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ABSTRACT
Given a large-scale biological network represented as an influence

graph, in this paper we investigate possible decompositions of the
network aimed at highlighting specific dynamical properties. The first
decomposition we study consists in finding a maximal directed acyclic
subgraph of the network, which dynamically corresponds to searching
for a maximal open-loop subsystem of the given system. Another
dynamical property investigated is strong monotonicity. We propose
two methods to deal with this property, both aimed at decomposing
the system into strongly monotone subsystems, but with different
structural characteristics: one method tends to produce a single large
strongly monotone component, while the other typically generates
a set of smaller disjoint strongly monotone subsystems. Original
heuristics are provided for all the methods investigated.

1 INTRODUCTION
One of the outstanding challenges that Systems Biology is currently
facing is to provide the right tools for the investigation ofthe
dynamical behavior of the large-scale networks used to represent
complex biological systems, such as gene regulatory networks,
signaling pathways and chains of metabolic reactions. Evenif our
knowledge of the interactions among the molecular species invol-
ved in these systems is growing at a fast pace, the details of the
dynamics that they describe are seldom available and often unlikely
to be obtainable in a near future. What is often more plausible to
assume is that only an influence graph is available for these net-
works (Klamt et al., 2006; Fages & Soliman, 2008). An influence
graph is a signed graph where an edge represents the action ofa
variable on another variable, and the signs may have the meaning
of activatory/inhibitory action, or may simply represent the signa-
ture of the Jacobian linearization of a nonlinear vector field which
is unknown but sign constant over the entire state space (common
forms of the kinetics, such as mass action and Michaelis–Menten,
normally obey to this condition). In choosing this level of detail
for our networks, we are guided by an abundant literature, see e.g.
Fages & Soliman (2008); Huber et al. (2007); Klamt et al. (2006);
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Milo et al. (2002); Papin et al. (2005); Shen-Orr et al. (2002); Thief-
fry (2007). Important dynamical problems that can be investigated
on an influence graph include:

1. compute the equilibria of the system (Soulé, 2003);

2. investigate the stability properties of the dynamics (Quirk &
Ruppert, 1965; Deangelis et al., 1986);

3. identify the largest open-loop subsystem of a given system
(Ispolatov & Maslov, 2008);

4. study the monotonicity and strong monotonicity properties of
the dynamics (Sontag, 2007).

In this paper we are interested in the problems (3) and (4) of the list
above.

In graph theoretical terms, finding the largest open-loop subsy-
stem corresponds to identifying a maximum-sizedirected acyclic
graph (DAG) within a network by dropping all feedback loops. In
the computer science literature, this is called theminimum feed-
back arc setproblem, and it is well-known to be NP-hard (Karp,
1972). Although several heuristic methods are already available for
it (Festa et al., 1999; Ispolatov & Maslov, 2008), the novel algo-
rithm we propose in this paper has the advantage that available a
priori knowledge on the open-loop part of the system can be easily
taken into account when computing a maximal DAG. We will show
in the large-scale examples of Section 6 that the performances of
our algorithm are comparable to those of the best heuristics.

In a series of papers by E. Sontag and colleagues (DasGupta
et al., 2007; Ma’ayan et al., 2008; Sontag, 2007) it was shown
that influence graphs can be used to study an important property
of dynamical systems, namely monotonicity (Smith, 1988, 1995;
Sontag, 2007). Monotone systems have nice properties of “order”
in their dynamical behavior. For example, they do not admit sta-
ble periodic orbits nor chaotic behavior. Moreover, for strongly
monotone systems (i.e., monotone systems whose graph is irre-
ducible, see Smith (1995); Sontag (2007)), Hirsch theorem states
that almost all bounded solutions converge to the set of equilibria
(Hirsch, 1983). The concept is particularly attracting forbiological
networks, because it is well-known that these systems, though com-
plex, have indeed outstanding stability properties, are largely devoid
of spurious sustained oscillations and are definitively notchaotic.
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Hence the paradigm of monotonicity has gained some momentum
in recent years and there is by now a consistent literature onusing
these properties to study biological networks (DasGupta etal., 2007;
Iacono & Altafini, 2010; Iacono et al., 2010; Ma’ayan et al., 2008;
Sontag, 2007).

