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Abstract—In a consensus protocol an agreement among agents
is achieved thanks to the collaborative efforts of all agents,
expresses by a communication graph with nonnegative weights.
The question we ask in this paper is the following: is it possible
to achieve a form of agreement also in presence of antagonistic
interactions, modeled as negative weights on the communication
graph? The answer to this question is affirmative: on signed
networks all agents can converge to a consensus value which
is the same for all agents except for the sign. Necessary and
sufficient conditions are obtained to describe the cases when this
is possible. These conditions have strong analogies with the theory
of monotone systems. Linear and nonlinear Laplacian feedback
designs are proposed.

Index terms– Consensus protocols; Signed graphs; Structural
balance; Monotone Systems.

I. I NTRODUCTION

The problem of reaching a consensus among a group of
agents using only local actions has a long history [15], [13]
and in recent years it has received a remarkable attention
from different perspectives, thanks to the large number of
potential applications, ranging from Engineering and Com-
puter Science (distributed computation [6], sensory networks,
formation control of mobile robots [32]) to Biology, Ecology
and Social Sciences (self-driven motion of biological particles
[46], collective behavior of flocks and herds [41], dynamics
of opinion forming [21]). See [40], [36] for a more organic
overview of the field.

A common trait of basically all the current research on
the consensus problem is the focus oncooperative systems.
Consensus in these systems is achieved through collaboration:
the network of interactions representing the communications
between agents is characterized by edge weights that are
nonnegative. In several real world scenarios, however, it is
more plausible to assume that some agents collaborate, while
other compete. Networks with antagonistic interactions are
common for example in social network theory [47], [16]. They
are represented as signed graphs, i.e., graphs in which the
edges can assume also negative weights. A positive/negative
weight can be associated to a friend/foe (allied/adversary)
relationship between the two agents linked by the edge, or,
depending on the context, to a trust/distrust, like/dislike, etc.
interaction, see [47], [16], [18].

Our aim in this paper is to introduce a suitable notion of
consensus in presence of antagonistic links and to investigate
how and to what extent agents on signed graphs can achieve

consensus through distributed protocols. In particular, we will
see that under suitable conditions the agents can achieve a
form of “agreed upon dissensus” (hereafter calledbipartite
consensus), in which all agents converge to a value which
is the same for all in modulus but not in sign. This polar-
ization of the community into two factions characterized by
opposite “opinions” is common in many antagonistic systems
describing bimodal coalitions, like two-party political systems,
duopolistic markets, rival business cartels, competing interna-
tional alliances (think of the Iron curtain era), etc. See [47],
[16] for more details on applications in social networks theory.
Potential engineering applications are also easily conceivable
(even beyond warfare scenarios). Some of these applications
(such as trust networks) are mentioned in [17], [29], where
attempts to deal with signed graphs are made (see also
[4]). We will show that if we use distributed Laplacian-like
schemes as in the current literature on consensus problems,
then bipartite consensus can be achieved when and only when
the signed graph of the network isstructurally balanced.
In social network theory, structural balance is a well-known
property [19], [12], and corresponds to the possibility of
exactly bipartitioning the signed graph into two adversary
subcommunities such that all edges within each subcommunity
have positive weights while all edges joining agents of differ-
ent communities have negative weights. Graphs of nonnegative
weights are a special case of structural balance, in which one
of the two subcommunities is empty.

We will show that Laplacian schemes are convergent also
on signed graphs that are not structurally balanced (provided
the Laplacian is defined properly). However, in this case the
consensus value is always trivial (the origin), regardlessof
the initial condition and of the antagonistic content of the
network. In fact, the Laplacian one obtains in the structurally
unbalanced case is globally asymptotically stable (ratherthan
critically stable), meaning that the (bipartite for us) agreement
subspace is empty. It is worth observing that the asymptotic
stability of the family of Laplacians corresponding to struc-
turally unbalanced graphs cannot be explained by standard
stability arguments, such as the analysis of the Geršgorindisks
or diagonal dominance [30], [22].

An equivalent characterization of structurally balance signed
graphs is that all cycles (or semicycles for directed graphs) of
the graph are positive, i.e., have an even number of negative
edges. Quite remarkably, this condition is formally analogous
to the so-called Kamke condition for Jacobians of monotone



2

systems [43]. The analogy can be made rigorous by observing
that all structurally balanced networks are equivalent, under
a suitable change of orthant order, to nonnegative networks.
Adopting the terminology used in Statistical Physics for this
type of equivalence transformations (well-known in the Ising
spin glass literature [7], see [28], [2], [18] for more details), we
shall call the changes of orthant ordergauge transformations.
Gauge equivalence (or switching equivalence in the theory of
signed graphs [48], or signature similarity as it is called in
the field of signed pattern matrices [10]) is a finite-cardinality
subclass of the similarity equivalence of matrices, which leaves
the modulus of the entries of a matrix unchanged and only
modifies its sign pattern. Given a structurally balanced network
with its set of edge weights, there exists a family of structurally
balanced signed networks characterized by the same weights
(but with different signs). All these “realizations” of thesigned
networks are related by gauge transformations and all are
isospectral, meaning that the corresponding Laplacians enjoy
the same convergence properties, although the bipartition
characterizing the consensus vector differs from realization
to realization. In particular, in each such family of gauge
equivalent structurally balanced networks there is alwaysone
particular network with all nonnegative weights. It is therefore
possible to adapt both linear [38] and nonlinear [39], [27],
[26], [34], [45] Laplacian schemes used for “standard” con-
sensus to the case of structurally balanced networks.

That Laplacian feedback schemes for consensus correspond
to contractions in a proper metric space, and that these con-
tractions are a special case of monotone systems was observed
already by L. Moreau [37]. Expanding on this observation,
here we show that any monotone system can be turned into a
(nonlinear) Laplacian scheme achieving bipartite consensus.

The rest of the paper is organized as follows: basic defini-
tions and properties of signed graphs are recalled in Section II;
linear consensus protocols for undirected and directed signed
graphs are discussed in Section III, while several nonlinear
consensus protocols are presented in Section IV.

II. SIGNED GRAPHS

A (weighted) signed graphG is a triple G = {V , E , A}
whereV = {v1, . . . , vn} is a set of nodes,E ⊆ V × V is
a set of edges, andA ∈ Rn×n is the matrix of the signed
weights ofG: aij 6= 0⇔ (vj , vi) ∈ E . The adjacency matrixA
alone completely specifies a signed graph. For the signed graph
corresponding toA we shall use the notationG(A). We will
not consider graphs with self-loops:aii = 0 ∀ i = 1, . . . , n.
When the graph is undirected then the order of the nodes in
E is irrelevant and the matrixA is symmetric. For a directed
graph (digraph) we shall use the convention that on the edge
(vj , vi) ∈ E , vj represents the tail andvi the head of the
arrow. In a digraph a pair of edges sharing the same nodes
(vi, vj), (vj , vi) ∈ E is called a digon. In the digraphs of
this paper we will always assume thataijaji > 0, meaning
that the edge pairs of all digons cannot have opposite signs.
Under this assumption (hereafter calleddigon sign-symmetry),
a digraphG “admits” an undirected graphG(Au) defined by
Au = (A + AT )/2.

