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Abstract

The main topic of this thesis is integer quadratic programming with applications to prob-
lems arising in the areas of automatic control and communication. One of the most
widespread modern control principles is the discrete-timemethod Model Predictive Con-
trol (MPC). The main advantage with MPC, compared to most other control principles,
is that constraints on control signals and states can easilybe handled. In each time step,
MPC requires the solution of a Quadratic Programming (QP) problem. To be able to
use MPC for large systems, and at high sampling rates, optimization routines tailored for
MPC are used. In recent years, the range of application of MPChas been extended from
constrained linear systems to so-called hybrid systems. Hybrid systems are systems where
continuous dynamics interact with logic. When this extension is made, binary variables
are introduced in the problem. As a consequence, the QP problem has to be replaced by
a far more challenging Mixed Integer Quadratic Programming(MIQP) problem. Gener-
ally, for this type of optimization problems, the computational complexity is exponential
in the number of binary optimization variables. In modern communication systems, mul-
tiple users share a so-called multi-access channel, where the information sent by different
users is separated by using almost orthogonal codes. Since the codes are not completely
orthogonal, the decoded information at the receiver is slightly correlated between differ-
ent users. Further, noise is added during the transmission.To estimate the information
originally sent, a maximum likelihood problem involving binary variables is solved. The
process of simultaneously estimating the information sentby multiple users is called mul-
tiuser detection. In this thesis, the problem to efficientlysolve MIQP problems originating
from MPC is addressed. Two different algorithms are presented. First, a polynomial com-
plexity preprocessing algorithm for binary quadratic programming problems is presented.
By using the algorithm, some, or all, binary variables can becomputed efficiently already
in the preprocessing phase. In simulations, the algorithm is applied to unconstrained MPC
problems with a mixture of real and binary control signals. It has also been applied to the
multiuser detection problem, where simulations have shownthat the bit error rate can
be significantly reduced by using the proposed algorithm as compared to using common
suboptimal algorithms. Second, an MIQP algorithm tailoredfor MPC is presented. The
algorithm uses a branch and bound method where the relaxed node problems are solved
by a dual active set QP algorithm. In this QP algorithm, the KKT-systems are solved using
Riccati recursions in order to decrease the computational complexity. Simulation results
show that both the QP solver and the MIQP solver proposed havelower computational
complexity than corresponding generic solvers.
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Notational Conventions

Symbols, Operators and Functions

Notation Meaning
A ≻ (�)0 A positive (semi)definite matrix.
x ≥ (>)y Componentwise (strict) inequality for vectorsx andy. Re-

duces to a scalar inequality whenx andy are scalars.
AT Transpose of matrixA.
A−1 Inverse of matrixA.
diag(X1,X2, . . .) Block diagonal matrix with matricesX1, X2,. . . along the

diagonal.
diag(x1, x2, . . .) Diagonal matrix with diagonal elementsx1, x2,. . ..
diag(x) Diagonal matrix with diagonal elementsx1, x2,. . ..
I, (In) Identity matrix (withn rows).
0 When used in a block of a matrix or of a vector,0 denotes

a matrix, or a vector, with all elements equal to zero.
1, (1n) A vector (withn components) with all components equal

to one.
A(i,:) Row i of matrixA (MATLAB -notation).
A(:,i) Columni of matrixA (MATLAB -notation).
xi Componenti of vectorx.
rankA Rank of matrixA.
‖x‖Q Weightedℓ2-norm for vectorx with weight matrixQ.
N (µ, σ2) Gaussian distribution with meanµ and varianceσ2.
cov (n(t), n(τ)) Covariance between random variablesn(t) andn(τ).

argmin
x

f(x) The optimal solution tomin
x

f(x).
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2 Notational Conventions

Notation Meaning
dom f(x) Domain of functionf .
sign Signum function.
L Lagrangian.
g Lagrange dual function.
p∗ Optimal primal objective function value.
d∗ Optimal dual objective function value.
κ A constant.
relint C Relative interior of setC.
|C| Cardinality of setC.
C∁ Complement of setC.
⌊x⌋ The floor function. Gives the largest integer less than or

equal tox.

Sets

Notation Meaning
R Set of real numbers.
R

n Set of real vectors withn components.
R

n×m Set of real matrices withn rows andm columns.
Z Set of integers.
S

n Set of symmetric matrices withn rows.
S

n
+ Set symmetric positive semidefinite matrices withn rows.

S
n
++ Set symmetric positive definite matrices withn rows.

{0, 1}n Set of vectors withn binary components.

Abbreviations and Acronyms

Abbreviation Meaning
ACC Adaptive Cruise Control
BER Bit Error Rate
BQP Binary Quadratic Programming
CDMA Code Division Multiple Access
CP Constraint Programming
DMC Dynamic Matrix Control
ELC Extended Linear Complementarity
FDMA Frequency Division Multiple Access
GBD Generalized Benders Decomposition
IP Interior Point
KKT Karush-Kuhn-Tucker
LC Linear Complementarity
LP Linear Programming
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Abbreviation Meaning
LQR Linear Quadratic Regulator
MBQP Mixed Binary Quadratic Programming
MILP Mixed Integer Linear Programming
MINLP Mixed Integer Non-Linear Programming
MIP Mixed Integer Programming
MIPC Mixed Integer Predictive Control
MIQP Mixed Integer Quadratic Programming
ML Maximum Likelihood
MLD Mixed Logical Dynamical
MMPS Max-Min-Plus-Scaling
MPC Model Predictive Control
mp multi-parametric
MUD Multiuser Detection
OA Outer Approximation
PWA Piecewise Affine
QCQP Quadratically Constrained Quadratic Programming
QIP Quadratic Integer Programming
QP Quadratic Programming
SNR Signal to Noise Ratio
SOCP Second Order Cone Programming
SQP Sequential Quadratic Programming
TDMA Time Division Multiple Access
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1
Introduction

Already from the very beginning, man has had a wish to controlphenomena in her sur-
rounding. Through the years, she has learned how to act and how to affect things to make
them behave as desired. As this knowledge has grown, more advanced courses of events
have become possible to control. With modern technology, various kinds of processes
can be controlled. Half a million years ago it was consideredchallenging to control fire.
Today, it is considered challenging to control fusion processes and autonomous airplanes.

Without thinking about it, most people are constantly trying to do things in an optimal
way. It can be anything from looking for discounts to minimize the cost at the weekly
shopping tour, to finding the shortest path between two cities. When to choose between a
long queue and a short queue, most people choose the short onein order to minimize the
time spent in the queue. Most of these everyday problems are solved by intuition and it
is often not crucial to find the absolutely best solution. These are all examples of simple
optimization problems. Unfortunately, there are many important optimization problems
not that easy to solve. Optimization is used in many areas andis in many cases a very
powerful tool. Common, and more advanced, examples are to minimize the weight of
a construction while maintaining the desired strength or tofind the optimal route for an
airplane to minimize the fuel consumption. In these cases, it can be impossible to solve
the problems by intuition. Instead, a mathematical algorithm executed in a computer, an
optimization routine, is often applied to the problem.

In this thesis, control is combined with optimization. The desire is to control op-
timally, in some sense. A common optimal control problem is,in words, to make the
controlled process follow a desired trajectory, while minimizing the power applied. Of-
ten, the words process and system are used interchangeable.A classical controller found
by optimization is the widely used so-called Linear Quadratic Regulator (LQR). In that
framework, a linear system is assumed to be controlled. In practice, all systems are, more
or less, non-linear. Therefore, in order to be able to fit intothe LQR framework, they
are treated as approximately linear systems. A very frequently occurring non-linearity in
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6 1 Introduction

practical applications is that it is not possible to affect the system arbitrarily much. For
example, when using full throttle in a car, the car cannot accelerate any faster. Such a
limitation is called a constraint. As a consequence, a desire has been to extend LQR to
handle systems with constraints. In the past twenty years, such an extension has been
developed and it is commonly known as Model Predictive Control (MPC).

When classical physical processes and computers interact, more advanced optimiza-
tion problems have to be solved in order to use MPC. In such systems, some ways of
affecting the system can only be made in the notion of on or off. In more advanced ex-
amples, logical rules are embedded in the system. To be able to control optimally, the
control has to be aware of these rules and take them into account when the optimal action
is being computed. How to solve these more advanced optimization problems is the main
topic of this thesis.

After this popular scientific introduction, a more precise background is given in Sec-
tion 1.1. The contributions constituting the foundation for some parts of this thesis are
summarized in Section 1.2. This chapter is concluded by a thesis outline given in Sec-
tion 1.3.

1.1 Background and Motivation

MPC is one of the most widespread modern control principles used in industry. One of
the main reasons for its acceptance is that it combines the ability of controlling multi-
variable systems with the ability to easily add constraintson states and control signals
in the system. One of the main ideas behind MPC is to formulatea discrete-time, finite
horizon, control problem similar to LQR as a Quadratic Programming (QP) problem. In
the QP framework, linear constraints on control signals andstates can easily be formulated
as linear inequalities. In order to get a control signal to apply to the system, in each
discrete time step, a QP problem is solved on-line. Because the optimization is performed
on-line, there is a need for efficient QP optimization routines. As the optimization routines
get more efficient, and the hardware more powerful, larger systems at faster sampling rates
are possible to control by MPC.

Recently, the interest of using MPC for controlling systemscontaining a mix of con-
tinuous dynamics and logical rules has arisen. Unfortunately, when this problem is for-
mulated as an optimization problem, the resulting optimization problem is no longer a QP
problem but a Mixed Integer Quadratic Programming (MIQP) problem. These problems
involve binary variables, which makes the problem much harder to solve than an ordi-
nary QP problem. Therefore, there has emerged a need for efficient optimization routines
for MIQP problems. In the state-of-the-art QP solvers for MPC, the problem structure
is utilized in order to decrease the computational effort needed. The need for efficient
optimization routines for MPC involving binary variables forms the main motivation for
this thesis, where MIQP methods tailored for MPC are considered.

In modern communication systems, several users share a so-called multi-access chan-
nel, where the information sent by different users is separated by the use of orthogonal, or
almost orthogonal, codes. In modern communication, the information is represented as a
sequence of bits, that is, zeros and ones. At the receiver, itis natural to search for the in-
formation most likely sent by the sender. This problem can beformulated using statistical
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methods and the resulting problem is an optimization problem where a quadratic objec-
tive is to be minimized and the optimization variables are the bits sent by the users. If all
users are considered simultaneously, the problem is a Multiuser Detection (MUD) prob-
lem. Since the bits are examples of binary variables, the resulting problem is a so-called
Binary Quadratic Programming (BQP) problem, which can be considered as a special
case of an MIQP problem, but where only binary optimization variables are present and
where there are no constraints.

1.2 Contributions

This thesis is based on both previously published, [3, 4, 6],and previously unpublished
results.

The first contribution, [3, 4], is a preprocessing algorithmfor BQP problems with
applications to MPC:

D. Axehill and A. Hansson. A preprocessing algorithm for MIQP solvers with ap-
plications to MPC. InProceedings of the 43th IEEE Conference on Decision and
Control, pages 2497–2502, Atlantis, Paradise Island, Bahamas, Dec. 2004.

The second contribution, [6], is the application of the preprocessing algorithm to the MUD
problem:

D. Axehill, F. Gunnarsson, and A. Hansson. A preprocessing algorithm applicable
to the multiuser detection problem. InProceedings of RadioVetenskap och Kommu-
nikation, Linköping, Sweden, June 2005.

These contributions form Chapter 5. The third contributionis a dual active set QP solver
which is presented in Chapter 6. The solver uses Riccati recursions in order to efficiently
solve the Karush-Kuhn-Tucker (KKT) systems that arise whenthe algorithm moves to-
wards the optimal solution. Further, it is used as a solver for the subproblems in a branch
and bound algorithm applicable to MPC involving binary variables.

1.3 Thesis Outline

This thesis is organized as follows. Chapters 2 to 4 provide background information.
Chapter 2 contains the necessary optimization background.Chapter 3 starts with an in-
troduction to linear MPC, followed by an extension of the method to Mixed Logical Dy-
namical (MLD) systems. Also, different optimization methods for linear MPC as well as
for MPC for MLD systems are surveyed. The chapter is concluded by the introduction of
two examples of MLD systems to be used throughout the thesis.It provides the necessary
background information for Section 5.2 and Chapter 6. In Chapter 4, MUD and Code Di-
vision Multiple Access (CDMA) are explained. This chapter also serves as background
information for Section 5.3. In Chapter 5, a preprocessing algorithm applicable to BQP
problems is derived and it is applied to MPC and MUD. In Chapter 6, an MIQP solver
based on branch and bound is presented. As a part of the chapter, a dual active set QP
solver tailored for MPC is presented. Finally, Chapter 7 summarizes the conclusions from
different parts of the thesis and proposes some possible future extensions.
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2
Optimization

Optimization is the procedure of finding an optimal solutionto a problem. The optimal
solution is the best solution in some sense. In what sense it can be considered best is
given by the choice of the objective function, or cost function. The cost function can
for example be chosen as the cost for producing a product or itcan be the road distance
between two places. Often there are restrictions on which solutions that are allowed. For
example, if the shortest road between two places is sought, it is natural to restrict the
possible solutions to those not suggesting breaking the lawby proposing a one-way road
in the illegal direction. Such restrictions are called constraints.

In this chapter, basic notions in optimization are presented. The notation is chosen
similar to the one in [34].

2.1 Introduction and Basic Concepts

This section is opened with three fundamental definitions ofa convex set, a convex func-
tion and a concave function. The first two definitions are illustrated in Figure 2.1.

Definition 2.1 (Convex set). A setC is convex if for anyx1, x2 ∈ C and anyθ ∈ [0, 1]

θx1 + (1 − θ)x2 ∈ C (2.1)

Convex sets are thoroughly discussed in, for example, [34].In that reference, impor-
tant examples of convex functions are given as well as operations that preserve convexity.

Definition 2.2 (Convex function). A functionf : R
n → R is convex ifdom f is a con-

vex set and if for allx, y ∈ dom f andθ ∈ [0, 1]

f
(
θx + (1 − θ) y

)
≤ θf(x) + (1 − θ) f(y) (2.2)

If this inequality holds strictly wheneverx 6= y andθ ∈]0, 1[, the functionf is strictly
convex.

9



10 2 Optimization

(
x, f(x)

)

(
y, f(y)

)

θf(x) + (1 − θ) f(y)

(a) Convex function

x1

x2

θx1 + (1 − θ)x2

(b) Convex set

Figure 2.1: Illustrations of the Definitions 2.1 and 2.2.

Definition 2.3 (Concave function). A functionf : R
n → R is concave if−f is convex

and strictly concave if−f is strictly convex.

In this thesis, an optimization problem

minimize
x

f0(x)

subject to fi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p

(2.3)

wheref0 : R
n → R, fi : R

n → R andhi : R
n → R is said to be on standard form. The

function f0(x) is called the objective function, or cost function,fi(x), i = 1, . . . ,m
denote the inequality constraint functions andhi(x), i = 1, . . . , p denote the equality
constraint functions. If there are no constraints, the problem is said to be unconstrained.
The domain of the optimization problem is the intersection of the domains of the objective
function and the constraint functions

D =

m⋂

i=0

dom fi ∩

p
⋂

i=1

dom hi (2.4)

If a point x ∈ D satisfies all equality constraints and all inequality constraints, it is said
to be feasible. If there exists at least one such point, the problem is said to be feasible.
Otherwise, the problem is said to be infeasible.

An important special case of (2.3) is when the functionsfi(x), i = 0, . . . ,m are
convex and the functionshi(x), i = 1, . . . , p are affine, that ishi(x) = aT

i x − bi. Then
(2.3) is called a convex optimization problem. Since the objective function is convex and
the intersection of the sets defined by the constraints is convex, a convex optimization
problem means that a convex function is minimized over a convex set. A fundamental
property of convex optimization problems is that a local optimal solution is also a global
optimal solution.

Define the optimal objective function valuep∗ of (2.3) as

p∗ = inf {f0(x) | fi(x) ≤ 0, i = 1, . . . ,m, hi(x) = 0, i = 1, . . . , p} (2.5)
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wherep∗ is allowed to take on the values+∞ and−∞. A point x∗ is called an optimal
point, or an optimal solution, to (2.3) ifx∗ is feasible andf0(x

∗) = p∗. If there exists an
optimal solution to (2.3), the optimal value is said to be attained, or achieved. If there does
not exist any optimal point, the optimal value is not attained. If the problem is unbounded
from below, that isp∗ = −∞, the optimal objective function value is not attained.

Example 2.1

Consider the unconstrained optimization problem

minimize
x

x2 (2.6)

The optimal solution isx∗ = 0 and the optimal objective function valuep∗ = 0 is attained.

Example 2.2

As an example of a problem where the optimal objective function value is not attained,
consider

minimize
x

arctan(x) (2.7)

wherep∗ = −π
2 , but the optimal objective function value is not attained.

The domain of a convex function can be included in the definition of the function by
defining the function value to+∞ outside the domain

f̃(x) =

{

f(x), x ∈ dom f

∞, x 6∈ dom f
(2.8)

Here,f̃(x) is called the extended-value extension of the convex function f(x). The do-
main of the unextended function can be recovered by

dom f =
{

x | f̃(x) < ∞
}

(2.9)

In this thesis, all convex functions are assumed extended. Another important concept is
equivalent problems.

Definition 2.4 (Equivalent problems). Two optimization problems are said to be equiv-
alent if the optimal solution of the two problems coincide, or the solution of the first prob-
lem can be trivially computed from the solution of the secondproblem and vice versa.

To illustrate Definition 2.4, a simple example of later conceptual relevance is shown.

Example 2.3

Consider the following unconstrained quadratic optimization problem

minimize
x

C1x
2 + C2 (2.10)
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An infinite number of equivalent optimization problems to (2.10) can be found by varying
C1 > 0 andC2. That is, all of them has the same optimal solution. It is extremely
important to realize that they are not the same problems. Forexample, in this case the
optimal objective function value varies withC1 andC2.

One application of equivalent problems is to consider a simpler, but equivalent, problem
compared to the original problem. For example, choosingC2 = 0 reduces problem (2.10)
to a problem with only a pure quadratic term.

2.2 Duality

The concept of duality is very important in optimization. The objective by considering a
dual problem is to get an alternative formulation of the optimization problem that is com-
putationally more attractive or has some theoretical significance, [43]. When discussing
duality, no assumption of convexity has to be made, even though such an assumption en-
ables the use of more powerful results. Early work on dualityfor non-linear programming
can be found in, for example, [38, 39, 100].

2.2.1 The Lagrange Dual Problem

In the derivation of a dual optimization problem, the LagrangianL : R
n × R

m × R
p → R

associated with (2.3) plays an important role. The Lagrangian is defined as

L(x, λ, ν) = f0(x) +

m∑

i=1

λifi(x) +

p
∑

i=1

νihi(x) (2.11)

wheredom L = D × R
m × R

p. The variablesλi andνi are the Lagrange multipliers
associated with inequality constrainti and equality constrainti, respectively. The vectors
of Lagrange multipliersλ andν are called the dual variables associated with problem
(2.3).

When the Lagrangian is minimized with respect to the primal variables for a givenλ
andν, the Lagrange dual functiong : R

m × R
p → R

g(λ, ν) = inf
x∈D

L(x, λ, ν) = inf
x∈D

(

f0(x) +
m∑

i=1

λifi(x) +

p
∑

i=1

νihi(x)

)

(2.12)

is obtained.
An important operation conserving convexity properties isthe pointwise infimum of

a set of concave functions, which is a concave function. Since the Lagrange dual function
is affine in(λ, ν), it is precisely a pointwise infimum of a set of concave functions and is
therefore concave. This holds without any assumptions of convexity of the problem (2.3),
that is, the Lagrange dual function is a concave function also in the case when (2.3) is not
a convex problem.

An important property of the Lagrange dual function is that for anyλ ≥ 0, the fol-
lowing inequality holds

g(λ, ν) ≤ p∗ (2.13)
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That is, the dual function gives lower bounds on the optimal objective function value.
Actually, the dual function gives lower bounds on the objective function value for all
feasiblex. Wheng(λ, ν) = −∞, the inequality (2.13) still holds, but it is vacuous.

Since (2.13) forλ ≥ 0 gives lower bounds on the optimal objective function value,it
is interesting to find the pair(λ, ν) that gives the best lower bound. This pair can be found
as the solution to the optimization problem

maximize
λ,ν

g(λ, ν)

subject to λ ≥ 0
(2.14)

This problem is called the Lagrange dual problem associatedwith (2.3). Note that there
exist different dual problems. Example of other dual formulations for non-linear programs
are the Wolfe dual, [100], and the Dorn dual for quadratic programs, [38]. In this thesis,
the Lagrange dual will be used exclusively, hence the word dual will be used, without
ambiguity, as short for the Lagrange dual. To summarize the terminology, (2.3) is called
the primal problem and (2.14) is called the dual problem. A pair (λ, ν) is called dual
feasible ifλ ≥ 0 andg(λ, ν) > −∞. Since the objective function to be maximized in
(2.14) is concave and the feasible set is convex, the dual optimization problem is a convex
problem independently of whether the primal problem (2.3) is convex or not. The optimal
dual objective function value is denotedd∗.

2.2.2 Weak and Strong Duality

In the previous section, it was seen that by solving the dual problem, the best possible
lower bound on the primal optimal objective function value can be found. The inequality
(2.13) holds specifically for the dual optimal pair(λ∗, ν∗) and thus

d∗ ≤ p∗ (2.15)

This inequality is called weak duality. Weak duality holds even if the primal problem is
non-convex and it still holds ifd∗ or p∗ are infinite. Using the extended-value extension,
infinite values can be interpreted as primal or dual infeasibilities. For example, if the
primal is unbounded from below, that isp∗ = −∞, it follows from (2.15) thatd∗ = −∞,
which means that the dual is infeasible. The differencep∗ − d∗ is called the optimal
duality gap and is always non-negative.

For some problems the inequality (2.15) holds with equality, that is,

d∗ = p∗ (2.16)

which means that the lower bound found from the dual problem is tight and the duality
gap is zero. This important property is called strong duality. Unfortunately, strong duality
does not hold in general. It often holds for convex problems,but not necessarily. Con-
ditions guaranteeing strong duality are called constraintqualifications. One well-known
constraint qualification is Slater’s condition. For a convex optimization problem, Slater’s
theorem stated below holds. Let the primal problem be of the form

minimize
x

f0(x)

subject to fi(x) ≤ 0, i = 1, . . . ,m

Ax = b

(2.17)
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wheref0, . . . , fm are convex functions. Slater’s theorem can then provide conditions un-
der which strong duality holds. The domain is assumedD =

⋂m
i=0 dom fi. The following

two theorems are given without proofs and are based on the discussion in [34, p. 226].

Theorem 2.1 (Slater’s theorem)
For the convex optimization problem(2.17), strong duality holds if there exists an
x ∈ relintD such that

fi(x) < 0, i = 1, . . . ,m, Ax = b (2.18)

A verbal formulation of Theorem 2.1 is that if there exist strictly feasible primal
points, strong duality holds. If some of the inequality constraints are affine, then it is
sufficient that a weaker condition holds. Theorem 2.1 can be refined for the case when
the inequality functions are affine. In that case, the affine inequalities do not need to hold
strictly.

Theorem 2.2 (Slater’s theorem, refined)
For the convex optimization problem(2.17), strong duality holds if there exists an
x ∈ relintD such that

fi(x) ≤ 0, i = 1, . . . , k, fi(x) < 0, i = k + 1, . . . ,m, Ax = b (2.19)

wherefi(x), i = 1, . . . , k are affine functions.

Remark2.1. If all constraints are affine, anddom f0 is open, then condition (2.19) in
Theorem 2.2 is reduced to feasibility of the primal problem.

A consequence of Theorem 2.1 and Theorem 2.2 is that the dual optimal objective
function value is attained wheneverd∗ > −∞, that is, whenever the dual is feasible.

2.3 Optimality Conditions

In this thesis the so-called Karush-Kuhn-Tucker (KKT) conditions for optimality are used.
In the general setup, they can be used as necessary conditions for optimality for any
optimization problem with differentiable objective function and constraint functions for
which strong duality holds. If the problem is convex they arealso sufficient according to
the following theorem, based on the discussion in [34, pp. 243–244].

Theorem 2.3 (KKT)
Consider the optimization problem(2.3). Assume that it is convex, thatfi(x), i =
0, . . . ,m are differentiable and that strong duality holds. Then the following so-called
Karush-Kuhn-Tucker (KKT) conditions are necessary and sufficient conditions forx∗ and
(λ∗, ν∗) to be primal respectively dual optimal points

fi(x
∗) ≤ 0, i = 1, . . . ,m (2.20a)

hi(x
∗) = 0, i = 1, . . . , p (2.20b)

λ∗
i ≥ 0, i = 1, . . . ,m (2.20c)

λ∗
i fi(x

∗) = 0, i = 1, . . . ,m (2.20d)

∇f0(x
∗) +

m∑

i=1

λ∗
i∇fi(x

∗) +

p
∑

i=1

ν∗
i ∇hi(x

∗) = 0 (2.20e)
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Proof: See [34, p. 244].

