used. The grey ragghows the region
where variablé cannot be computed by non-iterative preprocessing. Tlesgithis
region might be reduced when the iterated version of theriltgo in Algorithm 5.2
is used.

sent the symbok1. This behavior seems reasonable since the noise is assarhadd
zero mean. The decision strategy is illustrated in Figuge 5.

If (5.35) is investigated, it can be realized that a necegspeoperty of the cross-
correlation matrix in order to be able to successfully usedlyorithm, is that the chip
sequences give low cross-correlations between differsgrtsu This is typically the case
for, for example, Gold Sequences. Compared to previousnaptow complexity meth-
ods presented in [83, 85, 93], the algorithm presented gtli@sis does not introduce any
requirements on the sign of the cross-correlations or tiettoss-correlations between
users are equal.

5.3.3 Simulation Results

In this section, the preprocessing algorithm is appliech® rultiuser detection prob-
lem and tested in Monte Carlo simulations. In the first siriafes, the joint Bit Error
Rate (BER) for the optimal detector implemented by usingptie@rocessing algorithm is
compared to the joint BER of the conventional detector,,[56]

b= sign(y) (5.37)
and to the joint BER of the decorrelating detector, [56],
b = sign(H 'y) (5.38)

wherey denotes the output from the matched filters as describeddtioBet.2.1. To be
able to make a fair comparison, in all but the last examplg tme variables computed
by the preprocessing algorithm were used in the BER caloulatfor all methods in
the comparisons. The tests were performed with Gold Segseoiclength 128. The
algorithms were compared for the loads 1 to 127 users. EachWas tested 10000 times.
In each test, a new noise realization and a new random bit gggreed to each user. In
Figure 5.4 it can be noticed that the preprocessing algaratbmputes nearly all variables
in average. In the worst case, 75 % of the variables were ctedpuhe next issue to
verify is that the problem instances tested were not “tfhifathe sense that the existing
lowest complexity algorithms also could compute them optiyn This verification is
performed by calculating the average BER for the differeethnds during the Monte
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Figure 5.4: The plots show how many percents of the variables that wergated
by preprocessing for different loads. In the upper plot twioves are shown: The
min-curve shows the lowest amount of computed variableggihe 10000 simu-
lations. The max-curve shows the greatest amount of cordmatéables during the
simulations. In the lower plot, the average of the amounbafijguted variables over
the 10000 realizations is shown. Note that the axis scatiegidferent in the upper
and in the lower plot.
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Figure 5.5: The plot shows the BER of the different methods as a functiahe
load when Gold sequences of length 128 are used. It can belsatethe optimal
multiuser detector implemented by the preprocessing affigoihas the lowest BER.
Only variables computed by the preprocessing algorithntansidered in the com-
parison. Note that since on average more 8tafib % of the variables are computed
by the preprocessing algorithm, the variables not compbieitie algorithm do not
change the presented result significantly.

Carlo simulations. The result from this simulation is shawrkigure 5.5. In the test,
the Signal to Noise Ratio (SNR) for user 1 varied fr@mB to 6.7 dB. The conclusion
drawn from the simulation is that the optimal multiuser dete implemented by the
preprocessing algorithm gives lower BER than the two othgordhms. Note that the
plots for all three methods only include bits possible taakite with the preprocessing
algorithm. The same plot also verifies that the iteratedrélyo in Algorithm 5.2, enables
more “wise” decisions than Algorithm 5.1 which only usesragge iteration. In the non-
iterated case, it follows from (5.35) that the optimal degiscoincides with the decision
taken by the detector in (5.37), in the region where variglslen be computed by the
preprocessing algorithm. The region where the solutiomftioe algorithms coincide is
the region outside the grey region in Figure 5.3. When thatiéekimplementation of the
preprocessing algorithm is used it can sometimes be pedsildecrease the size of the
grey area for some variables in the problem. This meansritthbse cases more variables
are possible to compute by preprocessing.

The computational time is illustrated in Figure 5.6. Thevaanional detector (5.37)
is not shown in the plot because its computational time idigibte in comparison with
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Figure 5.6: In the plot, the computational time for preprocessing aredhiécorrelat-

ing detector are presented. To be able to make a fair congpatise computational

time shown for the decorrelating detector is only the timtakies to compute the

variables computable by preprocessing. The conventiagtaktbr has significantly
lower computational time and it has therefore been excliided this plot.

the other two. The time measurements have been performeglthe MATLAB functions
ti c andt oc. The conclusion is drawn that the computational complefatythe pre-
processing algorithm is similar to the one for the decotidpdetector (5.38). It should
be mentioned that the matrix inversion performed in (5.88MATLAB is implemented
much more efficiently than the preprocessing algorithm. éx@mple, by implementing
the preprocessing algorithm in C, a significant reductiothefcomputational time is ex-
pected. The tests of the computational times were perforwneal Sun UltraSPARC-lle
500 MHz with 640 Mb RAM running SunOS 5.9 andAviLAB 7.0.1.

Gold sequences have very low cross-correlation. To tesalt@ithm as the cross-
correlation increases, the cross-correlation matrix wasually modified. This was done
by adding0.01,0.02,...,0.6 in 60 steps tol6 symmetric off-diagonal elements éle-
ments on each side of the diagonal). For each ofitheteps,10000 Monte Carlo sim-
ulations were performed. The test was performedifiy users and the result from this
simulation can be found in Figure 5.7. The number of varigiplessible to compute by
preprocessing when the correlation is increased is idtestr by Figure 5.8.

An important property of the solution delivered by the prega algorithm is that both
Algorithm 5.1 and Algorithm 5.2 provide a certificate of apélity, that is, even though
the solution sometimes coincides with the algorithms (padid (5.38), the solution com-
puted by the latter algorithms cannot be guaranteed to limaptNote that, if the solution
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Figure 5.7: This figure shows BER as a function of the extra added offdfiad
correlation. Only variables solved by the preprocessiggr@hm is presented in the
comparison. The average number of variables solved for addbd correlation is
shown in Figure 5.8.

of the preprocessing algorithm coincide with the solutiba suboptimal detector for a
specific region ofy;, this implies that the suboptimal detector actually taketsneal de-
cisions in the region considered. With the certificate ofroptity it can be, from case to
case, worth to apply a higher complexity algorithm to corepany remaining variables
and hence compute the optimal solution to the entire probléra alternative is to apply
a low complexity suboptimal algorithm to compute these ri@ing variables. In the last
simulation, the variables not possible to compute by th@neessing algorithm were
computed by the conventional detector (5.37) and by therdelating detector (5.38).
This was performed by first subtracting the partadriginating from the bits computed
by preprocessing. Denote the vector containing thesé)pit@sing (4.7), the remaining
signal was computed as

Yremain = Y(r) — R(r, ¢)A(c, ¢)b, (5.39)

wherer contains the indices in the original problem remaining tocbenputed and:
contains the indices in the original problem of the varialdemputed by preprocessing.
The detectors (5.37) and (5.38) were finally applied to theaiaing signaly,.cmain. The
BER is illustrated in Figure 5.9. The conclusion from theuted the figure is that the
preprocessing algorithm followed by a simple suboptimgbeathm will reduce the BER
significantly compared to using only the suboptimal aldonit
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Figure 5.8: In the plot the number of variables possible to solve foredéht modi-
fications of the correlation is presented.
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Figure 5.9: This figure shows BER as a function of the extra added offatiad
correlation when the variables not solved by preprocesmiagolved by two subop-
timal approaches, the conventional algoritt®rB87)and the decorrelating algorithm
(5.38) In this plot, all bits sent are considered in the BER calboia
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A Mixed Integer Dual Quadratic
Programming Algorithm

As described in Section 3, when linear MPC is extended toleamgrid systems, more
challenging problems have to be solved. The method most @ynused is branch and
bound, which is described in Section 2.4. In branch and béoamndIQP problems, many
QP subproblems have to be solved in the nodes of the tree thea be advantageous to
consider QP solvers that can be warm started efficiently. 8ymwstart it is meant that the
solver is supplied with information from a previously salveroblem similar to the one
to be solved. The idea is that this information will reduce ¢omputational effort needed
when reoptimizing after a minor modification of the probleim.Section 6.1, a dual QP
solver is presented. This solver is tailored for linear MP@ ean easily be warm started.
In Section 6.2, this solver is used in a branch and bound rdettiés shown how warm
starts can be applied and the performance of the algorithmeéstigated.

6.1 A Dual Quadratic Programming Algorithm

In this section, a solver tailored for linear MPC is derivddhe aim is to derive a solver
which can solve the subproblems in a branch and bound digoefficiently. From the
discussions in Section 2.5.2 and Section 3.3.2, it can beleded that because of its good
warm start abilities, a dual active set QP solver would pbbpbe a very good choice for
solving the node problems. Therefore, the solver presdantdds section is working in
the dual space.