A (directed) pathP of G(A) is a concatenation of (directed)
edges ofE :

P = {(vi1 , vi2), (vi2 , vi3), . . . , (vip−1
, vip

)} ⊂ E

in which all nodesvi1 , . . . , vip
are distinct. The length of

P is p − 1. A (directed) cycle C of G(A) is a (directed)
path beginning and ending with the same nodevip

= vi1 .
For digraphs, a semicycle is a cycle ofG(Au). A cycle
(semicycle) is positive if it contains an even number of
negative edge weights:ai1,i2 . . . aip,i1 > 0. It is negative if
ai1,i2 . . . aip,i1 < 0. Irreducibility of A corresponds toG(A)
which is strongly connected, i.e.,∀ vi, vj ∈ V ∃ P ⊂ E
starting atvi and ending atvj (strong connectivity collapses
into connectivity whenA is symmetric).

The following is mentioned in e.g. [44] but not proved. We
therefore provide a self-contained proof in the Appendix.

Proposition 1 Consider a digraphG(A) which is strongly
connected and digon sign-symmetric.G(A) has no negative
semicycle if and only ifG(A) has no negative directed cycle.

Given the signed digraphG(A), denoteCr the row connec-
tivity matrix of A, i.e., the diagonal matrix having diagonal
elementscr,ii =

∑

j∈adj(i) |aij |, whereadj(i) are the nodes
adjacent tovi in E (with in-degree direction as in [36]:
vj is the tail of the arrow whose head isvi). The column
connectivity matrixCc is defined analogously. WhenA = AT

thenCr = Cc = C. More generally, a signed digraph is said
weight balancedif Cr = Cc. In the consensus literature [36],
[40], [38], this property is normally referred to as “balanced”
tout-court (see [14], though). For matrices of nonnegative
weights, it can also be expressed as

A1 = AT
1, (1)

where1 =
[

1 . . . 1
]T
∈ Rn.

III. L INEAR CONSENSUS PROTOCOLS FOR SIGNED GRAPHS

Consider the system of integrators

ẋ = u, x, u ∈ Rn. (2)

In the consensus problem, the task is to devise distributed
feedback lawsui = ui(xi, xj , j ∈ adj(i)), i = 1, . . . , n, i.e.,
feedback laws based on the states of the node itself and of its
first neighbors on the connectivity graphG(A) of the network.
Unlike in standard consensus problems, we do not assume that
the weights ofA are nonnegative.

A. Undirected graphs

Consider a given signed (symmetric) adjacency matrixA.
The definition of a LaplacianL in the case of signedA is
L = C − A where in the connectivity matrixC the weights
are in absolute value, see [24], [31]1. The elements ofL are

1This is not the only definition of Laplacian of a signed graph available
in the literature. In [8], for example, the Laplacian is defined without the
absolute values in the diagonal terms. In this formulation0 is always an
eigenvalue, but negative eigenvalues may appear, rendering the Laplacian
useless for convergence purposes.
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therefore:

ℓik =

{

∑

j∈adj(i) |aij | k = i

−aik k 6= i.

The corresponding Laplacian potential is

Φ(x) = xT Lx =
∑

(vj ,vi)∈E

(

|aij |x
2
i + |aij |x

2
j − 2aijxixj

)

=
∑

(vj ,vi)∈E

|aij | (xi − sgn(aij)xj)
2
,

(3)

where sgn(·) is the sign function. The effect of a negative
weight aij is to replace the usual(xi − xj)

2 term in (3) with
(xi + xj)

2, which does not alter the sum of squares structure
of Φ(x).

Just like for the nonnegative weights case, one can useL
for the feedback laws in (2) and study the gradient system

ẋ = −Lx, (4)

which in components reads:

ẋi = −
∑

j∈adj(i)

|aij |(xi − sgn(aij)xj).

Let λ1(L) 6 . . . 6 λn(L) be the eigenvalues ofL. From
(3) it is evident thatΦ(x) > 0 and therefore thatλ1(L) > 0.
Unlike for the case of nonnegativeA, here−L is however
no longer a Metzler matrix2 in general and its row/column
sum need not be zero. The major difference with the standard
theory of nonnegative adjacency matrices is thatL can be
positive definite.

Example 1 Consider the signed graph of Fig. 1(a) of adja-
cency matrix

A1 =





0 1 −2
1 0 −4
−2 −4 0



 ,

the corresponding LaplacianL1 = diag(3, 5, 6) − A1 has
eigenvaluessp(L1) = {0, 4.35, 9.65}, i.e. L1 positive
semidefinite.

Example 2 The signed graph of Fig. 1(b) instead has adja-
cency matrix

A2 =





0 1 −2
1 0 4
−2 4 0



 .

The LaplacianL2 = diag(3, 5, 6) − A2 has eigenvalues
sp(L2) = {1.2, 2.61, 10.18}, meaning thatL2 positive defi-
nite.

2Metzler matrices, also called negated Z-matrices, are matrices with non-
negative off-diagonal entries, see [5].

x3

x1 x21

−2 −4

(a) Example 1

x3

x1 x21

−2 4

(b) Example 2

x1 x21

2 4

x3

(c) Example 3

Fig. 1. Signed undirected connectivity graphs mentioned inSection III-A.
Examples 1 and 3 are structurally balanced and differ only bythe gauge
transformationD = diag(1, 1, −1). Example 2 is structurally unbalanced.

1) Effect of a gauge transformation:A partial orthant order
in Rn is a vectorσ =

[

σ1 . . . σn

]

, σi ∈ {±1}. A gauge
transformationis a change of orthant order inRn performed
by a matrixD = diag(σ). DenoteD = {D = diag(σ), σ =
[

σ1 . . . σn

]

, σi ∈ {±1}} the set of all gauge transformations in
Rn. Given the system (4), consider the change of coordinates
corresponding to the gauge transformationD:

z = Dx, D ∈ D. (5)

SinceD−1 = D, x = Dz, and from (4)

ż = −LDz, (6)

whereLD = DLD = C −DAD is the new Laplacian of the
gauge transformed system. In components,

ℓD,ik =

{

∑

j∈adj(i) |aij | k = i

−σiσkaik k 6= i.

Proposition 2 L and LD are isospectral:sp(L) = sp(LD).
The class of gauge equivalent LaplaciansL(L) =
{DLD, D ∈ D} contains at most2n−1 distinct matrices.

Proof: D ∈ D is such that| detD| = 1, D−1 = D =
DT . Hence the transformationL → DLD is a similarity
transformation and as such it preserves the spectrum. The set
D contains2n diagonal matricesD and each corresponding
gauge transformation changes the signs of the rows/columns
corresponding to the -1 entries ofD. When L connected,
all LD in L(L) are distinct, up to a global symmetry:
DLD = (−D)L(−D).