2.4 Quadratic Programming

As a prelude to this section, a general form of a Quadratic Programming (QP) problem is
introduced

minimize
x

1

2
xT Hx + fT x

subject to AEx = bE

AIx ≤ bI

(2.21)

wherex ∈ R
n, H ∈ S

n
++, f ∈ R

n and the rows inAE ∈ R
p×n are given by the

vectors in{ai ∈ R
n | i ∈ E} and the rows inAI ∈ R

m×n are given by the vectors in
{ai ∈ R

n | i ∈ I}. The column vectorsbE andbI are analogously defined. The setsI
andE are finite sets of indices. The Lagrange dual function to (2.21) can be found by first
forming the Lagrangian

L(x, λ, ν) =
1

2
xT Hx + fT x + λT (AIx − bI) + νT (AEx − bE) (2.22)

and then minimizing with respect to the primal variables. Since theH ≻ 0, the unique
minimizer can be found from the first order necessary and sufficient conditions of opti-
mality

∂L(x, λ, ν)

∂x
= Hx+ f +AT

I λ+AT
E ν = 0 ⇔ x = −H−1

(
f + AT

I λ + AT
E ν
)

(2.23)

Inserting (2.23) into (2.22) gives the following expression for the dual function

g(λ, ν) = −
1

2

[
λT νT

]
[
AI

AE

]

H−1
[
AT

I AT
E

]
[
λ

ν

]

−
(
fT H−1

[
AT

I AT
E

]
+
[
bT
I bT

E

] )
[
λ

ν

]

−
1

2
fT H−1f

(2.24)

Using (2.14), the dual problem is found to be

maximize
λ,ν

−
1

2

[
λT νT

]
[
AI

AE

]

H−1
[
AT

I AT
E

]
[
λ

ν

]

−

−
(
fT H−1

[
AT

I AT
E

]
+
[
bT
I bT

E

] )
[
λ

ν

]

−
1

2
fT H−1f

subject to λ ≥ 0

(2.25)

By changing the sign of the objective function and ignoring the constant term, (2.25) can
be written as an equivalent (see Definition 2.4) minimization problem

minimize
λ,ν

1

2

[
λT νT

]
[
AI

AE

]

H−1
[
AT

I AT
E

]
[
λ

ν

]

+

+
(
fT H−1

[
AT

I AT
E

]
+
[
bT
I bT

E

] )
[
λ

ν

]

subject to λ ≥ 0

(2.26)
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Remark2.2. Note that the optimal solutions of (2.25) and (2.26) coincide. But, the op-
timal objective functionvaluesdo not generally coincide. This is extremely important
to remember when working with weak and strong duality results. These results relate
the optimal objective function value of (2.21) to the optimal objective function value of
(2.25), but not to the optimal objective function value of (2.26).

The great structural advantage with the dual problem (2.25), or (2.26), compared to
the primal problem (2.21), is that the latter only has simplenon-negativity constraints. A
consequence of the simple constraint structure is that the origin is always a feasible solu-
tion. Furthermore, the simple structure of the constraintsenables the use of the efficient
gradient projection algorithm, which allows more rapid changes to the working set (see
Section 2.4.2) compared to a classical active set algorithm, [77]. More advantages of the
dual formulation are presented in Section 2.4.3.

In this thesis, a variant of (2.21) will be of great interest

minimize
x1,x2

1

2

[
xT

1 xT
2

]
[

H̃ 0
0 0

] [
x1

x2

]

+
[

f̃T 0
]
[
x1

x2

]

subject to
[
AE,1 AE,2

]
[
x1

x2

]

= bE

[
AI,1 AI,2

]
[
x1

x2

]

≤ bI

(2.27)

wherex1 ∈ R
n1 , x2 ∈ R

n2 , H̃ ∈ S
n1

++ andf̃ ∈ R
n1 . The dual problem of (2.27) is de-

rived in a similar manner as the dual problem of (2.21), but the derivation becomes slightly
complicated by the fact that the Hessian is not positive definite. First, the Lagrangian is
derived

L(x1, x2, λ, ν)

=
1

2
xT

1 H̃x1 + f̃T x1 + λT

(

AI

[
x1

x2

]

− bI

)

+ νT

(

AE

[
x1

x2

]

− bE

)

=
1

2
xT

1 H̃x1 + f̃T x1 + λT AI,1x1 − λT bI + νT AE,1x1 − νT bE

+
(
λT AI,2 + νT AE,2

)
x2

(2.28)

The Lagrange dual function is found by minimizing the Lagrangian with respect to the
primal variables

g(λ, ν) = inf
x1,x2∈D

L(x1, x2, λ, ν)

=







inf
x1∈Rn1

1
2xT

1 H̃x1 +
(

f̃T + λT AI,1 + νT AE,1

)

x1 − λT bI − νT bE ,

whenλT AI,2 + νT AE,2 = 0

−∞, otherwise

(2.29)

According to (2.29), ifL is to be bounded from below the following condition has to be
fulfilled

λT AI,2 + νT AE,2 = 0 (2.30)
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If (2.30) is inserted into (2.28), the Lagrangian becomes a strictly convex function ofx1,
λ andν. First order necessary and sufficient conditions for optimality with respect tox1

are
∂L(x1, λ, ν)

∂x1
= H̃x1 + f̃ + AT

I,1λ + AT
E,1ν = 0 (2.31)

or equivalently

x1 = −H̃−1
(

f̃ + AT
I,1λ + AT

E,1ν
)

(2.32)

When formulating the dual problem, the implicit constraint in (2.30) is made explicit by
adding it to the list of constraints. After inserting (2.32)into (2.29), the dual problem is
concluded to be

maximize
λ,ν

−
1

2

[
λT νT

]
[
AI,1

AE,1

]

H̃−1
[
AT

I,1 AT
E,1

]
[
λ

ν

]

−

−
(

f̃T H̃−1
[
AT

I,1 AT
E,1

]
+
[
bT
I bT

E

] )
[
λ

ν

]

−
1

2
f̃T H̃−1f̃

subject to AT
I,2λ + AT

E,2ν = 0

λ ≥ 0

(2.33)

By changing the sign of the objective and removing the constant term, a problem equiva-
lent to the dual problem is

minimize
λ,ν

1

2

[
λT νT

]
[
AI,1

AE,1

]

H̃−1
[
AT

I,1 AT
E,1

]
[
λ

ν

]

+

+
(

f̃T H̃−1
[
AT

I,1 AT
E,1

]
+
[
bT
I bT

E

] )
[
λ

ν

]

subject to AT
I,2λ + AT

E,2ν = 0

λ ≥ 0

(2.34)

For an extensive bibliography on QP, see [51].

2.4.1 Strong Duality for Convex Quadratic Programming

Early work on duality for QPs can be found in [38], [39] and [37]. Since the constraints
of a QP are linear, it follows from Theorem 2.2 that if the primal problem is feasible,
strong duality holds. Sometimes the primal optimal solution can be derived from the
dual optimal solution. In those cases, it can sometimes be advantageous to solve the dual
problem instead of the primal problem. When the dual optimal solution has been found,
it can be used to easily compute the primal optimal solution.If this approach is used, it is
important to know what will happen in the dual problem if the primal problem does not
have any solution. In this section, the primal problem (2.27) and the dual problem (2.33)
are considered. The desirable situation is that the dual problem has a solution if and only
if the primal problem has a solution. The primal problem considered has an objective
function that is bounded from below.

Consider feasibility of the primal and the dual problem. Four mutually exclusive cases
can occur:



18 2 Optimization

Case Primal Dual
1 Feasible Feasible
2 Infeasible Infeasible
3 Feasible Infeasible
4 Infeasible Feasible

Since the problem considered has an objective function value that is bounded from
below and strong duality holds, case 3 can never occur.

From strong duality, in case 1 the primal and dual optimal objective function values
coincide.

For case 4, it will now be shown that the dual optimal objective function value be-
comes unbounded from above. First, a strong alternative result from [34] is needed.

Lemma 2.1
The following two systems of inequalities are strong alternatives

1. Ax ≤ b

2. λ ≥ 0, AT λ = 0, bT λ < 0

that is, exactly one of the alternatives holds.

Proof: See [34, pp. 261–262].

Theorem 2.4
If the primal problem(2.27)is infeasible, and the dual problem(2.33)is feasible, then the
dual problem(2.33)is unbounded from above.

Proof: Consider a QP problem of the type in (2.27) with only inequality constraints and
defineJD(λ) to be the dual objective function. Assume the dual problem feasible. Then
∃ λ̄ : AT

I,2λ̄ = 0, λ̄ ≥ 0. Further, assume the primal infeasible. Then, from Lemma 2.1,
it follows that∃λ′ : λ′ ≥ 0, AT

I λ′ = 0, bT
I λ′ < 0. Note that

AT
I λ′ =

[
AT

I,1

AT
I,2

]

λ′ = 0 (2.35)

SinceAT
I,2

(
λ̄ + αλ′

)
= 0, the sumλ̄ + αλ′ is dual feasible for everyα ≥ 0. It now

holds that

JD(λ̄ + αλ′) = −
1

2

(
λ̄ + αλ′

)T
AI,1H̃

−1AT
I,1

(
λ̄ + αλ′

)

−
(

f̃T H̃−1AT
I,1 + bT

I

) (
λ̄ + αλ′

)
−

1

2
f̃T H̃−1f̃

= −
1

2
λ̄T AI,1H̃

−1AT
I,1λ̄ −

(

f̃T H̃−1AT
I,1 + bT

I

)

λ̄ −
1

2
f̃T H̃−1f̃ − αbT

I λ′

= JD(λ̄) − αbT
I λ′ → +∞, α → +∞

(2.36)

sincebT
I λ′ < 0, and where the second equality follows fromAT

I,1λ
′ = 0. The general

case, where equality constraints are included, follows directly from the proof above by
expressing an equality constraint as two inequality constraints.
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Case 2 does not need any further investigation since the desired result is immediate.
Two important conclusions can now be drawn. First, if the dual is infeasible, then the

primal is infeasible. Second, if the dual is feasible, then the primal is feasible if and only
if the dual optimal objective function value is bounded fromabove.

2.4.2 Active Set Methods

An inequality constrained QP can be solved either using an interior point method or an
active set method. In this text the focus will be on an active set method. A well-known
example of an active set method for linear programs is the simplex method. As soon
will be apparent, the notion “active set” allude to the way the method works. To solve
an equality constrained QP is rather straightforward. An active set solver reduces the
problem of solving the inequality constrained problem to solving a sequence of equality
constrained problems. In this text, a step in this solution sequence will be referred to
as a QP iteration. The material presented in this section is based on [77] and [43]. The
problem to be solved is of the type in (2.21), withH ∈ S

n
+. However, in each QP iteration

an equality constrained QP withm ≤ n number of constraints is considered:

minimize
x

1

2
xT Hx + fT x

subject to Ax = b

(2.37)

whereA ∈ R
m×n has full row rank, that isrankA = m. If A does not have full row rank,

the constraints are either inconsistent or some constraints are redundant in which case they
can be deleted without changing the solution to the problem.Using the equationAx = b,
m variables can be eliminated from the problem by expressing them in the othern − m

remaining variables. Choose matricesY ∈ R
n×m andZ ∈ R

n×(n−m) such that
[
Y Z

]

is nonsingular. Further,Z andY should fulfill AY = I andAZ = 0. That is,one
solution toAx = b is given byx = Y b. Since this solution, in general, is non-unique, an
arbitrary solution toAx = b can be written as

x = Y b + ZxZ (2.38)

wherexZ ∈ R
n−m. The linearly independent columns ofZ can be interpreted as a

basis for the nullspace ofA. If (2.38) is inserted into (2.37), the following unconstrained
optimization problem is obtained

minimize
xZ

1
2xT

ZZT HZxZ + (f + HY b)T ZxZ + 1
2bT Y T HY b + fT Y b (2.39)

Note that the last two terms in the objective function are constants and can therefore be
omitted. The result is an equivalent optimization problem which can be identified as a QP
on the form (2.21) without constraints. The matrixZT HZ is considered as the Hessian
of the reduced problem and is called the reduced Hessian. Itsproperties is of importance
when solving (2.37).

The vectorY b was chosen to beonesolution ofAx = b, that is, in many cases there
is freedom in this choice. This freedom can be used to chooseY such that good numerical
properties are obtained.



20 2 Optimization

The KKT conditions for an optimization problem on the form (2.37) can be written as
a system of linear equations

K

[
x

ν

]

=

[
H AT

A 0

] [
x

ν

]

=

[
−f

b

]

(2.40)

The following lemma taken from [77] gives sufficient conditions for non-singularity of
the KKT matrixK.

Lemma 2.2
Let A have full row rank and assume that the reduced-Hessian matrix ZT GZ is positive
definite. Then the KKT matrixK in (2.40) is non-singular and there is a unique pair of
vectors(x∗, ν∗) satisfying(2.40).

Proof: See [77, 445].

Actually, a more powerful result can be shown. The followingtheorem is taken
from [77].

Theorem 2.5
Suppose that the conditions of Lemma 2.2 are satisfied. Then the vectorx∗ satisfying
(2.40)is the unique global solution of(2.37).

Proof: See [77, p. 446].

Before inequality constraints are considered, a definitionof the active set is necessary.

Definition 2.5 (Active set). The set

A(x) = E ∪
{
i ∈ I | aT

i x = bi

}
(2.41)

wherex is any feasible point, is called the active set atx.

The active set in optimum,A(x∗), is called the optimum active set. An active set
solver has a set containing the indices of the constraints that are treated as equality con-
straints in the current iteration. This set is called the working set and is in iterationk
denotedWk. If A(x∗) would have been known in advance, the problem could have been
solved as an equality constrained problem of the type (2.37), where the constraints are
those being indexed byA(x∗). If an active set solver is supplied with an initial working
setW0, which does not differ much fromA(x∗), the problem can often be quickly solved.
This idea is used in so-called warm starts, where information from a previous optimal so-
lution is used to quickly reoptimize after a minor change to the problem. Unfortunately,
A(x∗) is in general not known in advance. Therefore,W0 has to be initialized in some
way. This can be done by making a guess ofA(x∗), or simply by takingW0 = E .

As previously mentioned, in a QP solver a sequence of equality constrained problems
of the type in (2.37) is solved. Between the solution of each such problem, an inequality
constraint is either added to the working set or removed fromthe working set. After the
working set has been changed, a new optimization problem in the sequence is considered.
This is done by solving the corresponding KKT system of the type in (2.40). Therefore, it
is necessary to solve systems of this type efficiently. For generic QP solvers there exist a
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number of different methods for how this can be performed. For the problems considered
in this thesis, the KKT system has a special structure, whichmakes it possible to solve it
using Riccati recursions. Thus, the standard methods are not surveyed in this text. Some
references to standard methods are, for example, [77] and [43].

It is important that all rows indexed byWk are linearly independent, otherwise the
constraints are either inconsistent or redundant. If this requirement is fulfilled forW0, the
algorithm to be presented guarantees that it will also be fulfilled for Wk in all subsequent
iterations, [77].

Let xk be a feasible solution to the constraints indexed byWk in iterationk. It is
not known whetherxk minimizes the objective function subject to the constraints indexed
by Wk or not. Further, let̂xk+1 denote the optimal solution subject to the constraints
indexed byWk. The step necessary to take fromxk to reachx̂k+1 is then calculated as
pk = x̂k+1−xk. If x̂k+1 is feasible with respect to all constraints in the original problem,
xk+1 is computed according toxk+1 = x̂k+1. Otherwise,αk in xk+1 = xk + αkpk has
to be chosen as large as possible in the interval[0, 1] under the constraint thatxk+1 is
feasible. Sincexk andx̂k+1 satisfy the constraints inWk, so doesxk+1 since

AWk
xk+1 = AWk

(xk + αk (x̂k+1 − xk) )

= AWk
xk + αk (AWk

x̂k+1 − AWk
xk) = bWk

(2.42)

This follows from the fact thatAWk
x̂k+1 = bWk

andAWk
xk = bWk

, independently of
αk. The matrixAWk

and the vectorbWk
contain the rows corresponding to the constraints

in the current working set. Hence, after a step of arbitrary length in the direction̂xk+1 −
xk, the resulting point is always feasible with respect toWk. If αk < 1, there is an
inequality constraint blocking the way towards the optimum. Consider the inequality
constraint with indexi. It can be written asaT

i (xk + αkpk) = aT
i xk + αkaT

i pk ≤ bi. If
aT

i pk ≤ 0, the constraint remains to be fulfilled for an arbitraryαk ≥ 0. On the contrary,
if aT

i pk > 0, αk has to fulfill

αk ≤
bi − aT

i xk

aT
i pk

(2.43)

Of course, if the optimum has been reached before a constraint blocks the search,αk is
chosen to1. Summarizing,αk is chosen as

αk = min

{

1, min
i6∈Wk, aT

i pk>0

(
bi − aT

i xk

aT
i pk

)}

(2.44)

wherepk = x̂k+1 − xk. The constraints for which the minimum in (2.44) is achievedare
called the blocking constraints. Two extremes are whenαk = 1 or αk = 0. The first one
is already discussed, the second one occurs if there exists an i 6∈ Wk such thataT

i xk = bi,
that is, constrainti is active inxk, andaT

i pk > 0. The new working setWk+1 is formed
by adding a blocking constraint to the old working setWk. The procedure is repeated,
and new constraints are added untilx̂k+1 = xk. When this occurs,xk minimizes the
objective function over the working setWk. The Lagrange multipliers for the equality
constrained problem are now computed. A difference betweena Lagrange multiplier for
an equality constraint and an inequality constraint is thatfor an inequality constraint, the
multiplier must be non-negative. Consequently, ifλ̂i ≥ 0, ∀ i ∈ Wk ∩ I, then the
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Lagrange multipliers for all inequality constraints treated as equality constraints in the
last subproblem, are feasible. As a result, the KKT condition (2.20c) is fulfilled forxk.
Lagrange multipliers for inequality constraints not in theworking set, are set to zero.
If there exists an indexj ∈ Wk ∩ I such that̂λj < 0, the KKT condition (2.20c) is
not fulfilled and the objective function value can be decreased by dropping constraintj
from the working set. This conclusion can be drawn from sensitivity analysis. If there
exist negative multipliers, the index corresponding to oneof them is removed from the
working set and a new subproblem with this constraint removed is solved. In [77], it is
shown that this strategy generates a search direction in thenext subproblem that is feasible
with respect to the dropped inequality constraint. Even though it is possible to drop any
of the constraints corresponding to a negative multiplier,the most negative multiplier is
often chosen in practice. This choice can be motivated usingsensitivity analysis. From
this analysis it follows that the decrease in the objective function value when a constraint
is dropped is proportional to the multiplier associated with that constraint.

In every QP iteration, the KKT conditions (2.20a) and (2.20b) are fulfilled because the
initial point x0 is feasible and all subsequentαk are chosen such that primal feasibility is
maintained. The complementary slackness condition (2.20d) is fulfilled by the construc-
tion of the active set algorithm. In every iteration,x̂k+1 fulfills the KKT condition in
(2.20e) with allλ̂i, i 6∈ Wk ∩ I set to zero. If the signs of all multipliers corresponding
to inequality constraints in the current working set are non-negative, then also the KKT
condition (2.20c) is fulfilled. In this case, all KKT conditions are fulfilled and hence a
global optimal solution to the problem has been found. IfH ∈ S

n
++, then the unique

global optimal solution has been found.
When implementing an active set QP algorithm, it is common to make the variable

substitutionp = x̂k+1 − xk, and formulate the subproblems directly inp. However, in
Algorithm 2.1, x̂k+1 is explicitly computed instead ofp. Apart from this modification,
Algorithm 2.1 is similar to the algorithm given in [77]. In this reference, convergence
properties of the algorithm are discussed. This discussionalso covers cycling of the active
set algorithm, which means that a sequence of additions and deletions of constraints to
and from the working set is repeated without the algorithm making any progress towards
the optimum. If not detected and aborted, this sequence is repeated until the maximum
allowed number of iterations is reached. There are procedures to handle cycling, but
according to [77], most QP implementations simply ignore the possibility of cycling.

An active set algorithm requires a feasible initial pointx0. One approach is to use
a so-called Phase I method, where a linear optimization problem is solved to generate a
feasible starting point for the QP. Another approach is to use the big-M method, where
the constraint infeasibility is penalized by adding a weighted infinity norm of the amount
of infeasibility to the objective function.

2.4.3 Dual Active Set Quadratic Programming Methods

The QP method presented in Section 2.4.2 is a primal feasibleactive set method. This
means that it starts in a primal feasible point. Primal feasibility is thereafter maintained in
all subsequent QP iterations. The main drawback with the primal method is that a primal
feasible starting point has to be obtained before the actualoptimization can start. As
described in Section 2.4.2, if a feasible starting point cannot be obtained by, for example,
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Algorithm 2.1 Active set QP algorithm for convex QP

Compute a feasible starting pointx0.
Define the maximum number of iterations askmax.
SetW0 to be a subset of the active constraints atx0.
k := 0
while k < kmax do

GivenWk, computêxk+1.
if x̂k+1 = xk then

Compute Lagrange multiplierŝλi.
if λ̂i ≥ 0, ∀i ∈ Wk ∩ I then

x∗ = xk

STOP
else

j := argmin
j∈Wk∩I

λ̂j

xk+1 := xk

Wk+1 := Wk \ {j}
end if

else
Computeαk according to (2.44).
xk+1 := xk + αk (x̂k+1 − xk)
if αk < 1 then

Setj to be the index of one of the blocking constraints.
Wk+1 := Wk ∪ {j}

else
Wk+1 := Wk

end if
end if
k := k + 1

end while
No solution was found inkmax iterations.
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practical knowledge of the problem, a Phase I algorithm can be applied to find such a
point. According to [48], the authors computational experience indicates that on average
between one-third to one-half of the total effort needed to solve a QP with “typical primal
algorithms” is spent in Phase I. Comparing the primal QP problem in (2.21) and the dual
QP problem in (2.25), it is clear that it is easier to find a feasible starting point to the
dual problem than to the primal problem. For example, the origin is always a feasible
starting point to the dual problem. To find a feasible starting point to the primal problem,
the in general more difficult constraints in (2.21) have to befulfilled. A dual method is
particularly suitable for Sequential Quadratic Programming (SQP), where several similar
inequality constrained QPs are solved sequently, [78]. According to the same reference,
if the suggested initial working set is unsuitable, it can relatively easy be adjusted. In
a primal algorithm, if the initial working set is not feasible it might be necessary to start
over from an empty working set. Another important advantageof a dual active set method
is that the dual inequality constraints cannot be degenerate since the gradients of the non-
negativity constraints in (2.25) are linearly independent. For specific methods, this claim
is supported by the references [65], [43] and [48]. According to [77], the simple structure
of the constraints in the dual problem enables efficient use of the gradient projection
method when solving the dual problem. The advantage with a gradient projection method,
compared to a classical active set method as the one presented in Algorithm 2.1, is that
rapid changes to the working set are allowed. As a consequence, the number of QP
iterations can be reduced.

Early work on dual active set methods for QP can be found in [65] and [94]. The
method presented in [65] is built on Dorn’s dual of the type where the primal variables
have been eliminated. When the primal variables are eliminated the result is a dual prob-
lem of the form (2.26) with onlyλ-variables present. The method can be interpreted as an
active set method where dual feasibility is maintained during the active set iterations in
the search for a dual optimal point. Because of the simple structure of the constraints, the
origin is always found to be a feasible initial solution. This is true for all dual methods
if the dual looks like (2.25). In (2.33), also the equality constraints have to be fulfilled
by the starting point. In [65], a finite solution to the dual problem is required, which can
be interpreted, by weak duality, as a requirement for primalfeasibility. In [94], a dual
method built on the so-called simplex method for quadratic programming by Dantzig and
van de Panne is presented. As the name of the algorithm indicates, the method reduces
to the ordinary simplex method for linear programming if theHessian is zero. Readers
interested in this early QP method are referred to the first part of the article, which cov-
ers this primal method. In the second part, the method is applied to the Dorn dual of a
QP. According to [48], the dual method in [94] cannot handle problems where the primal
is infeasible. This problem can though be eliminated using the modification proposed
in [48].

A more recent dual active set algorithm for strictly convex QPs is presented in [48]. In
this method, primal problems like (2.21) are solved in subproblems where only a subset
of the inequality constraints are present. In each iteration a violated primal constraint is
added to the working set and the corresponding subproblem issolved. If the subprob-
lem is infeasible, the entire optimization problem is foundto be infeasible. This can be
explained by the fact that in the optimal solution there mustnot exist any violated con-
straints. Consequently, if it turns out that it is not possible to clear all constraint violations,
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while maintaining the subproblems feasible, the optimization problem is not feasible. If
the new subproblem is feasible, the working set is updated and the procedure is continued.
A difference with this algorithm compared to [65] and [94] isthat the former does not ex-
plicitly form the dual problem. The “duality” in the algorithm can be said to stem from
the fact that it maintains dual feasibility instead of primal feasibility during the changes
to the active set. The algorithm usually starts in the unconstrained primal optimum and
is generally able to take advantage of a good initial estimate of the solution, [43]. The
algorithm is equivalent to a primal algorithm applied to thedual problem, [43, 48]. In
the reference, both the method presented in [65] and the method presented in [94] are
compared to the algorithm. According to [48], the algorithmpresented in the cited refer-
ence is more efficient and more numerically stable than [94].A drawback with the dual
algorithm is also mentioned. If the Hessian is ill-conditioned, numerical problems might
occur since the dual algorithm starts from the unconstrained optimum. The numerical
properties of the algorithm presented in [48] are further examined in [78], where an ex-
tension to handle ill-conditioned problems is presented and the algorithm is compared to
two primal QP solversQPSOL andVEO2A. In [31], the algorithm is extended to the pos-
itive semidefinite case. In [7], the QR factorization used in[48] is replaced by the use of
a Schur complement (as in [61]) for block elimination of the KKT matrix. This enables
the use of solvers for linear equation systems utilizing problem structure. To be able to
more easily adapt to a specific application, the code is written in object oriented C++.
The routine is calledQPSchur. As a conclusion, it can be noticed that the method based
on [48], seems to have good numerical properties, as well as good performance. It should
however be mentioned that the method does not allow for rapidchanges in the working
set, which is invited by the simple constraint structure in the dual QP problem.

An infeasible active set solver for problems with simple bounds on variables is pre-
sented in [63]. It is actually not based on a dual method, but it shares the property of
not enforcing primal feasibility during the iterations. Unlike a dual method, it does not
enforce dual feasibility either. In the derivation of the method, the Hessian is assumed
positive definite. In the article, the results for discretized infinite-dimensional optimal
control problems in [27, 28] are generalized to a general QP formulation.

The dual problem to a QP is considered in several books. Some examples are [77],
[43] and [10].