6.1.1 Problem Definition

As described in Section 3, the MPC optimization problem oacdst on the QP form in
two different ways. Either, it can be written as a QP probleitinvonly control signals
as optimization variables or it can be written as a QP whergrabsignals, states and

71
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control errors all are optimization variables. In the figgpeoach, the dynamics is embed-
ded in the objective function, while in the latter approaitie, underlying MPC problem
is more directly visible, but it involves more variables. tBdormulations are derived in
Appendix B for a general linear MPC problem. If the resultigT systems are exam-
ined, it can be seen that the linear part for the first approacdives a dense system while
the second approach involves an almost block diagonalraydtethis section, it will be
shown that the latter system can be solved using a Riccaitigien. It will be seen that
this is advantageous from a computational point of view.

Consider a linear MPC problem similar to the one present€8.i) on the form

N—-1

minimize  Jp(x,u,e) :% Z el (1)Qe(t)e(t) + ul (1)Qu(t)u(t)+

X,u,e

~..
Il
=)

subjectto  z(0) = xg (6.1)

h(t) + Hy(t)z(t) + Ho(t)u(t) <0, t=1,...,N—1

wherex, u ande are defined as in Appendix B witg = 0, andH () € RO H,(t) €
Re®*m andh(t) € R*®) wherec(t) denotes the number of inequality constraints at time
t. Furthermore, the following assumptions are made

Assumption Al. Q.(t) e St ,t=0,....N

Assumption A2. Q,(t) e ST, , t=0,...,N -1

6.1.2 Derivation of the Dual Problem

In order to design a solver working on the problem dual to)(@He dual optimization
problem has to be derived. The optimization problem in (&.@) the form (2.27). There-
fore, deriving the dual problem to (6.1) is a special caséefdrocedure in Section 2.4.
The first step in the procedure is to form the Lagrangian.

Lp(x,u,e a,8,7) = % Zj: " (1)Qe(t)e(t) + u” (t)Qu(t)u(t) + %6T(N)Q6(N)6(N)
+a’(0)(zo — 2(0)) + ]tv_ol ol (t+1)(A(H)z(t) + Bt)u(t) — z(t + 1))

+ éﬁT(t) (M ()a(t) = e(t)) + 7 (0)(h(0) + Hu(0)u(0))

+ TZ_; AT (t) (h(t) + Hy(t)x(t) + Hy(t)u(t))

(6.2)
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wherea,  and~ are the Lagrange multiplier vectors associated with th@éopation
problem (6.1)

B =187(0),....,87(N)" (6.3)
Y= [VT(O)a o vFYT(N - 1)]T

These are also known as the dual variables. Following (2th&)_agrange dual function
for this problem is

g(ayﬂﬂ/) = infL(x,u,e,a,ﬁ,*y) (64)
Hence, the Lagrange dual problem associated with (6.1) is

maximize g(«a, 5,7)
@By (6.5)
subjectto v >0

In order to write down an explicit expression for (6.4), tregkangian function in (6.2) is
rewritten on the following form

LP(X7u7eaO‘7577)
1N_1 T T 1 T
= 2 3 Q) +u" (DQult)u(t) + 5¢" (N)Qe(N)e(N)

0

+ (o™ (1)A(0) — a” (0) + 57 (0)M(0))x(0)

N

—

£y (™ (t+ 1)A®®) — T (t) + BT ()M () + 7 (6 Ha (1)) 2(2) ©o
v

+ Y (@t +Bu(t) = BT (E)e(t) +4T () +47 () Hu(t)u(t))
t=0

+al(0)ao + (= al (V) + T (N)M(N))z(N) — 87 (N)e(N)

As for the optimization problem (2.27), the Lagrangian isredr function of the pri-
mal optimization variables not explicitly present in thémal objective function. Hence,
when minimizing the Lagrangian with respect to all primafiables, an implicit equality
constraint similar to the one found in (2.28) can be found aig6.6).

By examining the Lagrangian (6.6), it follows thaf is a linear function ok and
a strictly convex function ofi ande. If the minimization is performed with a non-zero
coefficient in front ofx, the optimal value will not be bounded from below. However, a
more explicit formulation of (6.5) can be obtained by adduogstraints to (6.5), which
exclude the values dfw, 3, ) for which g(«, 5,7) = —oco. By examining (6.6), these
constraints are found to be

AT (0)a(1) = a(0) + M7T(0)5(0) = 0
AT a(t+1) —at) + MT®)B(1t) + HE (t)y(t) =0, t=1,...,N—1 (6.7)
—a(N) +MT(N)B(N) =0



74 6 A Mixed Integer Dual Quadratic Programming Algorithm

Becausd. p is a strictly convex continuously differentiable functiohu ande, the mini-
mization over these variables can easily be performed ukm{jrst order necessary and
sufficient conditions of optimality. These are

gj(:) = Qu(t)u(t) + BT (t)a(t +1) + H' (t)y(t) =0, t=0,...,N—1
(6.8)
OLp
Fe(] ~ Qe = BB =0, t=0.....N
By combining and rewriting (6.7) and (6.8), the followinguadions are obtained
a(0) = AT(0)a(1) + MT(0)5(0)
a(t) = AT (Ha(t + 1)+ MT()B(t) + HE (t)y(t), t=1,...,N—1
a(N) = MT(N)B(N) (6.9)
u(t) = —Q, ' )(BT (t)a(t + 1) + HL (t)y()), t=0,...,N—1
e(t) =Q ()B({t), t=0,....,N

To obtain an explicit expression fota, 3, ), (6.7) and the expressions foft) ande(t)
in (6.9) are inserted into (6.6). After simplifications thesult is

N-1

g(a, B,7) = —% D (BTMOQI DB + T (¢ + D)BHQ, ()BT (talt + 1)
t=0

2T OHLDQ (BT (Dot + 1) + 7 (VL ()Q; (0 HE (1)(1)
2T (Oh(D)) — 56T (N)QH(N)B(N) + o (0)zg
(6.10)

By combining the first three lines in (6.9) with (6.10), an kxipexpression for the prob-
lem in (6.5) can be given as

N—-1
max[iamize —% ("t +1)B#)Q, (t)B" (t)alt + 1)+
o t=0
Q' () 0 B(t)
1570 01| %" g entwmnze) o) *
+2a"(t+1) [0 B)Q(HHL (1)) [jgﬂ —2hT (t)(t)) -
— ST NIQ N)B(N) + 2 a(0)
subjectto  «(0) = AT(0)a(1) + M7 (0)5(0)
alt)=AT()a(t+ 1)+ [MT(t) HI(t)] [58] ,t=1,...,N—1
a(N) = M"(N)B(N)
y(t) >0, t=0,...,N—1

(6.11)
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To make the dual optimization problem more look like an opficontrol problem,
the procedure in [81] is followed, that is, the dual variabdéee changed and the time is

reversed according to
a(t) = 2(N —1), B(t) = w(N =t =1), (t) = v(N =t = 1) (6.12)
T=N—-1t

and the following definitions are made

=B(N—-7-1)Q,;"(N-7—-1)BT(N-7-1)
), Hy(N =7 = 1)Q,'(N —7 = H; (N — 7 — 1))

— [MT(0) 0]
(6.13)

where the relations hold far = 0, ..., N — 1 unless stated differently. Finally, in order
to obtain a minimization problem, the sign of the objectselhanged. The optimization

problem is then on the form

minimize  Jp(X,0) =

X,U

subject to #(0) = B(—=1)a(-1)
Z(r+1) = /1(7')5:(7') + B(T)ﬁ(r), 7=0,...,N—-1
0 —I nv_r_p]a(r) <0, 7=0,...,N—1
(6.14)
where
< [T ST T
= [570), -, FH(N)] (6.15)
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andz(7) € R™ anda(r) € R™7), The dual state dimension and the dual control signal
dimension are related to dimensions of primal variableshgydquations: = n and
m(t) =c¢(N —7—1).

Note that it is actually abuse of notation to refer to (6.18llee dual problem to (6.1).
To be exact, (6.14) is a problem equivalent to the dual prol@é(6.1). That is, the two
problems have the same solution, see Definition 2.4. De#p&e(6.14) will from now
on be called the dual problem of (6.1).

Remark6.1 In the derivation of the algorithm, a reference signal hasnbemitted. If
desired, a reference signdt) can readily be included by settirgt) = M (¢)x(t) —r(¢)
and redefiningjz (1) = [rT(N —7—1) —hT(N —7— 1)}T.

The dual problem can be interpreted as an optimal contrddleno where the initial
statez(—1) is fixed to the origin and with positivity constraints on soofehe control
signals. Also, the final state penalty is linear. An alteiugainterpretation is that, in some
cases, it can be reformulated as an estimation problem wigs@enalties between the
process noise and the measurement noise, and with some pfdbess noise compo-
nents constrained to be positive. More on duality betwedimab control problems and
estimation problems can be found in [81] and [49].

