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Abstract—In a consensus protocol an agreement among agentsconsensus through distributed protocols. In particular,will
is achieved thanks to the collaborative efforts of all agerst, see that under suitable conditions the agents can achieve a
expresses by a communication graph with nonnegative weight orm of “agreed upon dissensus’ (hereafter calligartite

The question we ask in this paper is the following: is it pos&ile . hich all ¢ ¢ | hich
to achieve a form of agreement also in presence of antagoriist consensys in which all agents converge to a value whic

interactions, modeled as negative weights on the communigan IS the same for all in modulus but not in sign. This polar-
graph? The answer to this question is affirmative: on signed ization of the community into two factions characterized by

_netvvorks all agents can converge to a consensus value WhiChopposite “opinions" is common in many antagonistic systems
is the same for all agents except for the sign. Necessary andqegcriping bimodal coalitions, like two-party politicalstems,

sufficient conditions are obtained to describe the cases whehis d listi kets. rival busi tel tinari
is possible. These conditions have strong analogies witheftheory ~9UOPOIISIIC MArkets, rival business cartels, competrngrma-

of monotone systems. Linear and nonlinear Laplacian feedtzk  tional alliances (think of the Iron curtain era), etc. Se&][4
designs are proposed. [16] for more details on applications in social networksatye
Index terms- Consensus protocols; Signed graphs; Structur?t?tentlal engneering appllcatllons are also easily C‘m".“ .
balance; Monotone Systems. even beyond warfare scenarios). Some pf these application
(such as trust networks) are mentioned in [17], [29], where
attempts to deal with signed graphs are made (see also
[4]). We will show that if we use distributed Laplacian-like

The problem of reaching a consensus among a group sthemes as in the current literature on consensus problems,
agents using only local actions has a long history [15], [13hen bipartite consensus can be achieved when and only when
and in recent years it has received a remarkable attentitve signed graph of the network istructurally balanced
from different perspectives, thanks to the large number &i social network theory, structural balance is a well-kmow
potential applications, ranging from Engineering and Conproperty [19], [12], and corresponds to the possibility of
puter Science (distributed computation [6], sensory neta/0 exactly bipartitioning the signed graph into two adversary
formation control of mobile robots [32]) to Biology, Ecolpg subcommunities such that all edges within each subcomsnunit
and Social Sciences (self-driven motion of biological jgées have positive weights while all edges joining agents ofediff
[46], collective behavior of flocks and herds [41], dynamicent communities have negative weights. Graphs of nonnegati
of opinion forming [21]). See [40], [36] for a more organicweights are a special case of structural balance, in whieh on
overview of the field. of the two subcommunities is empty.

A commontrait of basically all the current research on We will show that Laplacian schemes are convergent also
the consensus problem is the focus avoperative systems on signed graphs that are not structurally balanced (peavid
Consensus in these systems is achieved through collatmoratthe Laplacian is defined properly). However, in this case the
the network of interactions representing the communicatioconsensus value is always trivial (the origin), regardless
between agents is characterized by edge weights that #re initial condition and of the antagonistic content of the
nonnegative. In several real world scenarios, howevers it metwork. In fact, the Laplacian one obtains in the strudlyra
more plausible to assume that some agents collaborateg whihbalanced case is globally asymptotically stable (ratihan
other compete Networks with antagonistic interactions arecritically stable), meaning that the (bipartite for us) egment
common for example in social network theory [47], [16]. Thegubspace is empty. It is worth observing that the asymptotic
are represented as signed graphs, i.e., graphs in which #tehility of the family of Laplacians corresponding to stru
edges can assume also negative weights. A positive/negatiwally unbalanced graphs cannot be explained by standard
weight can be associated to a friend/foe (allied/advejsastability arguments, such as the analysis of the GerSglisks
relationship between the two agents linked by the edge, or, diagonal dominance [30], [22].
depending on the context, to a trust/distrust, like/desliktc. An equivalent characterization of structurally balangmsd
interaction, see [47], [16], [18]. graphs is that all cycles (or semicycles for directed grapifis

Our aim in this paper is to introduce a suitable notion dhe graph are positive, i.e., have an even number of negative
consensus in presence of antagonistic links and to inastigedges. Quite remarkably, this condition is formally analog
how and to what extent agents on signed graphs can achiewéhe so-called Kamke condition for Jacobians of monotone
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systems [43]. The analogy can be made rigorous by observin@A (directed) pathP of G(A) is a concatenation of (directed)
that all structurally balanced networks are equivalengjarn edges of¢:

a suitable change of orthant order, to nonnegative networks

Adopting the terminology used in Statistical Physics fdsth P = A{(vir, via), (Vi Vi), -, (Vi1 03, )} © €

type of equivalence transformations (well-known in thewsi in which all nodesu;,,...,v;, are distinct. The length of
spin glass literature [7], see [28], [2], [18] for more dégpiwe P is p — 1. A (directed) cycle C of G(A) is a (directed)
shall call the changes of orthant ordgauge transformations path beginning and ending with the same nagde = v;, .
Gauge equivalence (or switching equivalence in the thebry por digraphs, a semicycle is a cycle of(A,). A cycle
signed graphs [48], or signature similarity as it is called i(semicycle) is positive if it contains an even number of
the field of signed pattern matrices [10]) is a finite-cartifya negative edge weightss;, ,, ...a;, ;, > 0. It is negative if
subclass of the similarity equivalence of matrices, whedves i iy - - a;,4, < 0. Irreducibility of A corresponds taj(A)
the modulus of the entries of a matrix unchanged and onjyhich is strongly connected, i.e¥v;, v €VIPCE
modifies its sign pattern. Given a structurally balanceaekt  starting atv; and ending ab; (strong connectivity collapses
with its set of edge weights, there exists a family of strugly  into connectivity whend is symmetric).

