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Introduction

• Prototype of a wearable microphone array

• Evaluate the LinDoA method for Direction of Arrival and Source

Separation

• Track sound sources in global frame using IMU

• Develop LinDoA method to manage multiple sources

• Simulations and experiments

• Hearing aid applications
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Advantages of LinDoA

• Taylor series expansion of signals

• Slow sampling for DoA

• Wideband and narrowband

• Small arrays

• Near and far field

• Parallelisation
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Array Frame Prototype

• 8 microphones

• IMU

• Embedded DSP

• Mobile: Battery & WiFi

• 3D-printed frame

• Open source and design
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Signal Models - Single Source

The signal model used in the single source case is

yn(t) = s(t+ τn) + en(t), n = 1, . . . , N,

en(t) ∼ N (0, σ2
s).
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Signal Models - Taylor Series Expansion

An Lth order Taylor series expansion of the signal gives

s(t+ τ) ≈
L∑
l=0

τ̄l s
(l)(t)

= hT (τ)x(t),

where τ̄l =
τ l

l!

, the vector of signal derivatives is

x(t) =
[
s(t) s(1)(t) . . . s(L)(t)

]T
,

and the vector of delays is

h(τ) =
[
1 τ τ̄2 . . . τ̄L

]T
.
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Signal Models - Approximation

The signal model

is then approximated as

yn(t) = s(t+ τn) + en(t), n = 1, . . . , N,

en(t) ∼ N (0, σ2
s).

In vector form the model reduces to

yk = H(τ )xk + ek,

ek ∼ N (0, σ2
rIN ), k = 1, . . . ,K.

where yk ,
[
y1k . . . yNk

]T
and τ ,

[
τ1 . . . τN

]T
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Estimation - LinDoA

Least-squares solution gives, for k = 1, . . . ,K,

x̂k(τ ) = (HT (τ )H(τ ))−1HT (τ )y(t),

cov(x̂k(τ )) = (HT (τ )H(τ ))−1σ2
r .

This method is denoted LinDoA and estimates signal derivatives from

samples in space.

Each estimate is independent from other samples in time.
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Estimation - Constrained LinDoA

While efficient, the independence in time allows for inconsistencies.

To enforce consistency, constraints in time are added on the form

Ixk+1 = Fxk,

where I is the identity matrix with the last row removed. F can, e.g., be

F =


1 T T̄2 . . . T̄L

0 1 T . . . T̄L−1
...

. . .
. . .

. . .
...

0 0 . . . 1 T

 .
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Estimation - Constrained LinDoA

This results in the following Constrained Least-Squares problem

(x̂1(τ ), . . . , x̂K(τ )) = argmin
x1,...,xK

K∑
k=1

‖yk −H(τ )xk‖2,

s.t. Ixk+1 = Fxk, k = 1, . . . ,K − 1.
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Estimation - Time-Delay Estimation

The time delays can be estimated as

τ̂ = argmin
τ

K∑
k=1

‖yk −H(τ )x̂k(τ )‖2,

where x̂k(τ ) is computed using a variant of LinDoA.

This can be solved using, e.g., numerical search.
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Estimation - Multiple Sources

By superposition,M sources are incorporated as,

yn(t) =

M∑
m=1

sm(t+ τnm) + en(t), n = 1, . . . , N.

A model can still be obtained on the form yk = H(τ )xk + ek.

By design,H(τ ) is now rank-deficient, resulting in an unobservable model

using LinDoA.

However, the signals are still observable using Constrained LinDoA.
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Two Sources Direction of Arrival

Simulation Experiment
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Single Source Constrained LinDoA compared with IMU
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Single Source DoA with IMU Integration
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Global frame
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Single Source DoA with IMU Integration
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Source Separation
Delay and Sum

Estimated Left Estimated Right

True Left 0.7863 0.3114

True Right 0.5290 0.8802

Constrained LinDoA

Estimated left Estimated right

True left 0.8942 0.0975

True right 0.1061 0.9534
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Conclusions

• A head-worn microphone array prototype was developed.

• 3D-printing and modular design allows for rapid development.

• Integrating the array with an IMU allows for global tracking.

• Variants of LinDoA were developed to handle multiple sources.

• LinDoA capable of tracking a single source in reverberant

environment.

• Sound source separation of two sources performs well.
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Possible Directions for Future Work

• Theoretical analysis of method

• Dereverberation and calibration using a HRTF

• Additional sensors (e.g. camera for face tracking)

• Evaluating form factors, number of microphones and dimensions

• Multi-target tracking framework
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Thank you for listening!
gitlab.liu.se/veiback-public/lindoa

gitlab.liu.se/veiback-public/array-frame

www.liu.se

gitlab.liu.se/veiback-public/lindoa
gitlab.liu.se/veiback-public/array-frame
www.liu.se
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