6.1.3 Optimality Conditions for the Dual Problem

The interest is now focused on problem (6.14). The idea i®lhgeshe primal problem
(6.1) by solving the dual problem (6.14). In order to solvedlual problem, the optimality
conditions for this problem have to be derived. Define theraagian of (6.14) as

Lo, 0,00) = 537 (~1)@a(-1a(-1)
N—-1
5 2 (T (Q:(r)E(r) + () Qa(r)ilr)
=0
+ 22" (7)Qaa (7)i(7) + 244 (T)i(7)) + 47 (N)E(N)
+AT(0)(B(-1)a(-1) — #(0)) (6.16)
N—-1
+ 3 AT (1 + 1)(A(7)3(7) + B(r)ii(r) — &( + 1))
v
- UT(T) [0 IC(N—T—l)] ()
7=0
where

A= [\T(0),... AT(N)]”

p=[u(0),.... 6" (N - 1)]"

If the results from Section 2.4.1 are applied to problem)(6t follows that the dual prob-
lem is always feasible if the primal problem is feasible.hé tdual problem is feasible,
according to Remark 2.1 strong duality holds and the KKT diomas in Theorem 2.3

(6.17)
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are fulfilled and therefore constitute necessary and seffficionditions of optimality for
(6.14). In case the primal problem is infeasible, then adicor to the results in Sec-
tion 2.4.1, the dual is either infeasible or unbounded. @mnghe case when the primal
problem is feasible and apply Theorem 2.3 to the dual probl€he equations (2.20a)
and (2.20b) will then generate the following equations

0 —I ny—r—p]u(r) <0, 7=0,...,N—1
z(0) = B(—1)a(-1) (6.18)
i(r+1) = A(n)a(r) + B(n)a(r), 7=0,...,N—1
From the dual feasibility condition (2.20c),
uw(t)>0, 7=0,...,N—1 (6.19)
The complementary slackness condition (2.20d) gives thatean
Wi T) (1) —e(N—r—1)4i(T) =0, i=1,...,¢(N-7—-1), 7=0,...,N—1 (6.20)

Finally, from (2.20e) the following equations are obtained

50 Qz(T)E(7) + Qza(T)a(r) + AT(T)N(T +1) = A(7) = 0, (6.21a)
7=0,....,N—1
OLp B
5 = B(N) = AN =0 (6.21b)
LD _ G(ryit(r) + QTa(r)i(r) + dalr) + BT (A +1) [0] u(r) = 0
871(7’) 0 Fan a T )
(6.21c)
7=0,....,N—1
OLD _ _ Qu(=1)i(—1) + BT (~1)A(0) = 0 (6.21d)
da(—1) " '

6.1.4 Connection Between Primal and Dual Variables

As mentioned in the previous section, the idea is to comphéesblution to the primal
problem from the solution of the dual problem. How this campbe&ormed is discussed
in this section. The information in this section is expede@ppear after the algorithm
solving the dual problem has been presented. But the reléialso important when
interpreting how the algorithm works. Thus, these relatiare derived now.

In the primal problem, the primal variables ae andu and the dual variables are
£ and~. In the dual problem, the primal variables &ev andv and the dual variables
are X andu. Note that, in the formulation (6.14), the variableandv are stacked in the
variabled. The relation between the dual variables of the primal gk, 5 and~, and
the primal variables of the dual problegw andv, are given by (6.12).

By combining the fourth line in (6.9) with the first line in (@), the following ex-
pression fow is obtained

u(t) = —-Q, () (BT (#)&(N —t — 1) + HL (t)v(N —t — 1)) (6.22)
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Using the expression farin (6.12), (6.22) can be rewritten as
W(N—7-1)=-Q, (N-7-1)(BT(N-7-1)a(r) + H (N —7—1)v(7)) (6.23)
By combining (6.21a) and (6.12), the following expressionX(N — t) is obtained

AN —t)= At —DAXN —t+ 1)+ Bt —1)Q, (t — )BT (t — 1)Z(N — 1)

B(t —1)Q; (t — )HI(t — 1)v(N —t) (6.24)

+

Identifyingu (¢ —1) according to (6.22) in (6.24) yields the following reculsexpression
for A

AN —t) = A(t — DAN —t +1) — B(t — Du(t — 1)

ANV = o (6.25)

where the expression foi( V) stems from (6.21b). Now let(t) = —A\(N —t) and insert
into (6.25)

i‘(O) = X
_ _ (6.26)
—z(t)=—-A{t-1Dz(t—-1)—-B(t—1ult-1), t=1,...,N
Change the sign of the last line in (6.26) and redefine the itahex
#(0) —
0= (6.27)
z(t+1)=At)z(t) + B(t)u(t), t=0,....,N—1
Identifying (6.27) with (6.1) yields the relation(t) = z(t), that is
x(t) = =A(N —1t) (6.28)

The dual variable: in the dual problem has also an interpretation in the primaibp
lem. In the following calculation, (6.13) has been inseritgo (6.21) in order to get
a direct primal interpretation of the equations. By usin@®1@l), (6.22), (6.28) and the
second line in (6.12), the following equation is obtained

h(t) + Hy(t)z(t) + Hy(H)u(t) = —p(N —-t—-1), t=1,...,N—1 (6.29)
Fort¢ = 0, similar calculations give
R(0) + Hy, (0)u(0) = —pu(N — 1) (6.30)
If (6.29) and (6.30) are compared to (6.1), the conclusianlma drawn that the:-
variables are slack variables for the primal inequalitystaaints. It is also clear that

1 > 0 if the primal problem is feasible, which is exactly the cdidi (6.19) for dual
feasibility in the dual problem.
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6.1.5 Solving the Dual Problem Using Riccati Recursions
This section is opened with an assumption
Assumption A3. H,(t) has full row rank fot =0,..., N — 1.

The dual problem is now to be solved by a primal (the dual mwbis treated as a
primal problem) active set QP solver as described in Algari2.1. In the QP iterations,
equality constrained problems of type (2.37) are solved HKT conditions, excluding
the non-linear complementary slackness condition, isrglwe a linear system on the
form

; H AT AT i —f
K K €§ nw
oo [ 8 ][] e
1 & x
2 2 2 Aznwy 0 0 ATw braw

whereAz~yy contains the rows idl 7 corresponding to constraints contained in the work-
ing set andzy andAzyy are defined analogously. Note that the notation used in)6.31
is the one used in Chapter 2 for a generic QP problem and isomotected to the nota-
tion used previously in this chapter. In accordance witRXp.the matrixAs and the
vectorbg define the equality constraints in the problem. Dual vaesltdorresponding

to inequality constraints not in the working set, tha{iisz- | i ¢ W+, are set to zero by

the active set algorithm. Since the upper left block in ($i8Llinchanged during the QP
iterations it seems computationally efficient to proceeihd$1], where it is proposed

to use block elimination (see Algorithm A.1) in order to s6.31). As shown in [61],

the upper left block will have a structure that makes it polssto computeX ;' Ko

and K;;' [—fT bg]T using Riccati recursions. Under the assumptions Al and A2,
there exists a unique solution to the KKT system for the priprablem. Therefore,
Kt [-f7 bg]T can be computed for the primal problem. Trying to follow tlagne
approach in the dual might create problems. By simple exaspii can be shown that
K7, in the dual problem cannot, in general, be expected to bemguiar, and therefore,
block elimination cannot be used when solving the dual bl

Remark6.2 If the control signal constraints are linearly independérs actually pos-
sible to use block elimination when solving the dual prohldrawer and upper bounds
can be handled by the introduction of a variable substitutidlthough it has not been
further examined, it might be possible to handle genereHlity dependent control signal
constraints by a similar procedure.

For an MPC problem with upper and lower bound constraings,rtlws containing
these constraints in théz-matrix will be linearly dependent. Hence, it is not possitd
use an algorithm that requires full row rank4f. To be able to use the algorithm in the
nodes of a branch and bound algorithm, where binary consirare relaxed to interval
constraints, the algorithm has to be able to handle uppetoavet bounds on variables.
For example, if an MPC problem with binary inputs is to be edly branch and bound,
the binary constraints(t) € {0, 1} on the input variables are relaxedu@) € [0, 1].