balanced signed networks characterized by the same weight$he following is mentioned in e.g. [44] but not proved. We
(but with different signs). All these “realizations” of tiségned therefore provide a self-contained proof in the Appendix.
networks are related by gauge transformations and all are

isospectral, meaning that the corresponding Laplaciajsyenproposition 1 Consider a digraphG(A) which is strongly
the same convergence properties, although the bipartitiggnnected and digon sign-symmetrif(A) has no negative

characterizing the consensus vector differs from reabpat semicycle if and only i}(A) has no negative directed cycle.
to realization. In particular, in each such family of gauge

equivalent structurally balanced networks there is always ~ Given the signed digrapfi(A), denoteC; the row connec-
particular network with all nonnegative weights. It is tfere tivity matrix of A, i.e., the diagonal matrix having diagonal
possible to adapt both linear [38] and nonlinear [39], [27Rlementsc, i = 3, c.q;(;) lai;|, whereadj(i) are the nodes
[26], [34], [45] Laplacian schemes used for “standard” corgdjacent towv; in & (Wl'[E1 in-degree direction as in [36]:
sensus to the case of structurally balanced networks. v; is the tail of the arrow whose head ig). The column
That Laplacian feedback schemes for consensus correspéinectivity matrixC.. is defined analogously. Whet = A™
to contractions in a proper metric space, and that these céfenC, = C. = C. More generally, a signed digraph is said
tractions are a special case of monotone systems was obiset¥gight balancedf C, = C.. In the consensus literature [36],
already by L. Moreau [37]. Expanding on this observatioh40], [38], this property is normally referred to as “balaut
here we show that any monotone system can be turned intéHt-court (see [14], though). For matrices of nonnegative
(nonlinear) Laplacian scheme achieving bipartite consens Weights, it can also be expressed as
The rest of the paper is organized as follows: basic defini- A1 = AT1 1)
tions and properties of signed graphs are recalled in Sedtio ’
linear consensus protocols for undirected and directedesig wherel = [1 e 1]T € R™
graphs are discussed in Section Ill, while several nonfinea

consensus protocols are presented in Section IV. I1l. LINEAR CONSENSUS PROTOCOLS FOR SIGNED GRAPHS

Consider the system of integrators
Il. SIGNED GRAPHS

T = u, x, u € R™ (2)

A (weighted) signed graplgy is a tripleG = {V,&, A} . ) o
whereV = {vi,...,v,} is a set of nodes¢ C V x V is N the consensus problem, the task is to devise distributed

a set of edges, and € R"*" is the matrix of the signed feedback lawsi; = u;(xi, z;, j € adj(i)), i = 1,...,n, i.e.,

weights ofG: a;; # 0 < (v;, v;) € £. The adjacency matrid feedback laws based on the states of the node itself and of its

alone completely specifies a signed graph. For the signgzhgrdiSt neighbors on the connectivity gragtiA) of the network.
corresponding tad we shall use the notatiodi(A). We will Unlike in standard consensus problems, we do not assume that
not consider graphs with self-loops;; = 0 Vi = 1,...,n. the weights ofA are nonnegative.

When the graph is undirected then the order of the nodes in

£ is irrelevant and the matrixl is symmetric. For a directed A. Undirected graphs

graph (digraph) we shall use the c_onvention that on the edge-~gnsider a given signed (symmetric) adjacency mattix
(vj, v;) € & v; represents the tail and; the head of the o gefinition of a Laplaciarl in the case of signed! is
arrow. In a digraph a pair of edges sharing the same nodes_ ~ _ 4 \where in the connectivity matrix' the weights

(vi, v;), (vj,vi) € € is called a digon. In the digraphs ofyre in apsolute value, see [24], [31]The elements of. are
this paper we will always assume tha{a;; > 0, meaning

that the edge pairs of all digons cannot have opposite signs:This is not the only definition of Laplacian of a signed graphitable
Under this assumption (hereafter Calkﬁgon sign-symmet)y in the literature. In [8], for example, the Laplacian is definwithout the

. « o . . absolute values in the diagonal terms. In this formulatibis always an
a d|graphg admits” an undirected grapﬁ(Au) defined by eigenvalue, but negative eigenvalues may appear, regdéhnia Laplacian
A, = (A+ AT))2. useless for convergence purposes.



therefore:

Ui = Zandj(i) laij| k=i
—Qk k # 1.

The corresponding Laplacian potential is

®(z) =2TLx = Z (laij|} + laij|as — 2a5a:2;)
(vj,v:)EE

= > lail (2 — sgn(aij)z;)?,

(vj,v:)EE

(a) Example 1 (b) Example 2

®)

where sgn(-) is the sign function. The effect of a negative
weighta;; is to replace the usudly; — x;)? term in (3) with
(z; +z;)?, which does not alter the sum of squares structure
of &(x).

Just like for the nonnegative weights case, one canluse

for the feedback laws in (2) and study the gradient system
Fig. 1. Signed undirected connectivity graphs mentione&éation IlI-A.
i = L (4) Examples 1 and 3 are structurally balanced and differ onlyth®y gauge
’ transformationD = diag(1, 1, —1). Example 2 is structurally unbalanced.

(c) Example 3

which in components reads:

T = — Z |ai;|(z: — sgn(ai;)x;). 1) Effect of a gauge transformatios partial orthant order
jeadj(i) in R™ is a vectoro = [01 ...on], o; € {£1}. A gauge
transformationis a change of orthant order iR" performed
Let A\i(L) < ... < A\u(L) be the eigenvalues af. From by a matrix D = diag(c). DenoteD = {D = diag(c), o =
(3) it is evident thatb(x) > 0 and therefore thak, (L) > 0.  [4y...0,], 0; € {£1}} the set of all gauge transformations in
Unlike for the case of nonnegativé, here —L is however R” Given the system (4), consider the change of coordinates
no longer a Metzler matrfin general and its row/column corresponding to the gauge transformation
sum need not be zero. The major difference with the standard
theory of nonnegative adjacency matrices is thatan be z = Dz, D eD. (5)

positive definite. )
SinceD~! = D, z = Dz, and from (4)

Example 1 Consider the signed graph of Fig. 1(a) of adja- 2= —Lpz, (6)

cency matrix . )
whereLp = DLD = C — DAD is the new Laplacian of the

0 1 =2
A=l1 o -4 gauge transformed system. In components,
-2 -4 0 .
(pi = Zandj(i) |aij| k=i
the corresponding Laplaciaf, = diag(3,5,6) — A; has 7 —0i0) i k #i.
eigenvaluessp(L;) = {0, 4.35, 9.65}, i.e. Ly positive
semidefinite. Proposition 2 L and L, are isospectralsp(L) = sp(Lp).

The class of gauge equivalent LaplacianS(L) =

. o ab :
Example 2 The signed graph of Fig. 1(b) instead has adjd’LD D € D} contains at mosg" ™" distinct matrices.

cency matrix Proof: D € D is such thatjdet D| = 1, D-' = D =

0 1 -2 DT. Hence the transformatioh — DLD is a similarity
Ap= 1|1 0 4. transformation and as such it preserves the spectrum. The se
-2.4 0 D contains2™ diagonal matricesD and each corresponding

gauge transformation changes the signs of the rows/columns
corresponding to the -1 entries dp. When L connected,

all Lp in £(L) are distinct, up to a global symmetry:
DLD = (-D)L(-D). ]

The LaplacianL, = diag(3,5,6) — A> has eigenvalues
sp(L2) = {1.2, 2.61, 10.18}, meaning thatl, positive defi-
nite.