It follows from Proposition 2 that alsosp(A) = sp(DAD).
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Example 3 Applying the gauge transformationD =
diag(1, 1, −1) to A1 of Example 1 one gets

A3 = DA1D =





0 1 2
1 0 4
2 4 0



 ,

i.e., a nonnegative adjacency matrix isospectral withA1, see
Fig. 1(c). The correspondingL3 = diag(3, 5, 6) − A3 can
therefore be used in (6) to solve a standard average consensus
problem. In this caseker(L) = span(1) is the agreement
subspace and, following [38], the solution of the average
consensus problem is

z∗ = lim
t→∞

z(t) =
1

n
(1T z(0))1. (7)

2) Structural balance and bipartite consensus:Since Ex-
ample 3 is a standard consensus problem and sincesp(L1) =
sp(L3), it is intuitively clear that also for Example 1 a
consensus problem can be formulated and that its solution
x∗ must be related toz∗ of Example 3. In particular, from
(5), x∗i = z∗i i = 1, 2, x∗3 = −z∗3 , i.e., |x| = |z|, meaning
that the components ofx converge to values which agree
in modulus but differ in sign. This asymptotic behavior is a
form of “agreed dissensus”, which we shall denotebipartite
consensus. More formally, we have:

Definition 1 The system(4) admits a bipartite consensus
solution if limt→∞ |xi(t)| = α > 0 ∀ i = 1, . . . , n.

It is not too difficult to verify that no gauge transformation
D ∈ D exist able to renderDA2D nonnegative. In order
to understand the difference between Example 1 (and 3) and
Example 2, it is useful to introduce the notion of structurally
balance signed network and its equivalence characterizations.

Definition 2 A signed graphG(A) is said structurally bal-
ancedif it admits a bipartition of the nodesV1, V2, V1∪V2 =
V , V1 ∩V2 = 0 such thataij > 0 ∀ vi, vj ∈ Vq (q ∈ {1, 2}),
aij 6 0 ∀ vi ∈ Vq, vj ∈ Vr, q 6= r (q, r ∈ {1, 2}). It is said
structurally unbalancedotherwise.

Lemma 1 A connected signed graphG(A) is structurally bal-
anced if and only if any of the following equivalent conditions
holds:

1) all cycles ofG(A) are positive;
2) ∃ D ∈ D such thatDAD has all nonnegative entries;
3) 0 is an eigenvalue ofL.

Proof:

1) This is a classical result from [12]3;
2) From Definition 2,V can be partitioned such that all and

only the negative edges have a node inV1 and the other
in V2. It is enough to chooseD = diag(σ) with σ such
that σi = +1 whenvi ∈ V1 andσi = −1 whenvi ∈ V2

to attain the sought gauge transformed adjacency matrix
DAD with all nonnegative entries.

3This condition is often taken as definition of structural balance [12], [16].
For our purposes, the bipartition of Definition 2 is more evocative as definition.

3) If A is structurally balanced then∃ D ∈ D such that
DAD is nonnegative. Therefore the corresponding Lapla-
cianC−DAD has0 as eigenvalue, and by Proposition 2
so does the LaplacianL = C−A. To prove the converse
assumeλ1(L) = 0. Since A is symmetric,∃w ∈ Rn,
w 6= 0, such thatLw = wT L = 0, i.e., w is a left and
right eigenvector ofL. By contradiction, assumeA has at
least a negative cycleC = {(vi1 , vi2), . . . , (vip

, vi1)} ⊆ E
such thatai1i2ai2i3 . . . aipi1 < 0. From (3), the Laplacian
potentialΦ(x) can be split accordingly:

Φ(x) =
∑

(vi,vj)∈C

|aij |(xi − sgn(aij)xj)
2

+
∑

(vi,vj)∈E\C

|aij |(xi − sgn(aij)xj)
2.

(8)

Let us focus on the first summation. Without loss of
generality, assume only one of theaij edges ofC has
negative weight (sinceC has an odd number of negative
edges and each node intersectsC in at most two edges,
it is always possible to find aD ∈ D such that only
one negative edge is left inC; all our considerations are
invariant to gauge transformations). Assume for example
that ai1i2 > 0, . . . , aip−1ip

> 0 and aipi1 < 0. From
wT Lw = 0, owing to the sum of square form ofΦ(x),
each term in (8) must be0 in correspondence ofw. In
particular, expanding the first summation in (8)

ai1i2(wi1 − wi2 )
2 + . . . + aip−1ip

(wip−1
− wip

)2

+ |aipi1 |(wip
+ wi1)

2 = 0.
(9)

From the firstp−1 terms of (9) we deducewi1 = wi2 =
. . . = wip

. But this implies that the last term in (9) cannot
be zero unlesswi1 = . . . = wip

= 0. Consider nowVC =

{vi1 , vi2 , . . . , vip
} and its complement inV : V̂C = V\VC.

Owing to the connectivity ofG(A), it is always possible
to find a collection of paths inG(A) linking all nodes of
V̂C to those ofVC . LetP = {(vj1 , vj2 ), . . . , (vjq

, vik
)} ⊂

E with vj1 , vj2 , . . . , vjq
∈ V̂C andvik

∈ VC . Whenx = w
and Φ(w) = 0, from (8) andwik

= 0 it follows that
wj1 = . . . = wjq

= 0. Iterating the argument until all
nodes ofV̂C are covered, we obtainw = 0, and hence
we have a contradiction.

Remark 1 The key argument for the absence of the0 eigen-
value in structurally unbalanced Laplacians is the impossibility
of satisfying all the constraints imposed byΦ(x) = 0 by
choosing a combination of signs of the variablesxi. When
such a combination of sign exists then we have structural
balance.

This argument can be readily applied to spanning trees.

Corollary 1 A spanning tree is always structurally balanced.

Proof: WhenG(A) is a spanning tree no cycle is present,
and, for each signature of then − 1 edgesaij , G(A) hasn
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variables available in order to fulfill the conditionΦ(x) = 0
mentioned in Remark 1.

From conditions 2 and 3 of Lemma 1, it follows that on
a structurally balanced graphL is positive semidefinite and
ker(L) = span(D1). Lemma 1 induces also a characterization
of structurally unbalanced graphs.

Corollary 2 A connected signed graphG(A) is structurally
unbalanced if and only if any of the following equivalent
conditions holds:

1) one or more cycles ofG(A) are negative;
2) ∄ D ∈ D such thatDAD has all nonnegative entries;
3) λ1(L) > 0 i.e., Φ(x) > 0.

Proof: Since structural balance and unbalance are mutu-
ally exclusive properties, the 3 conditions (and their equiva-
lence) follow straightforwardly from Lemma 1.

In particular, condition 3) implies that for the structurally
unbalanced caseker(L) = {0}. This, together with Lemma 1,
gives the conditions required to solve the bipartite consensus
problem.

Theorem 1 Consider a connected signed graphG(A). The
system(4) admits a bipartite consensus solution if and only if
G(A) is structurally balanced. IfD ∈ D is the gauge trans-
formation that rendersDAD nonnegative, then the bipartite
solution of (4) is limt→∞ x(t) = 1

n

(

1
T Dx(0)

)

D1. If instead
G(A) is structurally unbalanced thenlimt→∞ x(t) = 0
∀x(0) ∈ Rn.

Proof: The first part follows straightforwardly from con-
dition 3 of Lemma 1. The second from the observation that for
the gauge transformed systemz = Dx the problem is a usual
average consensus problem on an undirected, connected graph,
whose solution is (7). That such aD exists is guaranteed by
condition 2 of Lemma 1. In the structurally unbalanced case,
the Laplacian potentialΦ(x) is positive definite, which implies
the last sentence.