2.5 Mixed Integer Quadratic Programming

Mixed Integer Quadratic Programming (MIQP) is a special case of Mixed Integer Non-
Linear Programming (MINLP). At a first glance, the MIQP problem looks similar to the
ordinary QP problem (2.21). There is however one important difference. The optimiza-
tion variables are not only allowed to be real valued, but also integer valued. This “slight”
modification turns the easily solved QP problem, into anNP-hard problem, [101]. A
common special case of MIQP is when the integer variables areconstrained to be0 or 1.
To use a precise notation, this problem is called a Mixed Binary Quadratic Programming
(MBQP) problem. The standard notation for MBQP seems, at least in the control liter-
ature, to be MIQP. In what follows, the problem studied will be an MBQP, but to keep
the standard notation, it will be denoted MIQP. A survey considering Quadratic Integer
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Programming (QIP) can be found in [98].

2.5.1 Problem Definition

The mathematical definition of an MIQP problem is

minimize
x∈Rnc×{0,1}nb

1

2
xT Hx + fT x

subject to AEx = bE

AIx ≤ bI

(2.45)

wheref ∈ R
nc+nb andH ∈ S

nc+nb

+ . Further, letAE , AI , bE andbI be defined as in
(2.21) withn = nc + nb.

There exist several methods for solving MIQP problems. The four most commonly
used methods for these kind of problems are, [16]:

• Cutting plane methods

• Decomposition methods

• Logic-based methods

• Branch and bound methods

Several authors claim that branch and bound is the best method for mixed integer pro-
grams, [16]. In [44], a branch and bound method is compared toGeneralized Benders
Decomposition (GBD), Outer Approximation (OA) and LP/QP based branch and bound.
The conclusion in this reference is that branch and bound is the superior method for solv-
ing MIQP problems. With a few exceptions, branch and bound isan order of magnitude
faster than any of the other methods. An important explanation to why branch and bound
is so fast is that the QP subproblems are very cheap to solve. This is not the case for
general MINLP, where several QP problems have to be solved ineach node in the branch
and bound tree. In the MINLP case there exist important problem classes where branch
and bound is not the best method. A review of different methods of solving MIQP prob-
lems can be found in [98]. There exist several software for solving MIQP problems. For
MATLAB , free software like YALMIP or miqp.m can be used. A commonly used com-
mercial software is CPLEX.

2.5.2 Branch and Bound

If computational burden is not considered, the most straightforward approach to compute
the optimal solution to an optimization problem involving binary variables is to enumerate
all possible combinations of the binary variables, and for each such combination, compute
the optimal solution of any real variables also included in the problem. Thereafter, the
objective function values are compared and the solution, orsolutions, generating the best
objective function value is taken as the optimal solution. However, for problems involving
many binary variables the computational burden will becomeoverwhelming, since the
number of combinations of the binary variables is2nb .
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Figure 2.2: This figure shows an example of a binary search tree for two binary
variables,x1 and x2. In each node, represented as an ellipse, the corresponding
feasible setSi is shown. The symbol⋆ is used to denote that this variable is free to
be either0 or 1.

The conclusion from this introductory discussion is that there is a need for an algo-
rithm that can find the optimal solution without enumeratingall possible combinations
of the binary variables. One such algorithm is branch and bound, where it is most often
sufficient to explicitly enumerate onlysomeof the possible combinations. Unfortunately,
the worst case complexity is still exponential and the number of combinations necessary
to enumerate, and solve an optimization problem for, is problem dependent. Most of the
derivation of and the motivation for the branch and bound algorithm come from [101]
and [45].

Denote the feasible set of the optimization problem consideredS. In the branch and
bound method,S is split intoK smaller sets such that

S =

K⋃

i=1

Si (2.46)

This partitioning is performed in several steps. The partitioning is at first coarse, but is
in later steps more and more refined. The partitioning can be represented using a tree
structure. An example of a tree is given in Figure 2.2. The tree in Figure 2.2 is a so-called
binary search tree, which is a special case of a general search tree and is the type of tree
of interest for the MIQP problems considered in this text. The ellipses in the tree are
called nodes. The rows of nodes in the tree are called levels.The top node is called the
root node. In a binary search tree, all nodes except the nodesin the bottom of the tree
have two nodes connected to the lower side of the node. These two nodes are called the
children of the node above, and the node above is called the parent node of the two child
nodes. Note that the root node does not have a parent node. Similarly, the nodes at the
bottom of the tree do not have any children. These nodes are called leaves. One of the
features of branch and bound is that the entire tree is not known from the beginning. Only
the parts of the tree needed in the solution process are expanded.

The optimal solution over the setS can be computed by optimizing over the smaller



28 2 Optimization

sets separately according to

zi∗ = minimize
x∈Si

f0(x), i ∈ {1, . . . ,K}

z∗ = min
i∈{1,...,K}

{
zi∗
} (2.47)

The optimal solution overS is found as the optimal solution to the subproblem with the
lowest optimal objective function value. Note that the leaves in the tree in Figure 2.2
contain the different combinations of the binary variablesthat have to be investigated if
S in the example is to be explored by complete enumeration. Hence, it is clear that if
it is necessary to solve all of the problems represented by the leaves, there is no gain in
using the branch and bound method. The important question toanswer is whether it is
possible to use the structure of the tree in order to reduce the number of leaves necessary
to explore.

To simplify what follows, make the following definitions:

• Pi denotes the optimization subproblem over the setSi.

• Ni denotes the node containingPi.

• z∗ is the optimal objective function value overS.

• zi∗ is the optimal objective function value for subproblemPi.

• z̄ denotes a global upper bound of the objective function value. By global it is meant
it is valid for the entire tree. It is achieved by the best known feasible solution so
far, which is denoted bȳx and is usually called the incumbent.

•
¯
zi denotes a local lower bound of the objective function value.By local it is meant
that it is valid only for the subtree with root nodeNi.

The key idea to reduce the computational effort needed is to compute upper and lower
bounds for the optimal objective function value for the subproblems in the nodes. Often,
these bounds can be used to prune entire subtrees, which means that these subtrees do
not have to be considered any more, since it can be concluded that the optimal solution
cannot be found in any of them. Further, these bounds are mucheasier to compute than
to solve the original problem to optimality. Pruning can be interpreted as an implicit
enumeration, and is therefore highly desirable. An exampleof the use of the bounds is
shown in Figure 2.3. The original problem is to minimize the objective function over
the setS. This problem is split into two subproblems. In one subproblem the binary
variablex1 is fixed to0 and in the other it is fixed to1. In Figure 2.3, the upper and
the lower bound for a node are indicated as a super- and a subindex respectively for the
circle representing the node. The computation of the boundsfor problemP over the
setS gives an upper bound of10 and a lower bound of1. ProblemP is split into two
subproblemsP0 andP1 over the setsS0 andS1. The upper bound forP0 is 5 and the
lower bound is4. Further, the upper bound forP1 is 7 and the lower bound is6. Since
the best possible objective function value overS1 does not even reach the worst possible
value overS0, it is no use continuing working withP1. Therefore, the subtree withN1 as
the root node can be pruned. Another useful case occurs if it is actually possible to solve
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Figure 2.3: This figure is used to illustrate how bounds can be used to prune nodes.
Assume that the tree originates from a minimization problem. Since the upper bound
overS0 is lower than the lower bound overS1, S1 cannot contain the optimal solu-
tion.

a subproblem to optimality rather than just to compute bounds. In that case, a feasible
solution to the original problemP has been found and the optimal objective function
value for the subproblem is an upper bound forz∗. Further, the subtree containing this
node can be pruned, since the objective function value cannot be improved by a reduction
of the feasible set. Another reason for pruning is if the setSi is empty.

Summarizing, there exist at least three different possibilities for pruning a subtree with
root nodeNi.

1. Infeasibility:Si = ∅.

2. Optimality: An optimal solution to the subproblem is found.

3. Dominance:
¯
zi ≥ z̄.

Note that if case2 occurs, and ifzi∗ < z̄, the global upper bound̄z should be updated.
It also important to note that if

¯
zi < z̄, and

¯
xi is not feasible inSi, the node cannot be

pruned.
To be able to apply the above scheme in practice, it has to be decided how to compute

the upper and lower bounds. Usually, upper bounds are found from integer feasible solu-
tions and lower bounds are found from relaxations or duality. In MIQP, relaxations can
be created by relaxing the integer constraints to interval constraints. That is, if the binary
variable indexed byj is relaxed, the constraint

xj ∈ {0, 1} (2.48)

is replaced by
xj ∈ [0, 1] (2.49)

In an MIQP solver built on branch and bound, ordinary constrained QP problems are
solved in the nodes. As the method makes progress down in the tree, fixed integer vari-
ables are eliminated from the problem. This means that the number of optimization vari-
ables in the relaxed subproblems decreases by one for each level passed on the way down
in the tree. Note that when a variable has been fixed to either0 or 1 after a branch on that
variable, this constraint is not relaxed in the nodes further down in the tree.

It is important to understand what properties of a problem that can be found from a
relaxation of the problem. First, if the relaxed problem is infeasible, then the original
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problem is infeasible. This can be used for pruning according to 1 above. Second, the op-
timal objective function value of a relaxation is lower thanthe optimal objective function
value of the original problem. Third, if an optimal solutionof the relaxed problem is fea-
sible in the original problem, then this solution is also an optimal solution to the original
problem. This can be used to prune according to 2 above. In theMIQP case, if an optimal
solution of a relaxation of problemPi satisfies the binary constraints for subproblemPi,
an optimal solution to the unrelaxed problemPi has been found. Since this solution also
is feasible in the optimization problem overS, an upper bound forz∗ has been found. In
this thesis, the relaxation ofPi is denoted byPR

i , and the relaxed solution by
¯
xi. The

relaxation of the setSi is denotedSR
i .

In a branch and bound method, there are several parameters and choices that may
affect the performance drastically. Two important parameters are the choice of the next
node to solve and the choice of the branch variable. The threemost common criteria for
node selection are

• Depth first

• Breadth first

• Best first

In depth first, the next node to solve is chosen as one of the child nodes of the current
node. This process is continued until a node is pruned. Aftera node is pruned the so-
called backtracking starts. Backtracking is the procedureof going back, towards the root
node, in the search for a node with an unconsidered child node. One advantage with this
strategy is that the search goes down quickly in the tree, which is good because integer
feasible solutions to the relaxed problems are more likely to appear deep down in the tree.
Another advantage is that similar problems are solved subsequently, making it easy to
perform warm starts of the QP solver. A disadvantage with this strategy is that it is likely
that many nodes have to be considered before optimality can be proven. Depth first with
backtracking is the default setting in most commercial codes.

In breadth first, all nodes at each level have to be consideredbefore a node in a new
level can be considered. It is used as a basis for node selection heuristics and for certain
estimates.

In best first, the next problem to consider is chosen as the onewith the lowest lower
bound so far. The advantage with this node selection criterion is that the number of
subproblems to solve is minimized.

Choosing which node selection criterion to use is not straightforward. Usually, em-
pirical studies have to be performed in order to choose the best criterion for a specific
application. It is also common to use a mix of depth first and best first in order to prove
optimality as well as to find better feasible solutions.

The next important parameter is how to select the next variable to branch. A common
choice is to let the user provide a set of priorities. In that case, each integer variable is
assigned a relative importance. When the system is about to branch, it chooses the integer
variable with the highest assigned priority among the integer variables with fractional
optimal relaxed values. Other approaches are to branch on the variable with the lowest
index, or the integer variable with the largest or smallest fractional part in the solution of
the relaxed problem, [15].
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It is also common to be able to specify which of the branches toexplore first. In the
binary case, the choice is between the branch where the variable is set to0 and the branch
where it is set to1.

According to [44], solving the subproblems using a dual active set method offers the
most straightforward way to exploit the structure introduced by the branching procedure.
After a branch, the solution to the parent problem is in general infeasible in the child
problems. But, a dual feasible starting point for the child problems is directly available
from the dual solution of the parent problem. Consequently,it is possible to warm start the
active set solver using information from the solution to theparent problem. Warm starts
are further discussed in Section 3.3.2. Also, since a dual active set method is an ascend
method generating dual feasible points, it can use an upper bound as a cut-off value for
terminating the QP solver prematurely, [44].

According to [101], active set methods (the reference considers the linear program-
ming case) is preferable for solving the relaxed problems inbranch and bound. For very
large problems, Interior Point (IP) algorithms can be used to solve the first subproblem,
but in the subsequent subproblems an active set method should be used.

An important step in a commercial branch and bound code is thepreprocessing step.
In the preprocessing step the formulation is checked to be “sensible” and as strong as
possible given the available information, [101]. A strong formulation is a formulation that
gives a tight lower bound on the optimal objective function value. The basic operations in
preprocessing is to quickly detect and eliminate redundantconstraints and variables, and
to tighten bounds if it is possible. A smaller and tighter formulation is preferred, since the
number of nodes necessary to consider, and the dimension of the subproblems, might be
reduced.

This section is concluded with a formal algorithm for branchand bound for binary
variables. This is found in Algorithm 2.2. How subproblems are put on the list and
retrieved from the list is decided by the choice of the node selection criterion and the
branching priority. If it, in some way, is possible to easilyfind an upper bound on the
optimal objective function value, this bound can be used to initialize the global upper
boundz̄.

2.6 Binary Quadratic Programming

Binary Quadratic Programming (BQP) can be considered a special case of MIQP, where
only binary variables are present. In this thesis, two formsof BQP problems are consid-
ered. A property shared by both forms is that no constraints are present. The first problem
formulation has a pure quadratic objective

minimize
x∈{0,1}nb

xT Hx (2.50)

whereH ∈ S
nb . The second form is a generalization of (2.50)

minimize
x∈{0,1}nb

1
2xT Hx + fT x (2.51)

where a linear term has been incorporated in the objective function.
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Algorithm 2.2 Branch and bound for binary variables
z̄ := +∞
x̄ := void

Add P to LIST .
while length(LIST ) > 0 do

PopPi from LIST .
SolvePR

i ⇒
¯
zi and

¯
xi.

if SR
i = ∅ then

No feasible solution exists forPi.
else if

¯
zi ≥ z̄ then

There exists no feasible solution ofPi which is better than̄x.
else if

¯
xi ∈ Si then

¯
xi is integer feasible and is therefore optimal also inPi.
z̄ :=

¯
zi

x̄ :=
¯
xi

else
Split Si into Si0 andSi1.
PushPi0 andPi1 to LIST .

end if
end while

The BQP problem is known to beNP-hard, [62]. Most algorithms for this kind of
problems either focus on producing approximative solutions or on only handling various
special cases of the general problem, [46]. Some approximative heuristic algorithms can
be found in, for example, [62], [11], [72] and [47].

After a reformulation, several combinatorial optimization problems such as the max-
imum cut problem, the maximum clique problem, the maximum vertex packing problem
and the maximum independent set problem can all be written asBQP problems, [72].



3
Mixed Integer Predictive Control

In this chapter, Model Predictive Control (MPC) and hybrid systems on the Mixed Logical
Dynamical (MLD) form are introduced. In Section 3.1, basic MPC is presented and the
problem is formulated as an optimization problem. In Section 3.2, MLD systems are
introduced and their range of application is discussed. Further, control of MLD systems
is considered. Optimization in MPC is discussed in Section 3.3. The chapter is concluded
with Section 3.4, where two examples of systems on MLD form are presented. These
examples will be used as benchmark problems throughout the thesis.

3.1 Model Predictive Control

Model Predictive Control (MPC) has been used in a broad spectrum of applications for a
long time. It is hard to say exactly when MPC was invented, butprobably the first patent
was granted to Martin-Sanchez in 1976, [70]. An early academic publication containing
the basic ideas was presented by Propoi 1963, [70]. There arealso some methods sim-
ilar to MPC, but with different names. One of the most well-known is Dynamic Matrix
Control (DMC), [35].

The most commonly used variant of MPC is so-called linear MPC, where the dynam-
ics is linear and a quadratic objective similar to the one used in Linear Quadratic (LQ)
control is used. A difference compared to LQ is that it is alsopossible to consider linear
constraints on the states and control signals. With the wordlinear in front of MPC, it is
emphasized that a linear model of the controlled system is used. A discrete-time linear
time-invariant model on state space form is given by

x(t + 1) = Ax(t) + Bu(t)

y(t) = Cx(t)
(3.1)

wheret ∈ Z is the discrete time,x(t) ∈ R
n is the state,u(t) ∈ R

m is the control input and

33



34 3 Mixed Integer Predictive Control

y(t) ∈ R
p is the controlled output. The objective, or performance measure, to minimize

is a quadratic function like

J(t0) =

N−1∑

s=0

(
‖y(t0 + s) − r(t0 + s)‖2

Qe
+ ‖u(t0 + s)‖2

Qu

)

+ ‖y(t0 + N) − r(t0 + N)‖2
Qe

(3.2)

whereQe ∈ S
p
++ andQu ∈ S

m
++, andr(t) ∈ R

p is the reference signal. Often, the
constraints are defined as

Hu(t)u(t) + Hx(t)x(t) + h(t) ≤ 0 (3.3)

A common variant of the constraint formulation (3.3) is to allow constraints involving
states and control signals from different time steps. This modification enables the use of,
for example, rate limits on states or control signals. However, this can also be enabled
in the formulation in (3.3) by augmenting the state vector with states and control signals
from previous time instants. In this thesis, the special case of MPC when there are no
inequality constraints like (3.3) is called the unconstrained MPC problem.

In MPC, the future behavior of the system is predictedN time steps ahead. In this
context, prediction means that a system model like (3.1) is used to calculate how the
system will react to control inputs and thereby what will happen in the future if a certain
control input is applied to the system. Not surprisingly,N is called the prediction horizon,
which in practice is chosen long enough to cover a normal transient of the controlled
system.

There are several different ways to cast (3.1), (3.2) and (3.3) on the form of a formal
optimization problem. The most common variants are presented and evaluated in [67]. If
the system is linear and the objective is quadratic, the resulting optimization problem is a
QP (see Section 2.4), for which there exist well developed optimization routines. Hence,
for linear MPC the optimization problem is considered easy to solve. In this thesis two
formulations are used where the difference lies in the representation of the dynamics. In
the first formulation in (3.4), the dynamics is represented as equality constraints

minimize
x,u,e

1

2

[
xT uT eT

]





0 0 0
0 Qu 0
0 0 Qe









x

u

e





subject to

[
A B 0
C 0 −I

]




x

u

e



 =

[
b

r

]

[
Hx Hu 0

]





x

u

e



 ≤ −h

(3.4)

and in the second formulation in (3.5), the statesx and control errore have been eliminated
using the equality constraints.

minimize
u

1

2
uT
(
ST

u CT QeCSu + Qu

)
u +

(
ST

u CT Qe (CSxx0 − R)
)T

u

subject to (HxSu + Hu) u ≤ −h − HxSxx0

(3.5)
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Prediction

t0 t +N0

u(t)

t

y(t)

t

Figure 3.1: In this figure, an example of a control inputu(t) and the corresponding
controlled outputy(t) is given. The controller is about to compute the control signal
in time t0. The figure illustrates how the behavior of the system is predicted N

steps. In the predicted interval, the dotted predicted output can be compared with
the dashed actual output. As a consequence of unknown disturbances and modeling
errors, these curves do not completely coincide.

Algorithm 3.1 Basic MPC controller

1: Measure or estimate the state of the controlled processx0 in time instantt0.
2: Obtainu by minimizing (3.2) with respect tou subject to the constraints (3.1), (3.3)

and the initial constraintx(t0) = x0.
3: Apply the first elementu(t0) in u to the controlled process.
4: Sett0 := t0 + 1 and repeat the procedure.

The notation and the derivations of the formulations can be found in Appendix B. The
two optimization problems are equivalent, but from a computational view (3.4) gives a
sparse optimization problem with(N + 1) (n + p) + Nm optimization variables, while
(3.5) gives a dense optimization problem withNm variables.

In order to get closed-loop control, the approach above is used in a receding horizon
fashion, which means that the prediction interval is moved one step forward after each
completed optimization. After the optimization has been performed, only the first con-
trol signal in the optimal control signal sequence computedis applied to the system and
the others are ignored. In the next time step, a new optimization is performed and the
procedure is repeated. Due to modeling errors and unknown disturbances, the predicted
behavior and the actual behavior of the system do not usuallycompletely coincide. Such
errors are, if they are sufficiently small, handled by the feedback in the algorithm. The
procedure is visualized in Figure 3.1 and the conceptual steps are summarized in Algo-
rithm 3.1. In this thesis,t0 in (3.2) is often assumed zero.

An already explored extension to linear MPC is non-linear MPC. This extension han-
dles non-linear systems and a general non-linear norm in theobjective function. Unfortu-



36 3 Mixed Integer Predictive Control

nately, the resulting optimization problem is more difficult to solve in general.
A special case of non-linear MPC is to handle systems described partly by logics.

These are called hybrid systems and provides a unified framework for describing pro-
cesses evolving according to continuous dynamics, discrete dynamics and logic rules,
[20]. This class of systems is especially important when analyzing and controlling sys-
tems arising in the growing interaction between physical processes and digital controllers.

A survey covering both linear and non-linear MPC is found in [71]. A reference book
covering most of MPC is [70].

3.2 Mixed Logical Dynamical Systems

Mixed Logical Dynamical (MLD) systems is one way of describing an important class
of hybrid systems defined by linear dynamic equations subject to linear mixed integer
inequalities, that is, inequalities involving both continuous and binary variables. Binary
variables are sometimes also denoted logical or 0-1 variables. The MLD description is
a very general model class capable of describing a broad spectrum of systems. In this
thesis, only discrete-time systems are considered.

3.2.1 Background

The initial interest in hybrid systems has been concentrated to the field of verification and
safety analysis, for which many results and techniques are now available, [22]. In [16], an
MPC framework used for systems described by physical laws, logic rules and operating
constraints is presented. An important part of this framework consists of the definition of
MLD systems. This class of systems includes linear hybrid systems, finite state machines,
some classes of discrete event systems, constrained linearsystems and non-linear systems
which can be exactly or approximately described by piecewise linear functions.

Although the MLD description is quite new, there are severalapplications for MLD
systems reported in the literature. For example, in [16] it is described how the by-products
from a steel-works are used to produce electric power. In order to produce the electricity,
the by-products are burnt in furnaces. Not all furnaces can burn all by-products, so the
MPC controller has to choose which furnaces to use to be able to use as much of the by-
products as possible and limit the use of non-by-products inform of heavy oil. In [41] and
[42] a power plant is modeled as an MLD system and controlled by an MPC controller.
In this application, the flaps and gates are controlled by sending discrete commands to
stepper motors. The dynamics of the different subsystems varies with the logical state
of the model and there is also a desire to use the actuators with a certain priority. An-
other example motivating the use of the MLD description in this application is that some
elements cannot be opened or closed for an arbitrarily shorttime. In [5], an Adaptive
Cruise Control (ACC) problem for heavy vehicles is studied.In the reference, an MPC
controller is used to control the distance to the vehicle in front of the ACC equipped ve-
hicle. The main difficulty in the problem is to prohibit simultaneous use of throttle and
brakes. This condition can easily be formulated by introducing a mixed integer linear in-
equality, which is a linear inequality involving real and binary variables. Other examples
of systems requiring a hybrid model are systems with binary control signals as valves and
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hatches.

3.2.2 The MLD System Description

An MLD system can be described by the following linear relations, [16],

x(t + 1) = A(t)x(t) + Bu(t)u(t) + Bδ(t)δ(t) + Bz(t)z(t)

y(t) = C(t)x(t) + Du(t)u(t) + Dδ(t)δ(t) + Dz(t)z(t)

Hu(t)u(t) + Hx(t)x(t) + h(t) ≤ Hδ(t)δ(t) + Hz(t)z(t)

(3.6)

wheret ∈ Z and

x(t) =

[
xc(t)
xb(t)

]

, xc(t) ∈ R
nc , xb(t) ∈ {0, 1}nb , n = nc + nb (3.7)

denotes the state of the system, partitioned into continuous statesxc(t) and logical (bi-
nary) statesxb(t). The controlled output is

y(t) =

[
yc(t)
yb(t)

]

, yc(t) ∈ R
pc , yb(t) ∈ {0, 1}pb , p = pc + pb (3.8)

The control input is also partitioned similarly

u(t) =

[
uc(t)
ub(t)

]

, uc(t) ∈ R
mc , ub(t) ∈ {0, 1}mb , m = mc + mb (3.9)

whereuc(t) denotes the continuous inputs andub(t) the logical inputs. Finally,δ(t) ∈
{0, 1}rb andz(t) ∈ R

rc represent auxiliary logical and continuous variables respectively.
In order to be able to use a notation as uniform as possible throughout the thesis, the
notation in (3.6) has been slightly modified compared to the one used in [16]. If the
desired finite alphabet is not binary as here, it can always becoded using binary variables.

MLD systems is justone way of modeling hybrid systems, [13]. In [21], the formal
equivalence between MLD systems and Piecewise Affine (PWA) systems is established.
In [58, 59], the equivalence between the following five classes of hybrid systems is, under
certain conditions, established: MLD systems, Linear Complementarity (LC) systems,
Extended Linear Complementarity (ELC) systems, PWA systems and Max-Min-Plus-
Scaling (MMPS) systems. The equivalence result between MMPS systems and PWA
systems is refined in [36]. The important result of these equivalences is that derived theo-
retical properties and tools can easily be transferred fromone class to another, [24]. Each
of these subclasses has its advantages. For optimal controland state estimation, the MLD
description is proposed, while most other hybrid techniques are built on a PWA represen-
tation, [13]. Also, simulation of hybrid systems can be performed much more easily in
PWA form compared to in MLD and LC form. Even though differenttheoretically equiv-
alent forms exist, it is not necessarily an easy task to convert from one form to another.
For example, transforming from PWA to MLD is easy but the other way around can have
high computational complexity, [13]. The note [13] presents an efficient conversion algo-
rithm from MLD to PWA form. In [16], it is shown how different types of systems can be
rewritten as explicit MLD systems.
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One way of modeling a system on MLD form is to by hand derive a model on the
form (3.6). In that case, it might be necessary to convert a logic description to an MLD
description. How this is performed is discussed in [73]. An alternative approach is to
create the MLD formulation automatically by using the high-level modeling language
HYSDEL (Hybrid Systems Description Language), [92].

