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1 Methods

1.1 Other data sources

The protein complexes were downloaded from the MPACT subsection (http://mips.gsf.de/genre/proj/mpact/) of the
CYGD database at MIPS. Only complexes manually annotated from the literature are considered; those obtained
from high throughput experiments are disregarded (according to the MIPS classification scheme these last are
labeled “550”).

1.2 Time series analysis

As in [1], genes are filtered using a periodogram test. In order to retain only genes with a well-defined periodicity,
we fixed a more selective p.value than [1] thereby reducing the number of genes to 1951.

While the magnitudes of the HLs in the three collections showsome differences, in “normalized” terms (look-
ing e.g. at rank-ordered values), the agreement between thethree sets is sufficiently good, see [2] for a comparison.
The period of the YMC, computed in the time domain looking at the most impulsive-like categories (in Fig. S1 the
3 RNA polymerases), is estimated as 287.5 min (see Fig. S1 fora detailed description).

To each of the 1951 genes labeled as periodic, we associated aphase, computed maximizing the correlation
with respect to a train of 360 shifted sinusoids (resolutionof 1◦). Means and standard deviations of the phases
of periodic signals must be computed “mod360◦”, and are normally subject to large numerical errors and ill-
conditioning. A typical example is the following: assume two periodic genes are assigned the phasesφ1 = 350◦

andφ2 = 6◦. Owing to the360◦ periodicity, the peaks of the two genes are very close, but the average phase is
(φ1 + φ2)/2 = 178◦, which is obviously wrong. The correct answer requires a shift from the principal values of
the periodic signal:(φ1−360◦+φ2)/2 = −8◦. To avoid problems with biased mean values and/or the appearance
of inelegant negative phases around the “crucial” transcription bursts, the 0 phase was chosen so as to anticipate of
∼ 30◦ these events.

Given that the period is approximately 287.5 minutes, the phase delayφ can be transformed into time delayτ
by means of the relationτ = φ287.5

360
. Under the convention for the 0 phase, each period “begins” approximately

24 min before the transcriptional bursts.
For each gene, the pulse width is computed estimating on eachperiod the interval in which the expression

levels stays above the median value across consecutive samples.

1.3 Least squares regressions

In Fig. 1 of the paper, the least square fitting in the HL/phaseplot is given by the equation

φ = 9.25 HL − 104.8◦, R2 = 0.86, p.value∼ 10−7.

The corresponding p.value is computed via a Fisher test statistics. Since we have determined the period as 287.5
min and the zero phase∼ 30◦ before the impulsive bursts shown for example in Fig. S1, theequation in terms of
time delay with respect to the bursts,τt ≃ 0.8(φ− 30◦), is

τt ≃ 7.38 HL − 128.8 (min).
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Within most clusters, the standard deviation in terms ofφ is minimal; it is higher in terms of HL, see Table 1 of
the paper. Hence if we use weighted least squares regression, while the fitted curves we get are still very similar in
the range of values of interest, the differences are in the coefficient of determinationR2:

method regression R2 p.value
l. s. weighted w.r.t.φ φ = 8.95 HL − 101.24 0.92 ∼ 10−9

l. s. weighted w.r.t. HL φ = 9.03 HL − 99.76 0.54 ∼ 10−4

If ω = width of the pulses, then the corresponding least squares fits are

method regression R2 p.value
l. s. ω = 0.24 HL − 1.05 0.72 ∼ 10−5

l. s. weighted w.r.t.ω ω = 0.21 HL − 0.99 0.32 ∼ 10−5

l. s. weighted w.r.t. HL ω = 0.23 HL − 0.71 0.31 ∼ 10−2

Repeating the linear regression for the three plots in Fig. 2(b) of the paper we get:

• phase/HL (top plot)

method regression R2 p.value
l. s. φ = 6.84 HL − 33.05 0.64 ∼ 10−4

l. s. weighted w.r.t.φ φ = 4.39 HL + 27 0.82 ∼ 10−6

l. s. weighted w.r.t. HL φ = 5.26 HL + 6 0.68 ∼ 10−4

• width/HL (middle plot)

method regression R2 p.value
l. s. ω = 0.15 HL + 1.41 0.44 ∼ 10−3

l. s. weighted w.r.t.ω ω = 0.19 HL + 0.5 0.53 ∼ 10−3

l. s. weighted w.r.t. HL ω = 0.11 HL + 2.58 0.8 ∼ 10−5

• width/phase (bottom plot)

method regression R2 p.value
l. s. ω = 0.02φ+ 1.9 0.8 ∼ 10−6

l. s. weighted w.r.t.φ ω = 0.03φ+ 1.66 0.96 ∼ 10−10

l. s. weighted w.r.t.ω ω = 0.03φ+ 1.12 0.8 ∼ 10−6

Finally for the dynamical model of Fig. 5, ifψ is the order of the transfer function model used,ψ ∈ [1, 4], we
have

method regression R2 p.value
l. s. ψ = 0.09 HL + 0.32 0.52 ∼ 10−3

l. s. weighted w.r.t. HL ψ = 0.06 HL + 1.1 0.73 ∼ 10−5

1.4 Clusterization

The clusterization of the time profiles in Fig.1 of the paper is performed via a k-means algorithm using as distance
a nonnormalized correlation function. Varying the number of clusters and/or the (randomly chosen) initial cluster
assignments, the results (in terms of the regressions) are basically unchanged. A k-means algorithm is also used
to cluster the KEGG pathways in Fig. S3. In this case as distance we use the average of the pairwise correlations
between all genes of every two pathways.
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2 Other associations among functional categories

2.1 More compartmentalized categories

Other categories which can be associated with a particular cellular compartment emerge from the joint analysis
of pathways and protein complexes. For example lipid biosynthesis, which is to a large extent localizable in the
endoplasmic reticulum (ER) has a phase comparable to the translocon family of complexes (Fig. S5) which is
composed of the Sec61 protein translocator, the signal recognition particle which binds the ER-specific sequence
on the nascent polypeptide chain and the signal peptidase that cleaves it off.

2.2 Signaling proteins

Complexes with eminently intracellular signaling functions, such as the antagonistic cAMP-dependent protein
kinase and serine/threonine phosphoprotein phosphatases(respectively phosphorylator and dephosphorylator of
signaling proteins) have similar patterns of expression, similar timing during the YMC and high Pearson correlation
(at least for what concerns periodic genes).

2.3 Weakly periodic categories

Several categories linked to transcriptional activation or RNA processing, like the histone acetyltransferase enzyme
or the nuclear processing complex family (3’-end pre-RNA processing factors CFI and II and 3’-end polyadenyla-
tion factors PFI) or the chromatin assembly complex, seem tobe evading the tight phase coordination. However,
this is mostly due to the evanescent periodic pattern, if any, of the corresponding genes. Likewise for the nuclear
pore complex, which assists the export of mature mRNA through the nuclear envelope: most of its genes in fact
show bursts which are synchronous with the initial pulses but of very small amplitude, thus ambiguous in terms of
temporal classification.

3 Double peak and anticorrelated isoenzymes.

Especially for mitochondrially localized pathways such ascitric acid cycle and oxidative phosphorylation the
pulses are very broad, with a neat downregulation only in correspondence of the bursts of transcription and an
overall profile often exhibiting a double peak on each period(occurring with a phase lag of∼ 100◦ one from the
other, see Fig. S8). The four respiratory chain complexes for example follow this pattern in a fairly precise manner.

