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ABSTRACT
Motivation: Deciphering the response of a complex biological system
to an insulting event, at the gene expression level, requires adopting
theoretical models that are more sophisticated than a one-to-one
comparison (i.e. t-test). Here, we investigate the ability of a novel
reverse engineering approach (”System Response Inference”) to
unveil non-obvious transcriptional signatures of the system response
induced by prion infection.
Results: To this end, we analyze previously published gene
expression data, from which we extrapolate a putative full-scale
model of transcriptional gene-gene dependencies in the mouse
central nervous system. Then, we use this nominal model to interpret
the gene-expression changes caused by prion replication, aiming at
selecting the genes primarily influenced by this perturbation. Our
method sheds light on the mode of action of prions by identifying key
transcripts that are the most likely to be responsible for the overall
transcriptional rearrangement from a nominal regulatory network.
As a first result of our inference we have been able to predict
known targets of prions (i.e. PrPC) and to unveil the potential role
of previously unsuspected genes.
Contact: altafini@sissa.it

1 INTRODUCTION
A major challenge in Systems Biology is to provide a global
and quantitative understanding of complex diseases by means of
high-throughput technologies. In a system level approach, the
synergistic response dictated by the cooperation and interplay
of all the components within an organism is considered as a
fundamental concept in the interpretation of ”omics” data. Recent
efforts employ model-driven analysis and transcriptomic data
for studying neurodegenerative diseases (Benetti et al., 2010).
However, while DNA microarrays have been extensively used
to comprehensively characterize the differentially expressed genes
(DEGs), the application of more sophisticated models, working
beyond simple differential expression detection, is still an open
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challenge (Fig. 1). To this end, the ability of reverse engineering
algorithms to infer putative gene-gene interactions, functional
relationships and genome scale regulatory networks has been
already proven to be successful (Faith et al., 2007; Gardner et al.,
2003). Although the applications to multicellular organisms are still
sporadic, this class of algorithms represent a promising approach
towards genome-wide studies of complex diseases (Basso et al.,
2005; Wang et al., 2009). Our aim in this paper is to propose a novel
reverse engineering strategy in order to investigate transcriptional
changes induced by prion propagation in mouse models.

Among the various neurodegenerative disorders, prion diseases
have captured the attention of the scientific community due to
their infectious nature and transmissibility (Prusiner, 1982). The
cellular form of the prion protein (PrPC) is the substrate for an
autocatalytic reaction that, through its recruitment and modification,
acts in the propagation of a disease-causing form denominated
PrPSc or prion. This autocatalytic process leads to the formation
of fibrils and amyloid deposits, and is associated to a progressive
fatal damage of the brain tissue. Importantly, experimental evidence
has demonstrated that PrP knockout and PrP anchorless (Chesebro
et al., 2005) mice are resistant to infection. In spite of the many
approaches aimed at unveiling its physiological functions, the
degree of overlap between the pathogenic dysfunction of the protein
in prion diseases and its normal role is still largely unknown (for a
review see (Aguzzi et al., 2008)). In such a complicated ”puzzle”,
it is widely accepted that since PrPC is a key mediator for the
neurotoxicity of PrPSc, studying its biological functions through the
identification of its related molecular partners, may help unraveling
the mechanisms underling prion-dependent neurodegeneration.

In light of this observation we integrate here a recently published
transcriptional dataset (Hwang et al., 2009), monitoring prion
propagation in mouse brain tissues, with independent gene-
expression experiments performed under many diverse conditions.
The computational framework introduced in this paper aims at
deciphering transcriptional variations in the context of a system-
wide regulatory network, moving from a single gene perspective to
a system-level analysis (see Fig.1). The procedure is composed of
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Fig. 1. System Response Inference: A toy genetic-network consisting of
6 genes exemplifies the advantages of using a system level data comparison.
Standard statistical tests (i.e. t-test) unveil significant fold change in gene
expression variations for each transcript individually (b), neglecting the
underlying regulatory network. Such statistical test can identify whether the
expression level of a transcript is significantly changed with respect to a
reference. Putative gene expression changes are reported in panel c. In this
specific example two genes are identified to be over-expressed (red/+ nodes
in panel b) and one down-regulated (green/- node), while the remaining 3 do
not show any changes (grey nodes). By knowing the corresponding genetic
regulatory network (d), we can discriminate the coherent variations from the
unexpected ones. As shown in the example, two of the genes that showed a
significant expression variations are satisfying the model predictions (genes
x and y), and their expression changes can be explained by the variation
of gene z. This is reflected by a skew distribution of discrepancies (i.e.
residues), between model predictions and observed data, centered around
0. At the same time, one transcript, w, is not responding coherently to the
initial model. The fact that its expression is unchanged, when it should have
been increased, might relate to an anomalous direct effect of the pathology,
preventing a synergistic response between all the genes in the system. Hence,
the list of ”perturbed genes” can be sensibly different form the standard
DEGs identified from individual fold change analysis (b/e).