From this discussion, it is clear that the KKT system caneatdived as in [61]. Since
itis generally not possible to compuk&,*, an efficient algorithm that either works on the
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entire system (6.31) has to be developed or the system hagiartitioned in another way
than proposed in (6.31). An alternative partitioning caridaend by reordering the rows
and columns of< in (6.31). For what follows, it it necessary to spliinto w andv, where

w contains the stacked unconstrained dual control signals aontains the stacked con-

strained dual control signals. Relating backto (6.14){et [x© w’ AT V;nWG]T
andz; = [vi, M%W]T, where the subindex indicates whether the corresponding

variable contains elements related to the constraintseinvibrking set or not. The result
after reordering rows and columnsiais a system on the form

- R ng 0 €1 by

_ K1 i K T o SR
Kz = [KH'KM] [;1 = |Ro1 | Roo —I| |Z21| = |b2a (6.32)

222 2 0 | —1I 0 T9.2 62 2

Note thatKs, is non-singular. In (6.32), it has been used that the indgyuzdnstraints
have the form—uv(7) < 0, which implies that the matrix containing the coefficient fo
vzaw IS —I. As mentioned in Section 2.4.2, dual variables not in thekingy set areset
to zero. Thereforgi; ¢ = 0. Note thath, » = 0. This follows from the fact that the
right hand side of the equations for the inequality constsain the working set is zero.
By using a block inversion formula for the cas&., is non-singularz, andz, can be
calculated as

7 = (K — Rlzkgzlf_(zl)_l (b1 — [{12[_(2*2162)

e _ (6.33)
Ty = Kgy' (b — Ko171)
It follows directly from Lemma A.3 that
= 0 —I
Ky = {_ I P@J (6.34)
Furthermore,
_ _ 0 I _
Rk = (R o) [% 1= R (6.39)
From this the next result follows directly
o _ IR
K19K5y' Koy = [0 —Ryy] [ 021} =0 (6.36)

Using (6.35) and (6.36) in the expression farin (6.33), the following simplified equa-
tion for z; is obtained
Ri1Z1 = b1 + Rigbop = by (6.37)

where the last equality follows frot, » = 0. By using (6.34) and tha, » = 0, the
expression foft, can be simplified to

xgz[ 0 } (6.38)

Ro1Z1 — ba g
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As a consequence, when has been computedz,y anduznyy can easily be computed
as

view =0,  pzaw = Ro1%1 — ba (6.39)

~ From a practical point of view, it is important to discuss tetitioning intoR11,
R12, Ro1 and Roo expressed in terms of the variables present in problem. (68 rows
corresponding to

[Ro1 | Rya —I] |Z21| = ban (6.40)

contain the equations in (6.21c) involving ). Using (6.13), these equations can be
rewritten as

(1(00: 870 (0] |, M7 |+ m00s HE 6) ot
Included inRoy Included inRas

—I-pu(r)="nh(), 7=0,....,N—2

(6.41)

where¢ = N — 7 — 1. For each component in(7) there is a constraint;(7) > 0 that
can be either active or inactive. If the constraint is activér) = 0. If v;(7) in (6.41)
has a corresponding constraint which is active, the cooredipg equation in (6.41) can
be simplified sincey; () can be removed from the equation. If a constraint is actiate
v;(T) is setto zero and it does not have to be computed from (6.41prbthe other hand,
the corresponding dual variable(r) is no longer set to zero and has to be calculated.
This can also be done using (6.41). That is, the use of (6 &lgwwith if the constraint
corresponding to the;-element is active or inactive according to

Hy (5, Qu " Hyg (1,0 (vi(T) + Ho (1,9 (9)Qu ™ ()BT (6)&(7)

+ Hy (5,5 (M7 +1) = hi(<) (6.42a)
1 (1) = Hu (5.0 () Q" Hop (5. ($)vi(T) + Hyy (5.1 ($)Qy ' () BT (6)E(7)
+ Ha () (M7 +1) = hy (<) (6.42b)

wherei denotes elements in(7) included in inequality constraints not in the working
set andj denotes elements in(7) included in inequality constraints in the working set.
Equations of type (6.42a) are solved as a part of the Riceatirsion described below
and equations of type (6.42b) are solved after (6.42a) hes belved and are used to
computey (7).

Left to solve is the equatio®,,z7, = b;. This equation corresponds to solving a
modified version of the equations in (6.18) and (6.21). Fr6r82), it follows that (6.21)
should be modified by setting components/it,y, and uzqyy to zero. After a suitable
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reordering of the variables and equations, (6.37) can bitanras

[ Qa(—1) BT(-1) 0 0 0 0 0. .. e .. 0
BT(-1) o -1 0 0 0 0 ..
0 - Qz(0) Qza(0) AT(0) 0 0 ... _
i Ty =10] (6.43)
0 0 QT.(0) Qa(0) BT(©0) 0 0 .. e
0 0 A0)  B(0) 0 —-I10.. .. . 0
......... A(N-1) B(N-1) 0 —I
| o C e e 0 0 -I0 |
where ) )
a(—1)
A(0)
z(0)
(0) 0
A(1) 0
#(1) B —Ga(0)
= aw |, W= (.) (6.44)
_ —@1(}\7—1)
SN ~Ga (V)
A(N)
- i:(N) -

anda(7) includes all components af(7) but only the components in(7) not included
in a constraint in the working set.

If (6.43) is studied, it is seen that it has an almost bloclgdiel structure. This
structure is now going to be utilized. For each= 0,..., N — 1, the following relation
holds

—I Q:i(r) Qaa()] [Mr)] [AT(r) 0 _ 0
[0 L) Qalr) [56(7) +|B7(r) 0] - [—::L(T)] (6.45)
0 A(r)  B(r) | la(r) 0o -I 0

In order to represent all equations in (6.43), three moreojus concerning variables at
7= —1andr = N are needed

#(0) = B(—1)a(-1) (6.46)

The aim is now to show that there exist symmetric positiveidefmite matricesP(r)
such that
P(r)z(1) — A1) = ¥(7) (6.47)

By comparing the first line in (6.46) with (6.47), itis cle@at (6.47) holds at time instant
7 = N with

(6.48)
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Assume
Pir+1Dz(r4+1) = Ar+1)=T(r+1) (6.49)

or equivalently\(7 +1) = P(7+ 1)z(7 + 1) — ¥ (7 + 1). Using this assumption, (6.45)
can be reformulated as

4 &0 G 0
0 QL Qalr)

4 Qs(r) + AT(MP(r+ DA Qralr) + AT()P(r+ DB(r i it
0 QL(r)+BT(1)P(r+1)A(r) Qu(r)+ BT (r)P(r +1)B(r) a(r)
_ AT(T) - _ 0
) v =)
(6.50)
Define the following variables
F(r+1) = Qa(r) + AT(r) P(r + 1)A(7)
G(T +1) = Qa(r) + BY(r)P(r 4+ 1)B(7) (6.51)

3(
H(t+1) = Qza(r) + AT(1)P(r + 1) B(7)
Equation (6.50) can then be written on the simplified form
0 H'(r+1) G+ [FT)

a(r) [gim \II(T+1)—{_QS(T)] (6.52)

AssumeG(T + 1) non-singular. From the lower block in (6.52) an expressmmif(r)
can be derived.

a(t) = G + 1)(BT(7)\II(T +1) - HY(r + Da(r) — dﬁ(r)) (6.53)

Using the first block in (6.52) and the expressiond¢r) an expression similar to (6.47)
can be derived

—\N7)+ F(r +1)&(r) + H(r + Da(r) — AT (1)U (1 + 1)

=-\7)+ (F(T +1)-H(r+1)G Y r+1DH (7 + 1))5&(7’)

+H(r+1)G Y7+ )BT (1)U(r+1) — H(t + )G (7 + 1)ga(7)

ATV (r+1) =0« (6.54)

(F(r+1)— H(r+ )G (r+ 1)H" (1 +1))&(r) — A(7)

—Hr+ )G (r+1D)BT(")U(r+1)+ H(r + )G Y7 + 1)Ga(7)

+ AT (7)U(r + 1)

Identifying terms in (6.54) with (6.47), an expression fofr) and¥ () can be derived.
P(r)=F(r+1) - H(r+ )G (t+ 1D)H (1 +1)
U(r) = (AT(r) = H(r + )G (7 + )BT (1)) ¥(r + 1) (6.55)

+ H(r+ )G (7 + 1)da(7)

-1 F(r+1) H(r+ 1)} [’\(T)
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These are recursive expressions that hold-fer N —1, .. ., 0, with initial values defined
in (6.48). After (6.51) has been inserted, the equationf¢r) can be identified as a
Riccati recursion. This is known to have a computational glexity that grows linearly
with N, [95]. Note thatP(N) »= 0. By investigating (6.51), and using the symmetric
property of the weight matrices, it is clear tHagr) is symmetric, thatisP(7) = P7 (7).

To show thatP(7) *= 0, recognize the expression fé¥(7) as the Schur complement of
G(T+1) inamatrixX (), defined below. If7(r 4+ 1) > 0, then, by Lemma A.1X = 0

if and only if P(7) = 0 where

[G(r+1) HT(T+1)}
_QQ(T) —|—B~T(7)P(T—|—1)B~(7) Qgﬁ(T) +~BT(T)P(7+1){~1(7—)
|Qaa(r) + AT()P(r + DB(r)  Qa(r) + AT(r)P( + DA(r)
_ Qa(T) fu(T) 3T (1) S il

|Qza(T) Qx( )}—1—{ I(r )] P +1)[B( ) Al )}

If P(1+1) = 0, the entire last term iXX (7) is positive semidefinite since it is a quadratic
expression. The conclusion following from induction isttfighe following two condi-
tions are satisfied for aft

X(r) =

(6.56)

G(t+1) =0 (6.57a)
Qa(r)  Qzalr)
D G = (©570)

thenP(7) > 0for 7 = N,...,0 and therefore the Riccati recursion is concluded well-
defined over the same interval. If the expressiond¢r + 1) in (6.51) is investigated, a
sufficient condition for (6.57a) to hold is th@rﬂ(r) =0

It is now interesting to interpret these conditions using definitions ofQ; () and
B(r) in (6.13). First, condition (6.57a) is investigated.

