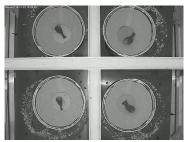
Tracking of Dolphins in a Basin Using a Constrained Motion Model

Clas Veibäck, Gustaf Hendeby and Fredrik Gustafsson

- 1 Background Animal Studies Problem Description
- 2 Solution Pipelined Solution Foreground Segmentation Constrained Motion Model
- 3 Results Motion Model Trajectory Extraction
- 4 Conclusions

1 Background Animal Studies Problem Description


- 2 Solution
 - Pipelined Solution Foreground Segmentation Constrained Motion Mode
- 3 Results Motion Model
 - 1 Conclusions

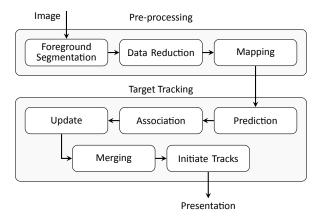
Clas Veibäck

Animal Behaviour and Population Studies

- Behaviour studies for research
- Population monitoring for preservation
- Manual solutions

Problem Description

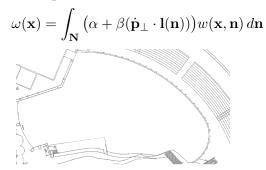
- Dolphinarium at Kolmården Wildlife Park
- · Sonar transponders in basin
- Manual work thus far
- Trajectories as results



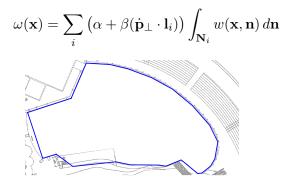
- 1 Background Animal Studies Problem Description
- 2 Solution
 - Pipelined Solution Foreground Segmentation Constrained Motion Model
- 3 Results Motion Model
- 4 Conclusions

Pipelined Solution

Foreground Segmentation

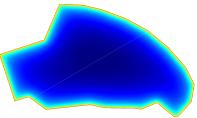

- Reflections, shadows and changing light conditions
- Modeled as Gaussian-Mixture process per pixel estimated using the Expectation-Maximization algorithm
- Confidence measurement available

Constraint Model


- Several occluded areas
- Inspired by potential fields
- Turn rate is predicted as

Constraint Model

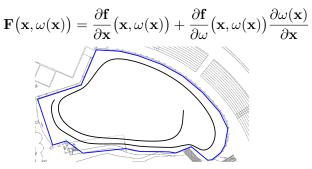
• The constrained region boundary is modeled as a polygon reducing the predicted turn rate to



Constraint Model

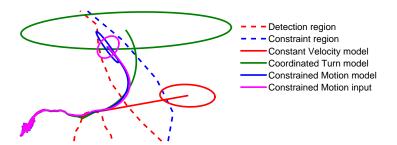
• The influence asserted by each point on the boundary is modeled as

$$w(\mathbf{x}, \mathbf{n}) = \frac{1}{\|\mathbf{p} - \mathbf{n}\|^2}$$

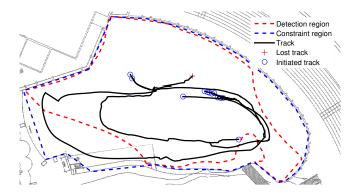

- Integration over the boundary ${\bf N}$ for each point

Constrained Motion Model

- Coordinated turn motion model $f(x, \omega(x))$ with the predicted turn rate
- The Jacobian of $f(x, \omega(x))$ is computed as



- 1 Background Animal Studies Problem Description
- 2 Solution Pipelined Solution Foreground Segmentation Constrained Motion Mode
- 3 Results Motion Model Trajectory Extraction
- 4 Conclusions



Motion Model Comparison

Trajectory Extraction Results

- 1 Background Animal Studies Problem Description
- 2 Solution Pipelined Solution Foreground Segmentation Constrained Motion Mode
- 3 Results Motion Model Trajectory Extraction
- 4 Conclusions

Conclusions

- Foreground segmentation is able to extract dolphins with sufficient accuracy despite poor light conditions
- A constrained motion model is proposed allowing predictions of dolphins in a constrained environment
- Occlusions from the camera are handled

Future Work

- Use a state-of-the-art target tracking algorithm
- Feedback from target tracking framework to measurement pre-processing

Thank you for listening! www.liu.se