A comparison of the steady state values reached in the
Examples 1-3 is shown in Fig. 2. The gauge transformation
D = diag(1, 1, −1) allows to pass from Example 1 (bipartite
consensus) to Example 3 (standard consensus).

3) A complete classification in gauge equivalent classes:
Assume the symmetric adjacency matrixA is given. Assume
A has2m, 2(n − 1) 6 2m 6 n2 − n, nonzero entries (i.e.,
G(A) hasm undirected edges) and that the entries ofA are
given only in modulus. As we vary the signs of them edges,
we have2m possible signed graphs, and hence2m distinct
LaplaciansL. From Proposition 2, in the connected case each
gauge equivalence class contains2n−1 distinct elements, hence
the 2m signed graphs split into2m−n+1 equivalence classes,
each characterized by a different spectrum. From Lemma 1
and Corollary 2, in only one of these classesL is positive
semidefinite, while in all the other2m−n+1 − 1 classesL is
positive definite.
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Fig. 2. Consensus time courses for the examples of Fig. 1. While in
Example 1 (structurally balancedG(A)) the 3 agents converge to bipartite
consensus, in Example 2 (structurally unbalanced) all 3 agents converge to
0 (i.e., no consensus is achieved). Example 3 is the gauge transformation
of Example 1 in which all 3 agents have moved to the same side ofthe
bipartition: in this case the problem becomes a standard consensus problem
on a nonnegative weighted graph.

B. Directed graphs

Given a digraphG(A), we follow the convention of the
consensus literature and call (row) Laplacian ofA the matrix
L = Cr−A. WhenA is digon sign-symmetric then we define
Au = (A + AT )/2 as symmetrized adjacency matrix of the
underlying undirected graph. Notice that in generalLu = (L+
LT )/2 = Cr − Au is different from L̂u = Cu − Au where
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Cu = (Cr + Cc)/2. Lu = L̂u if and only if G(A) is weight
balanced.

Lemma 2 A strongly connected, digon sign-symmetric signed
digraphG(A) is structurally balanced if and only if any of the
following equivalent conditions holds:

1) G(Au) is structurally balanced;
2) all directed cycles ofG(A) are positive;
3) ∃D ∈ D such thatDAD has all nonnegative entries;
4) 0 is an eigenvalue ofL.

Proof: From the digon sign-symmetry,aijaji > 0, which
implies that for each entry ofAu sgn(au,ij) = sgn(aij) if
aij 6= 0 and sgn(au,ij) = sgn(aji) if aji 6= 0 (or both,
if aij , aji 6= 0). Digon sign-symmetry implies also that the
signs of the semicycles are the signs of the cycles ofG(Au).
From Proposition 1 this implies thatG(A) cannot have any
negative directed cycle and viceversa, since otherwiseG(Au)
cannot be structurally balanced. The third implication follows
consequently from Lemma 1. As for the fourth condition, one
direction is obvious: ifA is structurally balanced then∃D ∈ D
such thatDAD has all nonnegative entries, and we are in the
usual consensus setting for nonnegative networks. To prove
the converse, assumeλ1(L) = 0 is an eigenvalue ofL. By
construction,ℓii =

∑

j 6=i |aij |, which means thatλ1(L) = 0
is on the boundary of all the Geršgorin disks







z ∈ C s.t. |z − ℓii| 6
∑

j 6=i

|aij | = ℓii







. (10)

Then from Lemma 6.2.3 of [23], sinceL is irreducible, it
follows that the right eigenvector of0, i.e., w 6= 0 for which
Lw = 0, is such that|wi| = |wj | ∀ i, j = 1, . . . , n. We also
havewT LT = 0 and hencewT (L + LT )w = 0. SinceLu =
(Cr − Cc)/2 + L̂u, then

1

2
wT (L + LT )w = wT

(

Cr − Cc

2

)

w + wT L̂uw = 0. (11)

For the first term of (11), denotingω = |wi| ∀ i = 1, . . . , n,

wT (Cr − Cc)w = tr(Cr − Cc)ω
2

=





∑

i

∑

j 6=i

|aij | −
∑

i

∑

j 6=i

|aji|



ω2 = 0 ∀ ω.

As for the second term of (11), it represents the Laplacian
potential (computed inw) of an undirected graph, hence as
in (3) it is in the form of a sum of squares. Assume now
by contradiction thatA has a negative semicycle. This implies
that alsoAu has to have a negative undirected cycle. The proof
by contradiction now carries over from Lemma 1.

Notice that if G(A) is weight balanced then, sinceA is
structurally balanced iffAu is, the last statement follows also
from the well-known inequality (see e.g. [23], p. 187)

min sp(Lu) 6 Re(sp(L)) 6 max sp(Lu).

In fact, min sp(Lu) = 0 iff A is structurally balanced. If not,
min sp(Lu) > 0, hencemin Re(sp(L)) > 0.

Corollary 3 A strongly connected, digon sign-symmetric
signed digraphG(A) is structurally unbalanced if and only
if any of the following holds:

1) G(Au) is structurally unbalanced;
2) G(A) has at least one negative directed cycle;
3) ∄ D ∈ D renderingDAD nonnegative;
4) λ1(L) > 0, i.e.,−L is Hurwitz.

Proof: The first three statements follow straightforwardly
from Lemma 2. As for the fourth,L is diagonally dominant
(see Sect. III-B1 for a detailed definition), hence from the
Geršgorin disk theorem the eigenvalues ofL are located in
the union of the disks (10). ThenRe(sp(L)) > 0, and, from
Lemma 2,Re(sp(L)) > 0 if and only if A is structurally
unbalanced.

It also follows from Lemma 2 that for strongly connected
digraphsrank(L) = n − 1 if and only if A is structurally
balanced. In particular, any acyclic digraph is structurally
balanced, hence these cases can be treated analogously to
their nonnegative weight counterparts (i.e., rooted treesadmit
a bipartite consensus [40]).

When G(A) is structurally balanced, denoteν a nonzero
left eigenvector ofDLD normalized such thatνT

1 = 1,
where D ∈ D s.t. DAD is nonnegative. We can now state
the analogous of Thm. 1 for directed graphs.

Theorem 2 Consider a strongly connected, digon sign-
symmetric signed digraphG(A). The system(4) admits a
bipartite consensus solution if and only ifG(A) is struc-
turally balanced. In this caselimt→∞ x(t) = νT Dx(0)D1,
where D ∈ D is the gauge transformation such thatDAD
nonnegative. WhenG(A) is weight balancedlimt→∞ x(t) =
1
n

(

1
T Dx(0)

)

D1. If insteadG(A) is structurally unbalanced
then limt→∞ x(t) = 0 ∀x(0) ∈ Rn.

Proof: The first part follows from Lemma 2. The second
from the observation that once we gauge transform the system
via z = Dx we have a standard consensus problem on a
nonnegative directed graph. The final part instead follows from
Corollary 3.

From Lemma 2, the (nontrivial) bipartite consensus solution
exists if and only if all directed cycles (or semicycles) ofG(A)
have positive sign, which is true if and only ifλ1(L) = 0. All
these conditions are verifiable in polynomial time, meaning
that verifying structural balance is an easy computational
problem even in large-scale signed graphs. See [20] for an
example of algorithm computing explicitly the bipartition.