G(r+1) = Qa(r) + BT (r)P(r + 1)B(r)

- [Q;%c) 0 }
=1 0 Hy (i ()Qu () H,y (<)

M (s
’ [Hx,u(,:))(c)} Pr+1) [MT(C) H"”T’“ﬂ)(g)] =0

wheres = N — 7 — 1 andi is defined as in the text below (6.42). Since the second term is

positive semidefinite, a sufficient condition for the enéxgression to be positive definite

is that the first term in (6.58) is positive definite. This isisfeed when the assumptions

Al, A2 and A3 are satisfied. Second, the condition (6.57b)tbase shown to hold.

Inserting (6.13) gives the condition

0 )

(6.58)

B()Qy ' ()B™ (<) 0 B()Qy () H (; (<) (6.59)
= 0 Q1<) 0 =0
Hy )R )BT (<) 0 Hy)(9)Qu (OH ; 4(<)
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wherei is defined as in the text below (6.42). Rearrange the rows aluenns to obtain
the equivalent condition

Qc'(<) 0 0
[ 0 B($)Qy' ()BT (s) B()Qu () Hy; 5(<) | =0  (6.60)
0 Hy)(9)Qu (9)BT(S)  Hyyi,)(9)Qu () H i (<)

SinceQ; (<) = 0, it remains to investigate the definiteness of the blockkeaight and
below.
B(s) -1 T T
B H = 6.61

i@t [Ere Bl ©] 2o (6.61)
Due toQ; *(s) = 0, the block in (6.61) is always positive semidefinite. To benptete,
the time instant-1 has to be considered separately. Using (6.13) and (6.4@)mmn
instantr = —1 there is only one condition to fulfill

Qa(-1)=Q. (N) =0 (6.62)

and there does not exist afiy{ —1) to check for positive definiteness.

The conclusion from this section is that provided the assiomp A1, A2 and A3 are
satisfied, the equation in (6.37) can be solved using a Riceairsion. The procedure
starts with the backward recursions in (6.55) f&¢r) and ¥(r), followed by forward
recursions fofi(7), u(7) andA(7), which are formed by the equations for the dynamics in
(6.14) and the equations in (6.53) and (6.47), respectivetypore thorough presentation
of these calculations for similar problems can be foundangxample, [95] and [105],
where it is also shown that the computational complexitytf@se calculations grows
linearly with the prediction horizo®v. The primal variables are finally found according
to the discussion in Section 6.1.4.

6.1.6 Handling Parallel Constraints

In Section 6.1.5H,,(t) was assumed having full row rank. In this section, Assunmptia
is to be slightly relaxed. There are situations where it isassary to have constraints with
linear dependent rows. An important case for the MPC probteparallel constraints
which occur when there are upper and lower bounds on statesantrol signals. The
word parallel refers to the gradients of the constraintsb&grecise, in this case these
are anti-parallel. This type of constraints are especiatiyortant in the development of
a solver for the node problems in a branch and bound algorithrthe node problems,
binary constraints are relaxed to interval constraintdclvhave to be solved by a solver
handling parallel constraints.

Parallel constraints can be written as

S

H, (D)2 (t) + Hu(t)u(t) < hy(t)

) . ) (6.63)
—H () (t) — Hy(tu(t) < —h_(t)

where it is assumed that there exist strictly feasible joithtat is i () > h_(t). Fur-
thermore, to simplify the notation in the discussion belibwvg assumed that there is only
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one parallel constraint in each time instant, thaffds(t), H,(t), h(t) andh_(t) only
contain one row. The constraints in (6.63) can be writtenhenform in (6.1) by making
the following definitions

wio=[50] o= [0 wo=[]) o

It is important to be specific imhich problems it is desirable faf,, (¢) to have full
row rank. If the primal optimization problem has inequatignstraints wheréf,, (¢) does
not have full row rank, it might cause problems in the duavsplin the derivation of the
algorithm in the previous section, it was concluded thatrtves of I, (¢) that actually
appeared in the Riccati recursion were those correspomaingctive dual constraints. If
adual constraint is active, for examplgr) = 0, row: in H,,(7) is not used in the Riccati
recursion. Hence, there would not be a problem if there weuldt another rowj # i
in H,(7) which is linearly dependent with roiw What is important is that they do not
appearsimultaneouslyn the Riccati recursion. As will be shown, this can be gutered
by proper initialization of the active set.

To investigate the problem, consider linear dependenticings of the type in (6.63).
Assume that the dual variables corresponding to these reamistarev (N — ¢t — 1)
andv_(N —t — 1). As already discussed in the text below (6.41), if the cemstr
vy (N —t—1) = 0is in the working setfl, (¢) appears in an equation of the same type as
in (6.42b) and not in an equation of type in (6.42a) I N —t — 1) = 0 is not included
in the working setHu(t) appears in an equation of the type (6.42a) and not in an equati
of type (6.42b). Equations of the type (6.42a) are solvedpmsteof the Riccati recursion.
It can be realized that ifeitherv, (N —t—1) = O norv_(N —t—1) = 0 is present in the
working setboth H, (N —t—1) and—H, (N —t—1) are included irf,, ; .,(N —t —1)
in (6.42a) and this will decrease the row rankidf ; .,(N — ¢t — 1). Specifically, the
row rank of i, ; .y (N — ¢ — 1) will not be full, which was a sufficient condition for the
Riccati recursion in Section 6.1.5 to be well defined. It widlv be shown that under the
assumptiorh. (¢) > h_(t), this situation will never occur.

The two parallel constraints in (6.63), will produce two mwf the type (6.42a) as
described in (6.64).

H,Q:'H vy (1) — H,Q;"H  v_(7) + H,Q; ' BTE(7) + hy + Ho AT +1)

= py (1) (6.65a)
— ﬁuQ;1ﬁ3U+(T) + IA{qulfIgv_ (1) — quleBTa?(T) —h_ — ﬁIA(T +1)
=pu_(1) (6.65b)

For simplicity, some of the time indices are omitted. By camirig (6.65a) and (6.65b),
the following inequality is found

pi(r)—hy =—p (1) —h_ & p () +p(r)=hy —h_>0  (6.66)

where the last inequality follows from the assumption thnetré exist strictly feasible
points with respect to the upper and lower bounds. Consitleresinstant with two primal
parallel constraints, and two corresponding dual cormgsalt is only possible to remove
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one constraint from the working set in each QP-iterationer€fore, if both constraints
are to be removed from the working set, it has to be performead/d QP-iterations. In
the first QP-iteration, any of the two constraints is removedhe second QP-iteration,
the decision to remove the remaining constraint has to kentakhich implies that the
condition for constraint removal has to be satisfied for tmsstraint. According to Al-
gorithm 2.1, this condition is that the corresponding duaiable ;. should be strictly
negative. Note that, heyeis the dual variable of the dual problem and the correspandin
variable in Algorithm 2.1 is\. Assumev, (1) = 0 is in the working set and_ (1) = 0
is not in the working set and is therefore free. Thern(r) = 0. Only if py(7) <0, itis
possible thav, (7) = 0 is removed from the working set. If the assumptipngr) = 0
andu (1) < 0 are inserted into (6.66), the result is

pa (7) + p—(7) = pg (1) £ 0 <0 (6.67)

But this leads to a contradiction since (6.66) always holde result is similar it (7) =
0 is chosen to belong to the working set. Hence, the desiredt fedows.

The conclusion is that if the algorithm is properly initzdd, that is at least one of
v+ (1) = 0 andv_(7) = 0 belongs to the working set, then future changes of the wgrkin
set will never remove both, () = 0 andv_(r) = 0 from the working set. Hence,
H, will always have full row rank if all constraint gradientsealinearly independent
excluding the dependence between constraint couplesrigrparallel constraint as in
(6.63). Thus, it is possible to replace Assumption A3 with telaxed assumption As-
sumption A4.

Assumption A4. H,(t) has full row rank fort = 0,..., N — 1, excluding the linear
dependence between pair of parallel constraints as inY@®3 ~ (t) > h_(t).