In order to investigate the meaning of this double peak characteristic, we consider genes whose products are
classified as isoenzymes. If we look at the correlation for all pairs of isoenzymes, see Fig. S6(a), we see that re-
stricting to periodic genes an almost bimodal distributionemerges, with a significant percentage (43 out of 210) of
isoenzyme pairs being anticorrelated (R < −0.3). This behavior has no counterpart on the distribution of expected
values (computed as above by means of a large collection of microarrays). In more than 50% of these anticorre-
lated pairs the pattern of activation in the time course is similar (see Fig. S6(c)), with one of the two isoenzymes
exhibiting a deep and prolonged downregulation immediately following the transcription bursts. The majority
of these pairs is involved in oxidoreductive processes, like, for example,SDH1-YJL045W, SDH3-YMR118C,
SDH4-YLR164W (all subunits of succinate dehydrogenase), or theNADP-dependent isocitrate dehydrogenase
pairsIDH1-IDP3, IDH2-IDP3, IDP1-IDP3, or the plasma membrane H+-ATPase isoenzymesPMA1-PMA2, or
the NADH dehydrogenase pairsNDE1-NDE2. Three among the most anticorrelated pairs of isoenzymes showing
this pattern are located along the pentose phosphate pathway, two on the cytosolic oxidative branch (SOL3-SOL4
andGND1-GND2), the third (the transketolasesTKL1-TKL2) downstream. The pentose phosphate pathway syn-
thesizes NADPH, which is the major source of reducing equivalents and, according to [3, 4], plays a major role
in the establishment of the cycle. Also the most anticorrelated isoenzymes in the glycolysis pathway, the alco-
hol dehydrogenases, have a similar pattern:ADH1 andADH3 (reducing acetaldehyde to ethanol) versusADH2
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(catalyzing the reverse reaction), see section 4 for a more detailed analysis of the periodic pattern in the central
metabolism.

4 Central metabolism

4.1 Periodic pattern analysis in the central metabolism

From Fig. S8, it seems that the long bursts of the citric acid cycle and oxidative phosphorylation genes could
be composed of two distinct adjacent phases for each period.Similarly, the profiles of the anticorrelated isoen-
zyme pairs mentioned in section 3 and reproduced in Fig. S9, show that of the two recurrent patterns described
in Fig. S6(c), one resembles the mitochondrial transcription/translation burst (upregulation approximately in the
interval 225÷375 min interval and periodically thereafter), the other ismore delayed (interval 300÷450 min) and
characterized by a deep downregulation during and after themain transcription bursts (200÷275 min). The alco-
hol dehydrogenases isoenzymes are “prototypes” of the 2 patterns:ADH1 andADH3 (respectively cytosolic and
mitochondrial, both reducing acetaldehyde to ethanol) follow the first, whileADH2 (using ethanol as substrate)
follows the second.

The first pattern (ADH1/ADH3) is synchronous with the hexokinases catalyzing the initial glucose phosphory-
lation: of the three isoenzymes,HXK2 has the earliest response but is also more rapidly repressed, while HXK1
is more long-lived and is expressed, together with the glucokinaseGLK1, also in the other interval [5]. Quite
unexpectedly, the enzyme for the final irreversible step of glycolysis, pyruvate kinase (CDC19, as the isoenzyme
PYK2 remains constantly basal), is neither synchronous with theADH1/ADH3 andHXK2 profile, nor with the
other one (ADH2 andGLK1), but rather delayed with respect to both modes (in Fig. S5 pyruvate kinase has the
highest phase delay). The high level of expression of alcohol dehydrogenase in all metabolic modes suggests that
pyruvate production may not be the rate-limiting step of thepathway, and that a delayed pyruvate kinase action
may help meeting cellular ATP demand by distributing uniformly ATP production along the cycle (see Fig. S10).
As a matter of fact,CDC19 peaks always precede the transcription bursts (in correspondence of the downreg-
ulation of the mitochondrial genes) and fall right after that. Most of the enzymes for the intermediate steps of
glycolysis do not show any significant periodic trend (see Fig. S7 for an overall view of the phase of the genes
on the central metabolic pathways), although on the other irreversible reaction, phosphofructokinase (both genes
PFK1 andPFK2) has some degree of resemblance withCDC19. On the contrary, the gluconeogenesis enzymes
pyruvate carboxylase (PYC1) and phosphoenolpyruvate carboxykinase (PCK1) show a strong correlation with the
genesADH1/ADH3 andHXK2.

The acetaldehyde-ethanol exchange is part of the so-called“PDH bypass” (i.e. route alternative to the pyruvate
dehydrogenase complex) for acetyl-CoA production, see [6]. The supply to this pathway (throughPDC5) is almost
continuous (except in the “valleys” of the pyruvate kinase)and the rest of the pathway, aldehyde dehydrogenase
(mostly isoenzymeALD6, mitochondrial) and acetyl-CoA synthase (ACS1, cytosolic) coordinated withADH2. On
the contrary, the pyruvate carboxylase branch followsADH1/ADH3, while the direct route pyruvate/acetyl-CoA
(PDH complex) is unclear (more synchronous withADH1/ADH3 though).