It follows from Proposition 2 that alsep(A) = sp(DAD).
2Metzler matrices, also called negated Z-matrices, areiceatiwith non-
negative off-diagonal entries, see [5].



Example 3 Applying the gauge transformationD = 3) If A is structurally balanced theA D € D such that
diag(1, 1, —1) to A; of Example 1 one gets DAD is nonnegative. Therefore the corresponding Lapla-
cianC — DAD has0 as eigenvalue, and by Proposition 2

0 12 so does the Laplaciah = C'— A. To prove the converse
Ay =DAD= |1 0 4|, : . ; -
9 4 0 assume\; (L) = 0. Since A is syr_nmetrlpﬂw e R",
w # 0, such thatLw = w'L = 0, i.e.,w is a left and
i.e., a nonnegative adjacency matrix isospectral with see right eigenvector of_. By contradiction, assumé has at
Fig. 1(c). The corresponding; = diag(3,5,6) — A3 can least a negative cycle = {(vi,,vi,), ..., (vi,,vi,)} €&
therefore be used in (6) to solve a standard average corsensu such thatu;, ;,ai,, - - - ai,i, < 0. From (3), the Laplacian
problem. In this caseéer(L) = span(1) is the agreement potential®(x) can be split accordingly:
subspace and, following [38], the solution of the average
consensus problem is P(x) = Z |aij| (z; — sgn(aij)z;)?
. y 1 . , (vi,vj)eC (8)
<= Jlim #(0) = S (17201 @) D lal(a — sen(ag);)*.
(vi,v5)€ENC

2) Structural balance and bipartite consensusince Ex-
ample 3 is a standard consensus problem and sinde;) = Let us focus on the first summation. Without loss of
sp(Ls), it is intuitively clear that also for Example 1 a generality, assume only one of the; edges ofC has
consensus problem can be formulated and that its solution negative weight (sinc€ has an odd number of negative
x* must be related ta* of Example 3. In particular, from edges and each node interse€tin at most two edges,
(), xf = zF 1 = 1,2, 2§ = —z;, i.e, [z| = |z|, meaning it is always possible to find & € D such that only
that the components aof converge to values which agree one negative edge is left ii; all our considerations are
in modulus but differ in sign. This asymptotic behavior is a invariant to gauge transformations). Assume for example
form of “agreed dissensus”, which we shall denbtpartite that a;,;, > 0,...,a4, ,4, > 0 anda;,;, < 0. From
consensusMore formally, we have: w?' Lw = 0, owing to the sum of square form df(z),

each term in (8) must bé in correspondence ab. In
Definition 1 The system(4) admits a bipartite consensus particular, expanding the first summation in (8)

solution iflim;_.o |z;(t)| =a>0Vi=1,...,n. 9

9)

iyin (Wi, —wiy)* + o @iy, (Wi, —wy,)
Itis not too difficult to verify that no gauge transformation + |ai i [(ws, + w3, )* = 0.

D € D exist able to rendeiD A, D nonnegative. In order )

to understand the difference between Example 1 (and 3) and From the firsty —1 terms of (9) we deduce;, = w;, =

Example 2, it is useful to introduce the notion of structlyral .. = w;,. Butthis implies that the last term in (9) cannot
balance signed network and its equivalence charactesizti be zero unles®);, = ... = w;, = 0. Consider now =
{vi,, vi,, ..., v;,} and its complement iv: Ve = V\ V.
Definition 2 A signed graphG(A) is said structurally bal- Owing to the connectivity ofj(A), it is always possible
ancedif it admits a bipartition of the node¥;, V», VUV, = to find a collection of paths ig(A4) linking all nodes of
V, V1NV, =0 such thata;; >0V v, v; €V, (¢ € {1, 2}), Ve t.O those oflc. Let P = {515 v5),- -, (’qu’vik)} C
ai; SOV v €V v; €V, q# 7 (g7 € {1,2}). Itis said Ewith vj,,vj,, ..., v;, € Ve andv;, € Ve. Whenz = w
structurally unbalancedtherwise. and ®(w) = 0, from (8) andw;, = 0 it follows that
wj, = ... = wj, = 0. Iterating the argument until all
Lemma 1 A connected signed grag{ A) is structurally bal- nodes ofVc are covered, we obtain = 0, and hence
anced if and only if any of the following equivalent condigo we have a contradiction.
holds: m

1) all cycles ofG(A) are positive;
2) 3 D € D such thatDAD has all nonnegative entries;

3) 0 is an eigenvalue of.. Remark 1 The key argument for the absence of theigen-

value in structurally unbalanced Laplacians is the im okt
Proof: of satisfying all the constraints imposed Wy(z) = 0 by
1) This is a classical result from [12] choosing a combination of signs of the variables When

2) From Definition 2,V can be partitioned such that all and®Uch @ combination of sign exists then we have structural
only the negative edges have a nodé/inand the other Palance.

in V. Itis enough to choos® = diag(c) with o such This argument can be readily applied to spanning trees.

thato; = +1 whenwv; € V; ando; = —1 whenuv; € Vs

to attain the sought gauge transformed adjacency matrix ) i

DAD with all nonnegative entries. Corollary 1 A spanning tree is always structurally balanced.
3This condition is often taken as definition of structuralavae [12], [16]. Proof: WhenG(A) is a spanning tree no cycle is present,

For our purposes, the bipartition of Definition 2 is more et as definition. and, for each signature of the— 1 edgesa;;, G(A) hasn



variables available in order to fulfill the conditioh(xz) = 0 5
mentioned in Remark 1. m 4 X
X
From conditions 2 and 3 of Lemma 1, it follows that on 3 Xz
a structurally balanced graph is positive semidefinite and ) \ S
ker(L) = span(D1). Lemma 1 induces also a characterization
of structurally unbalanced graphs. 1 [
0
Corollary 2 A connected signed grapfi(A) is structurally 1 \_
unbalanced if and only if any of the following equivalent
conditions holds: _20 5 10 15 20
1) one or more cycles @j(A) are negative; t
2) 3 D € D such thatDAD has all nonnegative entries; (a) Example 1
3) AM(L) >0ie,®(z)>0. .