3.2.3 Controlling MLD Systems

In [16], both optimal control and receding horizon estimation for MLD systems is dis-
cussed. The control signal is found by minimizing a quadratic performance criterion of
the form

JMLD =

N−1∑

s=0

‖u(s) − uf (s)‖2
Qu

+ ‖δ(s) − δf (s)‖2
Qδ

+ ‖z(s) − zf (s)‖2
Qz

+ ‖x(s) − xf (s)‖2
Qx

+ ‖y(s) − yf (s)‖2
Qy

(3.10)

subject tox(0) = x0, x(N) = xf (N) and dynamics (3.6), whereQu ∈ S
m
++, Qδ ∈ S

rb

+ ,
Qz ∈ S

rc

+ , Qx ∈ S
n
++ andQy ∈ S

p
+. The variables in (3.10) with subscriptf denote

reference signals. This MPC problem can be rewritten as an optimization problem as
described for linear MPC in Section 3.1. Consequently, there is a choice between a sparse
formulation similar to the one in (3.4) or a dense formulation similar to the one in (3.5).
Independently of the formulation chosen, the optimizationproblem can be solved as a
Mixed Integer Quadratic Programming (MIQP) problem, [16].

As in linear MPC, the algorithm is implemented in a receding horizon fashion. The
difference is that it is much more complicated to find the optimal control signal sequence,
since the system is neither linear nor smooth, [16]. One way of reducing the computa-
tional complexity is to use tailored MIQP solvers. This is further discussed in Section 3.3.
The control law found is in the literature sometimes referred to as a Mixed Integer Pre-
dictive Control (MIPC) law, [16].

Interesting work is presented in [79], where the geometric structure of the solution
to MPC problems with finite input constraint sets is studied.A finite input constraint set
means that the control signal may be chosen only from a finite alphabet and not contin-
uously as usually. An important special case is when the control signal is constrained to
be binary. The main idea in the approach is to treat the problem as a norm minimiza-
tion problem. By making a variable substitution in order to get the “right coordinates”,
the norm becomes the Euclidean norm and the minimization canbe performed by vec-
tor quantization of the unconstrained solution. It is pointed out in [80] that the solution
obtained when directly quantizing the unconstrained solution is different from the one
obtained when the variable substitution first is performed.

3.2.4 Moving Horizon Estimation for MLD Systems

The MLD structure is useful not only for control. The model structure can also be used
for estimation of states and faults in hybrid systems, [18].A difference compared to
the control problem is that the horizon extends backwards intime, that is, at timet0 the
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interesting quantities are estimated at times prior tot0. The computational complexity is
also here a great problem.

The problem of system identification of hybrid systems is addressed in [23]. Often,
also these problems end up in either a Mixed Integer Linear Programming (MILP) prob-
lem or an MIQP problem.

3.3 Optimization in Model Predictive Control

Since the MPC algorithm is executed on-line, it is of great relevance to be able to quickly
solve the optimization problem in step 2 in Algorithm 3.1. Itis the amount of time con-
sumed in step 2 that limits the use of MPC. As the optimizationroutines get more effi-
cient, implementations at faster sampling rates, on slowerhardware and for larger systems
is possible. For linear MPC, solvers with high performance exist today. To be able to in-
crease performance, the structure of the optimization problem can be used, [82]. Because
of the increased complexity, this is even more important forMIPC. The extension of the
QP problem that has to be solved is an MIQP problem. It can, forexample, be solved us-
ing a branch and bound algorithm where QP relaxations are solved in the nodes. Branch
and bound is further described in Section 2.5.2.

Tailored solvers for MPC are not only interesting for MPC applications. They can
also be used for state estimation, fault detection and verification, see for example [17].

3.3.1 Quadratic Programming

In many applications, even linear MPC is considered computationally expensive. At each
time step, either a QP of the form (3.4) or (3.5) has to be solved. One way of speeding up
the solution of the optimization problem is to use QP solverstailored for MPC, where the
special structure of the KKT system is used to decrease the complexity of the algorithm.
Basically two approaches can be used. First, general methods utilizing the structure in
block-banded equation systems can be used. Second, Riccatirecursions can be used.
In [61], an active set method utilizing Riccati recursions for solving parts of the KKT
system is used. The method is first derived for linear MPC problems, and then extended
to non-linear problems. A similar method is presented in [2]. The special structure of
the problem has also been used in Interior Point (IP) methods. In [102], an IP solver
utilizing block-bandedness is presented. The approach is refined in [103], where the
feasible IP method has been replaced by an infeasible IP method. In the reference, also an
active set method utilizing the block-banded structure is presented. No actual performance
comparison between the two methods is presented, but activeset methods are considered
to be more suitable for warm starts. This is further discussed in Section 3.3.2. In [55], an
infeasible primal-dual IP method utilizing Riccati recursions for the computation of the
search directions has been applied to robust MPC. In [30] Riccati recursions have been
used in an interior point solver for stochastic programming. SQP methods using active
set and IP solvers utilizing problem structure are presented in [86]. Another reference
on the same topic is [29]. One way of establishing stability for MPC is to introduce
an ellipsoidal terminal state constraint [105]. The resulting optimization problem is a
variant of a QP, namely a Quadratically Constrained Quadratic Program (QCQP). After
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rewriting the QCQP into a Second Order Cone Program (SOCP), it is shown in [105] how
Riccati recursion can be used to decrease the complexity of the calculations of the search
directions in the IP algorithm. In [95, 96], the Riccati recursion is thoroughly derived and
it is applied to IP LP solvers for solving MPC problems with linear objective function. A
summary of different optimization formulations of MPC, andsome optimization routines
suitable for optimization problems originating from MPC, can be found in [99].

A thorough comparison between four QP solvers for MPC control of the cross direc-
tional control in a paper machine is performed in [9]. The methods compared are one
primal IP method, one primal active set method and two dual active set methods. The
methods found to perform best are the primal active set algorithm QPOPT and the dual
active set algorithmQPSchur. QPSchur is the method proposed in the paper and it
turns out to be the overall winner. In this method the states are eliminated and the banded
structure of the reduced Hessian matrix is utilized. This property is a result of the highly
structured process considered. According to the authors, Riccati methods as presented in
[82] are not suitable for this process, since the dimensionality of the state vector is high.
It can also be noticed that the prediction horizon is very short (three steps or less). Since
the bandedness of the reduced Hessian matrix is reduced as the prediction horizon grows
larger than one, the usefulness of a solver optimized for banded matrices decreases. A
thorough description ofQPSchur can be found in [7].

Another way of reducing the on-line computational effort isto precalculate the control
law. Briefly, the procedure can be explained as given the state of the system, the controller
gain is retrieved from a table. The control law has been computed off-line by solving a
multi-parametric programming problem, where multi-parametric means that the problem
depends on a vector of parameters [91]. This type of MPC is often referred to as explicit
MPC. A drawback with explicit MPC is that the complexity of the state space partition
often increases rapidly with the number of states [53]. Therefore, several approaches
have been developed in order to reduce the complexity. Some references are [53, 54,
90, 91]. Apart from being a tool for reducing the on-line computational effort required,
the solution from explicit MPC can give insight into the behavior of the controller in
different regions of the state space [25], for example, regions where saturation occurs can
be detected. A summary of the theory behind explicit MPC for quadratic objective is
found in [26]. The counterpart for problems with linear objective is found in [25].

In [32], an efficient algorithm based on a combination of dynamic programming and
multi-parametric quadratic programming for the off-line calculations of the explicit MPC
control law is described.

3.3.2 Active Set versus Interior Point

In comparison with active set methods, IP methods are said tobe preferable for problems
with large values ofN , [102]. This statement is motivated by claiming that the number of
active set iterations is proportional to the number of constraints, which in turn are propor-
tional toN . Each QP iteration involves the solution of a narrow-bandedlinear system with
complexityO(N). The total complexity is therefore expected to beO(N2), [102]. The
reference then comments that an alternative solution is to use a so-called gradient projec-
tion algorithm, but rejects this alternative because of thecomplex nature of the constraints
involving both states and control signals. According to [77], the purpose with gradient
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projection algorithms is to accelerate the solution process by allowing rapid changes to
the active set, but they are most efficient when there are onlybound constraints on the
variables. That is, MPC problems involving only upper and lower bounds on the control
input is expected to be possible to solve efficiently by a gradient projection algorithm.
The computational complexity for the IP algorithm presented in [102] is betweenO(N)

andO(N
3

2 ). The main motivation for using IP algorithms for large problems is that a
fixed price is being paid for the number of active constraints, [8]. On the other hand, the
active set algorithm is a combinatorial algorithm which in the worst case has a complexity
higher than polynomial, [50]. When the number of active constraints is small, the active
set algorithm is expected to perform better than an IP algorithm, while when the num-
ber of active constraints is large, the IP algorithm is expected to perform better than the
active set algorithm. Other references also proposing IP algorithms for large-scale MPC
problems are [1, 50]. In these references they are used in combination with a Sequential
Quadratic Programming (SQP) solver for non-linear MPC.

Even though the complexity for a standard implementation ofan active set solver is
higher than for a corresponding IP solver, there is at least one important advantage with
an active set algorithm. Often in MPC, several similar optimization problems are to be
solved. It is then possible to use information from the solution of a previous problem in
order to be able to quickly find the solution to a slightly modified problem. This procedure
is called warm start (or hot start). According to [103], active set methods gain more from
warm starts than IP methods. According to [8], warms starts still present many open
questions for IP methods. The motivation for the effectiveness of the active set method
when using warm starts is that if the optimal active set is almost known, often only a
few active set iterations are required to reach the optimal active set, [103]. Based on this
fact, it seems natural to choose an active set approach when several similar optimization
problems are to be solved consecutively. Unfortunately, the last solution is not always
feasible in the new problem. In [103], this is pointed out as adrawback with the presented
primal active set solver. In this reference, an infeasible IP algorithm is also considered.
The latter algorithm handles infeasible starting points without problems. A similar idea
is used in [74, 76], where an infeasible active set algorithmis presented. This algorithm
can activate and deactivate entire blocks of constraints during one active set iteration.
This idea is similar to the gradient projection algorithm. Further, it focuses on removing
infeasibilities occurring early in the predicted interval. The authors claim that this will
give better suboptimal solutions if the algorithm is prematurely aborted, [75]. Since the
algorithm works with an infeasible primal, it is possible touse the unconstrained solution
as an initial solution to the optimization problem, that is,finding a primal feasible solution
is no problem.

A conclusion from this discussion is that the best algorithmwhen solving several sim-
ilar optimization problems is an active set algorithm, which can handle primal infeasible
starting points.

3.3.3 Mixed Integer Quadratic Programming

When ordinary linear MPC is extended to MIPC, a Mixed Integer Programming (MIP)
problem has to be solved. Often, these are classified asNP-hard. This means that, in
worst case, the solution time grows exponentially with the number of integer variables.
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Integer programming problems can be solved by “brute force”, meaning that all possible
solutions are enumerated and the best possible solutions found are finally presented as the
optimal ones. Note that since the problem is non-convex, there might exist more than one
optimal solution.

In [16], a commercial Fortran package has been used as an MIQPsolver. The package
is capable of coping with both dense and sparse MIQP problems. The control problems
considered normally lead to sparse optimization problems,which means that a solver
utilizing sparsity is preferable.

In [22], a branch and bound strategy based on reachability analysis is presented. Com-
pared to an ordinary branch and bound MIQP solver, the algorithm is, according the au-
thors, neither a depth first nor a breadth first method, but rather a best first method. In
the performance test presented in the article, the derived algorithm needs to solve half as
many QPs as if an ordinary branch and bound MIQP solver had been used.

One approach to a branch and bound algorithm that aims at quickly pruning entire
subtrees is described in [17]. The algorithm presented is tailored for optimal control or
estimation problems for MLD systems. The main motivation for the algorithm is the ob-
servation that for many systems the binary variables seldomchange over the prediction
horizon. For example, binary variables can be associated with conditions on the contin-
uous states, that is[δ(t) = 1] ↔ [x(t) ≥ 0]. Also, if the binary variables represent the
existence of irreparable faults in the system, they can at most change once during the
prediction horizon. Based on this knowledge, the main idea with the algorithm is to first
solve the subproblems where the binary variables switch fewtimes. In the article, the tai-
lored method is compared to the standard tree exploring strategies breadth first and depth
first. When the proposed algorithm is used on a test problem, the number of QPs solved
in the subproblems is approximately reduced by a factor 4. When a solver is used for
a real-time implementation, the time available for retrieving a solution is limited. If the
branch and bound algorithm has not terminated in time, it is desirable to get an accept-
able suboptimal solution. The test made in [17] shows that the outside first tree exploring
strategy produces, for MPC applications, better suboptimal solutions as compared to the
other two standard strategies if the limitation is the number of QPs solved.

An alternative to the ordinary branch and bound algorithm ispresented in [14]. The
algorithm is built on a combination of Constraint Programming (CP) and MIP. By letting
the CP solver deal with the logic part of the problem, it is no longer necessary to refor-
mulate the logic part into mixed integer inequalities and the structure in the logic part can
therefore be kept.

The idea of keeping the structure of the logic part of the hybrid system is also the
key to the algorithm proposed in [60]. The motivation is whenan automaton is converted
into mixed integer inequality constraints, the relaxed problems in the branch and bound
algorithm become unnecessary loose. To get a tighter relaxation, new equality constraints
are introduced.

In [12], so-called temporal Lagrangian decomposition has been used to split the hy-
brid MPC problem in time, into several smaller subproblems.The separation in time is
performed by Lagrangian relaxation of the dynamic constraints connecting the state be-
fore and after a split point. When this approach is used, the primal subproblems can be
solved independently for a fixed value of the Lagrange multipliers associated with the in-
terconnection constraints. Unfortunately, in practice the algorithm has to iterate between
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solving the primal subproblems and the Lagrange multipliers connecting the subprob-
lems. Even though not presented in the paper, the iterative procedure is expected to be
computationally expensive. Some more general references on decomposition techniques
in optimization can be found in, for example, [87] and [64].

Another attempt to reduce the complexity of the MIQP problemis found in [89],
where the original MLD model is split into several smaller submodels, each valid in a
certain region of the state space where some or all binary variables are remaining constant.
The result is an MIQP problem with fewer binary variables to compute.

In [20] explicit MPC is extended to MLD systems. The performance criterion in the
reference is not the 2-norm, but the 1-norm and the∞-norm. The optimization problem
that has to be solved off-line is in this case a multi-parametric MILP (mp-MILP). A similar
paper is [19]. A thorough reference on the subject multi-parametric MIQP is [40], where
theory and algorithms for mp-QP, mp-LP and mp-MIQP are presented.

According to [33], a drawback with multi-parametric mixed integer programming is
that the solver does not exploit the structure of the optimalcontrol problem. In the ref-
erence, a more efficient algorithm based on solving the discrete-time Hamilton-Jacobi-
Bellman equation is proposed. This equation is solved usinga multi-parametric quadratic
programming solver.

A survey of constrained optimal control in general and specifically the explicit solu-
tion is found in [52].

3.4 Two Examples of Mixed Logical Dynamical Sys-
tems

In this section two simple examples of MLD systems are given.These systems are used
throughout the thesis as benchmark examples for the algorithms to be presented in later
sections.

3.4.1 Mass Position Control

In this example, a mass is controlled in one dimension by two separate forces. One force,
uc, is possible to control continuously and the other,ub, is applied binary with a certain
magnitude and direction. The statesx1 andx2 are the velocity of the mass and the position
of the mass, respectively. The continuous-time state spacedescription is given by

ẋ =

[
0 0
1 0

]

x +

[
1 −5
0 0

] [
uc

ub

]

y =
[
0 1

]
x

(3.11)

To obtain a discrete-time system on the form (3.6), zero order hold sampling can be used.

3.4.2 Satellite Attitude Control

In this example, a satellite control problem is presented. The satellite controls its attitude
by accelerating a reaction wheel inside the satellite and byusing external thrusters. When
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uc ub

x1, x2

Figure 3.2: This figure illustrates the mass modeled in(3.11), wherex1 denotes the
velocity of the mass,x2 the position of the mass,uc a continuously controlled force
andub a binary controlled force.

the wheel is accelerated a counter torque is produced. If several adjustments in the same
direction are made, the angular velocity of the wheel finallybecomes very high. To be
able to slow down the wheel without affecting the attitude ofthe satellite, the external
thrusters have to be used to compensate when the wheel is braked.

The wheel is assumed to be controlled continuously by an electric engine. Its control
signal is denoteduc. The satellite is also assumed to be equipped with two external
thrusters, one in each direction. These are assumed to be controlled binary, that is, either
they give full thrust or no thrust at all. The binary control signals for the thrusters are
denotedub,1 andub,2.

A continuous-time state space description for the system with satellite attitudex1,
satellite angular velocityx2 and internal wheel velocityx3 is

ẋ =





0 1 0
0 0 0
0 0 0



x +





0 0 0
2.5 1 −1
−10 0 0









uc

ub,1

ub,2





y = I3x (3.12)

To obtain a discrete-time system on the form (3.6), zero order hold sampling can be used.
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ub,2

ub,1

uc

x3

x2

x1

Figure 3.3: This figure illustrates the satellite modeled in(3.12), wherex1 is the
satellite attitude,x2 is the satellite angular velocity andx3 the angular velocity of
the reaction wheel. The control signals areuc, ub,1 and ub,2, which control the
electric engine and the two oppositely directed thrusters respectively.
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4
Multiuser Detection in a Code

Division Multiple Access System

Already in early telegraph systems, it was possible for two users to share a common chan-
nel. In these systems the channel was an ordinary wire. The information from one user
was coded by changes in the polarity and the information fromthe other user was coded
by changing the absolute values. This is an example of an early multi-access communi-
cation system, where several users share a common channel. Today, there are numerous
examples of such communication systems. Two common examples are mobile phones
transmitting to a base station and local area networks.

In this chapter, mobile phone networks are considered. When using a radio chan-
nel, several users may coexist by assigning different frequencies to each one of them.
This multi-access technique is called Frequency Division Multiple Access (FDMA). In
common GSM networks, a multi-access technique called Time Division Multiple Access
(TDMA) is used. In TDMA, each user is assigned a time-slot in which it is allowed to
transmit. Both these approaches have in common that no more than one user may occupy
a given time-frequency slot. In the third generation (3G) mobile communication systems,
a multi-access method called Code Division Multiple Access(CDMA) is used. In CDMA,
the users are assigned different signature sequences. These sequences are used to separate
the information sent by a specific user from the information sent by other users and it can
be compared with a specific frequency in FDMA and a specific time-slot in TDMA. An
important difference is that in CDMA, the signature sequences overlap both in time and in
frequency. Two advantages of CDMA compared to TDMA and FDMA is that it is more
spectrum efficient and it allows more easily for dynamical bandwidth allocation.

4.1 Multiuser Detection

Multiuser Detection (MUD) is the process of demodulating multiple users sharing a com-
mon multi-access channel. A first approach is to demodulate each user independently and
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to treat the signal from other users as additive Gaussian noise, [88]. An improvement to
this strategy is to use the known correlation between users in the demodulation process.
Better performance can be achieved if the detector makes themost likely decision, which
formally is achieved by solving a Maximum Likelihood (ML) problem. When the opti-
mum multiuser detection problem is cast on the form of an ML problem, it requires the
solution of a Binary Quadratic Programming (BQP) problem. Unfortunately, these prob-
lems are generally known to beNP-hard (see Section 2.6). If the signature sequences
produce a cross-correlation matrix with some special structures, the problem can however
sometimes turn out to have lower complexity, [83, 85, 93].

Many contributions to the area of multiuser detection have already been published.
The objective is to find an algorithm which solves the multiuser detection problem in
reasonable time in order to make a real-time implementationpossible. So far, this has been
done either by restricting the class of possible cross-correlation matrices or by employing
a sub-optimal procedure. In [93], an algorithm with polynomial complexity has been
derived for systems with only negative cross-correlations. A similar requirement on the
cross-correlation matrix is found in [83], where the multiuser detection problem is solved
with a polynomial complexity algorithm if the cross-correlation between the users are
non-positive. Another paper also dealing with a special class of cross-correlations is [85],
where a polynomial complexity algorithm is derived for the case of identical, or a few
different, cross-correlations between the users. Thorough work in the field of approximate
algorithms for multiuser detection is found in [88]. Several different algorithms, optimal
as well as sub-optimal, are presented and evaluated in [56].The sub-optimal algorithm
local search is evaluated in [57]. Branch and bound methods are investigated in [69].
Another near optimal approach is presented in [66]. Also thewell-known Kalman filter
has been applied to the problem. This approach is presented in [68].

4.2 Synchronous Code Division Multiple Access

In this section, a synchronous CDMA model is presented. It isalso shown how the mul-
tiuser detection problem can be formulated as a BQP problem.

4.2.1 System Model

Consider a CDMA channel simultaneously used byK users. The symbol length is as-
sumed to beT seconds. Each user is assigned a certain signature sequence, a so-called
chip sequence. The chip sequence is a sequence consisting ofN chips, each taking a
value from{−1,+1}. The constantN is known as the spreading factor, spreading gain
or processing gain, [97].

The notation used in this thesis is chosen similar to the one used in [97]. The channel
model used is the so-called K-user channel which consists ofthe sum ofK antipodally
modulated synchronous signature waveforms embedded in additive white Gaussian noise

y(t) =

K∑

k=1

Akbksk(t) + σn(t), t ∈ [0, T ] (4.1)

where
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• y(t) ∈ R is the received signal.

• sk(t) ∈ R is the deterministic signature waveform assigned to userk, normalized
to have unit energy, that is,

T∫

0

s2
k(t) dt = 1 (4.2)

Because the waveforms are assumed to be zero outside the interval [0, T ], there is
no inter-symbol interference.

• Ak ∈ R is the received amplitude of the signal from userk, and therefore,A2
k is

referred to as the energy of userk.

• bk ∈ {−1,+1} is the data bit transmitted by userk.

• n(t) ∈ N (0, 1) with cov (n(t), n(τ)) = δ(n − τ) is the Gaussian noise added to
the channel.

The similarity of different signature waveforms is expressed in terms of the cross-
correlation defined by

ρij =

T∫

0

si(t)sj(t) dt (4.3)

At the receiver, the signaly(t) in (4.1) is received. After the reception, the procedure
of separating the information sent by different users begins. In that procedure, low cross-
correlation between the different signature sequences is useful. The separation procedure,
called despreading, is performed by matched filters according to

y1 =

T∫

0

y(t)s1(t) dt

...

yK =

T∫

0

y(t)sK(t) dt

(4.4)

Using (4.1), (4.2) and (4.3), outputyk in (4.4) can be written as

yk = Akbk +
∑

j 6=k

Ajbjρjk + nk (4.5)

where

nk = σ

T∫

0

n(t)sk(t) dt ∈ N (0, σ2) (4.6)
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Using vector notation, this can be written more compactly as

y = RAb + n (4.7)

whereR is the normalized cross-correlation matrix

R =

T∫

0






s1(1)
...

sK(t)











s1(1)
...

sK(t)






T

dt (4.8)

whose diagonal elements are equal to one and is symmetric non-negative definite, and
where

y = [y1, . . . , yK ]
T

b = [b1, . . . , bK ]T

A = diag (A1, . . . , AK)

(4.9)

If the signature sequences are orthogonal, thenρij = 0, wheneveri 6= j. The non-
orthogonal sequences usually give low cross-correlation even though the users might not
be synchronized. Common choices of such sequences are Gold sequences and Kasami
sequences, [97]. Furthermore, the unnormalized cross-correlation matrix is denoted as

H = ARA (4.10)

Because only the synchronous case is treated in this thesis,no inter-symbol interference
will occur. Hence, it is only necessary to consider one time instant and therefore time
indext ony, b andn is suppressed.

4.2.2 Derivation of the BQP Problem

The matched filter output is described by equation (4.7). According to [97], the bits most
likely sent by the users are given by the solutionb to the ML problem

maximize
b

exp

(

− 1
2σ2

∫ T

0

(

y(t) −
∑K

k=1 bkAksk(t)
)2

dt

)

(4.11)

Alternatively, it is equivalent to maximize

Ω(b) = 2

T∫

0

[
K∑

k=1

Akbksk(t)

]

y(t) dt −

T∫

0

[
K∑

k=1

Akbksk(t)

]2

dt = 2bT Ay − bT Hb

(4.12)

whereA, H, b andy are defined in (4.9) and (4.10). By altering the sign of the objec-
tive and dividing it by two, the optimization problem can be rewritten as an equivalent
minimization problem

minimize
b∈{−1,+1}K

1
2bT Hb − yT AT b (4.13)

After a variable substitution, this problem can be identified as a BQP problem on the form
(2.51).



5
A Preprocessing Algorithm for Mixed

Integer Quadratic Programming

In this chapter, a preprocessing algorithm applicable to BQP problems is presented. The
algorithm is derived in Section 5.1. In two steps, the algorithm is extended to handle an
unconstrained special case of an MIQP problem, where neither equality constraints nor
inequality constraints are present.

In Section 5.2, the algorithm is used for preprocessing of MIQP problems originating
from unconstrained MPC problems involving binary control signals. Furthermore, in Sec-
tion 5.3, the algorithm’s applicability to BQP problems is used in a detector for Multiuser
Detection (MUD). When the algorithm is applied to the MUD problem, it not only works
as a preprocessing algorithm, but it also shows some important properties of the solution
to the problem.

5.1 A Preprocessing Algorithm for BQP and MIQP
Problems

In this section, a polynomial complexity preprocessing algorithm for BQP problems and
unconstrained MIQP problems is derived. A preprocessing algorithm is an algorithm that
processes the optimization problem in the step prior to the one in which the actual solver is
applied. Because the algorithm to be presented in this section executes in polynomial time
and the BQP solver, generally, executes in exponential time, the required CPU time can
be reduced if the optimal value of variables can be computed already in the preprocessing
step.