three steps. In the first step, using a compendium of gene expression
measurements, we obtain a genome-scale interaction graph of the
mouse brain. Then, in a second step, we refine the initial model via
a multiple regression scheme. In the third step, this linear regressive
model is used to investigate expression changes associated to Prion
infection, where for each gene we estimate the influence of prion
propagation on its transcriptional regulation. In other words, we
systematically identify the genes that result ”perturbed” with respect
to the nominal model by a prion infection. A remarkable outcome
of our network-based strategy is the ability to identify PrPC among
the predicted prion targets, in agreement with its role of primary
substrate for prion replication. This result is even more important
if we consider that up to now prion infection has never been noted
to interfere with the transcriptional regulation of the Prnp gene.
Moreover, the comparison between the PrPC partners inferred on the
nominal model and the PrPSc targets predicted from the perturbed
model allows to estimate the significance of the overlap between the
two.

2 RESULTS
In a recent work (Hwang et al., 2009), more than 400 DNA-chips
were collected, monitoring the transcriptional changes associated
to various disease stages, prion strains and mice backgrounds. The
authors interpreted differentially regulated genes in light of the
known network of protein-protein interactions and hypothesized
a specific temporal order of the biological processes involved. In
our study, the same dataset of (Hwang et al., 2009) is integrated
with a large compendium (i.e. 1366 Affymetrix experiments) of
gene expression measurements associated to various conditions.
We first trained a gene network model (Ac, see methods) on
this large compendium. Next, on the background of this initial
network, we evaluated the impact of an independent dataset (Hwang
et al., 2009) containing gene expression variations caused by a
perturbing event, that can be either an external agent (i.e. prion
inoculation) or an endogenous perturbation (i.e. Prnp knockout). In
our interaction network, inoculated prions were modeled as hidden
variables/nodes, while a gene knockout was interpreted as a node
deletion (see Fig. 2). We then investigated the behavior of the system
upon Prion infection or Prnp deletion with special attention to
alterations in the gene expression that could not be explained by
the initial nominal model. Such discrepancies are assumed to be the
consequence of the investigated perturbing events (see Materials and
Methods). This method, called ”System Response Inference” (SRI),
is inspired by computational frameworks published in (Gardner
et al., 2003; di Bernardo et al., 2005; Bansal et al., 2006). Results
are organized in four subsections. In the first, we investigate the
inferred co-expressed partners ofPrnP . In the next two subsections
we analyze and interpret the data of (Hwang et al., 2009). SRI
predictions for putative PrPC buffering genes and PrPSc targets
are analyzed and the differences emerging from our system-level
approach with respect to the results in (Hwang et al., 2009) are
discussed. Subsequently, we consulted a drug database in search
for druggable targets among the first neighbors identified in the
extrapolated network for PrPs. Finally, an analysis performed across
human, mouse and rat samples revealed co-expression patterns that
were highly conserved across these species.

2.1 Prion protein co-expressed partners
By applying SRI to the collected gene expression database on
mouse brain tissue samples (see Supplementary Table S1 for GEO
codes) we first identified 450 significantly Prnp related genes, of
which 37 were anticorrelated (see Supplementary Table S2-partners
and Fig. 2.a). As we have already observed in a previous study
(Zampieri et al., 2008) for unicellular prokaryotes and eukaryotes
(i.e.E.coli and S.cerevisiae) the strongest source of co-expression
was the co-participation of gene products in the same protein
complex (see Fig. 3). This observation reflects the tendency to
establish ”stable-bindings” between gene products of the inferred
interacting gene pairs. Indeed, many predictions were in agreement
with previous experimental studies seeking for proteins capable of
binding PrPC such as Cltc, Gpm6a, Gpm6b (Rutishauser et al.,
2009), Lsamp, SparcL1 (Schmitt-Ulms et al., 2004), Y whag,
Y whah andGnao1 (Watts et al., 2009) or to co-localize with prion
(i.e. ApoE) (Nakamura et al., 2000) (see Supplementary for further
discussion). In addition, Aplp1, the precursor-like amyloid protein,
has been identified, in association with App, as a probable ligand
of PrP (Yehiely et al., 1997). Such prediction was supported by
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Fig. 2. Gene-Network approach: Scheme of the analytical framework
applied to investigate the PrPC functions and PrPSc targets. A large
compendium of gene expression measurements, comprehensive of a variety
of different conditions, is first used to extrapolate a weighted network of
”gene-gene” interactions (a, PrPC is highlighted in yellow). Nodes represent
genes, while edges link ”interacting” genes. The rewiring of the network
caused by self-replicating prions (red node, b) or by a deletion of the gene (c)
will render our initial nominal model ineffective for the genes directly linked
to the perturbation. We address this issue comparing the inconsistencies (i.e.
residues) of the model predictions if applied to perturbation-specific (b, c, d)
experimental values.