6.1.7 Increasing Performance

In the active set algorithm, similar KKT systems are solvedubsequent iterations. As
has been discussed earlier, to be able to take advantage siftiarities, it is common
to use block inversion (see Algorithm A.1). This is possivieen there is an invertible
matrix which is unchanged between all iterations. In théofmm considered here, the ma-
trix block which is unchanged is singular and therefore klmwersion cannot be used.
Anyhow, for the method described in this chapter, there #rerovays to reuse compu-
tations from previous iterations. In each iteration therernly one constraint added or
removed from the working set. Seen from an MPC perspectiventeans that the prob-
lem is changed only in one time instant at each iteration.aBse the Riccati recursion
runs backwards in time, only time instants before (in dualkti) the time step when
the constraint is added have to be recomputed. In geneml¢canstraint on a compo-
nent ofa(7’) is added or deleted from the working sét(r) has to be recomputed for
7 = 1/,...,0. The same holds fo¥ (7). That is, the backward recursions can reuse
old computations. Since, the forward recursions use indion from the last step in the
backward recursions, the forward recursions always halse tompletely recalculated.
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6.1.8 Future Extensions

There are several interesting and promising future extesspossible for this algorithm.
In the algorithm presentedy, (¢) is assumed having full row rank for all time steps.
This assumption limits the use of the algorithm, since itaspossible to have pure state
constraints, that is, constraints with, (t) = 0. Some successful preliminary tests have
been performed for this case, but there are still some deimilnvestigate before the
algorithm can be considered to work also for this type of f@ots.

As been discussed previously in Section 2.4, classicaleas#gt methods, like Algo-
rithm 2.1, do not allow rapid changes to the working set. Tia great drawback for
problems with many active constraints at the optimum. Ometism to this problem is
to use a gradient projection algorithm, which can rapidlydifyothe working set. An
interesting idea is to combine the tailored method from $iistion with the more rapid
handling of the working set offered by the gradient projaetalgorithm. The idea of
allowing rapid changes to the working set has actually bestetl ad-hoc, without any
theoretical considerations, in the current implementatbthe algorithm. Preliminary
results indicate that a very high performance increase eaxpected.

In the examples, the dual algorithm has been initializeti aitdual constraints active
and the origin as the dual starting point. A more efficientiatization would be to first
solve the unconstrained primal problem and then allidhe violated constraints to the
working set. Note that the unconstrained primal problenmesponds to, via the comple-
mentary slackness condition, the fully constrained duablg@m. This strategy has been
previously used by other authors with good results, [75] rddgent projection algorithm
would probably “automatically” behave in a similar manner.

6.1.9 Simulation Results

In this section, the algorithm is applied to the MPC probleradntrol a mass as described
in Section 3.4.1. The setup is similar to the one used in &e&i2.2 but with two impor-
tant differences. First, since the algorithm presentethi;mgection is only able to solve
linear MPC problems, the binary control signal is omitteadinfrthe problem. Second,
the magnitude of the real-valued control signal is conséaito be less than or equal to
9. This value has been chosen to ensure that a reasonable taofidlie constraints are
active at the optimal solution. For example, at the predictiorizon N = 1500, 601
constraints are active at the optimum. By using zero ordit mmpling with sampling
time 0.1's, the continuous time description is converted to a disetigte description of
the form (3.1) with

c=1[0 1] (6.68)
The cost function used in this example is of the type desdrib&ection 3.1, with
Qe =100, Q, =1 (6.69)
The initial state is chosen to be
x1(0) = 5andz,(0) =0 (6.70)

and the reference signal for the position of the mass is chiosker(¢) = 10sin(¢). The
problem has been solved for different prediction horizamthe computational time has
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Figure 6.1: This plot shows the computational times for two different §vers.
The QP algorithm described in this section is implementethénfunctiondr qp.

The solid line shows the computational time when this atharisolves the problem
from scratch. The dotted line shows the computational tirherwa warm start is
simulated when usingr qp. The dashed line shows the computational time for the
standard QP solvaruadpr og.

been evaluated. The result from these tests are shown imeF@W. In the tests, the
QP algorithm presented in this chapter is used to solve thidgm first from scratch and,
second, given the optimal active set. This algorithm is enggnted in the functiodr gp.

In the latter test, the algorithm starts in the origin anckis o solve one QP subproblem
before the optimal solution is found. This test is supposeat least roughly, simulate
a warm start. As can be seen in Figure @ldgp has significantly lower computational
complexity compared tquadpr og from the Optimization Toolbox in MTLAB. Con-
sidering prediction horizons frodl¥ = 100 to N = 1500, the computational complexity
for dr gp when cold started is in this test found to be approximat{y?). If the same
algorithm is warm started, the computational complexitygduced to approximately
O(N). The latter result was expected since in the warm start aasgidered, only one
Riccati recursion had to be computed and the Riccati rezuiisiknown to have the com-
putational complexityO(N), [96]. The MaTLAB functionquadpr og is found to have
an approximate computational complexity @f N3-2). Therefore, the conclusion from
this test is that the algorithm presented in this chapteahsignificantly lower computa-
tional complexity compared to the generic algoritouadpr og. Also, warm starts are
found to be very efficient. However, it should be emphasibed the solver was supplied
with the optimal working set during the warm starts. In pi@stat least a few QP itera-
tions are expected necessary in most cases. When gedpr og, the MPC problem
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k*

xkO* l’kl*

Figure 6.2: This figure illustrates how the feasible set is changed aftaanch.

has been formulated as a QP problem using a dense optinmzatblem formulation as
in (3.5). The test has been performed on a Intel Pentith@GHz with 512 Mb RAM
running Microsoft Windows XP Professional Version 2002v8ar Pack 2 and MTLAB
7.0.1 Service Pack 1. The computational time is calculasatguthe MATLAB command
cputi nme.

6.2 A Mixed Integer Quadratic Programming
Algorithm

The main reason for the development of the dual QP algorithi8edction 6.1, is the
need for a solver that is easy to warm start. When solving anRvipg@pblem, one of
the best methods to use is branch and bound. This methodrisutiidy described in
Section 2.5.2. In branch and bound, several similar sulipnubare solved subsequently.
Hence, it would be very useful to use the solution from ongsoilem as a starting point
in the next problem.

In the discussion that follows, the notation introduced éct®n 2.5.2 is used. Con-
sider a branching procedure for an arbitrary ndde When the node is branched, two
new nodesV,, and N, are created with

Sko=8:,NB
kO k kO (6.71)
Sk1 = Sk N By
where
Bro = {z|z; =0}, Byy = {z|z; =1} (6.72)
The procedure is illustrated in Figure 6.2. Note that
SroNSp1 =10 (6.73)

and it is therefore clear that a solutionffp is infeasible in, at least, one of the child prob-
lems. In the branch and bound method described in this texiptver bounds computed
by the QP relaxations in the nodes are found by relaxing tharpiconstraints to interval
constraints. Let** denote the optimizer to the relaxed problétfi. Recapitulate from
Section 2.5.2 that variables already branched in ancestigsare fixed to eithéror 1
and these constraints are therefore not relaxed. Thak.isand B, cannot be relaxed.
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To understand what happens when the equality constrait@isabranch is introduced,
three different relaxed problems are considered.

2" = argmin fo(x)
zeSH
kO :
2™ = argmin fo(z)
vest, (6.74)
2" = argmin fo(z)
zeSH

Since the constraint differing/?, from S% is not relaxed, (6.73) also holds for the relaxed
sets.
SEnSt =0 (6.75)

Therefore, a solution™* to P[* is at most a feasible solution to one of the problefj$
or PE. Sincex; is relaxed inPE, it is very likely thatg?* €]0,1[. Only an integer
solution, that is;j?* € {0, 1}, would be feasible in one the child nodes. All other relaxed
variables bugj in P are still relaxed inPf and P:. The conclusion from this discussion
is that it is very likely thatz** cannot be used as a feasible starting point in eifhjgr
or Pt. Therefore, it would be an advantage if a feasible startivigtpalways could be
easily found.

If the solution of the parent problem should be of any use éndhild problem, their
solutions should not differ too much. The natural questiat arises is how much is “too
much”. At first, one interpretation of “too much” could be fe solution of the parent
problem is not feasible in the child problem. But, accordim¢he discussion above, this
is very common in branch bound and there is not much to do aholftan active set
solver is used, the amount of work necessary to reach optynghighly coupled to the
number of changes necessary to the working set until optyrialreached. Therefore,
a reasonable interpretation of “too much” when working véttive set solvers is when
the solution has changed so much that large parts of the mgpdet has to be changed
before optimality is reached. Especially, it would be vesgiful if the old active set cannot
become infeasible when the new equality constraint is thiced.