Most algorithms for solving BQP problems either focus on producing approximative
solutions or only on handling various special cases of the general problem. The algorithm
presented here belongs to the latter type of algorithms. Forreferences to BQP algorithms,
see Section 2.6.

Except for problems with particular structures, the MIQP problem is known to have
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exponential worst case complexity, [17]. One way of reducing the average complexity is
to use an algorithm that in most cases can find the global optimum without enumerating
all possible solutions. A popular algorithm to use when solving MIQP problems is the
branch and bound algorithm. For a thorough discussion aboutbranch and bound, see
Section 2.5.2. In this chapter, it is investigated if the performance of the branch and
bound algorithm can be increased by using preprocessing. Only MIQP problems without
constraints are considered. Previous work in the area of preprocessing for the MIQP
problem is found in, for example, [84].

The derivation of the main result is performed in three steps. In the first part of Sec-
tion 5.1.2, a BQP problem of the form (2.50) is considered. Inthe second part, this result
is extended to a BQP problem of the form (2.51). After the finalextension, which is pre-
sented in Section 5.1.3, the algorithm can be applied to problems of the form (5.3). After
this extension, the preprocessing algorithm can be used forunconstrained MPC problems
involving both binary and real-valued control signals.

5.1.1 The BQP and MIQP Problems

For convenience, the two BQP problem formulations (2.50) and (2.51) from Section 2.6
are repeated below, followed by an unconstrained special case of (2.45).

minimize
x∈{0,1}nb

xT Hx (5.1)

minimize
x∈{0,1}nb

1
2xT Hx + fT x (5.2)

whereH ∈ S
nb . Finally, an unconstrained version of (2.45),

minimize
x∈Rnc×{0,1}nb

1
2xT Hx + fT x (5.3)

whereH ∈ S
nc+nb and the optimization vectorx containsnc real andnb binary variables.

For future reference, define
H = Hd + H+ + H− (5.4)

where

Hd,ij =

{

Hij , i = j

0, i 6= j

H+
ij = max (0,Hij − Hd,ij)

H−
ij = min (0,Hij − Hd,ij)

(5.5)

5.1.2 Preprocessing for the BQP Problem

To begin with, the case when all elements inx are binary is considered. The problem is
then of BQP type, which is a purely combinatorial problem. Asmentioned in Section 5.1,
a characteristic property of many combinatorial problems is that they in general are very
hard to solve exactly, because of the computational complexity, [72]. To be able to solve
large problem instances, either an approximate algorithm or some special structure in the
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problem has to be exploited. If the structure of the problem is used it might be possible to
solve the problem exactly in reasonable time.

The algorithm presented in this section makes it possible tospeed up the solution of
a certain class of BQP problems. For this class of problems the algorithm produces an
exact solution for one or more variables in polynomial time.For each binary variable the
algorithm delivers one out of three possible results:1 is the optimal value,0 is the optimal
value or nothing can be said for sure.

The preprocessing algorithm is based on the following result:

Theorem 5.1
For a BQP problem of type(5.1), an optimal value of one or more componentsxi can be
found in polynomial time if for somei ∈ {1, . . . , nb} any of the following conditions is
satisfied

(i) :

(ii) :

Hii ≥ −2
∑nb

j=1 H−
ij

Hii ≤ −2
∑nb

j=1 H+
ij

If any of the conditions(i) or (ii) is satisfied for a certain value ofi, an optimal value of
xi is given by

xi =

{

0, if (i) holds

1, if (ii) holds

Proof: Consider optimization problem (5.1). Denote the objectivefunction byQ(x) and
rewrite it as follows

Q(x) = xT Hx =

nb∑

i=1

nb∑

j=1

Hijxixj (5.6)

wherexi, xj ∈ {0, 1}, ∀ i, j = {1, . . . , nb}. For eachi ∈ {1, . . . , nb} the objective
functionQ(x) can be written as

Q(x) = Hiixixi + 2xi

nb∑

j=1
j 6=i

Hijxj + gi(x1, x2, . . . , xi−1, xi+1, . . . , xnb
)

= (Hii + 2

nb∑

j=1
j 6=i

Hijxj)xi + gi(x1, x2, . . . , xi−1, xi+1, . . . , xnb
)

(5.7)

wheregi is a function that is independent ofxi and where the last equality follows from
the fact thatx2

i = xi whenxi ∈ {0, 1}. Define

hi(x1, x2, . . . , xi−1, xi+1, . . . , xnb
) = Hii + 2

nb∑

j=1
j 6=i

Hijxj (5.8)

Note thathi is independent ofxi. With this definition, the objective function can be
written as

Q(x) = hi(x1, x2, . . . , xi−1, xi+1, . . . , xnb
)xi + gi(x1, x2, . . . , xi−1, xi+1, . . . , xnb

)
(5.9)
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Denote an arbitrary optimal solution to (5.1) byx∗ =
[
x∗

1, . . . , x
∗
nb

]T
. Note that since

the feasible set{x | xi = {0, 1} , i = 1, . . . , nb} is non-convex, there is not necessarily a
unique optimum to (5.1). For convenience, introduce

h∗
i = hi(x

∗
1, x

∗
2, . . . , x

∗
i−1, x

∗
i+1, . . . , x

∗
nb

)

g∗i = gi(x
∗
1, x

∗
2, . . . , x

∗
i−1, x

∗
i+1, . . . , x

∗
nb

)
(5.10)

Note that if the optimal solutionx∗
i is non-unique, there is oneg∗i and oneh∗

i associated
with each optimal solution. It now follows that

min
x

Q(x) = min
xi

h∗
i xi + g∗i =

{

g∗i , if h∗
i ≥ 0

h∗
i + g∗i , if h∗

i < 0
(5.11)

From (5.11) the conclusion can be drawn that

x∗
i =







0, if h∗
i > 0

0 or 1, if h∗
i = 0

1, if h∗
i < 0

(5.12)

Unfortunately,h∗
i is usually not known before the optimal solution

[
x∗

1, x
∗
2, . . . , x

∗
i−1, x

∗
i+1, . . . , x

∗
nb

]T
is known. A solution to this problem is to try to make

an estimate ofh∗
i . To simplify the notation, define







h̄i = max
x

hi

¯
hi = min

x
hi

(5.13)

It now holds that
¯
hi ≤ h∗

i ≤ h̄i, for all h∗
i corresponding to, possibly different, optimal

solutions. From this observation the following implications can be stated







h̄i < 0 ⇒ h∗
i < 0

h̄i = 0 ⇒ h∗
i ≤ 0

¯
hi = 0 ⇒ h∗

i ≥ 0

¯
hi > 0 ⇒ h∗

i > 0

(5.14)

Note that, ifh∗
i has the same sign for all optimal solutions, the componentx∗

i has a unique
optimal solution. By combining (5.12) and (5.14), the following conclusion can be drawn
about the optimal value ofxi

x∗
i =







0,
¯
hi > 0 (x∗

i unique)

0,
¯
hi = 0 (x∗

i not necessarily unique)

0 or 1,
¯
hi = h̄i = 0 (x∗

i not unique)

1, h̄i = 0 (x∗
i not necessarily unique)

1, h̄i < 0 (x∗
i unique)

(5.15)
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Note that if
¯
hi = h̄i = 0, then the coefficient in front ofxi is zero. Thus, this case is

not of practical interest. If the uniqueness properties of the solution is not of interest, it is
possible to reduce the five cases in (5.15) to two cases

x∗
i =

{

0,
¯
hi ≥ 0 (x∗

i not necessarily unique)

1, h̄i ≤ 0 (x∗
i not necessarily unique)

(5.16)

From (5.5) and (5.8) it follows that

h̄i = max
x

hi = max
x







Hii + 2

nb∑

j=1
j 6=i

Hijxj







= Hii + 2max
x

nb∑

j=1
j 6=i

Hijxj = Hii + 2

nb∑

j=1

H+
ij

(5.17)

where the last equality follows from the fact that the sign ofHij determines whether the
maximizingxj is 0 or 1. Analogously it follows that

¯
hi = min

x
hi = Hii + 2

nb∑

j=1

H−
ij (5.18)

Finally, Equation (5.16) can be written on the desired form

x∗
i =

{

0, Hii + 2
∑nb

j=1 H−
ij ≥ 0 ⇔ Hii ≥ −2

∑nb

j=1 H−
ij (i)

1, Hii + 2
∑nb

j=1 H+
ij ≤ 0 ⇔ Hii ≤ −2

∑nb

j=1 H+
ij (ii)

(5.19)

From (5.19) it is clear that the computational complexity ofthe tests(i) and(ii) is poly-
nomial in the number of variables, that is innb.

Now the result is extended to problems of type (5.2).

Corollary 5.1
For a BQP problem of type(5.2), an optimal value of one or more componentsxi can be
found in polynomial time if for somei ∈ {1, . . . , nb} any of the following conditions is
satisfied

(i) :

(ii) :

Hii ≥ −2fi − 2
∑nb

j=1 H−
ij

Hii ≤ −2fi − 2
∑nb

j=1 H+
ij

If any of the conditions(i) or (ii) is satisfied for a certain value ofi, an optimal value of
xi is given by

xi =

{

0, if (i) holds

1, if (ii) holds

Proof: The result follows directly from Theorem 5.1 by observing that

Q(x) =
1

2
xT Hx + fT x = xT

(
H + 2diag(f)

2

)

x (5.20)

for xi ∈ {0, 1}.
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5.1.3 Preprocessing for the MIQP Problem

If the x-vector is allowed to contain both real and binary variables, the BQP problem
becomes an MIQP problem. In this section, the problem is assumed to be of the type
(5.3) and thex-vector is assumed to be of the form

x =

[
xc

xb

]

xc ∈ R
nc , xb ∈ {0, 1}nb

(5.21)

The objective function can be expressed as

Q(x) =
1

2
xT Hx + fT x =

1

2

[
xT

c xT
b

]
[
Hcc Hcb

HT
cb Hbb

] [
xc

xb

]

+
[
fT

c fT
b

]
[
xc

xb

]

(5.22)

AssumeHcc positive definite. If all components inx had been real, it would have been
straightforward to use first order necessary and sufficient conditions for optimality from
Theorem 2.3 to calculate an explicit optimal solution to theproblem. When some of the
components inx are binary this is no longer possible. However, the optimality conditions
mentioned can still be used to compute the optimal values of the real variables as a func-
tion of the binary variables. The expression for the optimalreal variables is then given
by

xc = −H−1
cc (Hcbxb + fc) (5.23)

Substitute this expression into (5.22). The resulting optimization problem is a pure BQP
problem. The objective function, disregarding constant terms, can be written as

1

2
xT

b H̃xb + f̃T xb ,
1

2
xT

b

(
Hbb − HT

cbH
−1
cc Hcb

)
xb +

(
fb − HT

cbH
−1
cc fc

)T
xb (5.24)

In the calculations the symmetry ofH and H−1 has been used. When the objective
function is written on the form (5.24), Corollary 5.1 can be applied.

5.1.4 Implementation

Theorem 5.1 and Corollary 5.1 can be used in a straightforward way to implement a pre-
processing algorithm for BQP problems. In its simplest version, the conditions(i) and
(ii) are tested for eachi ∈ {1, . . . , nb}. When a condition is satisfied for a certain value
of i, an optimal value of the corresponding componentxi has been found. Practical ex-
perience shows that if the preprocessing algorithm is implemented in this straightforward
fashion it becomes rather conservative, and as a result, often only few variables are possi-
ble to compute by preprocessing.

To increase the number of variables possible to compute in the preprocessing step, the
algorithm can be enhanced in two steps. Both steps are built upon the idea to tighten the
bounds

¯
hi andh̄i. In the first step, any optimal values found forxi are used in the sub-

sequent computations for elements remaining to be computed. The algorithm, including
this first improvement, is presented in Algorithm 5.1. In thesecond step, after the condi-
tions have been tested once for each optimization variable,and if there are more variables
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Algorithm 5.1 BQP Preprocessing

x̃ := −1nb
// Variables not computed are assigned value −1.

H̃ := H

f̃ := f

for i = 1 to nb do
s− := H̃(i, i) + 2f̃(i) + 2

∑nb

j=1 H̃−(i, j)

s+ := H̃(i, i) + 2f̃(i) + 2
∑nb

j=1 H̃+(i, j)

if s+ ≤ 0 then
x̃(i) := 1
f̃ := f̃ + H̃(:, i)
H̃(:, i) = 0

else ifs− ≥ 0 then
x̃(i) := 0
H̃(:, i) := 0

end if
end for

remaining to be computed, a BQP problem of lower dimension isconstructed by incorpo-
rating the knowledge gained from previous computations. This procedure is repeated for
smaller and smaller BQP problems until either no new variables can be computed during
an iteration or until the optimal value for all variables in the problem have been found.
This implementation of the algorithm is referred to as the “iterated implementation” and is
presented as Algorithm 5.2. Both improvement steps result in sharper tests, since optimal
values replace the worst case estimates previously used.

After the preprocessing algorithm has terminated, an ordinary MIQP solver, or BQP
solver, may be applied to compute any remaining variables. Depending on the time avail-
able, the method used in the second step can either produce optimal solutions or sub-
optimal solutions.

5.2 Application of the Preprocessing Algorithm to
Model Predictive Control

In this section, Algorithm 5.2 is applied to the unconstrained MPC problem when binary
control signals are present. To be able to apply the preprocessing algorithm to this MPC
problem, it has to be formulated as an optimization problem on the form (5.3). This is
discussed in Section 5.2.1. Results from simulations are presented in Section 5.2.2.

5.2.1 Using Preprocessing

The results from Section 5.1.3 is in this section applied to an unconstrained MPC problem.
In this problem, it is desirable to find the control signal sequence that minimizes a certain
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Algorithm 5.2 BQP Iterative Preprocessing

x̃ := −1nb
// Variables not computed are assigned value −1.

Ius := {i | i ∈ Z, 1 ≤ i ≤ nb}
Htmp := H

ftmp := f

while Ius 6= ∅ do
Computex̃(Ius) by using Algorithm 5.1 withH = Htmp andf = ftmp

ns := |{i | i ∈ Ius, x̃(i) 6= −1} |
Ius := {i | x̃(i) = −1}
if (ns > 0) and (Ius 6= ∅) then
Is := {i | x̃(i) 6= −1}
Htmp := H(Ius, Ius)
ftmp := HT (Is, Ius)x̃(Is) + f(Ius)

else
STOP

end if
end while

criterion for a system on a form similar to (3.6) but with somematrices equal to zero

x(t + 1) = Ax(t) + Buu(t)

y(t) = Cx(t)
(5.25)

where
Bu =

[
Buc

Bub

]
, u(t) =

[
uT

c (t) uT
b (t)

]T
(5.26)

HereBu is split into one part for continuous control signals and onefor binary control sig-
nals. Furthermore,uc(t) ∈ R

mc denotes real-valued control signals andub(t) ∈ {0, 1}mb

denotes binary control signals. The signaly(t) ∈ R
p denotes the controlled output.

The objective function to minimize is of the type (3.10), buta terminal state weight has
been included. The optimization problem can be written on the form (3.5), by applying
a similar procedure as in Appendix B. By ignoring constants and dividing the objective
function by two, it can be written on the form (5.22) with

xc = uc

xb = ub

Hcc = ST
uc

CT QeCSuc
+ Quc

Hcb = ST
uc

CT QeCSub

Hbb = ST
ub

CT QeCSub
+ Qub

fc = ST
uc

CT Qe (CSxx0 − r)

fb = ST
ub

CT Qe (CSxx0 − r)

(5.27)

whereuc, ub, Sx, Suc
, Sub

, C, Qe, Quc
andQub

are defined in analogy with Appendix B
andx0 is the measured or estimated state of the system. The optimization problem can
then of course also be expressed as a BQP problem on the form (5.24).
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If the control signals are ordered according to their appearance in time, it can be seen
that theH-matrix gets a structure where the magnitude of the matrix elements descent
by the distance to the diagonal. How fast the magnitude of thematrix elements descent
seems to be dependent of the position of the poles of the controlled system. For example,
stable real poles give a non-oscillating fade off while complex poles give an oscillating
fade off. Unstable real poles also give elements that fade out. This behavior is subject to
further investigation. This structure of theH-matrix in the MPC problem makes it easier
to satisfy condition(i) or (ii) in Corollary 5.1.

5.2.2 Simulation Results

In this section, Algorithm 5.2 is used as an optimization preprocessing algorithm in a
mixed integer predictive controller applied to the examples presented in Section 3.4. In
both examples, the problem has been solved using three different approaches and the cor-
responding computational times are presented in a table. InApproach I, an ordinary MIQP
solver has been used. In Approach II, real variables have been eliminated, as described
in Section 5.1.3, before an ordinary MIQP solver has been used. No other preprocessing
has been performed. By doing this reformulation of the problem,nc variables less have to
be computed in each node in the branch and bound tree. This is not done completely for
free. The expressions for̃H andf̃ have to be calculated. In the examples, these calcula-
tions are included in the solution times presented. In a realworld MPC problem, some of
these calculations could probably have been re-used in several consecutive, or all, MPC
optimizations. Finally, in Approach III, real variables have first been eliminated accord-
ing to Section 5.1.3 and then the preprocessing algorithm has been applied to compute
as many variables as possible. Generally, any variables then remaining are computed us-
ing an ordinary MIQP, or BQP, solver. In the examples in this section, the preprocessing
algorithm determines the optimal value of all variables. Therefore, the MIQP solver is
actually never used in Approach III. In all three approachesa slightly modified version
of the MIQP solvermiqp.m presented in [15] has been used. To be able to make a fair
comparison, all available combinations of the settings ”method” and ”branchrule” in the
solver have been tested. In the table, only the shortest solution time achieved is presented.
For further information of available settings, see [15].

The preprocessing algorithm can be implemented in several different ways. In
MATLAB , an implementation with vectorized expressions has betterperformance than
one with for-loops. The code inmiqp.m is not vectorized. Therefore, to be able to make
a fair comparison between the MIQP solver and the preprocessing algorithm, the tests of
the conditions from Corollary 5.1 in the preprocessing algorithm are performed one row
at a time by using for-loops.

All tests have been performed on a Sun UltraSPARC-IIe 500 MHzwith 640 Mb RAM
running SunOS 5.8 and MATLAB version 6.5.1. The time measurements have been per-
formed using the MATLAB functionstic andtoc.

Mass Position Control

The control problem described in this section is the mass position control problem intro-
duced in Section 3.4.1. In this example, the position of the mass is supposed to follow a
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Figure 5.1: The left plot shows how the position of the mass,x2 (solid), follows
the sampled reference signal,r (starred), when the calculated optimal control signal
sequence is applied to the continuous model of the system. The right plot shows the
control signals,uc (solid) andub (dashed). Note thatuc is scaled in the plot.

reference signal which isr(t) = 10 sin(t). The statex1 is the velocity of the mass and the
statex2 is the position. To obtain a system on the form (5.25), zero order hold sampling
has been used with the sampling time0.1 s. The problem is solved over a time horizon
of 50 steps. The control signal cost is chosen in a way that makes it beneficial to use the
binary control signal, when it is possible. The cost function used in this example is of the
type described in Section 5.2.1, with

Qe = 100, Quc
= 1, Qub

= 1 (5.28)

The initial state is
x1(0) = 5 andx2(0) = 0 (5.29)

The result is shown in Figure 5.1. The computational time foroptimizing 50 real and 50
binary variables is presented in Table 5.1. The tree exploring strategy used in the first and
second approaches was the standard breadth first strategy. The node selection strategy
was chosen to ”max”, see [15]. This combination of settings was one of the best choices
available for this problem (the exploring strategies breadth first, best first and normalized
best first gave approximately the same performance). In the third approach, all 50 binary
variables were determined by Algorithm 5.2. It can be noticed that the computational
time is reduced with a factor of about 180, compared to using Approach I.

Table 5.1: Performance tests.

Optimization method Solution time [s]
Approach I 15.861
Approach II 4.618
Approach III 0.0868
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Figure 5.2: The left plot shows how the attitude of the satellite,x1 (solid), follows
the sampled reference signal,r (starred), when the calculated optimal control signal
sequence is applied to the continuous model of the system. The right plot shows the
control signals,uc (solid),ub,1 (dashed) andub,2 (dash-dotted).

Satellite Attitude Control

The control problem described in this section is the satellite attitude control problem
introduced in Section 3.4.2. The states of the system are chosen to be the satellite attitude
x1, the satellite angular velocityx2 and the internal wheel velocityx3. To obtain a system
on the form (5.25), zero order hold sampling with the sampling time0.1 s has been used.
The time horizon used is 20 samples. The cost function used inthis example is of the type
described in Section 5.2.1, with

Qe = diag
(
0.5 · 104, 10−2, 10−1

)
, Quc

= 10, Qub
= 10 · I2 (5.30)

The initial state is
x1(0) = 0, x2(0) = 0 andx3(0) = 0 (5.31)

In this example, the reference signal for the attitude of thesatellite is a step function
with the amplitude0.5. The reference signals for the other states are chosen to zero. The
optimal control signal sequence and the attitude of the satellite is shown in Figure 5.2. The
computational time for optimizing 20 real and 40 binary variables is found in Table 5.2.
The tree exploring strategy used in the first and second approaches was ordinary depth
first, and the node selection strategy was chosen to ”min”, see [15]. This combination of
settings was the best choice available for this problem. In this example the preprocessing
algorithm determined 40 out of 40 binary variables. The computational time was reduced
with a factor of about 275, compared to Approach I.

5.3 Application of the Preprocessing Algorithm to
Multiuser Detection

In this section, it is shown how to apply Algorithm 5.2 to the BQP problem (4.13) and
how the result can be interpreted.
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Table 5.2: Performance tests.

Optimization method Solution time [s]
Approach I 11.449
Approach II 6.916
Approach III 0.0414

5.3.1 Using Preprocessing

In order to be able to apply the preprocessing algorithm, theoptimization problem (4.13)
has to rewritten on the BQP form (5.2). Note especially the domain of the optimization
variablex. In order to convert (4.13) to an optimization problem with binary variables,
the following variable substitution is performed

b = 2b̄ − 1 (5.32)

whereb̄ ∈ {0, 1}K , b ∈ {−1,+1}K , 1 denotes a column vector with all elements equal
to one andK is the number of simultaneous users in the system. Using (5.32), neglecting
constant terms and dividing by 4, the objective function in (4.13) can be rewritten as

1

2
b̄T Hb̄ + f̃T b̄ (5.33)

where

f̃ = −
1

2
H1 −

1

2
Ay (5.34)

The problem is now on the form (5.2), on which preprocessing can be performed.

5.3.2 Interpretation of the Result

Using the notation in the multiuser detection problem, the conditions(i) and(ii) in Corol-
lary 5.1 can after simplification be written as

{

Aiyi ≤ −
∑

j 6=i |Hij | (i)

Aiyi ≥
∑

j 6=i |Hij | (ii)
(5.35)

Combining (5.32) and (5.35), it follows that the optimal choice of bi is given by

b∗i =

{

−1, if (i) holds

1, if (ii) holds
(5.36)

An interpretation of the conditions in (5.35) is that the sumof the non-diagonal terms
represents the maximum sum of interference energy possiblyaffecting useri. Because
all terms in the sum always are positive, it can be interpreted as if all users sent the worst
possible choice from{−1,+1}. If Aiyi is larger than this maximum known disturbance
energy, then it is most likely that useri sent the symbol1. Analogously, ifAiyi is smaller
than the negative maximum known disturbance energy, then itis most likely that useri
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Figure 5.3: This figure shows the decision regions for the preprocessingalgorithm,
when the non-iterative Algorithm 5.1 is used. The grey region shows the region
where variablei cannot be computed by non-iterative preprocessing. The size of this
region might be reduced when the iterated version of the algorithm in Algorithm 5.2
is used.

sent the symbol−1. This behavior seems reasonable since the noise is assumed to have
zero mean. The decision strategy is illustrated in Figure 5.3.

If (5.35) is investigated, it can be realized that a necessary property of the cross-
correlation matrix in order to be able to successfully use the algorithm, is that the chip
sequences give low cross-correlations between different users. This is typically the case
for, for example, Gold Sequences. Compared to previous optimal low complexity meth-
ods presented in [83, 85, 93], the algorithm presented in this thesis does not introduce any
requirements on the sign of the cross-correlations or that the cross-correlations between
users are equal.

5.3.3 Simulation Results

In this section, the preprocessing algorithm is applied to the multiuser detection prob-
lem and tested in Monte Carlo simulations. In the first simulations, the joint Bit Error
Rate (BER) for the optimal detector implemented by using thepreprocessing algorithm is
compared to the joint BER of the conventional detector, [56],

b̂ = sign(y) (5.37)

and to the joint BER of the decorrelating detector, [56],

b̂ = sign(H−1y) (5.38)

wherey denotes the output from the matched filters as described in Section 4.2.1. To be
able to make a fair comparison, in all but the last example only the variables computed
by the preprocessing algorithm were used in the BER calculations for all methods in
the comparisons. The tests were performed with Gold Sequences of length 128. The
algorithms were compared for the loads 1 to 127 users. Each load was tested 10000 times.
In each test, a new noise realization and a new random bit was assigned to each user. In
Figure 5.4 it can be noticed that the preprocessing algorithm computes nearly all variables
in average. In the worst case, 75 % of the variables were computed. The next issue to
verify is that the problem instances tested were not “trivial” in the sense that the existing
lowest complexity algorithms also could compute them optimally. This verification is
performed by calculating the average BER for the different methods during the Monte
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Figure 5.4: The plots show how many percents of the variables that were computed
by preprocessing for different loads. In the upper plot two curves are shown: The
min-curve shows the lowest amount of computed variables during the 10000 simu-
lations. The max-curve shows the greatest amount of computed variables during the
simulations. In the lower plot, the average of the amount of computed variables over
the 10000 realizations is shown. Note that the axis scaling are different in the upper
and in the lower plot.
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Figure 5.5: The plot shows the BER of the different methods as a function of the
load when Gold sequences of length 128 are used. It can be seenthat the optimal
multiuser detector implemented by the preprocessing algorithm has the lowest BER.
Only variables computed by the preprocessing algorithm areconsidered in the com-
parison. Note that since on average more than99.95 % of the variables are computed
by the preprocessing algorithm, the variables not computedby the algorithm do not
change the presented result significantly.

