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Schema

TODAY

02-24/26:   LAB1 

03-27:  exam exam

03-03:   LAB2 prep eval. 
03-04/05:    LAB2

03-06:    LAB2 eval.

03-12:   LAB3
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Summary of lecture 7

Loop shaping: H2- and H∞- synthesis

• Describe specifications using WS , WT and Wu

• Task: make WSS, WTT , WuGwu “as small as possible”

• H2: Minimize
∫
(|WSS|22 + |WTT |22 + |WuGwu|22) dω

• H∞: Set absolute constraints for |WSS|, |WTT |, |WuGwu| ∀ω

• Both lead to Algebraic Riccati Equation (ARE)



3 / 38

Summary PART II: Linear multivariable regulator synthesis

Control design: summary

• Do an RGA analysis

• Use simple single-loop regulators of PID type if RGA shows that
it is possible

• Use other techniques:
• linear quadratic
• H2/H∞-synthesis
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PART III: NONLINEAR CONTROL THEORY

• Lecture 8: Nonlinearity and stability

• Lecture 9: Circle criterion and describing function method

• Lecture 10: Phase plane

• Lecture 11: Regulator synthesis and exact linearization
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PART III: NONLINEAR CONTROL THEORY

• Lecture 8: Nonlinearity and stability

• Lecture 9: Circle criterion and describing function method

• Lecture 10: Phase plane

• Lecture 11: Regulator synthesis and exact linearization

In the book: Ch. 11 and 12
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What makes a system (non)linear
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Example: DC-motor with control saturation

r ũ u y
Σ

K(s+ 2)

s+ 10

1

s(s+ 1)

−1

• DC-motor controlled with a lead-lag regulator.
• Task is to control the angle y of the motor.
• Power amplifier driving u is limited =⇒ “saturation”.
• Saturation makes the system nonlinear.
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Example: DC-motor with control saturation (cont’d)

DC-motor with angular
reference steps of different
amplitude.

blue: step of amplitude 1
red: step of amplitude 5
(rescaled by 1/5)

The step response is
amplitude-dependent. If the
system had been linear then
the two curves would have
coincided → nonlinear

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4



9 / 38

DC-motor (cont’d): ramp and sine responses

red: reference signal r, blue: output y
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Ramp response:
approximately same as linear

Sine response:
approximately same as linear
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DC-motor (cont’d): ramp + sine responses
red: r, green: y (when r is a pure ramp – previous slide)

blue: y (when r is a ramp + sine)

0 2 4 6 8 10
−2

0

2

4

6

8

10

Here something happens: sine is not visible and the ramp error has
increased... =⇒ no additivity; no frequency fidelity
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DC-motor: control signal before and after the saturation

red: before the saturation (ũ). blue: after the saturation (u).
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DC-motor (cont’d): conclusions

• Summary:
• The qualitative appearance of the step response depends on the

amplitude → not invariant to scaling

• The effect of different inputs is not additive

• No frequence fidelity

• Superposition principle does not hold.
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Fairly common nonlinear system

ẋ1 = x2

ẋ2 = u− ax2 − b sinx1

x1 = angular (phase) position
x2 = angular velocity
u = external driving (torque)

• Simplified model of a generator (hydraulic, nuclear power, wind
power, ....)

• Model of phase locking circuit (frequency and phase modulation,
generation of stabilized frequency,...)

• Model of a pendulum
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Example: pendulum

x
1

Newton law:

mℓθ̈ + fℓθ̇ +mg sin θ = 0

States:
• x1 = θ angle
• x2 = θ̇ angular velocity
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Example: Generator connected to the power grid

Jθ̈ = Md − fθ̇ +K sin(ω0t− θ)

• θ = angle of rotation of the generator
• Md = driving torque
• −fθ̇ = damping (friction etc.)
• K sin(ω0t− θ) = interaction with the grid

• Rest of the power grid “rotates” at an
angular velocity ω0

• The sign of θ − ω0t determines if
generator gives or takes power from the
grid
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Example: Generator connected to the power grid

Variables:

x1 = angular position (phase error against the grid) = θ − ω0t

x2 = angular velocity (derivative of the phase error) = θ̇ − ω0

Can be expressed in state space form:

ẋ1 = x2

ẋ2 =
Md − fω0

J
− f

J
x2 −

K

J
sin(x1) = u− ax2 − b sin(x1)
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General nonlinear system; equilibrium point
• Nonlinear system

ẋ(t) = f(x(t), u(t))

y(t) = h(x(t))

• Equilibrium point:

(x0, u0) s. t. f(x0, u0) = 0

• meaning:{
x(0) = x0

u(t) = u0
=⇒ x(t) = x0 ∀t ≥ 0



18 / 38

Equilibrium point: example (pendulum)

x
1

x0,1 = 0± 2πk, , u0 = 0

x0,2 = 0

x
1

x0,1 = π ± 2πk, , u0 = 0

x0,2 = 0

=⇒ multiple isolated equilibrium point
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Stability

• Stability: definitions

• Stability via linearization

• Stability via Lyapunov function

• Circle criterion
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Stability
An equilibrium point x0 is

• (locally) (marginally) stable if for each ϵ > 0
there exists a δ > 0 such that

|x(0)− x0| ≤ δ =⇒ |x(t)− x0| ≤ ϵ t ≥ 0

• (locally) asymptotically stable if it is stable and
there exists a δ > 0 such that

x(t) → x0, t → ∞

whenever |x(0)− x0| < δ

• unstable if it is not (locally) stable

• globally asymptotically stable if the δ
mentioned above can be taken arbitrarily big
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Linearization
• Nonlinear system

ẋ = f(x, u)

y = h(x)

• Equilibrium point (x0, u0):

0 = f(x0, u0)

y0 = h(x0)

• Linearization:
d

dt
(x− x0) = A(x− x0) +B(u− u0)

y − y0 = C(x− x0)

where

A =
∂f(x0, u0)

∂x
, B =

∂f(x0, u0)

∂u
, C =

∂h(x0)

∂x
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Stability by linearization

Theorem: Consider a nonlinear system ẋ = f(x, u) and its line-
arization at an equilibrium point (x0, u0)

1. If the linearized system is asymptotically stable then so is the
original nonlinear system locally, in a neighborhood of
(x0, u0)

2. If the linearized system is unstable then so is the original
nonlinear system

3. If the linearized system has eigenvalues on the imaginary axes
(and maybe in the left half of the complex plane) then
nothing can be said of the stability character of the nonlinear
system
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Lyapunov function

• Consider a system

ẋ = f(x)

with an equilibrium x0

• If there exists a Lyapunov function i.e., a function V s.t. the
following conditions are valid in a neighborhood of x0:

V (x) > 0, x ̸= x0 V (x0) = 0, (i.e., V (x) pos. def.)

V̇ (x) =
∂V (x)

∂x
f(x) < 0, x ̸= x0 (i.e., V̇ (x) neg. def.)

V̇ (x0) = 0

then the system is locally asymptotically stable at x0
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Lyapunov function

• Global condition: If conditions on V are valid everywhere and

V (x) → ∞ |x− x0| → ∞ (i.e., V (x) radially unbounded)

then x0 is globally asymptotically stable
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Lyapunov function

• Weaker condition: It is enough that

V̇ (x) =
∂V (x)

∂x
f(x) ≤ 0 (i.e., V̇ (x) neg. semidef.)

and no solution x(t) (except equilibrium solution x(t) = x0)
stays completely in the “level surface” V̇ (x) = ∂V (x)

∂x f(x) = 0
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Example: pendulum
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Example: pendulum
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Example: Lyapunov function for pendulum

V (x) =
1

2
x22 + b(1− cosx1)
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Lyapunov equation for linear system

Theorem Consider the system ẋ = Ax, and the equilibrium point
xo = 0. The following are equivalent

1. The system is asymptotically stable

2. Re [λ(A)] < 0 for all λ(A)

3. For every Q = QT > 0 there exists a unique P = P T > 0
that solves the Lyapunov equation

ATP + PA = −Q

and V (x) = xTPx is a Lyapunov function for the system
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Lyapunov equation for linear system

Lemma 12.1 Assume that the system ẋ = Ax is asymptotically
stable, that is, all eigenvalues of A lie strictly in LHP. Then for every
positive semidefinite matrix Q there exists a positive semidefinite
matrix P which solves the equation

ATP + PA = −Q (1)

If Q is positive definite, then also P is positive definite.

Conversely, if there are positive semidefinite matrices P and Q
such that (1) holds and the pair (A,Q) is detectable, then A has
all eigenvalues with negative real part.
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Lyapunov equation for almost linear system

• Consider
ẋ = Ax+ g(x)

where A has eigenvalues in LHP and g(x) contains second or
higher order term

• Construct a Lyapunov function V = xTPx for ẋ = Ax by
solving

ATP + PA = −Q, Q > 0, P > 0

• This V is a Lyapunov function also if the term g(x) is included,
provided that x is small enough
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Circle criterion
Linear system G(s) is feedback coupled with a static nonlinearity f(x)

f(0) = 0, k1 ≤
f(x)

x
≤ k2

Stability if the Nyquist diagram of G(iω) does not encircle and goes
inside the circle

Re

Im

− 1
k1

− 1
k2

G(iω)
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