Proof: Since structural balance and unbalance are mutu- 1
ally exclusive properties, the 3 conditions (and their ggui 2 —%
lence) follow straightforwardly from Lemma 1. ] —3

In particular, condition 3) implies that for the structuyal 0
unbalanced cadeer(L) = {0}. This, together with Lemma 1,
gives the conditions required to solve the bipartite corgsn )
problem.
Theorem 1 Consider a connected signed gragh{A). The “0 5 10 15 20
system(4) admits a bipartite consensus solution if and only if t
G(A) is structurally balanced. IfD € D is the gauge trans- (b) Example 2
formation that rendersD AD nonnegative, then the bipartite
solution of (4) is limy . z(t) = = (17 Dz(0)) D1. If instead 5 —
G(A) is structurally unbalanced therim; .., z(t) = 0 4 1
vz(0) € R™. *2

3 X3

Proof: The first part follows straightforwardly from con-
dition 3 of Lemma 1. The second from the observation that for 2
the gauge transformed system= Dz the problem is a usual
average consensus problem on an undirected, connectdd grap

——

whose solution is (7). That suchla exists is guaranteed by 0
condition 2 of Lemma 1. In the structurally unbalanced case,
the Laplacian potentiab(x) is positive definite, which implies _10 5 10 15 20
the last sentence. ] t
A comparison of the steady state values reached in the (c) Example 3

Examples 1-3 is shown in Fig. 2. The gauge transfprme}n . 2. Consensus time courses for the examples of Fig. 1.lewhi
D = diag(1, 1, —1) allows to pass from Example 1 (bipartiteExample 1 (structurally balanced(A)) the 3 agents converge to bipartite

consensus) to Example 3 (standard consensus). consensus, in Example 2 (structurally unbalanced) all 3isgeonverge to
0 (i.e., no consensus is achieved). Example 3 is the gaugefdramation

3) A complete ClaS.Siﬁca_tion in gauge ?qu_ivalent classesst Example 1 in which all 3 agents have moved to the same sidtheof
Assume the symmetric adjacency matrixis given. Assume bipartition: in this case the problem becomes a standardeswus problem

A has2m, 2(n — 1) < 2m < n? — n, nonzero entries (i.e., ©" @ nonnegative weighted graph.

G(A) hasm undirected edges) and that the entriesAofire

given only in modulus. As we vary the signs of theedges,

we haye2m possible signgq graphs, and herite distinct g pirected graphs

LaplaciansL. From Proposition 2, in the connected case each

gauge equivalence class contafis ! distinct elements, hence Given a digraphG(4), we follow the convention of the
the 2™ signed graphs split int@™~"*! equivalence classes,consensus literature and call (row) Laplaciandthe matrix
each characterized by a different spectrum. From Lemmall= C, — A. When A is digon sign-symmetric then we define
and Corollary 2, in only one of these classesis positive A, = (A + AT)/2 as symmetrized adjacency matrix of the
semidefinite, while in all the othez™"+! — 1 classesL is underlying undirected graph. Notice that in gendral= (L+
positive definite. LT)/2 = C, — A, is different from L, = C, — A, where



C, = (C,. +C.)/2. L, = L, if and only if G(A) is weight Corollary 3 A strongly connected, digon sign-symmetric

balanced. signed digraphG(A) is structurally unbalanced if and only
if any of the following holds:

Lemma 2 A strongly connected, digon sign-symmetric signedyy g(4,,) is structurally unbalanced;

digraphG(A) is structurally balanced if and only if any of the 2) G(A) has at least one negative directed cycle;

following equivalent conditions holds: 3) # D € D rendering DAD nonnegative:
1) G(Ay) is structurally balanced; 4) A\ (L) >0, i.e.,, —L is Hurwitz.
2) all directed cycles ofj(A) are positive;
3) 3D € D such thatDAD has all nonnegative entries; Proof: The first three statements follow straightforwardly
4) 0 is an eigenvalue of.. from Lemma 2. As for the fourthl. is diagonally dominant

) ] . (see Sect. lI-B1 for a detailed definition), hence from the
~ Proof: From the digon sign-symmetry;;a;; > 0, which  Gerggorin disk theorem the eigenvalues lofare located in
implies that for each entry off, sgn(au,i;) = sgn(ai;) i the union of the disks (10). TheRe(sp(L)) = 0, and, from
aij 7 0 and sgn(ay,;;) = sgn(a;:) i aj 7 0 (or both, | emma 2 Re(sp(L)) > 0 if and only if A is structurally
if aij, aj;i # 0). Digon sign-symmetry implies also that the,,palanced. -
signs of the semicycles are the signs of the cycle§(of,,).

From Proposition 1 this implies tha#(A) cannot have any It also follows from Lemma 2 that for strongly connected
negative directed cycle and viceversa, since other@isé,) digraphsrank(L) = n — 1 if and only if A is structurally
cannot be structurally balanced. The third implicatioridats balanced. In particular, any acyclic digraph is structyral
consequently from Lemma 1. As for the fourth condition, onkalanced, hence these cases can be treated analogously to
direction is obvious: if4 is structurally balanced thehD < D  their nonnegative weight counterparts (i.e., rooted tiadsit

such thatDAD has all nonnegative entries, and we are in tha bipartite consensus [40]).

usual consensus setting for nonnegative networks. To provéNhen G(A) is structurally balanced, denote a nonzero

the converse, assumig (L) = 0 is an eigenvalue of.. By left eigenvector of DLD normalized such that”1 = 1,
construction/;; = Z#i |ai;|, which means thah, (L) =0 whereD € D s.t. DAD is nonnegative. We can now state

is on the boundary of all the GerSgorin disks the analogous of Thm. 1 for directed graphs.
zeCst|z—ly < Z lai| = Lii . (10) Theorem 2 Consider a strongly connected, digon sign-
g symmetric signed digraply(A). The system(4) admits a

) o ) _bipartite consensus solution if and only ¢f(A) is struc-
Then from Lemma 6.2.3 of [23], sincé is irreducible, it turally balanced. In this caséim; ... z(t) = v Dz(0)D1

follows that the right eigenvector df, i.e., w # 0 for which  \ynere D ¢ D is the gauge transformation such thatAD

Lw = 2 i? such thatw;| = |;~”.7'| W,J:’F: L,...,n. We also  ponnegative. Wheg(A) is weight balancedim, .. z(t) =
havew® L* = 0 and hencev” (L + L")w = 0. SinceL, = 1 (17 Dz(0)) D1. If insteadG(A) is structurally unbalanced
(Cr = Ce)/2 + Ly, then thenlimy_... #(t) = 0 Y2(0) € R™.
1 e . _
in(L + LT w =w" (T) w+w” Lyw =0. (11) Proof: The first part follows from Lemma 2. The second
from the observation that once we gauge transform the system
For the first term of (11), denoting = |w;| Vi =1,...,n, via z = Dz we have a standard consensus problem on a
w! (Cr = C)w = tr(Cy — Cy)w? nonnegative directed graph. The final part instead follawsf
Corollary 3. ]
= Z Z |a;| — Z Z lajil | w?=0 Vw. From Lemma 2, the (nontrivial) bipartite consensus sotutio
i i i i exists if and only if all directed cycles (or semicycles)ifA)