Carlo simulations. The result from this simulation is shownin Figure 5.5. In the test,
the Signal to Noise Ratio (SNR) for user 1 varied from7 dB to 6.7 dB. The conclusion
drawn from the simulation is that the optimal multiuser detector implemented by the
preprocessing algorithm gives lower BER than the two other algorithms. Note that the
plots for all three methods only include bits possible to calculate with the preprocessing
algorithm. The same plot also verifies that the iterated algorithm in Algorithm 5.2, enables
more “wise” decisions than Algorithm 5.1 which only uses a single iteration. In the non-
iterated case, it follows from (5.35) that the optimal decision coincides with the decision
taken by the detector in (5.37), in the region where variables can be computed by the
preprocessing algorithm. The region where the solution from the algorithms coincide is
the region outside the grey region in Figure 5.3. When the iterated implementation of the
preprocessing algorithm is used it can sometimes be possible to decrease the size of the
grey area for some variables in the problem. This means that in those cases more variables
are possible to compute by preprocessing.

The computational time is illustrated in Figure 5.6. The conventional detector (5.37)
is not shown in the plot because its computational time is negligible in comparison with
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Figure 5.6: In the plot, the computational time for preprocessing and the decorrelat-
ing detector are presented. To be able to make a fair comparison, the computational
time shown for the decorrelating detector is only the time ittakes to compute the
variables computable by preprocessing. The conventional detector has significantly
lower computational time and it has therefore been excludedfrom this plot.

the other two. The time measurements have been performed using the MATLAB functions
tic andtoc. The conclusion is drawn that the computational complexityfor the pre-
processing algorithm is similar to the one for the decorrelating detector (5.38). It should
be mentioned that the matrix inversion performed in (5.38) in MATLAB is implemented
much more efficiently than the preprocessing algorithm. Forexample, by implementing
the preprocessing algorithm in C, a significant reduction ofthe computational time is ex-
pected. The tests of the computational times were performedon a Sun UltraSPARC-IIe
500 MHz with 640 Mb RAM running SunOS 5.9 and MATLAB 7.0.1.

Gold sequences have very low cross-correlation. To test thealgorithm as the cross-
correlation increases, the cross-correlation matrix was manually modified. This was done
by adding0.01, 0.02, . . . , 0.6 in 60 steps to16 symmetric off-diagonal elements (8 ele-
ments on each side of the diagonal). For each of the60 steps,10000 Monte Carlo sim-
ulations were performed. The test was performed for100 users and the result from this
simulation can be found in Figure 5.7. The number of variables possible to compute by
preprocessing when the correlation is increased is illustrated by Figure 5.8.

An important property of the solution delivered by the proposed algorithm is that both
Algorithm 5.1 and Algorithm 5.2 provide a certificate of optimality, that is, even though
the solution sometimes coincides with the algorithms (5.37) and (5.38), the solution com-
puted by the latter algorithms cannot be guaranteed to be optimal. Note that, if the solution
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Figure 5.7: This figure shows BER as a function of the extra added off-diagonal
correlation. Only variables solved by the preprocessing algorithm is presented in the
comparison. The average number of variables solved for eachadded correlation is
shown in Figure 5.8.

of the preprocessing algorithm coincide with the solution of a suboptimal detector for a
specific region ofyi, this implies that the suboptimal detector actually takes optimal de-
cisions in the region considered. With the certificate of optimality it can be, from case to
case, worth to apply a higher complexity algorithm to compute any remaining variables
and hence compute the optimal solution to the entire problem. The alternative is to apply
a low complexity suboptimal algorithm to compute these remaining variables. In the last
simulation, the variables not possible to compute by the preprocessing algorithm were
computed by the conventional detector (5.37) and by the decorrelating detector (5.38).
This was performed by first subtracting the part ofy originating from the bits computed
by preprocessing. Denote the vector containing these bitsb̂p. Using (4.7), the remaining
signal was computed as

yremain = y(r) − R(r, c)A(c, c)b̂p (5.39)

wherer contains the indices in the original problem remaining to becomputed andc
contains the indices in the original problem of the variables computed by preprocessing.
The detectors (5.37) and (5.38) were finally applied to the remaining signal,yremain. The
BER is illustrated in Figure 5.9. The conclusion from the result in the figure is that the
preprocessing algorithm followed by a simple suboptimal algorithm will reduce the BER
significantly compared to using only the suboptimal algorithm.
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Figure 5.8: In the plot the number of variables possible to solve for different modi-
fications of the correlation is presented.
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Figure 5.9: This figure shows BER as a function of the extra added off-diagonal
correlation when the variables not solved by preprocessingare solved by two subop-
timal approaches, the conventional algorithm(5.37)and the decorrelating algorithm
(5.38). In this plot, all bits sent are considered in the BER calculation.
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6
A Mixed Integer Dual Quadratic

Programming Algorithm

As described in Section 3, when linear MPC is extended to handle hybrid systems, more
challenging problems have to be solved. The method most commonly used is branch and
bound, which is described in Section 2.4. In branch and boundfor MIQP problems, many
QP subproblems have to be solved in the nodes of the tree. It can then be advantageous to
consider QP solvers that can be warm started efficiently. By warm start it is meant that the
solver is supplied with information from a previously solved problem similar to the one
to be solved. The idea is that this information will reduce the computational effort needed
when reoptimizing after a minor modification of the problem.In Section 6.1, a dual QP
solver is presented. This solver is tailored for linear MPC and can easily be warm started.
In Section 6.2, this solver is used in a branch and bound method. It is shown how warm
starts can be applied and the performance of the algorithm isinvestigated.

6.1 A Dual Quadratic Programming Algorithm

In this section, a solver tailored for linear MPC is derived.The aim is to derive a solver
which can solve the subproblems in a branch and bound algorithm efficiently. From the
discussions in Section 2.5.2 and Section 3.3.2, it can be concluded that because of its good
warm start abilities, a dual active set QP solver would probably be a very good choice for
solving the node problems. Therefore, the solver presentedin this section is working in
the dual space.

6.1.1 Problem Definition

As described in Section 3, the MPC optimization problem can be cast on the QP form in
two different ways. Either, it can be written as a QP problem with only control signals
as optimization variables or it can be written as a QP where control signals, states and

71
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control errors all are optimization variables. In the first approach, the dynamics is embed-
ded in the objective function, while in the latter approach,the underlying MPC problem
is more directly visible, but it involves more variables. Both formulations are derived in
Appendix B for a general linear MPC problem. If the resultingKKT systems are exam-
ined, it can be seen that the linear part for the first approachinvolves a dense system while
the second approach involves an almost block diagonal system. In this section, it will be
shown that the latter system can be solved using a Riccati recursion. It will be seen that
this is advantageous from a computational point of view.

Consider a linear MPC problem similar to the one presented in(3.1) on the form

minimize
x,u,e

JP (x, u, e) =
1

2

N−1∑

t=0

eT (t)Qe(t)e(t) + uT (t)Qu(t)u(t)+

+
1

2
eT (N)Qe(N)e(N)

subject to x(0) = x0

x(t + 1) = A(t)x(t) + B(t)u(t), t = 1, . . . , N − 1

e(t) = M(t)x(t), t = 1, . . . , N

h(0) + Hu(0)u(0) ≤ 0

h(t) + Hx(t)x(t) + Hu(t)u(t) ≤ 0, t = 1, . . . , N − 1

(6.1)

wherex, u ande are defined as in Appendix B witht0 = 0, andHx(t) ∈ R
c(t)×n, Hu(t) ∈

R
c(t)×m andh(t) ∈ R

c(t) wherec(t) denotes the number of inequality constraints at time
t. Furthermore, the following assumptions are made

Assumption A1. Qe(t) ∈ S
p
++, t = 0, . . . , N

Assumption A2. Qu(t) ∈ S
m
++, t = 0, . . . , N − 1

6.1.2 Derivation of the Dual Problem

In order to design a solver working on the problem dual to (6.1), the dual optimization
problem has to be derived. The optimization problem in (6.1)is on the form (2.27). There-
fore, deriving the dual problem to (6.1) is a special case of the procedure in Section 2.4.
The first step in the procedure is to form the Lagrangian.

LP (x, u, e, α, β, γ) =
1

2

N−1∑

t=0

eT (t)Qe(t)e(t) + uT (t)Qu(t)u(t) +
1

2
eT (N)Qe(N)e(N)

+ αT (0)
(
x0 − x(0)

)
+

N−1∑

t=0

αT (t + 1)
(
A(t)x(t) + B(t)u(t) − x(t + 1)

)

+

N∑

t=0

βT (t)
(
M(t)x(t) − e(t)

)
+ γT (0)

(
h(0) + Hu(0)u(0)

)

+

N−1∑

t=1

γT (t)
(
h(t) + Hx(t)x(t) + Hu(t)u(t)

)

(6.2)
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whereα, β andγ are the Lagrange multiplier vectors associated with the optimization
problem (6.1)

α = [αT (0), . . . , αT (N)]T

β = [βT (0), . . . , βT (N)]T

γ = [γT (0), . . . , γT (N − 1)]T

(6.3)

These are also known as the dual variables. Following (2.12), the Lagrange dual function
for this problem is

g(α, β, γ) = inf
x,u,e

L(x, u, e, α, β, γ) (6.4)

Hence, the Lagrange dual problem associated with (6.1) is

maximize
α,β,γ

g(α, β, γ)

subject to γ ≥ 0
(6.5)

In order to write down an explicit expression for (6.4), the Lagrangian function in (6.2) is
rewritten on the following form

LP (x, u, e, α, β, γ)

=
1

2

N−1∑

t=0

eT (t)Qe(t)e(t) + uT (t)Qu(t)u(t) +
1

2
eT (N)Qe(N)e(N)

+
(
αT (1)A(0) − αT (0) + βT (0)M(0)

)
x(0)

+

N−1∑

t=1

(
αT (t + 1)A(t) − αT (t) + βT (t)M(t) + γT (t)Hx(t)

)
x(t)

+

N−1∑

t=0

(
αT (t + 1)B(t)u(t) − βT (t)e(t) + γT (t)h(t) + γT (t)Hu(t)u(t)

)

+ αT (0)x0 +
(
− αT (N) + βT (N)M(N)

)
x(N) − βT (N)e(N)

(6.6)

As for the optimization problem (2.27), the Lagrangian is a linear function of the pri-
mal optimization variables not explicitly present in the primal objective function. Hence,
when minimizing the Lagrangian with respect to all primal variables, an implicit equality
constraint similar to the one found in (2.28) can be found also in (6.6).

By examining the Lagrangian (6.6), it follows thatLP is a linear function ofx and
a strictly convex function ofu ande. If the minimization is performed with a non-zero
coefficient in front ofx, the optimal value will not be bounded from below. However, a
more explicit formulation of (6.5) can be obtained by addingconstraints to (6.5), which
exclude the values of(α, β, γ) for which g(α, β, γ) = −∞. By examining (6.6), these
constraints are found to be

AT (0)α(1) − α(0) + MT (0)β(0) = 0

AT (t)α(t + 1) − α(t) + MT (t)β(t) + HT
x (t)γ(t) = 0, t = 1, . . . , N − 1

−α(N) + MT (N)β(N) = 0

(6.7)
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BecauseLP is a strictly convex continuously differentiable functionof u ande, the mini-
mization over these variables can easily be performed usingthe first order necessary and
sufficient conditions of optimality. These are

∂LP

∂u(t)
= Qu(t)u(t) + BT (t)α(t + 1) + HT

u (t)γ(t) = 0, t = 0, . . . , N − 1

∂LP

∂e(t)
= Qe(t)e(t) − β(t) = 0, t = 0, . . . , N

(6.8)

By combining and rewriting (6.7) and (6.8), the following equations are obtained

α(0) = AT (0)α(1) + MT (0)β(0)

α(t) = AT (t)α(t + 1) + MT (t)β(t) + HT
x (t)γ(t), t = 1, . . . , N − 1

α(N) = MT (N)β(N)

u(t) = −Q−1
u (t)

(
BT (t)α(t + 1) + HT

u (t)γ(t)
)
, t = 0, . . . , N − 1

e(t) = Q−1
e (t)β(t), t = 0, . . . , N

(6.9)

To obtain an explicit expression forg(α, β, γ), (6.7) and the expressions foru(t) ande(t)
in (6.9) are inserted into (6.6). After simplifications the result is

g(α, β, γ) = −
1

2

N−1∑

t=0

(
βT (t)Q−1

e (t)β(t) + αT (t + 1)B(t)Q−1
u (t)BT (t)α(t + 1)

+ 2γT (t)Hu(t)Q−1
u (t)BT (t)α(t + 1) + γT (t)Hu(t)Q−1

u (t)HT
u (t)γ(t)

− 2γT (t)h(t)
)
−

1

2
βT (N)Q−1

e (N)β(N) + αT (0)x0

(6.10)

By combining the first three lines in (6.9) with (6.10), an explicit expression for the prob-
lem in (6.5) can be given as

maximize
α,β,γ

−
1

2

N−1∑

t=0

(
αT (t + 1)B(t)Q−1

u (t)BT (t)α(t + 1)+

+
[
βT (t) γT (t)

]
[
Q−1

e (t) 0
0 Hu(t)Q−1

u (t)HT
u (t)

] [
β(t)
γ(t)

]

+

+ 2αT (t + 1)
[
0 B(t)Q−1

u (t)HT
u (t)

]
[
β(t)
γ(t)

]

− 2hT (t)γ(t)
)
−

−
1

2
βT (N)Q−1

e (N)β(N) + xT
0 α(0)

subject to α(0) = AT (0)α(1) + MT (0)β(0)

α(t) = AT (t)α(t + 1) +
[
MT (t) HT

x (t)
]
[
β(t)
γ(t)

]

, t = 1, . . . , N − 1

α(N) = MT (N)β(N)

γ(t) ≥ 0, t = 0, . . . , N − 1
(6.11)
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To make the dual optimization problem more look like an optimal control problem,
the procedure in [81] is followed, that is, the dual variables are changed and the time is
reversed according to

α(t) = x̃(N − t), β(t) = w(N − t − 1), γ(t) = v(N − t − 1)

τ = N − t
(6.12)

and the following definitions are made

ũ(−1) = w(−1)

ũ(τ) =
[
wT (τ) vT (τ)

]T
, τ = 0, . . . , N − 1

Q̃ũ(−1) = Q−1
e (N)

B̃(−1) = MT (N)

Q̃x̃(τ) = B(N − τ − 1)Q−1
u (N − τ − 1)BT (N − τ − 1)

Q̃ũ(τ) = diag(Q−1
e (N − τ − 1),Hu(N − τ − 1)Q−1

u (N − τ − 1)HT
u (N − τ − 1))

Q̃x̃ũ(τ) =
[
0 B(N − τ − 1)Q−1

u (N − τ − 1)HT
u (N − τ − 1)

]

q̃ũ(τ) =
[
0 −hT (N − τ − 1)

]T

Ã(τ) = AT (N − τ − 1)

B̃(τ) =
[
MT (N − τ − 1) HT

x (N − τ − 1)
]

q̃x̃(N) = −x0

B̃(N) =
[
MT (0) 0

]

(6.13)

where the relations hold forτ = 0, . . . , N − 1 unless stated differently. Finally, in order
to obtain a minimization problem, the sign of the objective is changed. The optimization
problem is then on the form

minimize
x̃,ũ

JD(x̃, ũ) =
1

2
ũT (−1)Q̃ũ(−1)ũ(−1)

+
1

2

N−1∑

τ=0

(
x̃T (τ)Q̃x̃(τ)x̃(τ) + ũT (τ)Q̃ũ(τ)ũ(τ)

+ 2x̃T (τ)Q̃x̃ũ(τ)ũ(τ) + 2q̃T
ũ (τ)ũ(τ)

)
+ q̃T

x̃ (N)x̃(N)

subject to x̃(0) = B̃(−1)ũ(−1)

x̃(τ + 1) = Ã(τ)x̃(τ) + B̃(τ)ũ(τ), τ = 0, . . . , N − 1
[
0 −Ic(N−τ−1)

]
ũ(τ) ≤ 0, τ = 0, . . . , N − 1

(6.14)
where

x̃ =
[
x̃T (0), . . . , x̃T (N)

]T

ũ =
[
ũT (−1), . . . , ũT (N − 1)

]T
(6.15)
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andx̃(τ) ∈ R
ñ andũ(τ) ∈ R

m̃(τ). The dual state dimension and the dual control signal
dimension are related to dimensions of primal variables by the equations̃n = n and
m̃(τ) = c(N − τ − 1).

Note that it is actually abuse of notation to refer to (6.14) as the dual problem to (6.1).
To be exact, (6.14) is a problem equivalent to the dual problem of (6.1). That is, the two
problems have the same solution, see Definition 2.4. Despitethis, (6.14) will from now
on be called the dual problem of (6.1).

Remark6.1. In the derivation of the algorithm, a reference signal has been omitted. If
desired, a reference signalr(t) can readily be included by settinge(t) = M(t)x(t)− r(t)

and redefining̃qũ(τ) =
[
rT (N − τ − 1) −hT (N − τ − 1)

]T
.

The dual problem can be interpreted as an optimal control problem where the initial
statex̃(−1) is fixed to the origin and with positivity constraints on someof the control
signals. Also, the final state penalty is linear. An alternative interpretation is that, in some
cases, it can be reformulated as an estimation problem with cross penalties between the
process noise and the measurement noise, and with some of theprocess noise compo-
nents constrained to be positive. More on duality between optimal control problems and
estimation problems can be found in [81] and [49].

6.1.3 Optimality Conditions for the Dual Problem

The interest is now focused on problem (6.14). The idea is to solve the primal problem
(6.1) by solving the dual problem (6.14). In order to solve the dual problem, the optimality
conditions for this problem have to be derived. Define the Lagrangian of (6.14) as

LD(x̃, ũ, λ, µ) =
1

2
ũT (−1)Q̃ũ(−1)ũ(−1)

+
1

2

N−1∑

τ=0

(
x̃T (τ)Q̃x̃(τ)x̃(τ) + ũ(τ)T Q̃ũ(τ)ũ(τ)

+ 2x̃T (τ)Q̃x̃ũ(τ)ũ(τ) + 2q̃T
ũ (τ)ũ(τ)

)
+ q̃T

x̃ (N)x̃(N)

+ λT (0)
(
B̃(−1)ũ(−1) − x̃(0)

)

+

N−1∑

τ=0

λT (τ + 1)
(
Ã(τ)x̃(τ) + B̃(τ)ũ(τ) − x̃(τ + 1)

)

−
N−1∑

τ=0

µT (τ)
[
0 Ic(N−τ−1)

]
ũ(τ)

(6.16)

where

λ =
[
λT (0), . . . , λT (N)

]T

µ =
[
µT (0), . . . , µT (N − 1)

]T
(6.17)

If the results from Section 2.4.1 are applied to problem (6.1), it follows that the dual prob-
lem is always feasible if the primal problem is feasible. If the dual problem is feasible,
according to Remark 2.1 strong duality holds and the KKT conditions in Theorem 2.3
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are fulfilled and therefore constitute necessary and sufficient conditions of optimality for
(6.14). In case the primal problem is infeasible, then according to the results in Sec-
tion 2.4.1, the dual is either infeasible or unbounded. Consider the case when the primal
problem is feasible and apply Theorem 2.3 to the dual problem. The equations (2.20a)
and (2.20b) will then generate the following equations

[
0 −Ic(N−τ−1)

]
ũ(τ) ≤ 0, τ = 0, . . . , N − 1

x̃(0) = B̃(−1)ũ(−1)

x̃(τ + 1) = Ã(τ)x̃(τ) + B̃(τ)ũ(τ), τ = 0, . . . , N − 1

(6.18)

From the dual feasibility condition (2.20c),

µ(τ) ≥ 0, τ = 0, . . . , N − 1 (6.19)

The complementary slackness condition (2.20d) gives the equation

µi(τ)ũm̃(τ)−c(N−τ−1)+i(τ) = 0, i = 1, . . . , c(N−τ−1), τ = 0, . . . , N−1 (6.20)

Finally, from (2.20e) the following equations are obtained

∂LD

∂x̃(τ)
= Q̃x̃(τ)x̃(τ) + Q̃x̃ũ(τ)ũ(τ) + ÃT (τ)λ(τ + 1) − λ(τ) = 0, (6.21a)

τ = 0, . . . , N − 1

∂LD

∂x̃(N)
= q̃x̃(N) − λ(N) = 0 (6.21b)

∂LD

∂ũ(τ)
= Q̃ũ(τ)ũ(τ) + Q̃T

x̃ũ(τ)x̃(τ) + q̃ũ(τ) + B̃T (τ)λ(τ + 1) −

[
0
I

]

µ(τ) = 0,

(6.21c)

τ = 0, . . . , N − 1

∂LD

∂ũ(−1)
= Q̃ũ(−1)ũ(−1) + B̃T (−1)λ(0) = 0 (6.21d)

6.1.4 Connection Between Primal and Dual Variables

As mentioned in the previous section, the idea is to compute the solution to the primal
problem from the solution of the dual problem. How this can beperformed is discussed
in this section. The information in this section is expectedto appear after the algorithm
solving the dual problem has been presented. But the relation is also important when
interpreting how the algorithm works. Thus, these relations are derived now.

In the primal problem, the primal variables arex, e andu and the dual variables areα,
β andγ. In the dual problem, the primal variables arex̃, w andv and the dual variables
areλ andµ. Note that, in the formulation (6.14), the variablesw andv are stacked in the
variableũ. The relation between the dual variables of the primal problem,α, β andγ, and
the primal variables of the dual problem,x̃, w andv, are given by (6.12).

By combining the fourth line in (6.9) with the first line in (6.12), the following ex-
pression foru is obtained

u(t) = −Q−1
u (t)

(
BT (t)x̃(N − t − 1) + HT

u (t)v(N − t − 1)
)

(6.22)
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Using the expression forτ in (6.12), (6.22) can be rewritten as

u(N −τ −1) = −Q−1
u (N −τ −1)

(
BT (N −τ −1)x̃(τ)+HT

u (N −τ −1)v(τ)
)

(6.23)

By combining (6.21a) and (6.12), the following expression for λ(N − t) is obtained

λ(N − t) = A(t − 1)λ(N − t + 1) + B(t − 1)Q−1
u (t − 1)BT (t − 1)x̃(N − t)

+ B(t − 1)Q−1
u (t − 1)HT

u (t − 1)v(N − t)
(6.24)

Identifyingu(t−1) according to (6.22) in (6.24) yields the following recursive expression
for λ

λ(N − t) = A(t − 1)λ(N − t + 1) − B(t − 1)u(t − 1)

λ(N) = −x0

(6.25)

where the expression forλ(N) stems from (6.21b). Now let̄x(t) = −λ(N − t) and insert
into (6.25)

x̄(0) = x0

−x̄(t) = −A(t − 1)x̄(t − 1) − B(t − 1)u(t − 1), t = 1, . . . , N
(6.26)

Change the sign of the last line in (6.26) and redefine the timeindex

x̄(0) = x0

x̄(t + 1) = A(t)x̄(t) + B(t)u(t), t = 0, . . . , N − 1
(6.27)

Identifying (6.27) with (6.1) yields the relationx(t) = x̄(t), that is

x(t) = −λ(N − t) (6.28)

The dual variableµ in the dual problem has also an interpretation in the primal prob-
lem. In the following calculation, (6.13) has been insertedinto (6.21) in order to get
a direct primal interpretation of the equations. By using (6.21d), (6.22), (6.28) and the
second line in (6.12), the following equation is obtained

h(t) + Hx(t)x(t) + Hu(t)u(t) = −µ(N − t − 1), t = 1, . . . , N − 1 (6.29)

For t = 0, similar calculations give

h(0) + Hu(0)u(0) = −µ(N − 1) (6.30)

If (6.29) and (6.30) are compared to (6.1), the conclusion can be drawn that theµ-
variables are slack variables for the primal inequality constraints. It is also clear that
µ ≥ 0 if the primal problem is feasible, which is exactly the condition (6.19) for dual
feasibility in the dual problem.



6.1 A Dual Quadratic Programming Algorithm 79

6.1.5 Solving the Dual Problem Using Riccati Recursions

This section is opened with an assumption

Assumption A3. Hu(t) has full row rank fort = 0, . . . , N − 1.

The dual problem is now to be solved by a primal (the dual problem is treated as a
primal problem) active set QP solver as described in Algorithm 2.1. In the QP iterations,
equality constrained problems of type (2.37) are solved. The KKT conditions, excluding
the non-linear complementary slackness condition, is given by a linear system on the
form

Kx̂ =

[

K11 K12

K21 K22

][

x̂1

x̂2

]

=






H AT
E AT

I∩W

AE 0 0

AI∩W 0 0











x̂

ν̂

λ̂I∩W




 =






−f

bE

bI∩W




 (6.31)

whereAI∩W contains the rows inAI corresponding to constraints contained in the work-
ing set andbI∩W andλ̂I∩W are defined analogously. Note that the notation used in (6.31)
is the one used in Chapter 2 for a generic QP problem and is not connected to the nota-
tion used previously in this chapter. In accordance with (2.21), the matrixAE and the
vectorbE define the equality constraints in the problem. Dual variables corresponding

to inequality constraints not in the working set, that is
{

λ̂i | i 6∈ W
}

, are set to zero by

the active set algorithm. Since the upper left block in (6.31) is unchanged during the QP
iterations it seems computationally efficient to proceed asin [61], where it is proposed
to use block elimination (see Algorithm A.1) in order to solve (6.31). As shown in [61],
the upper left block will have a structure that makes it possible to computeK−1

11 K12

and K−1
11

[
−fT bT

E

]T
using Riccati recursions. Under the assumptions A1 and A2,

there exists a unique solution to the KKT system for the primal problem. Therefore,

K−1
11

[
−fT bT

E

]T
can be computed for the primal problem. Trying to follow the same

approach in the dual might create problems. By simple examples, it can be shown that
K11 in the dual problem cannot, in general, be expected to be nonsingular, and therefore,
block elimination cannot be used when solving the dual problem.

