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Summary of lecture 4

Kalman filter
® QOptimal observer
® Requires stochastic models of the disturbances

® Requires solving an algebraic Riccati equation (ARE)

K = PCTR;?
AP + PAT — PCTR;'CP+ NRiNT =0
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Summary of lecture 4 (cont'd)

Important transfer functions: l“’u

® Closed loop: N P X
G = (I + GFy)flGFT

e reference — controlled signal

e Sensitivity function: S = (I + GF,)™}
e output disturbance — controlled signal
e model error — controlled signal A, ~ SAgq

e Complementary sensitivity function: T = (I + GF,) 'GF,
e measurement error — controlled signal
o model error — stability |T(iw)| < x5y V@

® Input sensitivity function: S, = (I + F,G)~!
e input disturbance — input
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Specifications for control design

Task: Choose u so that z follows r as close as possible, in spite of
the presence of disturbances w, n, and of uncertainty in the system,
while at the same time using reasonable values of u

Translate this into transfer functions:
® error ¢ =71 — z small
e=(I—-Ge)r—Sw+Tn
® input not too large
u = Gyt + Guu(w + n)
o effect of uncertainty small
A, ~ SAg
® closed-loop stability with uncertainty

1

T < 3g G

Y w
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Specifications for control design
Conditions: design F,,, F; s.t.
® [ — G. small = controlled variable z follows reference signal r

® S small = system disturbance and model errors have small
impact on the controlled variable

® T small = measurement disturbance has small impact on the
controlled variable, and model errors do not compromise stability

® GG,y and Gy small = input u stays moderate
But observe that

S+T =1

(;c = (;(;Tu

— conlflicts on the specifications!
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Lecture 5

Controller structure and control design

e MIMO systems: who should control who?
e RGA (Relative Gain Array)

® From structure to design:

e Decentralized control
e Decoupled Control
e IMC (Internal Model Control)

® Synthesis method 1: Linear Quadratic synthesis

In the book: Ch. 8 and 9
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Control design

Most successful controller ever: PID
® Timeline:
e Boulton and Watt 1788: speed control of
steam engines, mechanical implementation
e Hydraulic and pneumatic implementation:
late 1800.
Electronic implementation: 1930.
e Computer implemention: 1950.
e "PID-on-a-chip”: 1990s

® Modeling
e First systematic approach (poles):
Maxwell 1868.
e Robust shaping of system gain: source: Wikipedia — Andy

Astrém och Hagglund 2006.

Dingley

e Applications: all.
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PID and beyond

PIDs:
® |t pairs an output and an input

® Can be developed with intuition and experimentation.
Result are normally sufficient (good in very simple cases)

® |nterpretation in a Bode diagram: lead and lag

® Systematic analysis (poles, zeros, S, T',...) can give control
design with high performances

¢ MIMO systems = inputs/outputs must be paired two by two

When is PID not enough:
® most MIMO systems (e.g. when no natural pairing exists)

® in some advanced applications, e.g. when you are given
state-based costs to minimize, e.g. linear quadratic design

® nonlinear systems
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MIMO systems

Approach: explore structure

e if natural pairings exist = decentralized control (each loop is
controlled independently)
e if natural pairings do not exist:

o RGA (Relative Gain Array) — a way to measure interaction
e Decoupled control: a way to reduce coupling

More advanced control methods
® IMC (Internal Model Control).
® Minimization of quadratic criterion: LQ, LQG.
® Systematic shaping of transfer functions: Ho, Hoo.

® Nonlinear methods.
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MIMO systems: structure-based control design

® (G(s) is a p X m matrix:

e Control design
u=F(s)r—Fy(s)y

where F,.(s) and F,(s) are m x p matrices

® Q: who controls who?
® Q: Which y;, use to design u;?
® Q: How to design F, and F,?
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MIMO systems: problems

1. Who should control who?
e (G square:p=m

e ‘Tall" system: p > m

Less inputs than outputs: Not all outputs can be controlled
perfectly — must prioritize.
o

More inputs than outputs. How should the control effort be
distributed among the inputs?

e “Fat” system: p<m

2. Interactions / cross couplings
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Interaction / Cross coupling

® Two-handle water mixer, a system with “hard” crosscoupling.

e Multiple inputs influence (heavily) each output.
e Multiple outputs are influenced (heavily) by any input.

Vinkel kallvattenvred ——>» P Temperatur
Vinkel varmvattenvred ——» i E\ 3 Vattenflode
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Interaction / Cross coupling

® Two-handle water mixer, a system with “hard” crosscoupling.

e Multiple inputs influence (heavily) each output.
e Multiple outputs are influenced (heavily) by any input.