Example 4 Fig. 3 shows in (a) the bipartite consensus
achieved on a strongly connected structurally balanced signed
digraphG(A) of n = 1000 agents. As soon as the sign is
changed even on a single edge ofG(A), structural balance
is lost, and the agreement subspace becomes empty. From
Theorem 2,limt→∞ x(t) = 0 ∀x(0) ∈ Rn, although the
convergence rate can be very slow, see Fig. 3(b).
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(b) Structurally unbalancedG(A)

Fig. 3. Bipartite consensus on a strongly connected signed digraph with
n = 1000. In (a) G(A) is structurally balanced, hence from Theorem 2 the
agents split into two groups (in red and in blue). In (b) instead, a few edges
have changed sign, unbalancing the graph. Bipartite consensus is now lost,
and all agents converge (slowly) to0.

1) A diagonal stability characterization:Quite remarkably,
the nonsingularity ofL for G(A) structurally unbalanced
does not emerge from any of the standard linear-algebraic
arguments based e.g. on Geršgorin disks theorem and/or on
diagonal dominance. A matrixL is saiddiagonally dominant
(by rows, omitted hereafter) if

|ℓii| >
∑

j 6=i

|ℓij |, i = 1, . . . , n. (12)

It is said strictly diagonally dominant when the above in-
equalities are all strict and weakly diagonally dominant when
at least one (but not all) of the inequalities (12) is strict.
It is said diagonally equipotentif in (12) we have equality
∀ i = 1, . . . , n.

As for the Geršgorin disk theorem, it affirms that the
eigenvalues ofL are located in the union of then disks of (10).
Diagonal dominance on the contrary guarantees that0 cannot
be in the interior of any of the Geršgorin disks, see [23],§ 6.2.
Hence, from (10),z = 0 is always on the boundary of all the
disks regardless of structural balance. In fact, the Geršgorin
disks depend on the diagonal values ofL and on the absolute
values of the off-diagonal entries ofA. Therefore they cannot
discern properties depending on the signs of theaij .

Example 5 ForA1 andA2 of Examples 1 and 2, the inequali-
ties (10) are identical, and so are the Geršgorin disks. However
0 is an eigenvalue ofL2 but not ofL1.

Similar considerations hold for the Cassini ovals and for all
other known inclusion regions generalizing the Geršgorindisks
(including Brualdi’s cycles [9]).

All stability results for diagonally dominant matrices [25],
[22], [30] are concerned with the strict/weak diagonally dom-
inant case. Each time one of the inequalities in (10) is strict
(meaning strict diagonal dominance on the corresponding
row), 0 must be outside the corresponding Geršgorin disk.
WhenL is diagonally equipotent, however, none of the suffi-
cient conditions available in the literature apply.

The matrix−L is said diagonally stableif ∃ a diagonal
matrix P = diag(p1, . . . , pn), pi > 0, s.t.−PL − LT P < 0.
The following Proposition will be useful later on.

Proposition 3 Consider a strongly connected, digon sign-
symmetric signed digraphG(A). AssumeG(A) is weight
balanced. The Laplacian matrix−L is diagonally stable if
and only ifG(A) is structurally unbalanced.

Proof: In the weight balanced case, we have

Lu = L̂u = (L + LT )/2. (13)

From condition 1 of Corollary 3,G(A) is structurally unbal-
anced iff G(Au) is, hence−L is Hurwitz iff −L̂u is. But
then (13) implies that−L is diagonally stable with diagonal
matrix P = I. Since−L is Hurwitz iff G(A) is structurally
unbalanced, the latter is also a necessary condition for diagonal
stability.

Remark 2 It is straightforward to check that whenG(A) is
weight balanced but structurally unbalancedV = ‖x‖2 is a
Lyapunov function, sincėV = xT (L + LT )x = xT L̂ux < 0
∀x ∈ Rn. When insteadG(A) is structurally balanceḋV =
xT L̂ux 6 0, as the agreement subspaceker(D1) is nontrivial,
just like in the case of nonnegative weights, see [38].

2) Bipartite consensus under switching topologies:Con-
sider r topologies onV defined by the signed adjacency
matricesA1, . . . , Ar such thatG(Ap) is digon sign-symmetric
and strongly connected∀ p ∈ {1, . . . , r}. Assume further
that the signs of the edges are never conflicting across the
r digraphs:

sgn(Ap,ij)sgn(Aq,ij) > 0
∀p, q ∈ {1, . . . , r},
∀i, j ∈ {1, . . . , n}, i 6= j.

(14)
Under these assumptionsG(A1), . . . ,G(Ar) can be rendered
simultaneously nonnegative by the same gauge transformation
D ∈ D. Thm 9 of [38] holds for the family and assures
convergence to1

n

(

1
T Dx(0)

)

D1 for any switching pattern
of the {A1, . . . , Ar}.

Remark 3 Bipartite consensus under switching cannot be
relaxed to gauge equivalent digraphs not obeying (14).
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Example 6 A bipartite consensus cannot be achieved for
the family {A1, A3} of Examples 1 and 3 under arbitrary
switching, since the corresponding steady states are different.

Remark 4 If G(Ap), p ∈ {1, . . . , r} obeying (14) are strongly
connected but structurally unbalanced, then the entire poly-
tope formed by the corresponding Laplacians−L1, . . . ,−Lr

is Hurwitz. This follows from the diagonal stability of
−L1, . . . ,−Lr, with common Lyapunov functionV = ‖x‖2,
see Proposition 3 and Remark 2.

IV. N ONLINEAR CONSENSUS PROTOCOLS

In this Section we investigate two families of nonlinear
Laplacian consensus protocols. The first family is a gener-
alization of the nonlinear schemes currently found in the
literature for graphs of nonnegative weights [3], [27], [26],
[34], [39], and it is based on summing up at each node the
contribution of “local” nonlinearities (i.e., each feedback term
of the summation relies only on the state of the node and of
one of its neighbors). The second family of nonlinear con-
sensus protocols is based instead on the notion of monotone
dynamical systems. The formal analogy between the graphical
tests for structural balance and monotonicity is exploitedto
design Laplacian feedback laws in which each term of the
feedback may contain the states of all neighbors of a node.

A. Nonlinear distributed additive Laplacian feedback schemes

In the following we introduce first the structural properties
of the class of systems used for the feedback (Section IV-A1)
and then (Section IV-A2) devise their Laplacian counterpart.

1) Distributed nonlinear additive systems:Consider the
system

ẋ = f(x), x ∈ Rn, (15)

wheref(x) =
[

f1(x) . . . fn(x)
]T

is Lipschitz continuous,
f(0) = 0. The following special forms for (15) are compatible
with consensus-related problems.

