
TSRT09 – Control Theory
Lecture 5: Controller structure and control
design

Claudio Altafini

Reglerteknik, ISY, Linköpings Universitet



1 / 37

Summary of lecture 4

Kalman filter
• Optimal observer
• Requires stochastic models of the disturbances
• Requires solving an algebraic Riccati equation (ARE)

K = PCTR−1
2

AP + PAT − PCTR−1
2 CP +NR1N

T = 0
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Summary of lecture 4 (cont’d)

Important transfer functions:
• Closed loop:

Gc = (I +GFy)
−1GFr

• reference → controlled signal

ΣΣΣFr G

−Fy

r u z y

wu w n

• Sensitivity function: S = (I +GFy)
−1

• output disturbance → controlled signal
• model error → controlled signal ∆z ∼ S∆G

• Complementary sensitivity function: T = (I +GFy)
−1GFy

• measurement error → controlled signal
• model error → stability |T (iω)| < 1

|∆G(iω)| ∀ ω

• Input sensitivity function: Su = (I + FyG)−1

• input disturbance → input
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Specifications for control design
Task: Choose u so that z follows r as close as possible, in spite of
the presence of disturbances w, n, and of uncertainty in the system,
while at the same time using reasonable values of u

Translate this into transfer functions:
• error e = r − z small

e = (I −Gc)r − Sw + Tn

• input not too large

u = Grur +Gwu(w + n)

• effect of uncertainty small
∆z ∼ S∆G

• closed-loop stability with uncertainty

|T (iω)| < 1

|∆G(iω)|
∀ ω
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Specifications for control design
Conditions: design Fy, Fr s.t.
• I −Gc small ⇒ controlled variable z follows reference signal r
• S small =⇒ system disturbance and model errors have small

impact on the controlled variable
• T small =⇒ measurement disturbance has small impact on the

controlled variable, and model errors do not compromise stability
• Gru and Gwu small =⇒ input u stays moderate

But observe that

S + T = I

Gc = GGru

=⇒ conflicts on the specifications!
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Lecture 5

Controller structure and control design

• MIMO systems: who should control who?
• RGA (Relative Gain Array)

• From structure to design:
• Decentralized control
• Decoupled Control
• IMC (Internal Model Control)

• Synthesis method 1: Linear Quadratic synthesis

In the book: Ch. 8 and 9
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Control design
Most successful controller ever: PID
• Timeline:

• Boulton and Watt 1788: speed control of
steam engines, mechanical implementation

• Hydraulic and pneumatic implementation:
late 1800.

• Electronic implementation: 1930.
• Computer implemention: 1950.
• ”PID-on-a-chip”: 1990s

• Modeling
• First systematic approach (poles):

Maxwell 1868.
• Robust shaping of system gain:

Aström och Hägglund 2006.

• Applications: all.

source: Wikipedia – Andy

Dingley



7 / 37

PID and beyond
PIDs:
• It pairs an output and an input
• Can be developed with intuition and experimentation.

Result are normally sufficient (good in very simple cases)
• Interpretation in a Bode diagram: lead and lag
• Systematic analysis (poles, zeros, S, T ,...) can give control

design with high performances
• MIMO systems =⇒ inputs/outputs must be paired two by two

When is PID not enough:
• most MIMO systems (e.g. when no natural pairing exists)
• in some advanced applications, e.g. when you are given

state-based costs to minimize, e.g. linear quadratic design
• nonlinear systems
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MIMO systems

Approach: explore structure
• if natural pairings exist =⇒ decentralized control (each loop is

controlled independently)
• if natural pairings do not exist:

• RGA (Relative Gain Array) – a way to measure interaction
• Decoupled control: a way to reduce coupling

More advanced control methods
• IMC (Internal Model Control).
• Minimization of quadratic criterion: LQ, LQG.
• Systematic shaping of transfer functions: H2, H∞.
• Nonlinear methods.
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MIMO systems: structure-based control design
• G(s) is a p×m matrix:

G(s) =
[
Gij(s)

]
i = 1, . . . p
j = 1, . . . ,m

• Control design
u = Fr(s)r − Fy(s)y

where Fr(s) and Fy(s) are m× p matrices

Fy(s) =
[
Fy, ij(s)

]
i = 1, . . .m
j = 1, . . . , p

• Q: who controls who?
• Q: Which yk use to design uj?
• Q: How to design Fr and Fy?
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MIMO systems: problems
1. Who should control who?

• G square: p = m

• ‘Tall” system: p > m
G =


· · ·
· · ·
· · ·
· · ·


Less inputs than outputs: Not all outputs can be controlled
perfectly – must prioritize.

• “Fat” system: p < m

G =

[
· · · · · · · · ·
· · · · · · · · ·

]
More inputs than outputs. How should the control effort be
distributed among the inputs?

2. Interactions / cross couplings
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Interaction / Cross coupling

• Two-handle water mixer, a system with “hard” crosscoupling.
• Multiple inputs influence (heavily) each output.
• Multiple outputs are influenced (heavily) by any input.