. have positive sign, which is true if and onlyif (L) = 0. All

As for the second term of (11), it represents the Laplac'?ﬂese conditions are verifiable in polynomial time, meaning

potentl_aI.(C(_)mputed inu) of an undirected graph, hence 83hat verifying structural balance is an easy computational
in (3) it is in the form of a sum of squares. Assume now

by contradiction thatd has a negative semicycle. This impIie% r(;?rlﬁorlg ?)}/ez;\rllgg]ri:ﬁ:r?ijr%iﬁtiﬁgZi(;li?:zgsr:ﬁ.e Sb?pear[tiz'c?gnfor an
that alsoA,, has to have a negative undirected cycle. The proo%(

by contradiction now carries over from Lemma 1. | ) ) o
Example 4 Fig. 3 shows in (a) the bipartite consensus

Notice that if G(A) is weight balanced then, sincé is  achieved on a strongly connected structurally balanceksig
structurally balanced iff4,, is, the last statement follows a|30digraph G(A) of n = 1000 agents. As soon as the sign is
from the well-known inequality (see e.g. [23], p. 187) changed even on a single edge &fA), structural balance

insp(Ly,) < Re(sp(L)) < sp(Ly). is lost, and the agreement subspace becomes empty. From
minsp(L,) e(sp(L)) < maxsp(Ly) Theorem 2,lim; . z(t) = 0 Vx(0) € R™, although the
In fact, min sp(L,) = 0 iff A is structurally balanced. If not, convergence rate can be very slow, see Fig. 3(b).
minsp(L,) > 0, hencemin Re(sp(L)) > 0.



5 ‘ ‘ ‘ ‘ Example 5 For A; and A, of Examples 1 and 2, the inequali-
ties (10) are identical, and so are the Gersgorin disks. édew
0 is an eigenvalue of.; but not of ;.

Similar considerations hold for the Cassini ovals and for al
0 1 other known inclusion regions generalizing the GerSgdisks
(including Brualdi's cycles [9]).

All stability results for diagonally dominant matrices [25
[22], [30] are concerned with the strict/weak diagonallyrdo
inant case. Each time one of the inequalities in (10) iststric
0 200 400 600 800 1000 (meaning strict diagonal dominance on the corresponding

t row), 0 must be outside the corresponding Gersgorin disk.
When L is diagonally equipotent, however, none of the suffi-
cient conditions available in the literature apply.

The matrix —L is said diagonally stableif 3 a diagonal
matrix P = diag(p1,...,pn), pi > 0, S.t. —PL — LTP < 0.
The following Proposition will be useful later on.

(a) Structurally balanced(A)

Proposition 3 Consider a strongly connected, digon sign-
symmetric signed digraplti(A). AssumeG(A) is weight
balanced. The Laplacian matrix L is diagonally stable if
and only ifG(A) is structurally unbalanced.

Proof: In the weight balanced case, we have

0 200 400 600 800 1000 ~
t L,=1L,=(L+L"))/2. (13)

(b) Structurally unbalanced (A) From condition 1 of Corollary 3G(A) is structurally unbal-

Fa 3 Bivart ronal ted sigrgeh with anced iff G(A,) is, hence—L is Hurwitz iff —L, is. But
ig. 3. ipartite consensus on a strongly connected sig wi . . - . .

n = 1000. In (a) G(A) is structurally balanced, hence from Theorem 2 théhen.(lg) |mplle§ that—L.'S dlag(?nzi_lly Stable. with dlagonal
agents split into two groups (in red and in blue). In (b) iastea few edges matrix P = I. Since—L is Hurwitz iff G(A) is structurally

have changed sign, unbalancing the graph. Bipartite ceuseis now lost, unbalanced, the latter is also a necessary condition fgmw
and all agents converge (slowly) @ stability -

. . o . Remark 2 It is straightforward to check that whefi(A) is
1) A diagonal stability characterizationQuite remarkably, weight balanced bu? structurally unbalancid— ||$H(2 i)s a

the nonsingularity of L for G(A) structurally unbalanced : T T . 7%
does not emerge from any of the standard Iinear—algebr@%apunov function, sincd” = o™ (L + L™)x = " Luz <0

T 2 € R™. When insteadj(A) is structurally balanced” =
arguments based e.g. on Gersgorin disks theorem and/or ¢gh. . .
. ) o S - ' L,z < 0, as the agreement subspaee(D1) is nontrivial,
diagonal dominance. A matrix is saiddiagonally dominant

(by rows, omitted hereafter) if just like in the case of nonnegative weights, see [38].

2) Bipartite consensus under switching topologi&3on-

il = Ml i=1,... . (12) sider » topologies onV defined by the signed adjacency
J# matricesA, ..., A, such thaiG(4,) is digon sign-symmetric
. and strongly connectefp € {1,...,r}. Assume further

It is ?‘F.’“d strictly d|_agonally domma_mt when the _above Nhat the signs of the edges are never conflicting across the
equalities are all strict and weakly diagonally dominanewh ; digraphs:
] :

at least one (but not all) of the inequalities (12) is strict.
It is said diagonally equipotentf in (12) we have equality Vp,q € {1,...,r},
Vi=1,...,n. sen(dpij)sen(Aeii) 20 g e AT

As for the GerSgorin disk theorem, it affirms that the ) (14)
eigenvalues of, are located in the union of thedisks of (10). Under these assumptiotgA,), ..., G(A,) can be rendered
Diagonal dominance on the contrary guarantees (hgnnot simultaneously nonnegative by the same gauge transfamati
be in the interior of any of the Gergorin disks, see [2%,2. P € D- Thm ? of [38] holds for the family and assures
Hence, from (10)z = 0 is always on the boundary of all theConvergence to; (17D=(0)) D1 for any switching pattern
disks regardless of structural balance. In fact, the Geisg of the {A;,..., 4,}.
disks depend on the diagonal valuesioénd on the absolute
values of the off-diagonal entries of. Therefore they cannot Remark 3 Bipartite consensus under switching cannot be
discern properties depending on the signs of dhe relaxed to gauge equivalent digraphs not obeying (14).