their similar proteolytic processing and ability to bind copper and,
in case of Aplp1, to inhibit the cleavage of App by β-secretase
(Bace1). It is worth noting the connection with Apbb1, thought to
modulate the internalization of beta-amyloid precursor protein and
Rtn3, also inhibiting Bace1 activity. Furthermore, synaptojanin1
(Synj1), the major inositol 5-phosphatase (jointly with Pitpna
and Cadps) is known to reduce the levels of cellular PIP2 and
it has been shown to have an important impact in determining
the level of Aβ42 (Berman et al., 2008). The co-regulation with
Rtn4, which reduces the anti-apoptotic activity of Bcl-xl and Bcl-2,
might relate to the observed inverse transcriptional proportionality
between Prnp and Bcl2l2 (e.g. Casp6, Prdx4), pointing to a role
of PrP in apoptosis (Kim et al., 2004). Btf3, Cdk2 and Baz1a, all
involved in transcriptional regulation, are candidates for inhibiting
the Prnp expression.
By performing an ontology enrichment (see Table S3) we identified
some of the biological functions already associated to PrPC,
suggesting the potential molecular partners responsible for these
roles. For instance, the presence of small GTPase molecules
such as Rab proteins might emerge because of clathrin-mediated
endocytosis, reflecting their control role in PrPC trafficking.
Furthermore, the enrichment of categories like Golgi vesicle
transport and endocytosis may be related to the transit of PrPC

from the endoplasmic reticulum to the cell surface through the
Golgi apparatus. Several other genes were involved in nerve
impulse transmission, such as again Synaptojanin-1, which in
association with Lrp11, reinforced the evidences that PrPC is
internalized via clathrin coated vesicles. In parallel, caveolin-
mediated signaling (Pantera et al., 2009) (here represented by
Cav2) and the localization of PrPC on membrane lipid rafts might
explain the occurrence of genes related to lipid transport. In
light of the many studies observing behavioral changes in Prnp
knockout mice (i.e. reduced level of anxiety (Nico et al., 2005)), we
highlighted the presence of genes related to anxiety, such asGnao1.
Impaired hippocampal-dependent spatial learning was observed

Known interactions
Inferred interactions

Fig. 3. Network in− silico validation: We assessed the ability to recover
the network of protein-protein interactions (PPI), protein complexes (PC)
and transcriptional regulation (TF) in 3 different mammals (mouse, rat and
human, see Materials and Methods). We evaluated the overlap between the
inferred networks (dashed red lines in the toy network) with the known
networks (solid black lines) by computing the relative sensitivity index
( true positive
true positive + false negative

). The histogram shows that even in such
under-determined conditions (ratio experiments/genes ∼ 0.1) a reverse
engineering approach on a multicellular system may extrapolate meaningful
information.

in Prnp null-mice as well, supporting the inferred relationship
with Ncdn, required for spatial learning processes and Cpeb1
involved in long term memory (Si et al., 2003) (see next section for
further discussion). Furthermore, several sources of experimental
evidences have shown the effect of PrP on cell proliferation and
differentiation (Salès et al., 2002) and were here confirmed by the
enriched categories such as the nervous system development and
differentiation (i.e. Ids, responsible for mental retardation, Trim2
contributing to the alteration of neural cellular mechanisms, and
Nedd1). These properties were related to the activation of PrPC

by cAMP and MAP proteins kinases (which are also identified
as significant ontological categories) through the interaction with
Ncam (Santuccione et al., 2005). Our analysis did not retrieve the
Ncam interaction, but identified a closely related gene Nrcam,
alongside many other cell adhesion molecules. Furthermore, the
role of PrP in synaptic activity, neurotransmission and neuronal
excitability was highlighted by the identification of Syn1. The
previously observed relationship between PrP and Erk activity
might be just a secondary effect of the relationship here identified
with Ras signal transduction, MapK, calcium signaling pathways
and PKC signaling (i.e. Gnb2l1, Prkd3). Furthermore, the high
percentage of genes related to homeostatic processes and ion
transport (i.e. Adam11 a metalloprotease, probably reflecting the
known interaction with Adma23) indicated a possible involvement
in protection against oxidative stress (i.e. Oxr1) and metal ion
dysmetabolism. Finally, it is interesting to notice that melanogenesis
emerged as a highly significant biological pathway (Table S3),
hence indicating the possibility for a relationship between non-
pathogenic presence of proteinsase-resistant PrP and the mechanism
of production and formation of melanin (Fowler et al., 2006).