(I) Distributed vector fields:f(x) is distributed over the
graph G, i.e., only the first neighbors of each agent
matter in (15):

fi(x) = fi(xj , j ∈ adj(i)). (16)

(II) Distributed additive vector fields:in (16) the contribu-
tion of each neighbor is additive

fi(x) =
∑

j∈adj(i)

aijhij(xj), (17)

with aij ∈ R the weight of each contribution. Two
special cases of (17) are listed in the following.

a) All equal functions:

hij(·) = h(·) ∀ i, j = 1, . . . , n,

meaning that we can write compactly (15) as

f(x) = A
[

h(x1) . . . h(xn)
]T

= Ah(x).

b) All equal and antisymmetric functions:

hij(x) = h(x) ∀ i, j = 1, . . . , n,

and h(−x) = −h(x).
(18)

In the following for these special cases we shall choose
our h(·) in the class of (translated) positive, infinite sector
nonlinearitiesS, defined as follows:

S =
{

h : R→ R, (h(ξ)− h(ξ∗)) (ξ − ξ∗) > 0 if ξ 6= ξ∗,

h(0) = 0, and
∫ ξ

ξ∗

(h(τ) − h(ξ∗))dτ →∞ as |ξ − ξ∗| → ∞
}

Examples of functions inS are (translated) odd polynomials,
tanh, etc. A subclass ofS in which ξ∗ = 0 is the following

So =
{

h : R→ R, h(ξ)ξ > 0 if ξ 6= 0, h(0) = 0,

and
∫ ξ

0

h(τ)dτ →∞ as |ξ| → ∞
}

.

When h ∈ So, the Case IIa is a special situation of what is
known in the literature as Persidskii systems [30].

2) Laplacian feedback schemes:For the system of integra-
tors (2), various types of nonlinear additive Laplacian feedback
schemes have been proposed in the literature [3], [27], [26],
[34], [39] for the case of nonnegative weights in the adjacency
matrix A. We shall consider two of them (the nomenclature
given here follows [45]), extending them to anyA:

• absolute Laplacian flow

ẋi = −
∑

j∈adj(i)

|aij | (hij(xi)− sgn(aij)hij(xj)) ; (19)

• relative Laplacian flow

ẋi = −
∑

j∈adj(i)

|aij |hij(xi − sgn(aij)xj). (20)

In Case IIa the absolute Laplacian flow (19) can be written as

ẋ = −Lh(x), (21)

where, as before,L = Cr − A. For the sake of simplicity
we shall treat only the weight balanced case, although the
arguments can be extended to the case ofG(A) with a rooted
tree (following the lines of e.g. [34]).

Theorem 3 Consider a strongly connected, digon sign-
symmetric, weight balanced, signed digraphG(A). The system
(21) with h ∈ S admits a bipartite consensus if and only if
G(A) is structurally balanced. In this caselimt→∞ x(t) =
1
n

(

1
T Dx(0)

)

D1, whereD ∈ D is the gauge transformation
such thatDAD nonnegative.

Proof: From our previous analysis,−L is Hurwitz stable
when G(A) is structurally unbalanced, and critically stable
when G(A) structurally balanced. Forh ∈ S, depending on
G(A), the equilibrium point of (21) is

• x∗ such thath(x∗) =
[

h(x∗1) . . . h(x∗n)
]T

= αD1 for
some nonzeroα whenG(A) is structurally balanced (D ∈
D s.t. DAD nonnegative);

• x∗ = 0 whenG(A) structurally unbalanced.
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In the structurally balanced case, wheneverh ∈ S, the
diagonal form of the nonlinearity implies that it must be
|x∗i | = |x∗j |, and in particularx∗ = βD1 for someβ 6= 0.
Applying the change of coordinatesz = Dx we obtain
ż = −DLh(Dz) with

sgn(h(σizi)) = sgn(σih(zi)) = σisgn(h(zi)). (22)

Therefore, from Lemma 2,G(A) structurally balanced means
that ∃D ∈ D such that all off-diagonal elementsσiaijσj

are nonnegative in thez-coordinates. Consider the following
integral Lyapunov function:

V (x) =
∑

i

∫ xi

x∗

i

(h(ξ)− h(x∗i )) dξ h ∈ S

=
∑

i

∫ xi

βσi

(h(ξ)− ασi) dξ.

(23)

From (22) andσ2
i = 1, the sign of each term in (23) is

invariant to gauge transformations. By construction,V (x) > 0,
V (x∗) = 0 andV (x) radially unbounded. Its derivative is

V̇ (x) =
∑

i

(h(xi)− h(x∗i )) ẋi

= − (h(x)− h(x∗))T Lh(x)

= −
1

2
h(x)T Lh(x),

sinceh(x∗) = αD1 andD1 is a left eigenvector ofL when
G(A) is weight balanced. Only the symmetric part ofL matters
in a quadratic form, therefore

V̇ (x) = −
1

2
h(x)T (L + LT )h(x) = h(x)T Luh(x) 6 0,

since Lu = L̂u = (L + LT )/2 is positive semidefinite,
with ker(L̂u) = span(D1). WhenG(A) is weight balanced,
integrating the conservation law−1

T DLh(x) = 1
T Dẋ = 0

implies
1

T Dx(t) = 1
T Dx(0) ∀t > 0,

i.e., limt→∞ x(t) = 1
n

(

1
T Dx(0)

)

D1. When insteadG(A) is
structurally unbalanced, thenx∗ = 0, h(x∗) = 0, i.e., h ∈ So.
From Proposition 3,−L is diagonally stable withI as diagonal
matrix. It follows that V̇ (x) < 0, meaning thatx∗ = 0 is
globally asymptotically stable, i.e., only trivial consensus is
achieved.

Also for the relative Laplacian (20) a similar result holds
whenever the feedback functionshij are all equal and anti-
symmetric (i.e., in Case IIb).

Theorem 4 Consider a strongly connected, digon sign-
symmetric, weight balanced, signed digraphG(A). The system
(20) with hij obeying (18) and h ∈ So admits a bipartite
consensus if and only ifG(A) is structurally balanced. In this
caselimt→∞ x(t) = 1

n

(

1
T Dx(0)

)

D1, whereD ∈ D is the
gauge transformation such thatDAD nonnegative.

Proof: AssumeG(A) structurally balanced. IfD ∈ D is
the gauge transformation such thatDAD is nonnegative, then

in the z coordinates (20) becomes

żi = −σi

∑

j∈adj(i)

|aij |h(σizi − sgn(aij)σjzj) (24)

= −σi

∑

j∈adj(i)

|aij |h (σi(zi − σisgn(aij)σjzj)) (25)

= −
∑

j∈adj(i)

|aij |h(zi − zj), (26)

becauseσisgn(aij)σj > 0 by construction and, whenσi =
−1, (18) holds. This is now a standard consensus problem
on a nonnegative weight balanced digraph. A possible proof,
valid in the case in whichA is non-symmetric is provided in
[34], based on a min-max type of Lyapunov function. Another
approach to the same problem is discussed in [27]. Clearly ina
structurally balanced case any design valid for a nonnegative
weight balanced system (26), is valid also for the original
signed graph.