Vinkel kallvattenvred ——>» (I Temperatur
Vinkel varmvattenvred ——> i {I 3 Vattenflode

Vinkel kallvattenvred ——>{|Gn $@&_||——> Temperatur

Vinkel varmvattenvred —>( 4@ G,,|—> Vattenflode
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Interaction / Cross coupling

(cont'd)

12/37

® Single-handle water mixer, a system with “gentle” crosscoupling.

e Every input influences (almost) just one output.
e Every output is influenced (almost) by only one input.

Vinkel temperatur ——»
Vinkel flode ——>

“

——» Temperatur
—— Vattenflode
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Interaction / Cross coupling (cont'd)
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® Single-handle water mixer, a system with “gentle” crosscoupling.

e Every input influences (almost) just one output.
e Every output is influenced (almost) by only one input.

Vinkel temperatur ——>»
Vinkel flode —>

“

——» Temperatur
—— Vattenflode

Vinkel temperatur ——
Vinkel flode ——>

G11

0 Gy

0

——» Temperatur
L3 Vattenflode
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Decentralised regulation

Build a regulator for a MIMO system by letting one output be
used by one input.

Result is a number of scalar loops
uj = Frjkmk — Fyjk Yk

where each regulator is not “aware” of the presence of the others.
If G square transfer function matrix = can be done

If G rectangular: disregard some of the signals (?)

Works when there are natural pairings and cross-couplings are
small.

“Pairing problem": one would like to pair the input and outputs
with strongest coupling.

How do you determine which coupling exist between inputs and
outputs?
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Example: Temperature regulator

® Two rooms with a wall separating them.
® Temperatures T and T5 are states and measured variables.

® Each room can warm or cool via U; and Us.
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Example: Temperature regulator

T 0.0055+-0.0002438 0.00009 U
1| _ | s240.09755+0.002025  s240.09755+-0.002025 1

| — 0.00009 0.0055+-0.0002438 U
2 $240.09755+0.002025  s2+0.09755+0.002025 2
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Example: Temperature regulator

Which sensor should be used by which heat/cold source?
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Example: Temperature regulator (cont'd)

Regulator. First pairing:
e T is used by Uj.
® T, is used by Us.

Decentralized Pl-regulator

Fy(s

)=

1000 + 2%

0

1000 +

|

After 10 hours, 10 people enter into
room 1.

Stable

Effekt storning [W]

o
]
£z ~ —T2
520
s
3 19
5
=% 5 10 15
Tid [h]
x10'
g '&
Zo0
K]
G4
o 5 10 15
Tid [h]
500
0 10 15
Tid [h]

20
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Example: Temperature regulator (cont'd)
Regulator. Second pairing:
® T, is used by Uj. s

o 1 =
. 3 —
e T is used by Us. 5 os —T2
Decentralized Pl-regulator é-o.s
g T.;o[h] 15 20
F(s) = 0 1000 + 2%
v 1000 + 2% 0 < 05 J
)
w _o05
-1
After 10 hours, 10 people enter ’ P wm ®
into room 1. £
§ 500
Unstable! :
£
0 10 15 20
Tid [h]

Could we have anticipated the
problem “analytically”?
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RGA (Relative Gain Array)

Consider the following extreme cases

1. output k is controlled from input 7 and no other input is active

2. output k is controlled from input j and all other outputs are
perfectly regulated (e.g. forced to 0).

LINKOPING
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RGA (Relative Gain Array)

e Construct the ratios between the two gains in the two cases
(for all input/output pairs)

® Matematically: elementwise multiplication of G and G~7T
(or (GN)T if G rectangular)

RGA(G) = G. x (GNT
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Decentralized control with RGA
® Properties of RGA

e function of w
e rowsum=1
e column sum =1

® Estimating coupling
o Ideal case (after permutation of inputs/outputs):

RGA(G(iw)) =1 Vw

e Deviation of RGA(G(iw)) from I = coupling
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Decentralized control with RGA

® Practical rules: pair y; and u; so that

o diagonal elements in RGA(G (iw,)) are near 1
(w. = closed-loop cross-over freq.)

e diagonal elements in RGA(G(0)) do not become negative
(can give instability).

® Decentralized control:
e treat each loop independently

U = Fr ik — Fy jk Y
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Example: Temperature regulator with RGA

Example: room temperature regulation

Second pairing

® Ty is used by Uy ® Ty is used by Uy
® Ty is used by Us e Ty is used by Us
RGA(G(i5)) ~ [ 0] RGA(G(i5)) ~ [1 (’]
0 0 1
—0.17 1.17  —0.17
RGA(G(0)) = [—0.17 ] RGA(G(0)) = [—0.17 1.17}
OK with both rules Violates both rules

LINKOPING
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Decoupled regulation
® Decentralized control: need “natural pairs” of inputs and outputs

What if this is not the case? Create them!
Change of variables for inputs and outputs:

ﬁle_lu g = Way

Task: design W7 and W5 such that the "virtual system™

G(s) = Wa(s)G(s)Wa(s)

is as decoupled (i.e., diagonal) as possible

Then design diagonal regulator Fy(s)

Resulting regulator: Fy(s) = Wi (s)EF,(s)Wa(s)
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Decoupled regulation (cont'd)

How to choose W7 and W5?