Example 6 A bipartite consensus cannot be achieved for b) All equal and antisymmetric functions:
the family {A4;, A3} of Examples 1 and 3 under arbitrary hij(@) = h(z) Vi, j=1,....m,

switching, since the corresponding steady states areretifte and h(—z) = —h(x) (18)
Remark 4 If G(A,),p € {1,...,r} obeying (14) are strongly In the following for these special cases we shall choose
connected but structurally unbalanced, then the entirg-pobur i(-) in the class of (translated) positive, infinite sector
tope formed by the corresponding Laplaciang,,...,—L, nonlinearitiesS, defined as follows:
is Hurwitz. This follows from the diagonal stability of . . , .
—Ly,...,—L,, with common Lyapunov functio® = ||z, S= {h tR =R, (h(§) —n(E)) (€~ &) > 00 £#E,
see Proposition 3 and Remark 2. 3

B(0) =0, and | (h(r) = h(§"))dr — o0 as|¢ — €' — oo |

¢

IV. NONLINEAR CONSENSUS PROTOCOLS . . .
Examples of functions its are (translated) odd polynomials,

In this Section we investigate two families of nonlineaganh, etc. A subclass & in which ¢* = 0 is the following
Laplacian consensus protocols. The first family is a gener-

alization of the nonlinear schemes currently found in the S, = {h R =R, W(EE>00f £#£0, h(0) =0,

literature for graphs of nonnegative weights [3], [27], [26 ¢

[34], [39], and it is based on summing up at each node the and/ h(r)dr — o0 as|¢| — oo}.

contribution of “local” nonlinearities (i.e., each feedikaerm 0

of the summation relies only on the state of the node and 8fhen’ € S,, the Case lla is a special situation of what is

one of its neighbors). The second family of nonlinear corknown in the literature as Persidskii systems [30].

sensus protocols is based instead on the notion of monoton@) Laplacian feedback schemeSor the system of integra-

dynamical systems. The formal analogy between the graphitars (2), various types of nonlinear additive Laplaciaroiesck

tests for structural balance and monotonicity is exploited schemes have been proposed in the literature [3], [27],, [26]

design Laplacian feedback laws in which each term of t&4], [39] for the case of nonnegative weights in the adjagen

feedback may contain the states of all neighbors of a nodematrix A. We shall consider two of them (the nomenclature
given here follows [45]), extending them to anly

A. Nonlinear distributed additive Laplacian feedback sope ~ * @bsolute Laplacian flow

In the following we introduce first the structural propestie T =— Z laij| (hij(x:) — sgn(a:j)hij(x;)); (19)
of the class of systems used for the feedback (Section 1V-Al) jeadj(i)
and then (Section IV-A2) devise their Laplacian countetpar

S i " X « relative Laplacian flow
1) Distributed nonlinear additive system<Consider the

system di=— Y lailhy (e —senag)a;).  (20)
= f(x), x € R", (15) je€adj(3)
wheref(z) = [fi(z) ... fn(.%')]T is Lipschitz continuous, In Case lla the absolute Laplacian flow (19) can be written as

f(0) = 0. The following special forms for (15) are compatible i = —Lh(z), (21)

with consensus-related problems. ) o
(I) Distributed vector fields:f(x) is distributed over the WHere: as beforeL = ¢ — A. For the sake of simplicity
raph G i.e.. onlv the first neiahbors of each agenf’® shall treat only the weight balanced case, although the
?natp'zer ir’] (15) y 9 9 arguments can be extended to the casé(of) with a rooted
' tree (following the lines of e.g. [34]).

fi(z) = fi(z;, j € adj(i)). (16) _ . _
o » o ] Theorem 3 Consider a strongly connected, digon sign-
(1) Distributed additive vector fieldsn (16) the contribu- symmetric, weight balanced, signed digrap). The system

tion of each neighbor is additive (21) with h € S admits a bipartite consensus if and only if
_ G(A) is structurally balanced. In this casBm; . x(t) =
i(z) = ijhiz (%), 17 - -

fila) jeéj:(i) aishis (z;) (A7) 1 (17Dz(0)) D1, whereD € D is the gauge transformation

such thatD AD nonnegative.

with a;; € R the weight of each contribution. Two _ o _

special cases of (17) are listed in the following. Proof: From our previous analysis; L is Hurwitz stable

a) All equal functions: when G(A) is structurally unbalanced, and crltlcally stable
when G(A) structurally balanced. Fok € S, depending on

hij(-) =h(-) Yi,j=1,...,n, G(A), the equilibrium point of (21) is

o x* such thath(z*) = [h(z])...h(z] )}T = aD1 for

some nonzera: whenG(A) is structurally balanced®
f(z)=A[h(z1) ... h(a;n)]T = Ah(x). D s.t. DAD nonnegative);
o z* =0 whenG(A) structurally unbalanced.

meaning that we can write compactly (15) as



In the structurally balanced case, wheneverc S, the in the z coordinates (20) becomes
diagonal form of the nonlinearity implies that it must be

|z¢| = |=%], and in particular* = BD1 for some 3 # 0. o= o } Z |aijlh(oizi —sgn(aij)ojz;)  (24)
Applying the change of coordinates = Dz we obtain geadj(®)
i = —DLh(Dz) with = —0i Y lailh(oi(zi — oisgn(ai;)o;z;)) (25)
j€adj(4)
sgn(h(o;z;)) = sgn(o;h(z;)) = oisgn(h(z;)). (22)
= - Z |aij|h(2i — 2;), (26)
Therefore, from Lemma 2G(A) structurally balanced means jeadj(é)

that 3D € D such that all off-diagonal elements;a;;o;
are nonnegative in the-coordinates. Consider the following
integral Lyapunov function:

becauser;sgn(a;j)o; > 0 by construction and, when; =
—1, (18) holds. This is now a standard consensus problem
on a nonnegative weight balanced digraph. A possible proof,

i . valid in the case in whick is non-symmetric is provided in
Viz) = Z /ﬁ (h(§) — h(x7)) dg hes [34], based on a min-max type of Lyapunov function. Another
L (23) approach to the same problem is discussed in [27]. Cleady in
= Z/ (h(§) — aoy;) dE. structurally balanced case any design valid for a nonnegati
i JBoi weight balanced system (26), is valid also for the original

signed graph.

When insteadj(A) is not structurally balanced, then from
Lemma 2 not all negative weights 6f A) can be simultane-
ously eliminated by anyD € D. Assuming by contradiction

From (22) ando? = 1, the sign of each term in (23) is
invariant to gauge transformations. By constructiBiiz) > 0,
V(z*) =0 andV (x) radially unbounded. Its derivative is

Vi(z) = Z (h(z;) — h(z))) i that a nontrivial bipartite consensus exists, then from mefi
Z tion 2 it must correspond to a nonzero equilibriuth such

1 for someD € D and somex > 0. It is enough to show that
= —Eh(x)TLh(x), no such equilibrium point* can exist for (20) whenv > 0.