Vinkel kallvattenvred

Vinkel varmvattenvred

Temperatur

Vattenflöde
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• Multiple outputs are influenced (heavily) by any input.

Vinkel kallvattenvred

Vinkel varmvattenvred

Temperatur

Vattenflöde

Vinkel kallvattenvred

Vinkel varmvattenvred

Temperatur

Vattenflöde

G11

G22



12 / 37

Interaction / Cross coupling (cont’d)

• Single-handle water mixer, a system with “gentle” crosscoupling.
• Every input influences (almost) just one output.
• Every output is influenced (almost) by only one input.

Vinkel temperatur

Vinkel flöde

Temperatur

Vattenflöde
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Interaction / Cross coupling (cont’d)

• Single-handle water mixer, a system with “gentle” crosscoupling.
• Every input influences (almost) just one output.
• Every output is influenced (almost) by only one input.

Vinkel temperatur
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Temperatur

Vattenflöde

Vinkel temperatur
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Decentralised regulation
• Build a regulator for a MIMO system by letting one output be

used by one input.
• Result is a number of scalar loops

uj = Fr,jk rk − Fy,jk yk

where each regulator is not “aware” of the presence of the others.
• If G square transfer function matrix =⇒ can be done

If G rectangular: disregard some of the signals (?)
• Works when there are natural pairings and cross-couplings are

small.
• “Pairing problem”: one would like to pair the input and outputs

with strongest coupling.
• How do you determine which coupling exist between inputs and

outputs?
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Example: Temperature regulator

PID

T
1

T
2

U
1

U
2

• Two rooms with a wall separating them.
• Temperatures T1 and T2 are states and measured variables.
• Each room can warm or cool via U1 and U2.
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Example: Temperature regulator

PID

T
1

T
2

U
1

U
2

[
T1

T2

]
=

[ 0.005s+0.0002438
s2+0.0975s+0.002025

0.00009
s2+0.0975s+0.002025

0.00009
s2+0.0975s+0.002025

0.005s+0.0002438
s2+0.0975s+0.002025

] [
U1

U2

]
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Example: Temperature regulator

PID

T
1

T
2

U
1

U
2

Which sensor should be used by which heat/cold source?
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Example: Temperature regulator (cont’d)

Regulator. First pairing:
• T1 is used by U1.
• T2 is used by U2.

Decentralized PI-regulator

Fy(s) =

[
1000 + 500

s 0
0 1000 + 500

s

]

After 10 hours, 10 people enter into
room 1.

Stable
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Example: Temperature regulator (cont’d)
Regulator. Second pairing:
• T2 is used by U1.
• T1 is used by U2.

Decentralized PI-regulator

Fy(s) =

[
0 1000 + 500

s
1000 + 500

s 0

]

After 10 hours, 10 people enter
into room 1.

Unstable!

Could we have anticipated the
problem “analytically”?
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RGA (Relative Gain Array)

Consider the following extreme cases

1. output k is controlled from input j and no other input is active

2. output k is controlled from input j and all other outputs are
perfectly regulated (e.g. forced to 0).



17 / 37

RGA (Relative Gain Array)
• Construct the ratios between the two gains in the two cases

(for all input/output pairs)

• Matematically: elementwise multiplication of G and G−T

(or (G†)T if G rectangular)

RGA(G) = G. ∗ (G†)T
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Decentralized control with RGA
• Properties of RGA

• function of ω
• row sum = 1
• column sum =1

• Estimating coupling
• Ideal case (after permutation of inputs/outputs):

RGA(G(iω)) = I ∀ω

• Deviation of RGA(G(iω)) from I =⇒ coupling
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Decentralized control with RGA

• Practical rules: pair yk and uj so that
• diagonal elements in RGA(G(iωc)) are near 1

(ωc = closed-loop cross-over freq.)

• diagonal elements in RGA(G(0)) do not become negative
(can give instability).

• Decentralized control:
• treat each loop independently

uj = Fr,jk rk − Fy,jk yk
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Example: Temperature regulator with RGA

Example: room temperature regulation

First pairing
• T1 is used by U1

• T2 is used by U2

RGA(G(i5)) ≈
[
1 0
0 1

]
RGA(G(0)) =

[
1.17 −0.17
−0.17 1.17

]
OK with both rules

Second pairing
• T2 is used by U1

• T1 is used by U2

RGA(G(i5)) ≈
[
1 0
0 1

]
RGA(G(0)) =

[
1.17 −0.17
−0.17 1.17

]
Violates both rules
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Decoupled regulation
• Decentralized control: need “natural pairs” of inputs and outputs
• What if this is not the case? Create them!
• Change of variables for inputs and outputs:

ũ = W−1
1 u ỹ = W2y

• Task: design W1 and W2 such that the ”virtual system”:

G̃(s) = W2(s)G(s)W1(s)

is as decoupled (i.e., diagonal) as possible

• Then design diagonal regulator F̃y(s)