2.2 PrP knockout compensation
Even if the PrP sequence is very well conserved among mammals,
its ablation in mice results in no clear phenotype, nor is essential
for their survival. This might be due to several reasons, such as
the presence of buffering genes masking the PrPC absence, or to
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an adaptive process during central nervous system development.
We used the inferred mouse transcriptional gene-network model to
interpret the response to a Prnp deletion from the same dataset of
(Hwang et al., 2009) (see Methods and Fig 2.c). We immediately
noticed that, as expected, the perturbation intensity, as well as the
Prnp associated q.value, was the lowest (see Table S2-knockout).
In addition, 27 genes show an equal incoherent variation (i.e.
q.value = 0), which was not predicted by the initial gene-
network model. It is worth noting that a mere comparison of these
transcripts with their reference counterparts (i.e. normal state) does
not show any relevant expression changes. Indeed, in (Hwang et al.,
2009) no significant expression changes were found in PrP-null
mice. This highlights the difference between our approach and a
standard comparative study, emphasizing the ability of our method
to extrapolate non-obvious transcriptional signatures.

Among these genes, the enriched biological processes were
tRNA metabolism, intracellular transport and synaptic transmission
(Table S4). We could observe for example the presence of Dstn,
encoding for an actin-binding protein belonging to the ADF family
responsible for enhancing the turnover rate of actin. In addition,
Gls catalyzes the conversion of glutamate from glutamine and
its potential role for compensating PrP absence may derive from
its implication in behavior disturbances in which glutamate acts
as a neurotransmitter. Gls is also involved in Alzheimer, just
like Chgb, a tyrosine-sulfated secretory protein. Given their co-
expression patterns with PrPC (see previous section) and their
high significance as targets of PrPSc (next section), Sirpa and
Cpeb are of particular interest (see also Fig.S2). The former is
a transmembrane glycoprotein receptor involved in the negative
regulation of receptor tyrosine kinases, being a substrate for tyrosine
phosphatases (PTP). This gene may participate to the signaling
cascade involving Fyn and their concomitant activation with Prnp
was observed in bovine monocytes infected by Theileria (Jensen
et al., 2008). The latter has been recently discovered to be able to
aggregate as a prion-like protein (Heinrich and Lindquist, 2011).
Additionally, in (Si et al., 2003) the authors showed its vital role
in long-term memory, and it is tempting to speculate that a similar
function may exist for PrP. It is worth noting that both transcripts
are similarly reacting to a Prnp deletion and to prion infection
(Table S2), thereby suggesting that in case of prions replication
the system is attempting to compensate for a lack of PrPC . By
comparing the residues in Prnp-null infected mice with mock-
inoculated Prnp0/0 (Fig. 2.d) no significant genes were identified
(q.value < 0.05). This result was consistent with the insensitivity
of prion knockout mice to prion infection and it was in agreement
with the conclusions in (Hwang et al., 2009).

2.3 Prion targets
The same procedure has been used to determine the portion of the
inferred network which is most ”sensitive” to prion-perturbation.
Hence, in order to unveil the nodes (i.e. genes) which are likely
affected by prions, the predictions of the initial model were tested
on the experimental data collected in (Hwang et al., 2009) and the
inconsistencies were detected through a rigorous statistical test (see
Methods and Fig. 2.b). Model-based inference on prion infected
mice resulted in 3255 genes with an associated q.value lower than
0.01 (see Table S2-targets). As already mentioned, previous results

showed that prions bind with high specificity to PrPC, and that
further effects were mediated by its autocatalytic recruitment and
conversion, although so far, no transcriptional variations have been
extrapolated for the Prnp gene during infection (Benetti et al.,
2010). Notwithstanding these studies, the Prnp gene was here
identified among the most significant prion ”targets”. Therefore, as
a reference threshold for the q.value significance, we selected the
one associated to Prnp (7.12 ∗ 10−9), as we did previously for the
Prnp deletion. This led to the selection of 389 genes (out of the total
13204 considered). In (Hwang et al., 2009) the authors identified
approximately 7400 DEGs in at least one of the five combinations
prion-strain/mouse-background, and among these genes, 333 were
identified in all the combinations. Again, only a small fraction of
genes (i.e. 58) are in common with our list, mainly those involved
in immune system processes (see Table S8).
Among the detected prion targets several were in common with
the previously observed co-expressed partners (Section 2.1) of the
cellular prion form (p.value = 1.07·10−6 hypergeometric test): for
example, Magi2, encoding a protein interacting with Astrophin1
(modulating activin-mediated signaling), Snap25, already detected
in scrapie-infected GT1 cells (Sandberg and Löw, 2005), or
Cntn1, also involved in nervous system development. This in turn,
reinforced the evidences of the central role of PrPC as a mediator
of prion neurotoxicity. Various genes in the list were involved
in apoptosis, inflammatory response and leukocyte activation (see
Table S5). It is not clear what are the primary damage-causes, nor
whether such damage is due to a gain or a loss of PrP functions,
but our findings suggested apoptosis as a mechanism directly
influenced by prion propagation. Genes involved in signaling,
neurotransmitter transport and integrin mediated signaling were
perturbed during prion infection, in agreement with the reduced
synaptic neurotransmission and dysfunction observed during TSE
propagation (Ferrer et al., 1999). In this respect, it has previously
been reported that scrapie-infected mice showed higher Bace1
activity, suggesting an impairment of the regulatory role of PrPC