In fact, from 2* = aD1 we have that applying the gauge
sinceh(z*) = aD1 and D1 is a left eigenvector of. when transformationz = Dz, in the z-coordinates (20) becomes,
G(A) is weight balanced. Only the symmetric part/omatters analogously to (24)-(25),

in a quadratic form, therefore

' 1 Zi = — Z |aw|h(21 - sgn(aiaijaj)zj), (27)
V(z) = —§h(x)T(L + LY h(z) = h(z)" Lyh(z) <0, j€adj(i)

. where we have applied (18). By construction, in the

since L, = L, = (L + L")/2 is positive semidefinite, coordinates:* = ol, i, z; > 0 Vi = 1,...,n. From

with ker(L,) = span(D1). WhenG(A) is weight balanced, | emma 2, in (27) not alb;a;;0; can be nonnegative, unlike
integrating the conservation law1” DLh(z) = 1"Di = 0 in (26). Hence at* in (27) we must necessarily havg —
implies sgn(oia:;05)z) = 27 + 27 = 2a > 0 for at least a paii, j),
1" Dx(t) = 17 D2(0) Vt > 0, while, whenevergn(o;a;jo;) > 0, zf — sgn(oia;j0;)z) =
zf —z; = 0. Sinceh € S,, h(§) > 0 when{ > 0, hence at
least one of the;; must be strictly negative and' cannot be

an equilibrium point. ]

i.e., limy_o z(t) = 2 (17 Dx(0)) D1. When instead;j(A) is
structurally unbalanced, thert = 0, h(z*) =0, i.e.,h € S,.
From Proposition 3;- L is diagonally stable witli as diagonal
matrix. It follows thatV(z) < 0, meaning that* = 0 is

globally asymptotically stable, i.e., only trivial conses is g Nonlinear Laplacian flow with monotone laws

achieved. " In this final Section of the paper we first show that structural

Also for the relative Laplacian (20) a similar result hold$alance and monotonicity of a dynamical system have idaintic
whenever the feedback functiors; are all equal and anti- graphical tests, then present a distributed nonlineartiaekl
symmetric (i.e., in Case IIb). method to obtain bipartite consensus starting from a marto

system.

Theorem 4 Consider a strongly connected, digon sign- 1) Monotone systemsin R™, consider the orthant aR"™
symmetric, weight balanced, signed digraphi). The system corresponding tar: K, = {z € R" such thatDz > 0,D €
(20) with h,;; obeying(18) and h € S, admits a bipartite P}, and denote by)’(z1) the solution of (15) at time in
consensus if and only §(A) is structurally balanced. In this correspondence of the initial conditian. The partial order
caselim;_.o z(t) = L (17 Dx(0)) D1, where D € D is the generated by is normally indicated by the symbol<,”:

gauge transformation such th@AD nonnegative. T1 <o T2 <= x2 — 11 € K,. Strict ordering is denoted
r1 <, xo and corresponds te; <, x2, r1 # x2. When

Proof: AssumeG(A) structurally balanced. ID € D is inequality must hold for all coordinates @f, x5 then we use
the gauge transformation such tHat D is nonnegative, then the notation «,".
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Definition 3 The systen{15) is said monotonewith respect nonlinear Laplacian scheme:
to the partial ordero if for all initial conditions z1, z2 such

that 71 <, z» one has¢!(z) <, ¢'(xz) Vt > 0. It is i =~ Z (13 (@)li — Fij(2)z;)

said strongly monotonevith respect to the partial ordes if jeadj(i) (28)
for all initial conditions x;, 22 such thatz; <, x2 one has =— Z |Fij(z)| (x; — sgn(F;(x))x;),

' (11) <o @' (o) VE > 0. jeadj(é)

DenoteF'(z) = a’(;—(;) the Jacobian of (15) at, of elements for which the following Theorem holds.

F;;(x). AssumeF (z) is sign constantF;;(x1)F;;(z2) = 0
YV, 22 € R™, Vi, j € {1,...,n}, and sign-symmetric
F,j(x)Fj;(x) > 0 Vo € R"™. See [42], [43] for more details
on monotone systems.

DenoteG(F'(z)) the graph of whichF(x) is the adjacency
matrix atz € R". We say thalG(F(x)) is globally strongly Proof: Under the gauge transformation = Dz, (28)
connectedf G(F(x)) strongly connectet/ 2 € R™. This iS pecomes
equivalent to have”(z) irreducibleVz € R". Givene > 0,

Theorem 5 Any distributed strongly monotone systd6)
whose Jacobian is globally-strongly connected admits a
Laplacian flow(28) which is globally converging to a bipartite
consensus.

we say further thag(F(z)) is globally e-strongly connected == Y (IF;()z—0i0iFy(2)z) . (29)
if G(F(x)) is globally strongly connected, whefg ) is such j€adj(i)
that _ Strong monotonicity off () implies thatF;;(z) is sign con-
Bia) = Fij(x) if [Fy(z)] > € stant¥z € R and that3 D € D such thato;o; Fj;(z) > 0.
“ 0 it |F(z)] <e For this D, (29) is therefore
In the spirit of [37] (but in a much stronger sense), this == Y |F(2)(z—2), (30)
property guarantees that the graph remains strongly coedec jeadj(i)
even when too small edge weights (below the threshplite ;o 5 nonlinear Laplacian scheme on a (state-dependent)
disregarded. “nonnegative weighted graph. The assumption of glabal
Let us now evaluate the effect of a gauge transformati@fyong connectivity guarantees convergeriaee R™. -

D = diag(o) (i.e., of the change of partial order) on a N o

strongly monotone system. As before, consider the change off Ne conditions of Thm 5 are sufficient but not necessary.
coordinates: = Dz. SinceF;;(x) is sign constant z € R”, For example one can think of relaxing the strong connegtivit
it must be that alsd;(z) is sign constant/ z € R™ and in in several ways, see e.g. [1], [11], [33], [35].

additionsgn(F;; (z))sgn(F;;(z)) > 0Vx € R*. FromD~! =

D, the new Jacobian i&p(z) = DF(z)D. Example 7 Consider the system in Fig. 4(a) and the following
vector field:
Lemma 3 Consider a systenf15) whose Jacobian is sign fel2T2eH33 + a1ymy
constant and sign-symmetric. Thétb) is strongly monotone fla) = G211
in R™ if and only if any of the following conditions holds: (3272
1) F(x) is irreducible Vo € R™ and 3D € D such that 4433
DF(z)D has all nonnegative entriegz € R™; where the nonlinear (and “nonlocal”) term is depicted as a