When insteadG(A) is not structurally balanced, then from
Lemma 2 not all negative weights ofG(A) can be simultane-
ously eliminated by anyD ∈ D. Assuming by contradiction
that a nontrivial bipartite consensus exists, then from Defini-
tion 2 it must correspond to a nonzero equilibriumx∗ such
that |x∗i | = |x∗j | ∀ i, j = 1, . . . , n. This impliesx∗ = αD1

for someD ∈ D and someα > 0. It is enough to show that
no such equilibrium pointx∗ can exist for (20) whenα > 0.
In fact, from x∗ = αD1 we have that applying the gauge
transformationz = Dx, in the z-coordinates (20) becomes,
analogously to (24)-(25),

żi = −
∑

j∈adj(i)

|aij |h(zi − sgn(σiaijσj)zj), (27)

where we have applied (18). By construction, in thez-
coordinatesz∗ = α1, i.e., z∗i > 0 ∀ i = 1, . . . , n. From
Lemma 2, in (27) not allσiaijσj can be nonnegative, unlike
in (26). Hence atz∗ in (27) we must necessarily havez∗i −
sgn(σiaijσj)z

∗
j = z∗i + z∗j = 2α > 0 for at least a pair(i, j),

while, wheneversgn(σiaijσj) > 0, z∗i − sgn(σiaijσj)z
∗
j =

z∗i − z∗j = 0. Sinceh ∈ So, h(ξ) > 0 when ξ > 0, hence at
least one of thėzi must be strictly negative andz∗ cannot be
an equilibrium point.

B. Nonlinear Laplacian flow with monotone laws

In this final Section of the paper we first show that structural
balance and monotonicity of a dynamical system have identical
graphical tests, then present a distributed nonlinear feedback
method to obtain bipartite consensus starting from a monotone
system.

1) Monotone systems:In Rn, consider the orthant ofRn

corresponding toσ: Kσ = {x ∈ Rn such thatDx > 0, D ∈
D}, and denote byφt(x1) the solution of (15) at timet in
correspondence of the initial conditionx1. The partial order
generated byσ is normally indicated by the symbol “6σ”:
x1 6σ x2 ⇐⇒ x2 − x1 ∈ Kσ. Strict ordering is denoted
x1 <σ x2 and corresponds tox1 6σ x2, x1 6= x2. When
inequality must hold for all coordinates ofx1, x2 then we use
the notation “≪σ”.
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Definition 3 The system(15) is said monotonewith respect
to the partial orderσ if for all initial conditions x1, x2 such
that x1 6σ x2 one hasφt(x1) 6σ φt(x2) ∀ t > 0. It is
said strongly monotonewith respect to the partial orderσ if
for all initial conditions x1, x2 such thatx1 <σ x2 one has
φt(x1)≪σ φt(x2) ∀ t > 0.

DenoteF (x) = ∂f(x)
∂x

the Jacobian of (15) atx, of elements
Fij(x). AssumeF (x) is sign constant: Fij(x1)Fij(x2) > 0
∀x1, x2 ∈ Rn, ∀ i, j ∈ {1, . . . , n}, and sign-symmetric:
Fij(x)Fji(x) > 0 ∀x ∈ Rn. See [42], [43] for more details
on monotone systems.

DenoteG(F (x)) the graph of whichF (x) is the adjacency
matrix at x ∈ Rn. We say thatG(F (x)) is globally strongly
connectedif G(F (x)) strongly connected∀x ∈ Rn. This is
equivalent to haveF (x) irreducible∀x ∈ Rn. Given ǫ > 0,
we say further thatG(F (x)) is globally ǫ-strongly connected
if G(F̂ (x)) is globally strongly connected, wherêF (x) is such
that

F̂ij(x) =

{

Fij(x) if |Fij(x)| > ǫ

0 if |Fij(x)| < ǫ.

In the spirit of [37] (but in a much stronger sense), this
property guarantees that the graph remains strongly connected
even when too small edge weights (below the thresholdǫ) are
disregarded.

Let us now evaluate the effect of a gauge transformation
D = diag(σ) (i.e., of the change of partial orderσ) on a
strongly monotone system. As before, consider the change of
coordinatesz = Dx. SinceFij(x) is sign constant∀x ∈ Rn,
it must be that alsoFij(z) is sign constant∀ z ∈ Rn and in
additionsgn(Fij(x))sgn(Fij(z)) > 0 ∀x ∈ Rn. FromD−1 =
D, the new Jacobian isFD(z) = DF (z)D.

Lemma 3 Consider a system(15) whose Jacobian is sign
constant and sign-symmetric. Then(15) is strongly monotone
in Rn if and only if any of the following conditions holds:

1) F (x) is irreducible ∀x ∈ Rn and ∃D ∈ D such that
DF (z)D has all nonnegative entries∀x ∈ Rn;

2) G(F (x)) is globally strongly connected and structurally
balanced∀x ∈ Rn;

3) G(F (x)) is globally strongly connected and all directed
cycles ofG(F (x)) are positive∀x ∈ Rn.

Proof: The first condition is the so-called Kamke lemma
[43]. Together with irreducibility ofF (x) ∀x ∈ Rn (i.e.,
global strong connectivity ofG(F (x))) it corresponds to strong
monotonicity in Rn. If F (x) is the adjacency matrix of a
signed digraph atx, thenG(F (x)) is digon sign-symmetric and
strongly connected by construction∀x ∈ Rn. This implies that
Lemma 2 holds∀x ∈ Rn. The equivalence between condition
1 and conditions 2 and 3 follows consequently.

2) Nonlinear Laplacian flow with monotone laws:Consider
a strongly monotone distributed system of the form (16). Since
Fij(x) 6= 0 implies j ∈ adj(i), also the Jacobian linearization
at eachx ∈ Rn is distributed. It is also sign constant by
assumption. HenceF (x) can be used to obtain the following

nonlinear Laplacian scheme:

ẋi = −
∑

j∈adj(i)

(|Fij(x)|xi − Fij(x)xj)

= −
∑

j∈adj(i)

|Fij(x)| (xi − sgn(Fij(x))xj) ,
(28)

for which the following Theorem holds.

Theorem 5 Any distributed strongly monotone system(16)
whose Jacobian is globallyǫ-strongly connected admits a
Laplacian flow(28)which is globally converging to a bipartite
consensus.

Proof: Under the gauge transformationz = Dx, (28)
becomes

żi = −
∑

j∈adj(i)

(|Fij(z)|zi − σiσjFij(z)zj) . (29)

Strong monotonicity off(x) implies thatFij(x) is sign con-
stant∀x ∈ Rn and that∃ D ∈ D such thatσiσjFij(z) > 0.
For thisD, (29) is therefore

żi = −
∑

j∈adj(i)

|Fij(z)|(zi − zj), (30)

i.e., a nonlinear Laplacian scheme on a (state-dependent)
nonnegative weighted graph. The assumption of globalǫ-
strong connectivity guarantees convergence∀x ∈ Rn.

The conditions of Thm 5 are sufficient but not necessary.
For example one can think of relaxing the strong connectivity
in several ways, see e.g. [1], [11], [33], [35].

Example 7 Consider the system in Fig. 4(a) and the following
vector field:

f(x) =









θeµ2x2eµ3x3 + a14x4

a21x1

a32x2

a43x3









where the nonlinear (and “nonlocal”) term is depicted as a
square box in Fig. 4(a). The Jacobian off(x) is

F (x) =









0 θµ2

∏

i=2,3 eµixi θµ3

∏

i=2,3 eµixi a14

a21 0 0 0
0 a32 0 0
0 0 a43 0









.