With the exclusion of the succinyl-CoA ligase (bothLSC1 andLSC2) all the steps of the citric acid cycle are
more in agreement with theADH1/ADH3 pattern and are rigorously shut down during the transcription bursts.
From Fig. S8, it seems that the long bursts of the oxidative phosphorylation genes overlap with both patterns.
Looking at the trace of observeddO2 (data taken from [1] and reproduced in Fig. S10(b)), citric acid cycle and
oxidative phosphorylation activation seem to correspond to the maximum drop indO2 concentration (200÷300
min interval following the transcription burst), but they seem to persist also long after the recovery ofdO2. It must
be noticed that the trace ofdO2 resembles closely the expression profile of the catalase enzymes that produceO2

detoxifying reactive oxygen species.
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4.2 Glucose-regulated carbon metabolism

There is a consistent literature on the influence of glucose abundance on gene expression [7, 8, 9, 10, 11]. On the
YMC, the standard glucose activated and/or repressed signaling pathways are not expressed. For example the Snf1
serine/threonine protein kinase complex subunitsSNF1, SNF4, SIP1, SIP2, GAL83, as well as the other regulated
genes on the same pathwayMIG1, CAT8 andADR1, do not show any significant pattern.

5 Further comments

5.1 Direct versus clustered correspondences phase/HL

Unlike Fig. 1(b) of the paper, a plot HL/phase for all periodic genes looks very scattered (see Table 1 of the paper for
the HL standard deviation on each cluster). One of the reasons may be that the HL measures are widely imprecise
(see comparison between HL datasets in [2]), another that HLvalues should probably be considered as context-
specific, parametrically dependent on a set of physiological conditions and/or on trans-acting degradation factors
[12, 2], while the HL values available from [2, 13, 14] represent more a “built-in” turnover rate. Nonetheless, as
we lump together genes according to either expression profiles (unsupervised approach) or functional annotation
(supervised approach) the linear relationship neatly emerges. It is tempting to speculate that the process of grouping
genes reduces the uncertainty of the turnover rate measuresand that functionally similar genes might share a similar
fate (e.g. being accumulated in specific P-bodies [15]) regardless of the exact value of the turnover rate.

5.2 Synchronization and pulse width

In [1] it is affirmed that broad profiles (like those associated here to “late” categories) may be due to loss of
synchronization in the population of yeast cells as they progress through the cycle(s). Based on what we show
in this paper, such an interpretation is problematic: loss of synchronization during a cycle would jeopardize the
entire transcriptional program on the following cycles, while on the contrary, we still see thin and precisely coor-
dinated pulses in the fast categories. Population synchronization is often said to be influenced by rapidly diffusing
molecules such asH2S [16]. We notice here that the sulfate-related pathways are expressed only in the first part
of each cycle. In spite of the high coordination and early phase, the peaks for these categories last in average 100
min, see Fig. S4.
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Figure S1:Computation of the period of the bursts in the YMC. When the period is computed via Fourier
analysis, as is done in [1], the answer is 300 min. However, a closer look at the genes having impulse-like behavior
(in this Figure the three RNA polymerases) reveals that the sampling is not perfectly synchronized with the period
observed: in a time window twice the period (200÷775 min) there are 23 samples instead of the expected 24, and
the “11.5” samples per period ratio seems to yield a more accurate matching of the peaks. The resulting period is
therefore11.5 · 25 = (775 − 200)/2 = 287.5 min. Notice how this explains why the second peak is less resolved
that the first and third one in basically all Figures shown in this paper.
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Figure S4: Correlation between genes along the KEGG metabolic pathways (genetic information categories such
as transcription, translation, and DNA replication and repair are not included), computed for the yeast metabolic
cycle time series (top plot) and for a collection of 790 yeastexperiments (bottom plot). The correlation is computed
between enzymes that are neighbors in terms of metabolic reactions: from adjacent genes to genes separated by
three intermediate reactions (green scales). Averages between all genes involved in a pathway is also shown in
yellow. On the right panel of both figures average values of correlations along the pathways are shown (top part
of the right plots); in the remaining three plots the pathways are further grouped by average connectivity degree.
Correlations are higher for more tightly connected pathways than for those having a low connectivity degree.
Comparing the right hand sides of the two Figures, correlation among neighboring genes for the YMC is higher
than for the collection, thus confirming the high level of functional coordination induced by the YMC along the
metabolic pathways.
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Figure S5: Average phase, HL, pulse width and intracomplex Pearson correlation for a few MIPS protein com-
plexes, sorted by phase (on the periodic genes).
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(b) Scatter plot of the phase of the periodic
isoenzymatic pairs (the pairs in blue have
R > −0.3)
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(c) Most anticorrelated isoenzymes