in its modulation. Our results indicated an unbalanced response of
Bace2, which stimulates App processing in a non-amyloidogenic
pathway suppressing the level of Aβ production, probably in an
attempt to compensate for Bace1 dysfunction. It is also worth
noting the Atf6 gene, one of the main stress sensor of the ER
membrane and the related Eif4e, which has been recently found
to potentially play a main role in prion induced neurodegeneration
(Roffé et al., 2010). In addition, it has been observed that transgenic
mice expressing PrPC deletion mutants, or over-expressing Dpl
are characterized by vacuolation of the myelinated fibers (Bremer
et al., 2010), where PrPC presence was discovered, bringing back
our analysis to genes involved in myelination (i.e. Lgi4, Klk6)
and the several integrins among the most significant hits (Itgax,
Itgb2, Itgb4). The enrichment of genes involved in the glycan
degradation pathway and lipid transport and sequestering might
reflect the response of the system in controlling the amount of PrP on
the membrane surface, where its attachment is a necessary condition
for prions to induce neurotoxic signals. We also noticed the presence
of several apolipoproteins, such as Apoc1, shown to play a role
in Alzheimer, while ApoD and Apold1 may play a role in brain
vasculature, affecting brain-blood permeability.
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2.4 Druggable targets
Prion molecular targets may pave the way to the development and
identification of compounds able to disrupt the mechanism of action
of prion neurotoxicity. By targeting the inferred gene products it
might be possible to modulate disease progression, delaying it in
time, or to interrupt a fundamental neurotoxic chemical reaction. We
consulted a repository database (www.Drugbank.ca) and linked
approved drugs to the genes identified in our analysis (see Table
S6). Drugs acting on cholesterol by inhibiting its biosynthesis, such
as statins, have been previously used (Taraboulos et al., 1995) for
the treatment of Prion diseases. In particular, here we identified
simvastatin (Kempster et al., 2007) its ability to interact with
Itgb2. We also noticed Spermine (polycataionic compound) and
N-Acetyl-D-glucosamine, which have been shown to prolong the
incubation time (Trevitt and Collinge, 2006). Compounds such as
antihemophilic factors, Tenecteplase and Bevacizumab, are instead
acting on the coagulation process, removal of blood clots and the
inhibition of blood vessel growth respectively. The second one in
particular seems to be a promising treatment since it prevents the
interactions of VEGF with its receptors. Abnormal regulation of
VEGF expression has been implicated in several neurodegenerative
disorders, including Prion disease (Koperek et al., 2002), where
neurodegeneration might be caused by impairing neural tissue
perfusion. Another promising compound is choline, a major
component of the polar head group of phosphatidylcholine, which
plays a vital role in basic biological processes, including the
maintenance of cell structure and function. The recent hypothesis
that prions can form permeable pores and influence ion channels
(Kourie et al., 2003), points to the predicted drugs acting on sodium
(like Lamotrigine, Amiloride, Quinidine) or potassium channels
(Glibenclamide), while Iron Dextran could in principle be used to
counteract metal ions dysmetabolism, a common effect of several
neurodegenerative pathologies. We were also able to extrapolate
three drugs acting on tyrosine kinase activity, Aldesleukin , Insuline
and Methymazole, in conjunction with antioxidant compounds,
such as L-Cysteine, vitamin C, NADH, succininc, L-Glutamic acids
and others, shown to be able to reduce PrPSc propagation in infected
cell (Kocisko et al., 2003).

2.5 Co-expression patterns across multiple species
The SRI approach provides an analysis of transcription changes that
is not restricted to individual isolated genes, but rather considers the
system as a whole. This method is hence appropriate to characterize
the prion protein interactome in its genetic-network context. Three
nominal networks for mouse, rat and human (see Fig. 3 and
Methods section) were inferred from three large compendia of
transcriptional data. By retaining only the parts of these networks
with consistent signs, we were able to extrapolate the co-expression
patterns which are conserved among the three species. An analysis
of the connectivity of the resulting network clearly revealed the
presence of a major connected component (Fig.S3). Surprisingly,
this conserved connected component included several genes related
to various neurodegenerative diseases (i.e. Prnp/Prion diseases,
Snca, Uchl1/Parkinson’s disease, Bace1/Alzheimer’s disease),
making neurodegeneration one of the most significantly represented
biological process (see Fig. 4.a and Table S7). It is tempting to
speculate on the fact that the conservation across species of these
transcriptional interdependencies, might reflect the important role

• Gap junction
• Neurodegenerative Diseases
• Cell cycle
• Phosphatidylinositol signaling system
• Proteasome