F (x) is sign constant∀x ∈ R4. When |aij | > ǫ, clearly
G(F (x)) is alsoǫ-strongly connected∀x ∈ R4, hence when
f(x) is strongly monotone, i.e., when∃D ∈ D such that
DF (x)D has all nonnegative entries, then Thm. 5 applies. In
this case the nonlinear Laplacian feedback one obtains

ẋ1 = −θ
∏

i=2,3

eµixi

∑

i=2,3

|µi| (x1 − sgn(µi)xi)

−|a14|(x1 − sgn(a14)x4)

ẋ2 = −|a21|(x2 − sgn(a21)x1)

ẋ3 = −|a32|(x3 − sgn(a32)x2)

ẋ4 = −|a43|(x4 − sgn(a43)x3)
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globally converges to a bipartite consensus. For example,
assumingθ, a14, a32 > 0 andµ1, µ2, a21, a43 < 0, G(F (x))
is structurally balanced withD = diag(1, −1, −1, 1). Simu-
lations with (solid curves) and without (dotted) the nonlinear
term are shown in Fig. 4(b). Clearly the presence of the
nonlinearity speeds up the convergence rate. Notice that the
lack of weight balance implies the value|x∗| of the bipartite
consensus can change.

x1 x2

x4 3x

µ2

3

θ

µ

(a)

0 2 4 6 8 10
−4

−2

0

2

4

t

 

 
x

1

x
2

x
3

x
4

(b)

Fig. 4. Connectivity graph of Example 7 and corresponding time courses.
The dotted curves correspond toθ = 0.

V. CONCLUSION AND OUTLOOK

This paper extends the notion of consensus and its dis-
tributed feedback designs to networks containing interactions
which are competitive in nature, modeled as negative weights
on the communication edges. In this broader scenario, the
conditions under which a consensus is achievable are formally
analogous to those that characterize monotonicity of a system.
The consensus reached is bipartite, i.e., the agents agree to
a common (absolute) value but polarize themselves in two
opposite fronts.

Since a bipartite consensus problem on a structurally bal-
anced signed network is equivalent, up to a gauge transfor-
mation, to a standard consensus problem on a nonnegative
network, a number of properties of the latter are valid also for
the former. These include several aspects not discussed in the
paper, like finite-time semistability [26], consensus in presence

of time-delays or when the strong connectivity assumption is
relaxed. Less straightforward extensions include dealingwith
the discrete-time case and with higher order integrators.

From a system theory perspective, the case when bipartite
consensus cannot be achieved is equally interesting: in fact
the corresponding Laplacians (linear or nonlinear) inducea
globally asymptotically stable closed loop system. In the linear
case, for example, this form of global convergence is not
classifiable in terms of standard linear-algebraic criteria, like
diagonal dominance or location of the Geršgorin disks.

APPENDIX

A. Proof of Proposition 1

One implication is obvious, since directed cycles are a
subset of semicycles. To prove the opposite implication, as-
sume all directed cycles are positive and, by contradiction,
that ∃ a negative semicycleC ⊂ E which is not a directed
cycle. DenotekC the length ofC. C can be broken into the
concatenation ofk (k 6 kC) directed (simple) paths with
alternating directions, call them

−→
P 1,
←−
P 2,
−→
P 3, . . . ,

←−
P k ⊂ E .

Without loss of generality assume

sgn(
−→
P 1) < 0,

sgn(
←−
P 2) = sgn(

−→
P 3) = . . . = sgn(

←−
P k) > 0.

(31)

Denote V−→
P 1

,V←−
P 2

, . . . ,V←−
P k

the node sets of
−→
P 1,
←−
P 2, . . . ,

←−
P k. If v11

, v1p
∈ V−→

P 1

are the root and

terminal nodes of
−→
P 1, then by the strong connectivity

assumption∃ a path
←−
P 1 connectingv1p

to v11
, and similarly

for
←−
P 2,
−→
P 3, . . . ,

←−
P k. Call

−→
P 2,
−→
P 4, . . . ,

−→
P k ⊂ E the paths

completing
←−
P 2,
←−
P 4, . . . ,

←−
P k to directed cycles. Assume for

the moment that

V−→
P i
∩ V−→
P j

= ∅ ∀ i, j = 1, . . . , k. (32)

Since by assumption all directed cycles are positive,

sgn(
−→
P i) = sgn(

←−
P i) ∀ i = 2, 4 . . . , k. (33)

By concatenating
−→
P 1 with

−→
P 2,
−→
P 3, . . .

−→
P k, from (33) the

directed cycle
−→
C =

⋃k
i=1

−→
P i must have the same sign as

C, which is a contradiction since all directed cycles must be
positive.

When (32) is not valid, then
−→
C is a union of directed cycles.

Assume for example that two of the directed paths
−→
P i and

−→
P j , i < j, share a common subpath:

−→
P i =

−→
Q i,1 ∪

−→
Q ∪
−→
Q i,2,

−→
P j =

−→
Qj,1 ∪

−→
Q ∪
−→
Qj,2. Then the cycle

−→
C is not simple (i.e,

some of its nodes have connectivity more than 2) and it splits
into the two (simple) cycles:

−→
C 1 =

−→
P 1 ∪ . . . ∪

−→
P i−1 ∪

−→
Q i,1 ∪

−→
Q∪

∪
−→
Qj,2 ∪

−→
P j+1 ∪ . . . ∪

−→
P k,

−→
C 2 =

−→
Q i,2 ∪

−→
P i+1 ∪ . . . ∪

−→
P j−1 ∪

−→
Qj,1 ∪

−→
Q .

From (31) and (33),sgn(
−→
P i) = sgn(

−→
P j) > 0 and

sgn(
−→
P ℓ) = sgn(

−→
Qℓ,1 ∪

−→
Qℓ,2)sgn(

−→
Q), ℓ = i, j.



12

We have then thatsgn(
−→
Q i,1 ∪

−→
Q i,2) = sgn(

−→
Qj,1 ∪

−→
Qj,2)

is +1 if sgn(
−→
Q) = +1, −1 otherwise. In the first case, for

example, it must besgn(
−→
Qℓ,1) = sgn(

−→
Qℓ,2), ℓ = i, j. If in

addition sgn(
−→
Q i,1) = sgn(

−→
Qj,1) then sgn(

−→
C 1) = −1 and

sgn(
−→
C 2) = +1. If instead sgn(

−→
Q i,1) = −sgn(

−→
Qj,1) then

sgn(
−→
C 1) = +1 and sgn(

−→
C 2) = −1. The other case (i.e.,

sgn(
−→
Q) = −1) can be treated analogously. Each subpath

−→
Q

(or even just single node) shared by two or more of the paths
−→
P 1, . . . ,

−→
P k gives rise to a splitting of

−→
C into directed cycles:

−→
C =

−→
C 1 ∪

−→
C 2 ∪ . . . ∪

−→
C ℓ for someℓ > 1. Sincesgn(

−→
C ) =

sgn(C) = −1 still holds andsgn(
−→
C ) =

∏

i sgn(
−→
C i), then

necessarily at least one of the
−→
C i must have negative sign

and we are still in contradiction.
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[46] T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen, and O. Shochet. Novel
type of phase transition in a system of self-driven particles. Phys. Rev.
Lett., 75:1226–1229, Aug 1995.

[47] S. Wasserman and K. Faust.Social Network Analysis: methods and
applications. Cambridge Univ. Press, 1994.

[48] T. Zaslavsky. Signed graphs.Discrete Appl. Math., 4(1):47–74, 1982.