Remark6.2. If the control signal constraints are linearly independent, it is actually pos-
sible to use block elimination when solving the dual problem. Lower and upper bounds
can be handled by the introduction of a variable substitution. Although it has not been
further examined, it might be possible to handle general linearly dependent control signal
constraints by a similar procedure.

For an MPC problem with upper and lower bound constraints, the rows containing
these constraints in theAI-matrix will be linearly dependent. Hence, it is not possible to
use an algorithm that requires full row rank ofAI . To be able to use the algorithm in the
nodes of a branch and bound algorithm, where binary constraints are relaxed to interval
constraints, the algorithm has to be able to handle upper andlower bounds on variables.
For example, if an MPC problem with binary inputs is to be solved by branch and bound,
the binary constraintsu(t) ∈ {0, 1} on the input variables are relaxed tou(t) ∈ [0, 1].

From this discussion, it is clear that the KKT system cannot be solved as in [61]. Since
it is generally not possible to computeK−1

11 , an efficient algorithm that either works on the
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entire system (6.31) has to be developed or the system has to be partitioned in another way
than proposed in (6.31). An alternative partitioning can befound by reordering the rows
and columns ofK in (6.31). For what follows, it it necessary to splitũ into w andv, where
w contains the stacked unconstrained dual control signals and v contains the stacked con-

strained dual control signals. Relating back to (6.14), letx̄1 =
[
x̃T wT λT vT

I∩W∁

]T

and x̄2 =
[
vT
I∩W µT

I∩W

]T
, where the subindex indicates whether the corresponding

variable contains elements related to the constraints in the working set or not. The result
after reordering rows and columns inK is a system on the form

K̄x̄ =

[

K̄11 K̄12

K̄21 K̄22

][

x̄1

x̄2

]

=






R̄11 R̄12 0

R̄21 R̄22 −I

0 −I 0











x̄1

x̄2,1

x̄2,2




 =






b̄1

b̄2,1

b̄2,2




 (6.32)

Note thatK̄22 is non-singular. In (6.32), it has been used that the inequality constraints
have the form−v(τ) ≤ 0, which implies that the matrix containing the coefficient for
vI∩W is −I. As mentioned in Section 2.4.2, dual variables not in the working set areset
to zero. ThereforeµI∩W∁ = 0. Note that̄b2,2 = 0. This follows from the fact that the
right hand side of the equations for the inequality constraints in the working set is zero.
By using a block inversion formula for the casēK22 is non-singular,̄x1 and x̄2 can be
calculated as

x̄1 =
(
K̄11 − K̄12K̄

−1
22 K̄21

)−1 (
b̄1 − K̄12K̄

−1
22 b̄2

)

x̄2 = K̄−1
22

(
b̄2 − K̄21x̄1

) (6.33)

It follows directly from Lemma A.3 that

K̄−1
22 =

[
0 −I

−I −R̄22

]

(6.34)

Furthermore,

K̄12K̄
−1
22 =

[
R̄12 0

]
[

0 −I

−I −R̄22

]

=
[
0 −R̄12

]
(6.35)

From this the next result follows directly

K̄12K̄
−1
22 K̄21 =

[
0 −R̄12

]
[
R̄21

0

]

= 0 (6.36)

Using (6.35) and (6.36) in the expression forx̄1 in (6.33), the following simplified equa-
tion for x̄1 is obtained

R̄11x̄1 = b̄1 + R̄12b̄2,2 = b̄1 (6.37)

where the last equality follows from̄b2,2 = 0. By using (6.34) and that̄b2,2 = 0, the
expression for̄x2 can be simplified to

x̄2 =

[
0

R̄21x̄1 − b̄2,1

]

(6.38)
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As a consequence, whenx̄1 has been computed,vI∩W andµI∩W can easily be computed
as

vI∩W = 0, µI∩W = R̄21x̄1 − b̄2,1 (6.39)

From a practical point of view, it is important to discuss thepartitioning intoR̄11,
R̄12, R̄21 andR̄22 expressed in terms of the variables present in problem (6.1). The rows
corresponding to

[
R̄21 R̄22 −I

]





x̄1

x̄2,1

x̄2,2



 = b̄2,1 (6.40)

contain the equations in (6.21c) involvingµ(τ). Using (6.13), these equations can be
rewritten as

[
Hu(ς)Q−1

u (ς)BT (ς) Hx(ς)
]

︸ ︷︷ ︸

Included inR̄21

[
x̃(τ)

λ(τ + 1)

]

+ Hu(ς)Q−1
u HT

u (ς)
︸ ︷︷ ︸

Included inR̄22

v(τ)

− I · µ(τ) = h(ς), τ = 0, . . . , N − 2

(6.41)

whereς = N − τ − 1. For each component inv(τ) there is a constraintvi(τ) ≥ 0 that
can be either active or inactive. If the constraint is active, vi(τ) = 0. If vi(τ) in (6.41)
has a corresponding constraint which is active, the corresponding equation in (6.41) can
be simplified sincevi(τ) can be removed from the equation. If a constraint is activated,
vi(τ) is set to zero and it does not have to be computed from (6.41), but on the other hand,
the corresponding dual variableµi(τ) is no longer set to zero and has to be calculated.
This can also be done using (6.41). That is, the use of (6.41) varies with if the constraint
corresponding to thevi-element is active or inactive according to

Hu,(i,:)(ς)Q
−1
u HT

u,(i,:)(ς)vi(τ) + Hu,(i,:)(ς)Q
−1
u (ς)BT (ς)x̃(τ)

+ Hx,(i,:)(ς)λ(τ + 1) = hi(ς) (6.42a)

µj(τ) = Hu,(j,:)(ς)Q
−1
u HT

u,(i,:)(ς)vi(τ) + Hu,(j,:)(ς)Q
−1
u (ς)BT (ς)x̃(τ)

+ Hx,(j,:)(ς)λ(τ + 1) − hj(ς) (6.42b)

wherei denotes elements inv(τ) included in inequality constraints not in the working
set andj denotes elements inv(τ) included in inequality constraints in the working set.
Equations of type (6.42a) are solved as a part of the Riccati recursion described below
and equations of type (6.42b) are solved after (6.42a) has been solved and are used to
computeµ(τ).

Left to solve is the equation̄R11x̄1 = b̄1. This equation corresponds to solving a
modified version of the equations in (6.18) and (6.21). From (6.32), it follows that (6.21)
should be modified by setting components invI∩W andµI∩W to zero. After a suitable
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reordering of the variables and equations, (6.37) can be written as
















Q̃ũ(−1) B̃T (−1) 0 0 0 0 0 ... ... ... ... 0

B̃T (−1) 0 −I 0 0 0 0 ... ... ... ...
...

0 −I Q̃x̃(0) Q̃x̃ũ(0) ÃT (0) 0 0 ... ... ... ...
...

0 0 Q̃T
x̃ũ(0) Q̃ũ(0) B̃T (0) 0 0 ... ... ... ...

...
0 0 Ã(0) B̃(0) 0 −I 0 ... ... ... ... 0

... ... ... ... ... ... ... ... Ã(N−1) B̃(N−1) 0 −I
0 ... ... ... ... ... ... ... 0 0 −I 0
















x̄′
1 = b̄′1 (6.43)

where

x̄′
1 =


















ũ(−1)
λ(0)
x̃(0)
ũ(0)
λ(1)
x̃(1)
ũ(1)

...
x̃(N−1)
ũ(N−1)

λ(N)
x̃(N)


















, b̄′1 =











0
0
0

−q̃ũ(0)
0
...

−q̃ũ(N−1)
−q̃x̃(N)











(6.44)

andũ(τ) includes all components ofw(τ) but only the components inv(τ) not included
in a constraint in the working set.

If (6.43) is studied, it is seen that it has an almost block diagonal structure. This
structure is now going to be utilized. For eachτ = 0, . . . , N − 1, the following relation
holds




−I Q̃x̃(τ) Q̃x̃ũ(τ)

0 Q̃T
x̃ũ(τ) Q̃ũ(τ)

0 Ã(τ) B̃(τ)









λ(τ)
x̃(τ)
ũ(τ)



+





ÃT (τ) 0

B̃T (τ) 0
0 −I





[
λ(τ + 1)
x̃(τ + 1)

]

=





0
−q̃ũ(τ)

0



 (6.45)

In order to represent all equations in (6.43), three more equations concerning variables at
τ = −1 andτ = N are needed

ũ(−1) = −Q̃−1
ũ (−1)B̃T (−1)λ(0)

x̃(0) = B̃(−1)ũ(−1)

λ(N) = q̃x̃(N)

(6.46)

The aim is now to show that there exist symmetric positive semidefinite matricesP (τ)
such that

P (τ)x̃(τ) − λ(τ) = Ψ(τ) (6.47)

By comparing the first line in (6.46) with (6.47), it is clear that (6.47) holds at time instant
τ = N with

P (N) = 0

Ψ(N) = −q̃x̃(N)
(6.48)
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Assume
P (τ + 1)x̃(τ + 1) − λ(τ + 1) = Ψ(τ + 1) (6.49)

or equivalently,λ(τ +1) = P (τ +1)x̃(τ +1)−Ψ(τ +1). Using this assumption, (6.45)
can be reformulated as
[
−I Q̃x̃(τ) Q̃x̃ũ(τ)

0 Q̃T
x̃ũ(τ) Q̃ũ(τ)

]




λ(τ)
x̃(τ)
ũ(τ)



+

[
ÃT (τ)

B̃T (τ)

]
(
P (τ + 1)x̃(τ + 1) − Ψ(τ + 1)

)

=

[
−I Q̃x̃(τ) + ÃT (τ)P (τ + 1)Ã(τ) Q̃x̃ũ(τ) + ÃT (τ)P (τ + 1)B̃(τ)

0 Q̃T
x̃ũ(τ) + B̃T (τ)P (τ + 1)Ã(τ) Q̃ũ(τ) + B̃T (τ)P (τ + 1)B̃(τ)

]




λ(τ)
x̃(τ)
ũ(τ)





−

[
ÃT (τ)

B̃T (τ)

]

Ψ(τ + 1) =

[
0

−q̃ũ(τ)

]

(6.50)

Define the following variables

F (τ + 1) = Q̃x̃(τ) + ÃT (τ)P (τ + 1)Ã(τ)

G(τ + 1) = Q̃ũ(τ) + B̃T (τ)P (τ + 1)B̃(τ)

H(τ + 1) = Q̃x̃ũ(τ) + ÃT (τ)P (τ + 1)B̃(τ)

(6.51)

Equation (6.50) can then be written on the simplified form

[
−I F (τ + 1) H(τ + 1)
0 HT (τ + 1) G(τ + 1)

]




λ(τ)
x̃(τ)
ũ(τ)



−

[
ÃT (τ)

B̃T (τ)

]

Ψ(τ + 1) =

[
0

−q̃ũ(τ)

]

(6.52)

AssumeG(τ + 1) non-singular. From the lower block in (6.52) an expression for ũ(τ)
can be derived.

ũ(τ) = G−1(τ + 1)
(
B̃T (τ)Ψ(τ + 1) − HT (τ + 1)x̃(τ) − q̃ũ(τ)

)
(6.53)

Using the first block in (6.52) and the expression forũ(τ) an expression similar to (6.47)
can be derived

− λ(τ) + F (τ + 1)x̃(τ) + H(τ + 1)ũ(τ) − ÃT (τ)Ψ(τ + 1)

= −λ(τ) +
(
F (τ + 1) − H(τ + 1)G−1(τ + 1)HT (τ + 1)

)
x̃(τ)

+ H(τ + 1)G−1(τ + 1)B̃T (τ)Ψ(τ + 1) − H(τ + 1)G−1(τ + 1)q̃ũ(τ)

− ÃT (τ)Ψ(τ + 1) = 0 ⇔
(
F (τ + 1) − H(τ + 1)G−1(τ + 1)HT (τ + 1)

)
x̃(τ) − λ(τ)

= −H(τ + 1)G−1(τ + 1)B̃T (τ)Ψ(τ + 1) + H(τ + 1)G−1(τ + 1)q̃ũ(τ)

+ ÃT (τ)Ψ(τ + 1)

(6.54)

Identifying terms in (6.54) with (6.47), an expression forP (τ) andΨ(τ) can be derived.

P (τ) = F (τ + 1) − H(τ + 1)G−1(τ + 1)HT (τ + 1)

Ψ(τ) =
(
ÃT (τ) − H(τ + 1)G−1(τ + 1)B̃T (τ)

)
Ψ(τ + 1)

+ H(τ + 1)G−1(τ + 1)q̃ũ(τ)

(6.55)
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These are recursive expressions that hold forτ = N −1, . . . , 0, with initial values defined
in (6.48). After (6.51) has been inserted, the equation forP (τ) can be identified as a
Riccati recursion. This is known to have a computational complexity that grows linearly
with N , [95]. Note thatP (N) � 0. By investigating (6.51), and using the symmetric
property of the weight matrices, it is clear thatP (τ) is symmetric, that is,P (τ) = PT (τ).
To show thatP (τ) � 0, recognize the expression forP (τ) as the Schur complement of
G(τ +1) in a matrixX(τ), defined below. IfG(τ +1) ≻ 0, then, by Lemma A.1,X � 0
if and only if P (τ) � 0 where

X(τ) =

[
G(τ + 1) HT (τ + 1)
H(τ + 1) F (τ + 1)

]

=

[
Q̃ũ(τ) + B̃T (τ)P (τ + 1)B̃(τ) Q̃T

x̃ũ(τ) + B̃T (τ)P (τ + 1)Ã(τ)

Q̃x̃ũ(τ) + ÃT (τ)P (τ + 1)B̃(τ) Q̃x̃(τ) + ÃT (τ)P (τ + 1)Ã(τ)

]

=

[
Q̃ũ(τ) Q̃T

x̃ũ(τ)

Q̃x̃ũ(τ) Q̃x̃(τ)

]

+

[
B̃T (τ)

ÃT (τ)

]

P (τ + 1)
[

B̃(τ) Ã(τ)
]

(6.56)

If P (τ +1) � 0, the entire last term inX(τ) is positive semidefinite since it is a quadratic
expression. The conclusion following from induction is that if the following two condi-
tions are satisfied for allτ

G(τ + 1) ≻ 0 (6.57a)
[

Q̃x̃(τ) Q̃x̃ũ(τ)

Q̃T
x̃ũ(τ) Q̃ũ(τ)

]

� 0 (6.57b)

thenP (τ) � 0 for τ = N, . . . , 0 and therefore the Riccati recursion is concluded well-
defined over the same interval. If the expression forG(τ + 1) in (6.51) is investigated, a
sufficient condition for (6.57a) to hold is that̃Qũ(τ) ≻ 0.

It is now interesting to interpret these conditions using the definitions ofQ̃ũ(τ) and
B̃(τ) in (6.13). First, condition (6.57a) is investigated.

G(τ + 1) = Q̃ũ(τ) + B̃T (τ)P (τ + 1)B̃(τ)

=

[
Q−1

e (ς) 0
0 Hu,(i,:)(ς)Q

−1
u (ς)HT

u,(i,:)(ς)

]

+

[
M(ς)

Hx,(i,:)(ς)

]

P (τ + 1)
[

MT (ς) HT
x,(i,:)(ς)

]

≻ 0

(6.58)

whereς = N − τ −1 andi is defined as in the text below (6.42). Since the second term is
positive semidefinite, a sufficient condition for the entireexpression to be positive definite
is that the first term in (6.58) is positive definite. This is satisfied when the assumptions
A1, A2 and A3 are satisfied. Second, the condition (6.57b) hasto be shown to hold.
Inserting (6.13) gives the condition

[
Q̃x̃(τ) Q̃x̃ũ(τ)

Q̃T
x̃ũ(τ) Q̃ũ(τ)

]

=





B(ς)Q−1
u (ς)BT (ς) 0 B(ς)Q−1

u (ς)HT
u,(i,:)(ς)

0 Q−1
e (ς) 0

Hu,(i,:)(ς)Q
−1
u (ς)BT (ς) 0 Hu,(i,:)(ς)Q

−1
u (ς)HT

u,(i,:)(ς)



 � 0

(6.59)
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wherei is defined as in the text below (6.42). Rearrange the rows and columns to obtain
the equivalent condition





Q−1
e (ς) 0 0
0 B(ς)Q−1

u (ς)BT (ς) B(ς)Q−1
u (ς)HT

u,(i,:)(ς)

0 Hu,(i,:)(ς)Q
−1
u (ς)BT (ς) Hu,(i,:)(ς)Q

−1
u (ς)HT

u,(i,:)(ς)



 � 0 (6.60)

SinceQ−1
e (ς) ≻ 0, it remains to investigate the definiteness of the blocks to the right and

below. [
B(ς)

Hu,(i,:)(ς)

]

Q−1
u (ς)

[

BT (ς) HT
u,(i,:)(ς)

]

� 0 (6.61)

Due toQ−1
u (ς) ≻ 0, the block in (6.61) is always positive semidefinite. To be complete,

the time instant−1 has to be considered separately. Using (6.13) and (6.46), intime
instantτ = −1 there is only one condition to fulfill

Q̃ũ(−1) = Q−1
e (N) ≻ 0 (6.62)

and there does not exist anyP (−1) to check for positive definiteness.
The conclusion from this section is that provided the assumptions A1, A2 and A3 are

satisfied, the equation in (6.37) can be solved using a Riccati recursion. The procedure
starts with the backward recursions in (6.55) forP (τ) andΨ(τ), followed by forward
recursions for̃x(τ), ũ(τ) andλ(τ), which are formed by the equations for the dynamics in
(6.14) and the equations in (6.53) and (6.47), respectively. A more thorough presentation
of these calculations for similar problems can be found in, for example, [95] and [105],
where it is also shown that the computational complexity forthese calculations grows
linearly with the prediction horizonN . The primal variables are finally found according
to the discussion in Section 6.1.4.

6.1.6 Handling Parallel Constraints

In Section 6.1.5,Hu(t) was assumed having full row rank. In this section, Assumption A3
is to be slightly relaxed. There are situations where it is necessary to have constraints with
linear dependent rows. An important case for the MPC problemis parallel constraints
which occur when there are upper and lower bounds on states and control signals. The
word parallel refers to the gradients of the constraints. Tobe precise, in this case these
are anti-parallel. This type of constraints are especiallyimportant in the development of
a solver for the node problems in a branch and bound algorithm. In the node problems,
binary constraints are relaxed to interval constraints, which have to be solved by a solver
handling parallel constraints.

Parallel constraints can be written as

Ĥx(t)x(t) + Ĥu(t)u(t) ≤ ĥ+(t)

−Ĥx(t)x(t) − Ĥu(t)u(t) ≤ −ĥ−(t)
(6.63)

where it is assumed that there exist strictly feasible points, that is,̂h+(t) > ĥ−(t). Fur-
thermore, to simplify the notation in the discussion below,it is assumed that there is only
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one parallel constraint in each time instant, that is,Ĥx(t), Ĥu(t), ĥ+(t) andĥ−(t) only
contain one row. The constraints in (6.63) can be written on the form in (6.1) by making
the following definitions

Hx(t) =

[
Ĥx(t)

−Ĥx(t)

]

, Hu(t) =

[
Ĥu(t)

−Ĥu(t)

]

, h(t) =

[
−ĥ+(t)

ĥ−(t)

]

(6.64)

It is important to be specific inwhich problems it is desirable forHu(t) to have full
row rank. If the primal optimization problem has inequalityconstraints whereHu(t) does
not have full row rank, it might cause problems in the dual solver. In the derivation of the
algorithm in the previous section, it was concluded that therows ofHu(t) that actually
appeared in the Riccati recursion were those correspondingto inactive dual constraints. If
a dual constraint is active, for examplevi(τ) = 0, row i in Hu(τ) is not used in the Riccati
recursion. Hence, there would not be a problem if there wouldexist another rowj 6= i

in Hu(τ) which is linearly dependent with rowi. What is important is that they do not
appearsimultaneouslyin the Riccati recursion. As will be shown, this can be guaranteed
by proper initialization of the active set.

To investigate the problem, consider linear dependent constraints of the type in (6.63).
Assume that the dual variables corresponding to these constraints arev+(N − t − 1)
and v−(N − t − 1). As already discussed in the text below (6.41), if the constraint
v+(N − t−1) = 0 is in the working set,̂Hu(t) appears in an equation of the same type as
in (6.42b) and not in an equation of type in (6.42a). Ifv+(N − t− 1) = 0 is not included
in the working set,̂Hu(t) appears in an equation of the type (6.42a) and not in an equation
of type (6.42b). Equations of the type (6.42a) are solved as apart of the Riccati recursion.
It can be realized that ifneitherv+(N−t−1) = 0 norv−(N−t−1) = 0 is present in the
working set,both Ĥu(N − t−1) and−Ĥu(N − t−1) are included inHu,(i,:)(N − t−1)
in (6.42a) and this will decrease the row rank ofHu,(i,:)(N − t − 1). Specifically, the
row rank ofHu,(i,:)(N − t − 1) will not be full, which was a sufficient condition for the
Riccati recursion in Section 6.1.5 to be well defined. It willnow be shown that under the
assumption̂h+(t) > ĥ−(t), this situation will never occur.

The two parallel constraints in (6.63), will produce two rows of the type (6.42a) as
described in (6.64).

ĤuQ−1
u ĤT

u v+(τ) − ĤuQ−1
u ĤT

u v−(τ) + ĤuQ−1
u BT x̃(τ) + ĥ+ + Ĥxλ(τ + 1)

= µ+(τ) (6.65a)

− ĤuQ−1
u ĤT

u v+(τ) + ĤuQ−1
u ĤT

u v−(τ) − ĤuQ−1
u BT x̃(τ) − ĥ− − Ĥxλ(τ + 1)

= µ−(τ) (6.65b)

For simplicity, some of the time indices are omitted. By combining (6.65a) and (6.65b),
the following inequality is found

µ+(τ) − ĥ+ = −µ−(τ) − ĥ− ⇔ µ+(τ) + µ−(τ) = ĥ+ − ĥ− > 0 (6.66)

where the last inequality follows from the assumption that there exist strictly feasible
points with respect to the upper and lower bounds. Consider atime instant with two primal
parallel constraints, and two corresponding dual constraints. It is only possible to remove
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one constraint from the working set in each QP-iteration. Therefore, if both constraints
are to be removed from the working set, it has to be performed in two QP-iterations. In
the first QP-iteration, any of the two constraints is removed. In the second QP-iteration,
the decision to remove the remaining constraint has to be taken, which implies that the
condition for constraint removal has to be satisfied for thisconstraint. According to Al-
gorithm 2.1, this condition is that the corresponding dual variableµ should be strictly
negative. Note that, hereµ is the dual variable of the dual problem and the corresponding
variable in Algorithm 2.1 iŝλ. Assumev+(τ) = 0 is in the working set andv−(τ) = 0
is not in the working set and is therefore free. Thenµ−(τ) = 0. Only if µ+(τ) < 0, it is
possible thatv+(τ) = 0 is removed from the working set. If the assumptionsµ−(τ) = 0
andµ+(τ) < 0 are inserted into (6.66), the result is

µ+(τ) + µ−(τ) = µ+(τ) + 0 < 0 (6.67)

But this leads to a contradiction since (6.66) always holds.The result is similar ifv−(τ) =
0 is chosen to belong to the working set. Hence, the desired result follows.

The conclusion is that if the algorithm is properly initialized, that is at least one of
v+(τ) = 0 andv−(τ) = 0 belongs to the working set, then future changes of the working
set will never remove bothv+(τ) = 0 andv−(τ) = 0 from the working set. Hence,
Hu will always have full row rank if all constraint gradients are linearly independent
excluding the dependence between constraint couples forming parallel constraint as in
(6.63). Thus, it is possible to replace Assumption A3 with the relaxed assumption As-
sumption A4.

Assumption A4. Hu(t) has full row rank fort = 0, . . . , N − 1, excluding the linear
dependence between pair of parallel constraints as in (6.63) with ĥ+(t) > ĥ−(t).

6.1.7 Increasing Performance

In the active set algorithm, similar KKT systems are solved in subsequent iterations. As
has been discussed earlier, to be able to take advantage of the similarities, it is common
to use block inversion (see Algorithm A.1). This is possiblewhen there is an invertible
matrix which is unchanged between all iterations. In the problem considered here, the ma-
trix block which is unchanged is singular and therefore block inversion cannot be used.
Anyhow, for the method described in this chapter, there are other ways to reuse compu-
tations from previous iterations. In each iteration there is only one constraint added or
removed from the working set. Seen from an MPC perspective, this means that the prob-
lem is changed only in one time instant at each iteration. Because the Riccati recursion
runs backwards in time, only time instants before (in dual time τ ) the time step when
the constraint is added have to be recomputed. In general, ifa constraint on a compo-
nent of ũ(τ ′) is added or deleted from the working set,P (τ) has to be recomputed for
τ = τ ′, . . . , 0. The same holds forΨ(τ). That is, the backward recursions can reuse
old computations. Since, the forward recursions use information from the last step in the
backward recursions, the forward recursions always have tobe completely recalculated.
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6.1.8 Future Extensions

There are several interesting and promising future extensions possible for this algorithm.
In the algorithm presented,Hu(t) is assumed having full row rank for all time steps.
This assumption limits the use of the algorithm, since it is not possible to have pure state
constraints, that is, constraints withHu(t) = 0. Some successful preliminary tests have
been performed for this case, but there are still some details to investigate before the
algorithm can be considered to work also for this type of problems.