By using a dual solver for the subproblems, a straightfodwarnse of an old work-
ing set is enabled and the problem of choosing a feasiblalifbint is solved. This
is now motivated by considering the primal problem (2.27) &s dual (2.33). In the
dual solver, the problem equivalent to the dual (2.34) isi@t solved. This problem
is called the dual problem in this discussion. The subproblto be solved in the nodes
of the branch and bound tree will be of the type (2.34). Sinde the Lagrange multi-
plier vector corresponding to the equality constraintgnié equality constraint is added
to the primal problem, the number of elementsiiis increased by one. The interpre-
tation in the dual MPC problem (6.14) is that an extra unaairstd input signal com-
ponent is added. Similarly, if an extra inequality constras added to (2.27), a new
sign-constrained variable is added to the dual problendf2 e interpretation in (6.14)
is that a new sign-constrained control signal is added. Dimelasion is that when new
constraints are added to the primal problem, the dimenditrealual problem increases.
Hence, a feasible dual solution is also a feasible dualisoluthen a constraint is added
to the primal. If the added constraint is an inequality caaist, the new dual variable has
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to be chosen non-negative. Because of the simple structuhe inequality constraints
in the dual problem, given a feasible solution, a new feasiblution can easily be found
when a constraint is added to the primal problem by simplykegthe old feasible so-
lution and setting the new variable to zero. If no previoussfele solution is known, in
the general case given in (2.34), the linear system of empmtionstituting the equality
constraints has to be solved or a Phase | problem has to bedsdlvthe MPC case, the
equality constraints in the dual (6.14) form the dual dyranGiven a control signal and
an initial condition, it is well-known from control theorjpat these equations can be used
to calculate the states over the prediction horizon. Siheertitial statez(—1) in (6.14)
can be interpreted dk a feasible solution to the equality constraint& is o = 0. As a
bonus, this solution also fulfills any non-negativity caasits ona.

When a variable:; is branched in a branch and bound method, an equality camstra
xz; = 0orz; = 1is added to the problem. However, since there already exgsfuiality
constraintsz; > 0 andz; < 1 in the parent problem, an alternative interpretation is
that, for example, the inequality constraint> 0 is converted into an equality constraint
x; = 0. This results in a dual problem similar to the previous peahlwith the difference
that the non-negativity constraint on the corresponding giariable has been removed.
The conclusion is again, if the primal problem is constrdjriee dual problem is relaxed.
If an equality constraint is added to the primal problem mgkhe primal infeasible, the
objective function value becomeasx. In the dual problem, this results in that a constraint
is removed which makes the dual objective function unbodrfdem above (if the true
dual problem (2.33) is considered, the equivalent probl2r84) becomes unbounded
from below), see also Section 2.4.1.

Since the interval0, 1] always contains interior points, bothy > 0 andz; < 1
cannot be active simultaneously. In branch and bound, wbeexample, the inequality
constraintz; > 0 is converted into an equality constraint = 0 it is obvious that the
constraintz; < 1is redundant and it can therefore be removed from the prablers
means that the corresponding dual variable is also remawed the problem. Another
approach is to keep the constraint, but since it never bes@utéve, the corresponding
dual variable is fixed to zero. The first approach has bettdopeance since variables
are removed, while the latter approach is faster to implesiane the problem is changed
less between the nodes.

When variabler; is branched in subproble#;, two subproblems?,, and Py, are
created. InP[§ the constraint;; > 0 from P is converted intar; = 0 and inPf the
constraintz; < 1is converted intac; = 1. Since the optimal working set is passed from
the parent problem to the child problems, one way of easiljopming this constraint
conversion is by deactivating the corresponding dual iaktyuconstraint and setting a
flag indicating that this constraint is now an equality caaist and should therefore never
be included in the working set. If this approach is chosea,dbnstraint for the dual
variable corresponding to the other parallel constraisttbde added to the working set.
Otherwise, none of the dual constraints correspondingedgtrallel primal constraints
are active and the problems discussed in Section 6.1.6 edliro

The conclusion is that a dual solver for the relaxed problentke nodes will make
warm starts easy. Given the old optimal working set, hopefdt so many QP iterations
have to be performed until the optimal working set of the nesbfem is found. Relating
back to what was previously discussed, the optimal solutotihe child problems are
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expected not to differ “too much” from the solution to the grarproblem. However, this
is problem dependent and the dual algorithm presentedsrthbiis will not change this
fact.

6.2.1 Increasing Performance

The ideas presented in Section 6.1.7 can also be used in tQ® Moblver. Since the
child problems are only changed in a single time step contptrehe parent problem,
the backward recursions need only to be recalculated fotirtie step the constraint is
added and backwards. The disadvantage of using this idba atanch and bound level
is that if a branch strategy is used where a branch can beérdsp” before it is pruned,
it might occur that several non-pruned subtrees exist agtbre a great amount of data
might have to be stored for the recalculations. If the steiggace is small, a compromise
between storing all recomputation data and storing no datH ia to store the data from
the “most promising” nodes.

6.2.2 Future Extensions

Probably, the most effective way of increasing the perforoeaof the algorithm would
be to design some kind of preprocessing algorithm simildnéoone presented in Chap-
ter 5. No matter how efficiently the node problems can be sblire number of nodes to
explore seems to explode as the time horizon grows. It igfbes very important to cut
away uninteresting sequences of binary variables at ay stage.

In the current implementation, the subproblems are crefabed the parent problem
by only changing the active set and using flags to indicatetlvénea primal inequality
constraint has been converted to a primal equality comstrais discussed previously,
the alternative is to explicitly rewrite the problem and kifly remove control signals in
the dual. This alternative is expected to give, at leash#iigbetter performance.

When using a dual feasible solver, the inequality (2.13) camded to estimate the
optimal objective function value. Every dual feasible siolu will give a lower bound on
the optimal objective function value. It is straightfonado use this bound to prematurely
abort the solution of a subproblem as soon as a dual feaghléa is known to the
current subproblem and this solution gives an optimal dbjedunction value worse
than the best known upper bound in the branch and bound tree.

6.2.3 Simulation Results

In this section, the algorithm is applied to the MPC problentdéntrol the satellite de-
scribed in Section 3.4.2. The setup is similar to the one us&ection 5.2.2, but in this
example, the magnitude of the real-valued control signiahised to be less than or equal
to 1. As in Section 5.2.2, the states of the system are chosen tieebgatellite attitude

x1, the satellite angular velocity, and the internal wheel velocity;. To obtain a sys-

tem description on the MLD form (3.6), zero order hold samplvith the sampling time

0.1s has been used. The cost function used in this example i®dfple described in

Section 3.10, with

Q. = diag (0.5-10%,107%,107"), Qu, = 10, Qu, =10 I (6.76)
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Figure 6.3: This plot shows the computational times for two different QH
solvers. The MIQP algorithm described in this chapter islénmgented in the func-
tion dr mi qp. The solid line shows the computational time when this atbor is
used. The dashed line shows the computational time for #relatd MIQP solver

m qp.

The initial state is

.7‘1(0) =0, 332(0) =0 and.rg(O) =0 (677)

The reference signal is chosen as

6,(t)
rit)y=1| 0 (6.78)
0
where
0, t<|¥]

0,(t)=< "~ L4 6.79
0 {O.5,t>H{J (6.79)

that is, a step in the satellite attitude @b radians is given when one fourth of the pre-
diction horizon has elapsed. The problem has been solvesti@ral different prediction
horizons in the rang&/ = 10 to N = 220 and the corresponding computational times
are presented in Figure 6.3. In this example, for predidtionzons longer thaf0 time
steps, the algorithm presented in this section has an ajppatex computational complex-
ity of O(N?7), while the standard functiom gp, using the QP solveyuadpr og, has
an approximate computational complexity®@f/N3-*). The MIQP algorithm presented in
this chapter is implemented in the functidnm gp. The implementation of the branch
and bound algorithm ir mi gp has been based on the codeningp, which has been
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modified in order to be able to use the dual algorithm preVjopiesented and to enable
the use of warm starts. Hence, it is exactly the same brangiamnnd code used in the
results fordr qp andmi gp, and therefore, the branch and bound tree has been explored
in exactly the same way. When using qp, the MPC problem has been formulated as
an MIQP problem using a dense optimization problem fornntasimilar to the one in
(3.5). The test has been performed on a Intel Penti®r64GHz with 512 Mb RAM
running Microsoft Windows XP Professional Version 2002v&s Pack 2 and MTLAB

7.0.1 Service Pack 1. The computational time is calculas&uuthe MATLAB command
cputi ne.
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Concluding Remarks

In this thesis, two approaches for how to more efficiently pate the optimal solution to
Quadratic Programming (QP) problems involving binary aalés in control and commu-
nication have been presented. The aim has not been to desanete state-of-the-art
solver, since this is an extremely complex task which ingslgeveral parts that each of
them can be considered as a research area. Instead the dieema® present some new
approaches which can improve the performance of a specifiopthe solver. This im-
provement has been focused on utilizing the specific prolsigatture arising from the
underlying Model Predictive Control (MPC) problem, eveaufh some results are more
generally applicable.

7.1 Conclusions

The work presented in this thesis has generated two algusitipplicable to MPC. The
first algorithm is also applicable to the Multiuser Detent{MUD) problem.