2) G(F(z)) is globally strongly connected and structurallysquare box in Fig. 4(a). The Jacobian fifr) is

balancedv z € R™; 0 Ouollyqe™® Ous[L_yqe™ a
3) G(F(z)) is globally strongly connected and all directed 2 =23 31li=23 )

cycles ofG(F(z)) are positive¥ z € R™. F(x) = aél aO 8 8
32
Proof: The first condition is the so-called Kamke lemma 0 0 @43 0

[43] TOgether with IrredUCIblllty OfF(I) Vr € R” (i.e., F(ZZ?) is Sign constanty z € R4_ When |a”| > €, C|ear|y
global strong connectivity of (F(x))) it corresponds to strong g(F(z)) is alsoe-strongly connected z € R*, hence when
monotonicity inR™. If F(x) is the adjacency matrix of a ¢(;) is strongly monotone, i.e., wheBD € D such that
signed digraph at, theng (F(x)) is digon sign-symmetricand p ;) D has all nonnegative entries, then Thm. 5 applies. In

strongly connected by constructign: € R™. This implies that thjs case the nonlinear Laplacian feedback one obtains
Lemma 2 hold$/ = € R". The equivalence between condition

1 and conditions 2 and 3 follows consequently. " g1 = =0 [T "™ D Il (21— sgn(pi)as)
i=2,3 i=2,3
2) Nonlinear Laplacian flow with monotone lawSonsider )
a strongly monotone distributed system of the form (16)c8in ( ( )
F;;(z) # 0 implies j € adj(¢), also the Jacobian linearization .
at eachx € R”™ is distributed. It is also sign constant by i3 = —las2|(zs — sgn(as2)w2)
( ( )

)
j?Q = —|CL21| To — SgN CL21)SC1
)
assumption. Hencé&'(x) can be used to obtain the following Ty = —l|ags|(zg —sgn(ags)xs
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globally converges to a bipartite consensus. For examptd,time-delays or when the strong connectivity assumpton i
assuming?, a4, age > 0 anduq, usa, a1, ass < 0, G(F(x)) relaxed. Less straightforward extensions include dealiith

is structurally balanced witlh = diag(1, —1, —1, 1). Simu- the discrete-time case and with higher order integrators.
lations with (solid curves) and without (dotted) the nogakn From a system theory perspective, the case when bipartite
term are shown in Fig. 4(b). Clearly the presence of theonsensus cannot be achieved is equally interesting: in fac
nonlinearity speeds up the convergence rate. Notice theat the corresponding Laplacians (linear or nonlinear) indace
lack of weight balance implies the valle*| of the bipartite globally asymptotically stable closed loop system. In thedr
consensus can change. case, for example, this form of global convergence is not
classifiable in terms of standard linear-algebraic crtelike
diagonal dominance or location of the Gersgorin disks.

APPENDIX
A. Proof of Proposition 1

One implication is obvious, since directed cycles are a
subset of semicycles. To prove the opposite implication, as
sume all directed cycles are positive and, by contradiction
that 3 a negative semicycl€ c £ which is not a directed
cycle. Denoteke the length ofC. C can be broken into the
concatenation oft (k < k¢) diLgctgj (gmple) Baths with
alternating directions, call ther®®;, Po, Ps,..., P C €.
Without loss of generality assume

sgn(?l) <0,

1 sgn(P2) =sgn(Ps) =...=sgn(Py) > 0.
X
2
X, Denote V7_>’1’V$2""’V‘73k the node sets of
™ - <
o X, Pi,Po,...,Pr. If vll,vl € Vg, are the root and

terminal nodes ofPl, then by the strong connectivity
assumptlorE a path731 connectmgvl to 0 vy, and similarly
for 732,733 Pk CaII 732,734,.. Pk C & the paths
completing 732, 7>4, .. Pk to dlrected cycles. Assume for
the moment that

4 6 8 10
t Vgiﬂvﬁj:Q)Vi,j:l,...,k. (32)
(b) Since by assumption all directed cycles are positive,
Fig. 4. Connectivity graph of Example 7 and correspondimgeticourses. = [ .
The dotted curves correspond @lo= 0. sgn(P;) =sgn(P;) Vi=24... k. (33)

By concatenatmgPl with 732, 7>3,. Pk, from (33) the
directed cycIeC = UZ 1 P, must have the same sign as
V. CONCLUSION AND OUTLOOK C, which is a contradiction since all directed cycles must be

This paper extends the notion of consensus and its dPOS't'Ve
tributed feedback designs to networks containing intévast When (32) is not valid, thei is a union of dwecte_d} cycles.
which are competitive in nature, modeled as negative wsigttSSUmMe for example that two of the directed paths and
on the communication edges. In this broader scenario, the» ¢ < J, share a common subpat; = = GiaUGU i,
conditions under which a consensus is achievable are foymaP ; = QJ; U QU Qj». Then the cycleC is not simple (i.e,
analogous to those that characterize monotonicity of aegyst some of its nodes have connectivity more than 2) and it splits
The consensus reached is bipartite, i.e., the agents agredéto the two (simple) cycles:
a common (absolute) value but polarize themselves in two — — — — —
opposite fronts. Ci=P1U...U P:l Y Qll U Qu _
Since a bipartite consensus problem on a structurally bal- UQjaUPjt1U...UPy,
ancgd signed network is equivalent, up to a gauge transfqr— —>2 _ @’M U 7—5”1 U.. U 7_32;1 U aj‘l U @
mation, to a standard consensus problem on a nonnegative ’ ’
network, a number of properties of the latter are valid a0 f From (31) and (33)$gn($i) — Sgn(ﬁj) <~ 0 and
the former. These include several aspects not discusséxin t _ . _ R
paper, like finite-time semistability [26], consensus ieggnce sgn(Py) =sgn(Qe1 U Qpo)sgn(Q), L =1,j.



We have then thaﬁgn(@)M U QZQ) = sgn(aj,l U é)j_g)
is +1 if sgn(Q) = +1, —1 otherwise. In the first case, for

(23]

— — 24
example, it must ngn(Qg_,%) = sgn(Qm)_,)é =1,5. Ifin 124]
addition sgn(0i1) = sgn(Qj,1) thensgn(C 1) = ~1 and [25]
sgn(Cg) = +1. If insteadsgn(Q“) = —sgn(Q;1) then [26]

sgn(C ) = +1 and sgn(C ) = —1. The other case (e,
sgn(@) —1) can be treated analogously. Each subp@th [27]
(or even jUSt single node) shared by two or more of the paths
El, .. Pk_gwes rise to a splitting of? into directed cycles:

C = Clu CoU... U Cz for some? > 1. Sincesgn(C)
sgn(C) = —1 still holds andsgn(C) = [[,sgn(C), then
necessarily at least one of tk@i must have negative sign

_ [29]

and we are still in contradiction. [30]
[31]
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