As been discussed previously in Section 2.4, classical active set methods, like Algo-
rithm 2.1, do not allow rapid changes to the working set. Thisis a great drawback for
problems with many active constraints at the optimum. One solution to this problem is
to use a gradient projection algorithm, which can rapidly modify the working set. An
interesting idea is to combine the tailored method from thissection with the more rapid
handling of the working set offered by the gradient projection algorithm. The idea of
allowing rapid changes to the working set has actually been tested ad-hoc, without any
theoretical considerations, in the current implementation of the algorithm. Preliminary
results indicate that a very high performance increase can be expected.

In the examples, the dual algorithm has been initialized with all dual constraints active
and the origin as the dual starting point. A more efficient initialization would be to first
solve the unconstrained primal problem and then addall the violated constraints to the
working set. Note that the unconstrained primal problem corresponds to, via the comple-
mentary slackness condition, the fully constrained dual problem. This strategy has been
previously used by other authors with good results, [75]. A gradient projection algorithm
would probably “automatically” behave in a similar manner.

6.1.9 Simulation Results

In this section, the algorithm is applied to the MPC problem to control a mass as described
in Section 3.4.1. The setup is similar to the one used in Section 5.2.2 but with two impor-
tant differences. First, since the algorithm presented in this section is only able to solve
linear MPC problems, the binary control signal is omitted from the problem. Second,
the magnitude of the real-valued control signal is constrained to be less than or equal to
9. This value has been chosen to ensure that a reasonable amount of the constraints are
active at the optimal solution. For example, at the prediction horizonN = 1500, 601
constraints are active at the optimum. By using zero order hold sampling with sampling
time 0.1 s, the continuous time description is converted to a discrete-time description of
the form (3.1) with

C =
[
0 1

]
(6.68)

The cost function used in this example is of the type described in Section 3.1, with

Qe = 100, Qu = 1 (6.69)

The initial state is chosen to be

x1(0) = 5 andx2(0) = 0 (6.70)

and the reference signal for the position of the mass is chosen to ber(t) = 10 sin(t). The
problem has been solved for different prediction horizons and the computational time has
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Figure 6.1: This plot shows the computational times for two different QPsolvers.
The QP algorithm described in this section is implemented inthe functiondrqp.
The solid line shows the computational time when this algorithm solves the problem
from scratch. The dotted line shows the computational time when a warm start is
simulated when usingdrqp. The dashed line shows the computational time for the
standard QP solverquadprog.

been evaluated. The result from these tests are shown in Figure 6.1. In the tests, the
QP algorithm presented in this chapter is used to solve the problem first from scratch and,
second, given the optimal active set. This algorithm is implemented in the functiondrqp.
In the latter test, the algorithm starts in the origin and it has to solve one QP subproblem
before the optimal solution is found. This test is supposed to, at least roughly, simulate
a warm start. As can be seen in Figure 6.1,drqp has significantly lower computational
complexity compared toquadprog from the Optimization Toolbox in MATLAB . Con-
sidering prediction horizons fromN = 100 to N = 1500, the computational complexity
for drqp when cold started is in this test found to be approximatelyO(N2). If the same
algorithm is warm started, the computational complexity isreduced to approximately
O(N). The latter result was expected since in the warm start case considered, only one
Riccati recursion had to be computed and the Riccati recursion is known to have the com-
putational complexityO(N), [96]. The MATLAB functionquadprog is found to have
an approximate computational complexity ofO(N3.2). Therefore, the conclusion from
this test is that the algorithm presented in this chapter hasa significantly lower computa-
tional complexity compared to the generic algorithmquadprog. Also, warm starts are
found to be very efficient. However, it should be emphasized that the solver was supplied
with the optimal working set during the warm starts. In practice, at least a few QP itera-
tions are expected necessary in most cases. When usingquadprog, the MPC problem
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Figure 6.2: This figure illustrates how the feasible set is changed aftera branch.

has been formulated as a QP problem using a dense optimization problem formulation as
in (3.5). The test has been performed on a Intel Pentium 42.66 GHz with 512 Mb RAM
running Microsoft Windows XP Professional Version 2002 Service Pack 2 and MATLAB

7.0.1 Service Pack 1. The computational time is calculated using the MATLAB command
cputime.

6.2 A Mixed Integer Quadratic Programming
Algorithm

The main reason for the development of the dual QP algorithm in Section 6.1, is the
need for a solver that is easy to warm start. When solving an MIQP problem, one of
the best methods to use is branch and bound. This method is thoroughly described in
Section 2.5.2. In branch and bound, several similar subproblems are solved subsequently.
Hence, it would be very useful to use the solution from one subproblem as a starting point
in the next problem.

In the discussion that follows, the notation introduced in Section 2.5.2 is used. Con-
sider a branching procedure for an arbitrary nodeNk. When the node is branched, two
new nodesNk0 andNk1 are created with

Sk0 = Sk ∩ Bk0

Sk1 = Sk ∩ Bk1

(6.71)

where
Bk0 = {x|xj = 0} , Bk1 = {x|xj = 1} (6.72)

The procedure is illustrated in Figure 6.2. Note that

Sk0 ∩ Sk1 = ∅ (6.73)

and it is therefore clear that a solution toPk is infeasible in, at least, one of the child prob-
lems. In the branch and bound method described in this text, the lower bounds computed
by the QP relaxations in the nodes are found by relaxing the binary constraints to interval
constraints. Let

¯
xk∗ denote the optimizer to the relaxed problemPR

k . Recapitulate from
Section 2.5.2 that variables already branched in ancestor nodes are fixed to either0 or 1
and these constraints are therefore not relaxed. That is,Bk0 andBk1 cannot be relaxed.
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To understand what happens when the equality constraints after a branch is introduced,
three different relaxed problems are considered.

¯
xk∗ = argmin

x∈SR
k

f0(x)

¯
xk0∗ = argmin

x∈SR
k0

f0(x)

¯
xk1∗ = argmin

x∈SR
k1

f0(x)

(6.74)

Since the constraint differingSR
k0 fromSR

k1 is not relaxed, (6.73) also holds for the relaxed
sets.

SR
k0 ∩ SR

k1 = ∅ (6.75)

Therefore, a solution
¯
xk∗ to PR

k is at most a feasible solution to one of the problemsPR
k0

or PR
k1. Sincexj is relaxed inPR

k , it is very likely that
¯
xk∗

j ∈]0, 1[. Only an integer
solution, that is

¯
xk∗

j ∈ {0, 1}, would be feasible in one the child nodes. All other relaxed
variables butj in PR

k are still relaxed inPR
k0 andPR

k1. The conclusion from this discussion
is that it is very likely that

¯
xk∗ cannot be used as a feasible starting point in eitherPR

k0

or PR
k1. Therefore, it would be an advantage if a feasible starting point always could be

easily found.
If the solution of the parent problem should be of any use in the child problem, their

solutions should not differ too much. The natural question that arises is how much is “too
much”. At first, one interpretation of “too much” could be if the solution of the parent
problem is not feasible in the child problem. But, accordingto the discussion above, this
is very common in branch bound and there is not much to do aboutit. If an active set
solver is used, the amount of work necessary to reach optimality is highly coupled to the
number of changes necessary to the working set until optimality is reached. Therefore,
a reasonable interpretation of “too much” when working withactive set solvers is when
the solution has changed so much that large parts of the working set has to be changed
before optimality is reached. Especially, it would be very useful if the old active set cannot
become infeasible when the new equality constraint is introduced.

By using a dual solver for the subproblems, a straightforward reuse of an old work-
ing set is enabled and the problem of choosing a feasible initial point is solved. This
is now motivated by considering the primal problem (2.27) and its dual (2.33). In the
dual solver, the problem equivalent to the dual (2.34) is actually solved. This problem
is called the dual problem in this discussion. The subproblems to be solved in the nodes
of the branch and bound tree will be of the type (2.34). Sinceν is the Lagrange multi-
plier vector corresponding to the equality constraints, ifone equality constraint is added
to the primal problem, the number of elements inν is increased by one. The interpre-
tation in the dual MPC problem (6.14) is that an extra unconstrained input signal com-
ponent is added. Similarly, if an extra inequality constraint is added to (2.27), a new
sign-constrained variable is added to the dual problem (2.34). The interpretation in (6.14)
is that a new sign-constrained control signal is added. The conclusion is that when new
constraints are added to the primal problem, the dimension of the dual problem increases.
Hence, a feasible dual solution is also a feasible dual solution when a constraint is added
to the primal. If the added constraint is an inequality constraint, the new dual variable has
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to be chosen non-negative. Because of the simple structure of the inequality constraints
in the dual problem, given a feasible solution, a new feasible solution can easily be found
when a constraint is added to the primal problem by simply keeping the old feasible so-
lution and setting the new variable to zero. If no previous feasible solution is known, in
the general case given in (2.34), the linear system of equations constituting the equality
constraints has to be solved or a Phase I problem has to be solved. In the MPC case, the
equality constraints in the dual (6.14) form the dual dynamics. Given a control signal and
an initial condition, it is well-known from control theory that these equations can be used
to calculate the states over the prediction horizon. Since the initial statẽx(−1) in (6.14)
can be interpreted as0, a feasible solution to the equality constraints isx̃ = ũ = 0. As a
bonus, this solution also fulfills any non-negativity constraints onũ.

When a variablexj is branched in a branch and bound method, an equality constraint
xj = 0 or xj = 1 is added to the problem. However, since there already exist inequality
constraintsxj ≥ 0 andxj ≤ 1 in the parent problem, an alternative interpretation is
that, for example, the inequality constraintxj ≥ 0 is converted into an equality constraint
xj = 0. This results in a dual problem similar to the previous problem, with the difference
that the non-negativity constraint on the corresponding dual variable has been removed.
The conclusion is again, if the primal problem is constrained, the dual problem is relaxed.
If an equality constraint is added to the primal problem making the primal infeasible, the
objective function value becomes+∞. In the dual problem, this results in that a constraint
is removed which makes the dual objective function unbounded from above (if the true
dual problem (2.33) is considered, the equivalent problem (2.34) becomes unbounded
from below), see also Section 2.4.1.

Since the interval[0, 1] always contains interior points, bothxj ≥ 0 andxj ≤ 1
cannot be active simultaneously. In branch and bound, when,for example, the inequality
constraintxj ≥ 0 is converted into an equality constraintxj = 0 it is obvious that the
constraintxj ≤ 1 is redundant and it can therefore be removed from the problem. This
means that the corresponding dual variable is also removed from the problem. Another
approach is to keep the constraint, but since it never becomes active, the corresponding
dual variable is fixed to zero. The first approach has better performance since variables
are removed, while the latter approach is faster to implement since the problem is changed
less between the nodes.

When variablexj is branched in subproblemPk, two subproblemsPk0 andPk1 are
created. InPR

k0 the constraintxj ≥ 0 from PR
k is converted intoxj = 0 and inPR

k1 the
constraintxj ≤ 1 is converted intoxj = 1. Since the optimal working set is passed from
the parent problem to the child problems, one way of easily performing this constraint
conversion is by deactivating the corresponding dual inequality constraint and setting a
flag indicating that this constraint is now an equality constraint and should therefore never
be included in the working set. If this approach is chosen, the constraint for the dual
variable corresponding to the other parallel constraint has to be added to the working set.
Otherwise, none of the dual constraints corresponding to the parallel primal constraints
are active and the problems discussed in Section 6.1.6 will occur.

The conclusion is that a dual solver for the relaxed problemsin the nodes will make
warm starts easy. Given the old optimal working set, hopefully not so many QP iterations
have to be performed until the optimal working set of the new problem is found. Relating
back to what was previously discussed, the optimal solutionto the child problems are
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expected not to differ “too much” from the solution to the parent problem. However, this
is problem dependent and the dual algorithm presented in this thesis will not change this
fact.

6.2.1 Increasing Performance

The ideas presented in Section 6.1.7 can also be used in the MIQP solver. Since the
child problems are only changed in a single time step compared to the parent problem,
the backward recursions need only to be recalculated for thetime step the constraint is
added and backwards. The disadvantage of using this idea at the branch and bound level
is that if a branch strategy is used where a branch can be “suspended” before it is pruned,
it might occur that several non-pruned subtrees exist and therefore a great amount of data
might have to be stored for the recalculations. If the storage space is small, a compromise
between storing all recomputation data and storing no data at all is to store the data from
the “most promising” nodes.

6.2.2 Future Extensions

Probably, the most effective way of increasing the performance of the algorithm would
be to design some kind of preprocessing algorithm similar tothe one presented in Chap-
ter 5. No matter how efficiently the node problems can be solved, the number of nodes to
explore seems to explode as the time horizon grows. It is therefore very important to cut
away uninteresting sequences of binary variables at an early stage.

In the current implementation, the subproblems are createdfrom the parent problem
by only changing the active set and using flags to indicate whether a primal inequality
constraint has been converted to a primal equality constraint. As discussed previously,
the alternative is to explicitly rewrite the problem and explicitly remove control signals in
the dual. This alternative is expected to give, at least slightly, better performance.

When using a dual feasible solver, the inequality (2.13) can be used to estimate the
optimal objective function value. Every dual feasible solution will give a lower bound on
the optimal objective function value. It is straightforward to use this bound to prematurely
abort the solution of a subproblem as soon as a dual feasible solution is known to the
current subproblem and this solution gives an optimal objective function value worse
than the best known upper bound in the branch and bound tree.

6.2.3 Simulation Results

In this section, the algorithm is applied to the MPC problem to control the satellite de-
scribed in Section 3.4.2. The setup is similar to the one usedin Section 5.2.2, but in this
example, the magnitude of the real-valued control signal islimited to be less than or equal
to 1. As in Section 5.2.2, the states of the system are chosen to bethe satellite attitude
x1, the satellite angular velocityx2 and the internal wheel velocityx3. To obtain a sys-
tem description on the MLD form (3.6), zero order hold sampling with the sampling time
0.1 s has been used. The cost function used in this example is of the type described in
Section 3.10, with

Qe = diag
(
0.5 · 104, 10−2, 10−1

)
, Quc

= 10, Qub
= 10 · I2 (6.76)
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Figure 6.3: This plot shows the computational times for two different MIQP
solvers. The MIQP algorithm described in this chapter is implemented in the func-
tion drmiqp. The solid line shows the computational time when this algorithm is
used. The dashed line shows the computational time for the standard MIQP solver
miqp.

The initial state is
x1(0) = 0, x2(0) = 0 andx3(0) = 0 (6.77)

The reference signal is chosen as

r(t) =





θr(t)
0
0



 (6.78)

where

θr(t) =

{

0, t ≤
⌊

N
4

⌋

0.5, t >
⌊

N
4

⌋ (6.79)

that is, a step in the satellite attitude of0.5 radians is given when one fourth of the pre-
diction horizon has elapsed. The problem has been solved forseveral different prediction
horizons in the rangeN = 10 to N = 220 and the corresponding computational times
are presented in Figure 6.3. In this example, for predictionhorizons longer than20 time
steps, the algorithm presented in this section has an approximate computational complex-
ity of O(N2.7), while the standard functionmiqp, using the QP solverquadprog, has
an approximate computational complexity ofO(N3.4). The MIQP algorithm presented in
this chapter is implemented in the functiondrmiqp. The implementation of the branch
and bound algorithm indrmiqp has been based on the code inmiqp, which has been
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modified in order to be able to use the dual algorithm previously presented and to enable
the use of warm starts. Hence, it is exactly the same branch and bound code used in the
results fordrqp andmiqp, and therefore, the branch and bound tree has been explored
in exactly the same way. When usingmiqp, the MPC problem has been formulated as
an MIQP problem using a dense optimization problem formulation similar to the one in
(3.5). The test has been performed on a Intel Pentium 42.66 GHz with 512 Mb RAM
running Microsoft Windows XP Professional Version 2002 Service Pack 2 and MATLAB

7.0.1 Service Pack 1. The computational time is calculated using the MATLAB command
cputime.
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7
Concluding Remarks

In this thesis, two approaches for how to more efficiently compute the optimal solution to
Quadratic Programming (QP) problems involving binary variables in control and commu-
nication have been presented. The aim has not been to design acomplete state-of-the-art
solver, since this is an extremely complex task which involves several parts that each of
them can be considered as a research area. Instead the aim hasbeen to present some new
approaches which can improve the performance of a specific part of the solver. This im-
provement has been focused on utilizing the specific problemstructure arising from the
underlying Model Predictive Control (MPC) problem, even though some results are more
generally applicable.

7.1 Conclusions

The work presented in this thesis has generated two algorithms applicable to MPC. The
first algorithm is also applicable to the Multiuser Detection (MUD) problem.

The first algorithm presented in this thesis is a preprocessing algorithm for Binary
Quadratic Programming (BQP) problems having large diagonal terms compared to the
non-diagonal terms. These problems are generally known to have exponential computa-
tional complexity in the number of variables. Simulations have shown that MPC tends to
generate optimization problems where the algorithm can be successfully applied. In one
example, the computational time was reduced with a factor of275.

The preprocessing algorithm has also been successfully applied to the MUD problem
for synchronous Code Division Multiple Access (CDMA). After the optimal MUD prob-
lem has been formulated as a BQP problem, the preprocessing algorithm has been applied
to compute as many variables as possible in the problem. In simulations with up to 127
users, more than 99.95 % of the variables were found in the preprocessing step. The Bit
Error Rate (BER) for the proposed algorithm was compared to the conventional detector
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and the decorrelating detector. Simulations have shown that the BER can be significantly
reduced by using the preprocessing algorithm for systems with high loads. The computa-
tional complexity is found to be higher than the conventional detector but approximately
the same as the decorrelating detector.

The second algorithm presented in this thesis is a solver forMixed Integer Quadratic
Programming (MIQP) problems. The algorithm is built on a branch and bound frame-
work, where different QP relaxations of the original QP problem are solved in the nodes.
The contribution in this thesis is a dual QP solver tailored for MPC. By using Riccati
recursions, the computational complexity of an internal QPiteration is reduced from ap-
proximately betweenO(N2) andO(N3) for an algorithm not utilizing structure toO(N),
whereN is the prediction horizon. In simulations, the overall complexity has been found
to be lower than the overall complexity for a generic primal solver. Because the solver
works in the dual space, warm starts can easily be used. This property is used when
the algorithm is employed for solving the node problems in a branch and bound method.
In simulations, it is shown how the algorithm decreases the practical complexity when
solving an MIQP problem arising in MPC involving binary variables.

A summarizing conclusion from all work presented in this thesis is that there is much
to gain from utilizing problem specific structure when solving problems involving binary
variables, both in control and in communication.

7.2 Future Work

The area of integer optimization algorithms tailored for control and communications is
far from being completely explored. On the contrary, the work presented in this thesis,
and by many other authors, has just opened the door to an interesting and important re-
search area. The importance of this research grows continuously, since the interaction
between classical physical systems and computers is becoming more and more sophisti-
cated. There are several future extensions possible regarding the algorithms presented in
this thesis. Some of the more important are:

• The properties of the preprocessing algorithm could be further investigated.

• The preprocessing algorithm could be tested for a MUD problem when a more
sophisticated model of the channel is taken into account.

• The use of the preprocessing algorithm when constraints arepresent remains to be
explored. For example, it might be possible to use it to generate bounds on the
optimal objective function value in a branch and bound method and to supply the
method with a good initial guess of the optimal solution.

• The dual active set solver could possibly be extended to handle pure state con-
straints.

• In this thesis, the dual active set solver has been based on a classical active set
method, where only one constraint is allowed to be added or removed from the
working set in each internal QP iteration. An alternative approach is to try to incor-
porate the ideas presented in this thesis in a gradient projection algorithm, where
more rapid changes to the active set are allowed.
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• The fact that the subproblems in the branch and bound method are solved by a dual
feasible solver has not been fully utilized in this thesis. Every dual feasible point
can be used to generate a lower bound on the optimal objectivefunction value of
the current subproblem, which in some cases can be used to abort the solution of a
subproblem prematurely.
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A
Linear Algebra

In this appendix, some linear algebra results are presented. Let T be a square matrix
partitioned according to

T =

[
T11 T12

T21 T22

]

(A.1)

Definition A.1 (Schur complement). SupposeT11 is nonsingular, then the matrixS in

S = T22 − T21T
−1
11 T12 (A.2)

is called the Schur complement ofT11 in T .

The following lemma is called the Schur complement formula and is based on the
discussion in [34, pp. 650–651]. It is given without any proof.

Lemma A.1 (Schur complement formula)
AssumeT symmetric. Then

• T ≻ 0 if and only ifT11 ≻ 0 andS ≻ 0.

• If T11 ≻ 0, thenT � 0 if and only ifS � 0.

The following matrix inversion lemma is taken from [104].

Lemma A.2 (Matrix inversion lemma)
If T andT11 are nonsingular, then

[
T11 T12

T21 T22

]−1

=

[
T−1

11 + T−1
11 T12S

−1T21T
−1
11 −T−1

11 T12S
−1

−S−1T21T
−1
11 S−1

]

(A.3)

whereS is defined in Definition A.1.
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Proof:
[
T11 T12

T21 T22

] [
T−1

11 + T−1
11 T12S

−1T21T
−1
11 −T−1

11 T12S
−1

−S−1T21T
−1
11 S−1

]

=

[
I 0
0 I

]

(A.4)

Lemma A.3
Given a square matrixX ∈ R

n×n the following inversion formula holds

[
X −I

−I 0

]−1

=

[
0 −I

−I −X

]

(A.5)

Proof: [
X −I

−I 0

] [
0 −I

−I −X

]

=

[
I 0
0 I

]

(A.6)

Algorithm A.1 provides a method for solving a linear system with a non-singular
submatrixT11 in two steps by partitioning the coefficient matrixT in four blocks. The
algorithm is taken from [34].

Algorithm A.1 Block elimination

Given a linear equation systemTx = b, whereT is nonsingular and partitioned as

in (A.1). AssumeT11 nonsingular and make the partitioningsx =
[
xT

1 xT
2

]T
and

b =
[
bT
1 bT

2

]T
.

FormT−1
11 T12 andT−1

11 b1.
FormS = T22 − T21T

−1
11 T12 andb̃ = b2 − T21T

−1
11 b1.

Determinex2 by solvingSx2 = b̃.
Determinex1 by solvingT11x1 = b1 − T12x2



B
Model Predictive Control

Formulations

In this appendix, the MPC problem to minimize the objective function (3.2) subject to the
dynamics 3.1 and the constraints 3.3 is cast on the form of a QPproblem, that is (2.21).
This can be done in several ways. See, for example, [67]. The optimization problems are
formulated for time stept0, which means thatx0 is the measured or estimated state of the
true system at time stept0.

In this thesis, two different formulations are used. The main difference between the
two formulations is the formulation of the dynamic equations. Some notations are shared
by the two formulations:

x =
[
xT (t0), x

T (t0 + 1), . . . , xT (t0 + N)
]T

u =
[
uT (t0), u

T (t0 + 1), . . . , uT (t0 + N − 1)
]T

r =
[
rT (t0), r

T (t0 + 1), . . . , rT (t0 + N)
]T

Qe = diag (Qe, . . . , Qe) , Qu = diag (Qu, . . . , Qu) , C = diag (C, . . . , C)

Hu = diag (Hu(0), . . . ,Hu(N − 1)) , Hx = diag (Hx(0), . . . ,Hx(N))

h = diag (h(0), . . . , h(N))

(B.1)

wherex(t) ∈ R
n are the predicted states,u(t) ∈ R

m are the computed optimal control
inputs andr(t) ∈ R

p is the reference signal. Note that it is not necessary to includex(t0)
in x, since it is only set to the constantx0.

B.1 Complete Set of Variables

The most straightforward way to cast the MPC problem on the form of a QP is to keep
the dynamic equations as equality constraints. The MPC problem is then formulated as a
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QP on the form

minimize
x,u,e

1

2

[
xT uT eT

]





0 0 0
0 Qu 0
0 0 Qe









x

u

e





subject to
[
A B 0

]





x

u

e



 = b

[
C 0 −I

]





x

u

e



− r = 0

[
Hx Hu 0

]





x

u

e



+ h ≤ 0

(B.2)

where

e =
[
eT (t0), e

T (t0 + 1), . . . , eT (t0 + N)
]T

b =
[
−xT

0 0 . . . 0
]T

A =












−I 0 0 . . . 0 0
A −I 0 . . . 0 0
0 A −I . . . 0 0
0 0 A . . . 0 0
...

...
...

. ..
...

...
0 0 0 . . . A −I












, B =










0 0 . . . 0
B 0 . . . 0
0 B . . . 0
...

...
. . .

...
0 0 . . . B










(B.3)

This formulation requiresN (n + m + p) variables and gives a sparse Hessian matrix and
a sparse constraint matrix. If this formulation is used, a solver either utilizing sparsity or
the causality structure should be used.

B.2 Reduced Set of Variables

In the other formulation,x is expressed as a function of the initial statex0 and the control
inputsu. The vectorx containing the states can then be inserted into the equations for
the control errore. Finally, e is inserted into the objective function. By using the system
equations,x can be found as

x = Sxx0 + Suu (B.4)

where

Sx =










I

A

A2

...
AN










, Su =










0 0 . . . 0
B 0 . . . 0

AB B . . . 0
...

...
. ..

...
AN−1B AN−2B . . . B










(B.5)
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The equality constraints are now eliminated and the objective function can be written as

J = (C (Sxx0 + Suu) − r)
T

Qe (C (Sxx0 + Suu) − r) + uT Quu

= uT
(
ST

u CT QeCSu + Qu

)
u + 2

(
ST

u CT QeCSxx0 − ST
u CT Qer

)T
u + κ

(B.6)

whereκ is a constant. By using (B.4), the inequality constraints can be written as

Hxx + Huu + h = HxSuu + Huu + h + HxSxx0 ≤ 0 (B.7)

Ignoring the constant and dividing by two gives the equivalent optimization problem

minimize
u

1

2
uT
(
ST

u CT QeCSu + Qu

)
u +

(
ST

u CT Qe (CSxx0 − r)
)T

u

subject to (HxSu + Hu) u + h + HxSxx0 ≤ 0
(B.8)

In this formulation, the Hessian becomes dense andNm optimization variables are re-
quired.
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