•Ribosome
• Long term depression potentiation
• Leukocyte transendothelial migration
• Natural killer cell mediated cytotoxicity
• Oxidative phosphorylation

a b

Fig. 4. Conserved co-expression patterns: The connected component
emerging from the selection of the conserved graph of co-expression
patterns across three different species is here represented. This sub-network
consists of 943 genes and 2409 interactions (see Fig 4.a and Supplementary
Materials). Gene centric view (a): genes belonging to the identified
significant enriched pathways are highlighted in different colors. Edge
centric view (b): by selecting only the predicted edges of genes belonging
to enriched categories and using the same color code, we highlighted the
”compactness” of relationships characterizing specific pathways, such as
oxidative phosphorylation, ribosome, long-term depression and proteosome
(see Fig.S3-S4 for further details). Genes related to neurodegenerative
processes seemed to have many ”promiscuous” interactions linking to
diverse biological processes (red edges).

of coordination in their transcriptional regulation. The fact that
a large fraction of genes is related to neurodegenerative diseases
suggests the existence of a delicate balance at the transcriptional
level, whose alteration may have severe consequences. Focusing
only on the relationships identified for the genes belonging to
the significantly enriched processes, we evinced an interesting
property of this evolutionarily conserved graph (Fig. 4.b and
Fig. S3). While genes related to cell cycle, ribosome and oxidative
phosphorylation, were clustered in compact modules, genes related
to neurodegeneration (red dots) were sparser in the network, with
many cross-talking edges. Our results are complementary to other
studies performing global analysis of human protein interactions
(Limviphuvadh et al., 2007). In a recent work (Goñi et al., 2008),
investigating the known network of protein-protein interactions, the
authors showed that genes characterized by an altered expression
level in neurodegenerative diseases take part in many different
pathways, reinforcing the concept of a multifactorial pathogenesis
of neurodegenerative disorders. In our study, relying exclusively
on transcriptional dependencies, similar conclusions are drawn.
This in turn supports our first claim that key genes might be
responsible for mediating and triggering the systematic response to
a perturbing event (i.e. Prnp, see Fig.S3-S4) and that even in such
complex systems, valuable information can be extrapolated by their
transcriptional analysis.
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3 DISCUSSION
In this study we employed previously published gene expression
datasets to recognize the function of PrPC and its role in responding
to prion inoculation inducing incoherent gene expression variations
in a gene-network model. A reverse engineering approach was here
adopted to analyze the data of (Hwang et al., 2009) starting from
the basic assumption that a global transcriptional rearrangement
must take place in order to adapt to a new condition (i.e. prion
infection). Specific gene expression changes were expected to
trigger other expression variations to finally reach an internal state
of balance possibly different from the original one (see Fig. 1 and
2). Our model-based results restricted the spectrum of potential
key interactions, performing an educated selection of transcripts
that show an incoherent response with respect to the overall
systemic reaction to prion infection. The proposed framework offers
new insights into the physiological function of PrPC and into
the molecular mechanisms underlying prion disease pathogenesis,
unveiling a potential key role of previously unsuspected genes.
Our results suggest that in order to fully explore the potential and
advantages of microarray technologies, the size of the collected
datasets must be large enough to capture the complete range
of variations associated with the studied phenomenon. In this
perspective, the data derived from a single experimental condition
complement the large independent dataset. Here, we show that
SRI is not only a valuable tool to perform genome-wide studies
in mammals, but is also capable of predicting the complex effects
of endogenous and exogenous perturbations in a biological system,
restricting the spectrum of plausible relationships that have to be
experimentally investigated.

4 METHODS

Data collected
For Mus Musculus we compiled a collection of microarrays (XTraining)
containing experiments performed with Affymetrix chips (1366 experiments
Affymetrix Mouse Genome 430 2.0), selecting Gene Expression Ominibus
(GEO) experiments performed on brain tissue. Probe-set intensities referring
to a common gene were averaged, and only genes with a corresponding
orthologous gene in Human were retained (for a total of 13204 genes).
Identical procedure was followed to collect a dataset of gene expression
profiles for Human (Affymetrix Human Genome U133 Plus 2.0 Array)
and Rat (Affymetrix Rat Genome 230 2.0 Array). See Table S1 for the
list of GEO codes. All datasets were preprocessed and normalized prior
to network inference. Protein Complex network for human, rat and mouse
were downloaded from the CORUM database (Ruepp et al., 2010), while
Protein-Protein Interactions from the MppDB website (Li et al., 2009).