• Resulting regulator: Fy(s) = W1(s)F̃y(s)W2(s)
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Decoupled regulation (cont’d)

How to choose W1 and W2?
1. “Dynamical” decoupling

• completely decoupled “virtual system”, over all ω
• s-dependent matrices W1(s) and W2(s) are needed
• often not possible (complicated or non-linear regulator)

2. “Static” decoupling
• choose one frequency at which the system becomes decoupled

1. steady state ω = 0
2. cross-over frequency ω = ωc

• Example of steady state decoupling

W1 = G−1(0) W2 = I
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Example: two handle water mixer

Vinkel kallvattenvred

Vinkel varmvattenvred

Temperatur

Vattenflöde

With the right choice of W1 and W2 you can make a two-handle
water mixer behave as a single-handle mixer. More easily controlled!

W1 = G−1(0) W2 = I
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Internal Model Control (IMC)
• true system: G0

• model (assumed stable): G

• “new information”: y −Gu

• Idea: feed back the “new information” y −Gu

• block diagram:

F̃r

G

G0Q

+

+

−

−
r u y
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Internal Model Control (IMC)
• IMC: use new information y −Gu as feedback, with a T.F. Q

u = −Q (y −Gu)︸ ︷︷ ︸
new information

+QF̃rr

or
u = − (I −QG)−1Q︸ ︷︷ ︸

Fy

y + (I −QG)−1QF̃r︸ ︷︷ ︸
Fr

r

• If G stable: all stabilizing controllers u = −Fyy are of the form

Fy = (I −QG)−1Q ∀ Q stable
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IMC design rules: basic idea

• Ideally: choose Q = G−1 =⇒ Gc = I

• Complication: unfeasible Fy ≡ ∞

• Solution: approximate the inverse appropriately, e.g.

Q(s) =
1

(λs+ 1)n
G−1(s)

• Different system properties lead to different suitable
approximations of the inverse.
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Synthesis of the regulator

Two main approaches:

1. Quadratic weights on the variables + optimization.
=⇒ “Linear quadratic synthesis”: ”LQ”, ”LQG”

2. Direct construction of S, T , in the frequency domain:
=⇒ ” ’H2”, ’H∞”
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A warm-up problem

• State space model
• fully deterministic problem

ẋ = Ax+Bu, x(0) given
z = Mx

y = x
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Minimization of a quadratic criterion
Problem: Full state LQ (Linear Quadratic) optimal control
Find a u = −Lx that solves

min J =

∫ ∞

0
(zTQ1z + uTQ2u)dt

s. t. ẋ = Ax+Bu, x(0) given
z = Mx

and A−BL is stable

Solution: u = −Lx, L = Q−1
2 BTS, where S solves the ARE

ATS + SA+MTQ1M − SBQ−1
2 BTS = 0
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Solving the algebraic Riccati equation

• Is it always possible to solve

ATS + SA+ Q̄1 − SBQ−1
2 BTS = 0, Q̄1 = MTQ1M

so that the state matrix of the regulated system

A−BQ−1
2 BTS

has its eigenvalues in the left half of the complex plane?
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Solving the algebraic Riccati equation (cont’d)

• Example:

A =

[
−1 0
0 1

]
, B =

[
1
0

]
, Q̄1 =

[
0 0
0 1

]
, Q2 = 1

» [L,S,E]=lqr(A,B,Q1,Q2)
??? Error using ==> lti.lqr
The plant model cannot be stabilized by feedback or
the optimal design problem is ill posed.
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Solvability of the algebraic Riccati equation
If

1. Q1 ≥ 0, Q2 > 0

2. (A,B) is stabilizable (unstable states are controllable)
3. (A, Q̄1) is detectable (unstable states can be “seen” in the cost)

then there exists a unique solution S = ST ≥ 0 of

ATS + SA+ Q̄1 − SBQ−1
2 BTS = 0

with L = Q−1
2 BTS, that minimizes the criterion

J =

∫ ∞

0
(xT Q̄1x+ uTQ2u)dt

and
A−BQ−1

2 BTS

has all eigenvalues strictly in the left half of the complex plane.
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Solving the algebraic Riccati equation (cont’d)
• Example:

A =

[
−1 0
0 1

]
, B =

[
1
0

]
, Q̄1 =

[
0 0
0 1

]
, Q2 = 1

• Example:

A =

[
−1 0
1 1

]
B =

[
1
0

]
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Similarities between Kalman filter and LQ
Kalman filter:

AP + PAT +NR1N
T − PCTR−1

2 CP = 0

K = PCTR−1
2 (⇔ KT = R−1

2 CP )

LQ-regulator:

ATS + SA+MTQ1M − SBQ−1
2 BTS = 0

L = Q−1
2 BTS

Both problems require solving an ARE

P ←→ S

AT ←→ A

CT ←→ B

NT ←→M

R1 ←→ Q1

R2 ←→ Q2

KT ←→ L
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