The first algorithm presented in this thesis is a preprongsaigorithm for Binary
Quadratic Programming (BQP) problems having large dialgtamens compared to the
non-diagonal terms. These problems are generally knowawe Bxponential computa-
tional complexity in the number of variables. Simulatiomsé shown that MPC tends to
generate optimization problems where the algorithm carubeessfully applied. In one
example, the computational time was reduced with a fact@i76f

The preprocessing algorithm has also been successfulligdpp the MUD problem
for synchronous Code Division Multiple Access (CDMA). Aftle optimal MUD prob-
lem has been formulated as a BQP problem, the preprocedgonilam has been applied
to compute as many variables as possible in the problemmulations with up to 127
users, more than 99.95 % of the variables were found in therpcessing step. The Bit
Error Rate (BER) for the proposed algorithm was comparetiéacbnventional detector

97
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and the decorrelating detector. Simulations have showtrtibéBER can be significantly
reduced by using the preprocessing algorithm for systertishigh loads. The computa-
tional complexity is found to be higher than the conventlaletector but approximately
the same as the decorrelating detector.

The second algorithm presented in this thesis is a solveviiked Integer Quadratic
Programming (MIQP) problems. The algorithm is built on arfsta and bound frame-
work, where different QP relaxations of the original QP peob are solved in the nodes.
The contribution in this thesis is a dual QP solver tailored MPC. By using Riccati
recursions, the computational complexity of an internalit@Ration is reduced from ap-
proximately betwee®(N?) andO(N?) for an algorithm not utilizing structure 6(N),
whereN is the prediction horizon. In simulations, the overall cdexgty has been found
to be lower than the overall complexity for a generic primalver. Because the solver
works in the dual space, warm starts can easily be used. Topepy is used when
the algorithm is employed for solving the node problems imanbh and bound method.
In simulations, it is shown how the algorithm decreases tlaetital complexity when
solving an MIQP problem arising in MPC involving binary \alvles.

A summarizing conclusion from all work presented in thissikés that there is much
to gain from utilizing problem specific structure when sotyproblems involving binary
variables, both in control and in communication.

7.2 Future Work

The area of integer optimization algorithms tailored fonttol and communications is
far from being completely explored. On the contrary, the kyaresented in this thesis,
and by many other authors, has just opened the door to aestitey and important re-
search area. The importance of this research grows conshyaince the interaction
between classical physical systems and computers is bagamire and more sophisti-
cated. There are several future extensions possible fiegatte algorithms presented in
this thesis. Some of the more important are;

e The properties of the preprocessing algorithm could béné&urinvestigated.

e The preprocessing algorithm could be tested for a MUD problehen a more
sophisticated model of the channel is taken into account.

e The use of the preprocessing algorithm when constraintpragent remains to be
explored. For example, it might be possible to use it to gaeebounds on the
optimal objective function value in a branch and bound meithiod to supply the
method with a good initial guess of the optimal solution.

e The dual active set solver could possibly be extended to lbgmate state con-
straints.

¢ In this thesis, the dual active set solver has been based tassical active set
method, where only one constraint is allowed to be added rapved from the
working set in each internal QP iteration. An alternativpra@ach is to try to incor-
porate the ideas presented in this thesis in a gradientgtimjealgorithm, where
more rapid changes to the active set are allowed.



7.2 Future Work 99

e The fact that the subproblems in the branch and bound metieabéved by a dual
feasible solver has not been fully utilized in this thesisely dual feasible point
can be used to generate a lower bound on the optimal objdativgion value of
the current subproblem, which in some cases can be usedtiotladaolution of a
subproblem prematurely.
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Linear Algebra

In this appendix, some linear algebra results are preseritett7T” be a square matrix
partitioned according to

Ty Tho
T = A.l
[Tm T22:| (A1)

Definition A.1 (Schur complement). Supposéy; is nonsingular, then the matriin
S =Thy — Toy 111 Tho (A.2)
is called the Schur complement®f; in T

The following lemma is called the Schur complement formuld & based on the
discussion in [34, pp. 650-651]. It is given without any groo

Lemma A.1 (Schur complement formula)
Assumé’ symmetric. Then

e T > 0ifandonlyif7y; = 0andS > 0.

o If Ty = 0, thenT > 0if and only ifS > 0.

The following matrix inversion lemma is taken from [104].
Lemma A.2 (Matrix inversion lemma)

If T"andTy; are nonsingular, then

—1 _ _ _ _ _ _
{Tn T12} _ {T111+T111T125 T Tt T TSt (A3)

Ty T STy T s71

wheresS is defined in Definition A.1.
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Proof:

{Tn le} [Tﬂl + T TS ™ oy T T1_11T1251} _ [I 0] (A.4)

To1 Toe —S_ng]_Tfll S—1 0 I
O
LemmaA.3
Given a square matriX € R"”*" the following inversion formula holds
-1
X I 0o I
R @9
Proof:
X —Ij(0o -I I 0
5 =0 %9
O

Algorithm A.1 provides a method for solving a linear systenthwa non-singular
submatrixT}; in two steps by partitioning the coefficient matfixin four blocks. The
algorithm is taken from [34].

Algorithm A.1 Block elimination
Given a linear equation systeffiz = b, whereT" is nonsingular and partitioned as
in (A.1). AssumeT’; nonsingular and make the partitionings= [xlT xQT]T and
b=[o7 b}]".
FormT, ;' Tho andT;'b; . )
FormS = Ty, — T21T1_11T12 an(jb = by — T21T1_11b1.
Determinex, by solvingSz, = b.
Determiner; by solvingTy1x1 = by — Thiaxo




Model Predictive Control
Formulations

In this appendix, the MPC problem to minimize the objectiwedtion (3.2) subject to the
dynamics 3.1 and the constraints 3.3 is cast on the form of arQflem, that is (2.21).
This can be done in several ways. See, for example, [67]. Ptimization problems are
formulated for time stepy,, which means that is the measured or estimated state of the
true system at time step.

In this thesis, two different formulations are used. Themdifference between the
two formulations is the formulation of the dynamic equasoSome notations are shared
by the two formulations:

= [wT(to), 2T (to+1),..., 27 (to + N)}T
— [u7(to), u” (tg +1),...,uT (to + N — 1)]
= [T (to), 7T (to + 1), (b0 + N)] (B.1)
Qe—dlag(Qm... e)s Qufdlag(Qu,...,QU),C:diag(C,...,C)
H, = diag (Hy(0), ..., Hu.(N — 1)), Hy = diag (H;(0),..., Hy(N))
h = diag (h(0), .., h(N)

wherez(t) € R™ are the predicted stateg(t) € R™ are the computed optimal control
inputs and-(¢) € R? is the reference signal. Note that it is not necessary toidtect (¢,)
in x, since it is only set to the constary.

B.1 Complete Set of Variables

The most straightforward way to cast the MPC problem on tinen fof a QP is to keep
the dynamic equations as equality constraints. The MPCl@mois then formulated as a
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QP on the form

1 0 0 0 X
minimize 5[xT ul eT] 10 Qu 0] |u
X,u,e 0 0 Qe
X
subject to [A B 0] |u| =b
¢ (B.2)
X
[C 0 —I] ul —r=20
e
X
[H, H, 0] [u| +h<0
e
where
e = [eT(to), e (to +1),..., e (tg + N)] "
b=[-zf 0 ... 0"
T o
- B 0 0 (B.3)
0 A I 0 O 0 B 0
A=1lo0 o0 A 0o 0| B= .
0 0 0 ... A - 00 ... B

This formulation requireV (n + m + p) variables and gives a sparse Hessian matrix and
a sparse constraint matrix. If this formulation is used, laesaeither utilizing sparsity or
the causality structure should be used.

B.2 Reduced Set of Variables

In the other formulationx is expressed as a function of the initial stageand the control
inputsu. The vectorx containing the states can then be inserted into the eqsafiion
the control erroe. Finally, e is inserted into the objective function. By using the system
equationsx can be found as

x = Spxg + Syuu (B.4)

where

o~
oo
o o
o O

_ (B.5)

S
&
w
(e}

AN AN-IB AN=2B ... B
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The equality constraints are now eliminated and the oljedtinction can be written as

J = (C(Spao + Suu) — )T Qe (C(Spz0 + Suu) — r) + u”'Quu

(B.6)
=u” (STCTQ.CSy + Qu) u+2 (STCTQ.CSuzo — STCTQN) u+
wherex is a constant. By using (B.4), the inequality constraintsloa written as
Hyx+H,u+h=H,S,u+H,u+h+H,S, 20 <0 (B.7)

Ignoring the constant and dividing by two gives the equina@gtimization problem

minimize %uT (STCTQ.CS, +Qu) u+ (STCTQ, (CSpzo — 1)) u (.5)

subjectto  (H,S, +H,)u+h+H,S,20<0

In this formulation, the Hessian becomes dense &md optimization variables are re-
quired.
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