SRI procedure
In this section we describe the method used for reverse engineering
large scale gene-gene transcriptional dependencies and predicting systemic
changes induced by a perturbing event (i.e. prions). This framework is
inspired by the works of (Gardner et al., 2003; di Bernardo et al., 2005;
Bansal et al., 2006). In order to perform a truly systems-level analysis of
gene expression profiles, we first seek for significant transcriptional inter-
dependencies by means of a relevance network approach (Step I). We then
use this relevance network to identify a nominal model based on a linear
ODE description (Step II). Finally, the inferred model is used to detect gene
expression changes caused by prion infection orPrnp deletion incompatible
with the model (Step III).
Step I: Relevance network algorithms have the remarkable advantage of
being computationally feasible for genome-wide applications (Faith et al.,
2007; Basso et al., 2005). This class of methods assumes that gene-gene

interactions can be identified by determining the gene pairs possessing the
highest expression similarity over multiple conditions. A square matrix
(n × n, where n is the number of genes) of pairwise Pearson correlations
between gene expression patterns is computed. The (unsigned) absolute
values of Pearson correlation between gene i and j is:

Cij =

∣∣∣∣∣E[(xi − x̄i)(xj − x̄j)]
√
vivj

∣∣∣∣∣ , (1)

where xi is the expression vector for gene i (i.e. m gene expression
measurements made under diverse conditions) and xj is the expression
vector for gene j. In Eq. 1 x̄i, vi and x̄j , vj are means and variances
of xi and xj over the m experiments and E[·] denotes expectation. Each
row/column of C (i.e. Ci) can be considered as a distribution of pairwise
similarity coefficients between a gene (i.e. i) and all the others. This
distribution can be transformed in the corresponding vector of rankings,
from 1 to n (W i). As a consequence of this transformation, the correlation
between i and j is associated to two ”ranking values”. Denote W i(j) and
W j(i) the rank of Cij with respect to Ci and Cj respectively. Genes
(i and j) are considered as putative interactors if and only if both their
ranking indexes (W i(j) and W j(i)) are above a certain common threshold
θ (Eq. 2). A graph of putative interactions, GR, is obtained by the following
relationship:

(i, j) ∈ GR ⇐⇒W i(j) ≥ θ & W j(i) ≥ θ. (2)

Step II: For each gene i we assume that the change in concentration can
be expressed as a linear combination of the concentrations of interacting
genes (i.e. xj such that (i, j) ∈ GR), plus possibly an additive
external stimulus/perturbation (Eq. 3). This external input can be an
environmental change (i.e. nutrient viability), a genetic perturbation (i.e.
overexpression/deletion) or a toxic compound able to perturb the system (i.e.
drive the system to a new steady-state). Similarly to (Gardner et al., 2003),
the responses of the system to the various perturbations can be formalized as
a system of linear differential equations (ODEs) in which the input vector
u = [u1, . . . , up] is modeled as a linear combination of the external
perturbations ui

dxi

dt
=

∑
(i,j)∈GR

aijxj +

p∑
l=1

bilul (3)

or in matrix form (for x = [x1 . . . xn]T ):

ẋ = Ax+Bu (4)

where the coefficient aij , representing the influence of gene j on gene i, is
non-zero if and only if (i, j) ∈ GR. The variable u can be taken as a vector
(p × 1) identical to 1. The n × p input matrix B collects the influences
of the external perturbations u on each single gene. The k-th column of B
indicates how effective/intense the k-th perturbation uk is on the state vector
x (di Bernardo et al., 2005). Under steady state conditions, the variation in
time of the mRNA concentration is by definition equal to zero. In this case,
Eq. 4 becomes a simpler system of algebraic equations:

Ax+Bu = 0. (5)

In order to estimate the parameters of the model we employ a large
compendium of gene expression profiles (XTraining), containing many
different external perturbations, none of them related to prion infection.
In Eq. 5 we assume that the matrix A stays constant over all the different
experimental conditions, and that the columns of B are sparse (i.e. few non-
zero elements). This last assumption reflects that the different perturbations
collected in the dataset are likely to affect just a small portion of genes,
if compared to the entire genome. This is justified for example in case of
mutants, where a specific gene has been knocked out. By collecting a vast
selection of different experimental conditions (i.e. more than 1300 chips)
we aim at avoiding that particular perturbations are overrepresented in the
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dataset, hence that the assumption of sparsity does not hold for some of
the rows of B. Therefore, for each transcript, expression changes caused
by the direct effect of an external stimuli are likely to occur just in few of
the experimental conditions of the training dataset, and to be ”uniformly”
distributed over the rows of B (i.e. different perturbations do not act always
on the same transcripts). Under these assumptions, the contribution of B is
marginal, and sufficiently accurate estimation of the non-zero terms of theA
matrix (aij ) can still be drawn from the following approximation:

Ax ≈ 0. (6)

Similar arguments are used in most reverse engineering algorithms, see e.g.
in (Cosgrove et al., 2008). A multiple regression framework is here used to
learn the network coefficients aij from the training datasetXTraining . This
framework seeks for the solutions which minimize the L2 norm between the
predictions of the model and the experimental values of XTraining . For
each gene, the result is the following vector of coefficients:

âci = argmin
a

(‖ xi −
∑

(i,j)∈AI

aij

aii
xj ‖2) (7)

where xi is a vector of gene expression measurements of gene i (i.e. row of
XTraining). The solution of Eq. 7 is correct up to an undetermined scaling
factor (the diagonal term aii) by which we rescale each row of A. The
outcome of the n regression problems is a weighted asymmetric matrix Ac
and, for each gene i, a vector of residues (ri), resulting from the difference
between observed and predicted values.
Selection of θ: In order to avoid an arbitrary selection of the cut-off
parameter θ in Eq. 2, we adopt a Bayesian Information Criterion (BIC).
Since an increase in the number of free parameters in Eq. 7 always reduces
the absolute sum of residuals (r), we search for the best compromise between
the model complexity, in terms of the number of parameters (i.e. non zero
entries in the connectivity map GR), and fitness quality (i.e. discrepancies
between predicted and observed values). Therefore, we fitted multiple
models corresponding to different choices of θ in Eq. 2 and estimated
the corresponding fitness qualities via the Bayesian Information Criterion.
The BIC criterion (Eq. 8) is the most common criterion for the fitness
of a mathematical model to observed data, leaning more towards lower
dimensional models (i.e. sparse matrices)

BICi = m

[
ln

(
RSSi

m

)]
+ ln(m)Ki (8)

whereKi is the number of parameters in the model for gene i (i.e. number of
edges of i) and RSSi the residual sum of squares (

∑m
z=1 r

2
iz

). The value

of θ corresponding to the minimum of the mean of BICi indexes (θ̂) is
selected for the final step of the analysis (Eq. 2):

θ̂ = argmin
θ

(

n∑
i=1

BICi) (9)

The identification of the graph GR is the most under-determined step of
the reverse engineering approach. However, coherently with (Bansal et al.,
2006), we found that small changes of θ do not drastically change the
structure of Ac and its numerical entities.
Step III: The resulting Ac model is used to predict the expression profiles
associated to a new condition, here denoted as XPrion (in our case the
dataset published in (Hwang et al., 2009)). The procedure is to search for
the genes for which the nominal model Ac is incorrectly describing the
expression changes in the new experimental condition. The dataset XPrion
contains perturbative effects induced exclusively by prion propagation or
Prnp absence: prion infection (143 experiments/columns in XPrion),
Prnp deletion (22 experiments) and both perturbations at the same time
(27 experiments). According to Eq.6 we expect that if gene i is not directly
influenced by these external agents, then its expression changes should be
correctly predicted by the nominal model (i.e. AcXPrion ≈ 0). This
should be reflected in a skew distribution of residues around 0 (call them
rPrion). On the contrary, whenever gene i is directly influenced by a prion-
related external stimulus we expect the initial model to be ineffective in

Fig. 5. Residue distributions: The results obtained for the Prnp gene
are shown as an example. While for the training set (blue) a Gaussian
distribution centered around zero was recovered (in agreement with the
expectation of white noise residues), a heavier tail was emerging when
predicting prion infected mice measurements (red). The drastic opposite
effect is expected when knocking out the Prnp gene (yellow) or when both
perturbations are applied (light blue). It is worth to stress that the authors
of (Hwang et al., 2009) did not find any significant expression changes
in the Prnp gene. This result was common to all the studies performing
gene expression analysis in prion infected systems (for a review see (Benetti
et al., 2010)). Our outcome was different from previous studies because we
allowed a gene to be ”significant” regardless of its individual difference in
expression between infected and normal samples. Rather, systemic gene
expression alterations are here considered and used in order to estimate
the expected expression changes of the singular transcript. In a system
level response a global transcriptional rearrangement is expected to counter
balance the new ”operating point/equilibrium”. If this regulation is not taking
place, or in other words if the gene is not able to properly respond, enhancing
or repressing its transcription, its contribution in the disease progression
should be taken into account as well (see Fig 1). Therefore, our approach
can be considered to be complementary to the analysis performed in (Hwang
et al., 2009).

predicting gene expression variations. This indicates that the equation should
be corrected as AcxPrion + BPrionuPrion = 0. Nonzero entries in
the i-th row of BPrion unveil the input “pathway” of the prion-related
perturbation. For each gene i, we test this hypothesis by comparing the
discrepancies that follow if we impose AcxPrioni

≈ 0 (i.e. rPrioni
)

with those obtained during the fitting procedure of Step II (ri), through a
two-sample t-test (Eq. 10) (see Fig.5):

ti =
ri − rPrioni√
s2ri
mt

+
s2rPrioni
mPrioni

(10)

where ri and rPrioni
are the mean of the residues in the training

and the ”prion-specific” dataset for gene i and sri , srPrioni
are

the corresponding standard deviations. Using the Student’s t-probability
distribution, a statistical significance (p.value) is assigned to each gene. Once
the distribution of analytical p.values has been generated, the q.value is used
to correct the measure of significance for multiple testings (Storey, 2002).
When the two distributions of residues are significantly different, the gene i
is considered to be a target of the applied perturbation.
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