Figure S6:Anticorrelated isoenzymesfor the YMC (top row in (a)) and for a collection of 790 yeast gene profiling
experiments (bottom row (in (a)). The correlations betweenall pairs of isoenzymes in the two sets are shown on
the left, while on the right only periodic pairs of genes are considered. For them in the YMC the distribution of
correlations tend to a bimodal distribution, i.e., a significant subset of isoenzymes is anticorrelated and oscillates
with opposite phases. The same type of anticorrelation is not visible on the reference collection. The time series
of the pairs in red in the scatter plot of the phases (b) are depicted in (c). One of the two genes of these pairs (in
red) is characterized by a deep valley following the transcription bursts. Most of these pairs are involved in redox
processes (see Fig. S9 for more detailed plots).
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Figure S7:Phase of the periodic genes on the central metabolism.The color code (only for periodic genes)
indicates the phase interval. Red:0 ÷ 100; green:100 ÷ 200; yellow: 200 ÷ 250; orange:250 ÷ 300; brown:
300 ÷ 360.
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Figure S8:Time course of the central metabolic pathways.
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Figure S9:Time course of some anticorrelated isoenzymes. The pairs of genes shown are those depicted in
Fig. S6(c), characterized by periodic “valleys” right after the transcription bursts.
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Figure S10:Enzymatic genes for ATP/ADP/AMP andO2 reactions. (a): Time courses of the expression lev-
els for the enzymatic genes catalyzing reactions involvingATP, ADP and AMP. The reactions are subdivided in
mitochondrial and cytoplasmic (“cytoplasm” referring to the entire cell with the exclusion of the mitochondria)
compartments and according on whether the metabolite is to be considered a substrate (red line) or a product (blue
line) of the reaction. Thick curves represent the average over the mRNA expression of the corresponding enzymes.
Information abound compartment and reaction direction is extrapolated from [17]. The expression of the enzy-
matic genes is taken as a measure of the flux of metabolites through the reaction node (scales are however not
indicative). The peaks of consumption of ATP in the cytoplasm in correspondence of the main bursts are small
but visible. More visible is the pattern of ATP-producing enzymes in both compartments. In the cytoplasm this
is essentially due to the pyruvate kinase enzyme Cdc19 transforming phosphoenolpyruvate into pyruvate during
anaerobic respiration, while in the mitochondria it is due to the oxidative phosphorylation pathway. The fermen-
tative recharging of ATP in the cytoplasm is quite in antiphase with the respiratory mitochondrial one (scale here
can be even misleading: aerobic ATP production is of course far more efficient than anaerobic one). Notice that
during the bursts of transcription, ATP hydrolysis rather than peaks of ADP induces peaks in the production of
AMP, as is expected for high energy demanding reactions suchas RNA polynucleotide synthesis. (b): Time course
of expression for enzymes of reactions involvingO2. Color, line thickness and compartment subdivision is the
same as above. The third plot is the trace of dissolvedO2 (blue line, data reproduced from [1]), and thedO2

ratio (green line). Its trend follows closely the cytoplasmic “oxygen production” (blue curve in the middle plot),
which essentially is the time course of the catalases, enzymes detoxifying reactive oxygen species such asH2O2.
Qualitatively the main discrepancy between the two curves occurs in the 50 min interval following the bursts (e.g.
200 ÷ 250 min.) wheredO2 keeps decreasing while the concentration of the Catalases mRNAs remains basically
at zero level. From the top plot, the explanation could be that this is the interval in which mitochondrial respiration
starts, thereby consumingO2.
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