1. “Dynamical” decoupling

e completely decoupled “virtual system”, over all w

s-dependent matrices Wi (s) and Wa(s) are needed
often not possible (complicated or non-linear regulator)

2. “Static” decoupling

e choose one frequency at which the system becomes decoupled

1. steady state w =0
2. cross-over frequency w = we,

e Example of steady state decoupling

Wy =G H0) Wy=1I
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Example: two handle water mixer

Vinkel kallvattenvred ——>
Vinkel varmvattenvred ——>

——>» Temperatur
— Vattenflode

With the right choice of W7 and W5 you can make a two-handle
water mixer behave as a single-handle mixer. More easily controlled!

Wy =1
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Internal Model Control (IMC)

® true system: Gy

® model (assumed stable): G

® “new information”: y — Gu

|dea: feed back the “new information” vy — Gu

block diagram:

LINKOPING
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Internal Model Control (IMC)
® |[MC: use new information y — Gu as feedback, with a T.F. Q

u=-Q (y—Gu) +QFr
~—_——

new information

or
u=—(I-QG) 'Qu+ (I -QG)'QF,r
F, Fr
e |f G stable: all stabilizing controllers u = —Fyy are of the form

F,=(I-QG)'Q VQ stable
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IMC design rules: basic idea

e |deally: choose Q =G ! = G, =1
® Complication: unfeasible I}, = co

® Solution: approximate the inverse appropriately, e.g.

Qs) =~ GI(s)

(As+1)

e Different system properties lead to different suitable
approximations of the inverse.
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Synthesis of the regulator

Two main approaches:

1. Quadratic weights on the variables 4+ optimization.
— “Linear quadratic synthesis”: "LQ", "LQG"

2. Direct construction of S, T', in the frequency domain:

= HY, Hoo!

27 /37

LINKOPING
Il.u UNIVERSITY



28 /37

A warm-up problem

® State space model

e fully deterministic problem

& = Az + Bu, x(0) given
z=Mz
y=x
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Minimization of a quadratic criterion

Problem: Full state LQ (Linear Quadratic) optimal control
Find a u = —Lx that solves

min J =/ (2T Q12 + uT Qou)dt
0
s. t. = Az + Bu, x(0) given
z=Mzx
and A — BL is stable

Solution: u = —Lz, L= Q,'B”S, where S solves the ARE

ATS + SA+ MTQ M — SBQ;'BTS =0

LINKOPING
II.“ UNIVERSITY



30/37

LINKOPING
II.“ UNIVERSITY



31/37

LINKOPING
II.“ UNIVERSITY



32/37

LINKOPING
II.“ UNIVERSITY



Solving the algebraic Riccati equation

® |s it always possible to solve
ATS + SA+ Q1 — SBQ,'BTS =0, Qr=M"QiM
so that the state matrix of the regulated system
A— BQy'B"S

has its eigenvalues in the left half of the complex plane?
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Solving the algebraic Riccati equation (cont'd)

e Example:

» [L,S,E]l=1qr(A,B,Q1,Q02)

??? Error using ==> 1ti.lqr

The plant model cannot be stabilized by feedback or
the optimal design problem is ill posed.
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Solvability of the algebraic Riccati equation
If

1. Q1 >0,Q2>0

2. (A, B) is stabilizable (unstable states are controllable)

3. (A, Q1) is detectable (unstable states can be “seen” in the cost)
then there exists a unique solution S = ST > 0 of

ATS + SA+Q1 - SBQ;'BTS =0

with L = QQ_IBTS, that minimizes the criterion

J = /Oo(xTle + ul Qqu)dt
0

and
A—BQ;'BTS

has all eigenvalues strictly in the left half of the complex plane.
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Solving the algebraic Riccati equation (cont'd)

e Example:

-1 0 1 = 00
[ el e e

e Example:
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Similarities between Kalman filter and LQ
Kalman filter:
AP+ PAT + NRyNT — PCTR;'CP =0

K = PCT'R;' (& K' = R;'CP)
P+—S

AT 5 A

¢+ B

LQ-regulator: NT s M
ATS + SA+ MTQ1M — SBQ;'BTS =0 Ri +— Qi
L=Qy'B'S Ry +— Q2
KT+ L

Both problems require solving an ARE
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