Both monotonicity and strong monotonicity admit a graphical
characterization: a system is monotone when all undirectedcycles
of its influence graph have positive sign (i.e., have an even number
of negative edges); an irreducible system is strongly monotone when
the same property holds for directed cycles (Sontag, 2007).While
strong monotonicity implies monotonicity, the opposite implication
is usually not true. For the stricter notion of strong monotonicity,
the only study on large-scale biological networks we are aware of is
Aswani et al. (2009).

In this paper we propose two different methods aimed at extrac-
ting strongly monotone subsystems from large-scale influence gra-
phs. The first method is based on the minimization of the total
number of negative signs on the edges by means of “switching equi-
valences” (Zaslavsky, 1982), i.e., changes in the direction of some
of the axes ofRn in order to align the system as much as possible
with the positive orthant ofRn. This idea was developed in Iacono
et al. (2010) for the monotonicity property and is extended here to
the strong monotonicity properties.

The second method to decompose a network into strongly mono-
tone subsystems relies instead on the notion of DAG introduced
above. When on an open-loop subsystem represented as a DAG
we start reinserting back the edges of the original network (i.e.,
the feedback loops for the original system), then strongly connec-
ted subgraphs begin to form. As long as all directed cycles ofone
of the strongly connected subgraphs have positive sign, then the
corresponding subsystem will be strongly monotone.

In order to test the efficacy of the proposed algorithms, a num-
ber of large-scale biological networks are decomposed and their
strongly monotone subsystems are identified. On these examples,
the two methods we are proposing tend to highlight differentfeatu-
res: a single large strongly monotone subnetwork is obtained in one
case, and several medium-size strongly monotone subsystems in the
other. Depending on the context, each of these approaches may be
of help in better understanding the global structure of large systems
and in investigating more properly their dynamical properties.

The organization of this paper is as follows: the necessary back-
ground material is introduced in Section 2, and the construction
of a maximal DAG is discussed in Section 3. The two methods
for strong monotonicity decomposition are presented in Section 4
and 5. Finally, in Section 6 the algorithms are applied to large-scale
biological networks.

2 BACKGROUND MATERIAL

2.1 Signed graphs
A basic reference for this Section is Deo (1974). A signed directed
graph is an ordered pairG = (V,E) whereV is a set of vertices
of cardinalityn = |V |, andE is a set of signed edgesℓi,j ∈ {±1}
of cardinalitym = |E|. A pair of edgesℓi,j andℓj,i connecting the
same vertices but of opposite direction is called a digon. When for
all digonssign(ℓi,j) = sign(ℓj,i), then we say thatG admits an
undirected graph (obtained by dropping all arrows in the edges). The
sign of a path/cycle ofG is positive (resp. negative) if it has an even

(resp. odd) number of negative edges. We will denoteR(vi) ⊆ V
the set of vertices reachable fromvi. An undirected (resp. direc-
ted) graphG is connected (resp. strongly connected) if any vertex
is reachable from any vertex ofG. In an undirected (resp. directed)
graphG, a connected component (resp. strongly connected compo-
nent, henceforth SCC) ofG is a maximal connected (resp. strongly
connected) subgraph ofG. Given an undirected graphG = (V,E),
a spanning forestT = (V,ET ) is a maximal acyclic subgraph ofG.
The number of edges of every spanning forest ofG is equal to|V |
minus the number of connected components ofG.

Directed acyclic graphsA DAG is a directed graph without any
directed cycle. When a DAG lacks also undirected cycles thenit
is called a polytree. Polytrees are typically obtained by considering
a spanning forestT on the undirected graph ofG and then restoring
the original direction of the edges ofT (dropping one of the arrows
of each digon). For a directed graphG, a feedback arc set is a subset
of edges whose removal fromG leaves a DAG. A feedback arc set
of G is minimal if no proper subset of it is a feedback arc set. A
subgraph ofG is a maximal DAG ofG if it is the complement to a
minimal feedback arc set ofG.

Irreducible adjacency matrices and SCCsDenoteA the signed
adjacency matrix of a signed graphG. For simplicity of notation,
we shall indicateG(A) the graph obtained in correspondence ofA,
while B ⊆ A will denote the adjacency matrix of the subgraph
G(B) of a graphG(A). An n× n matrixA is reducible if∃ a per-

mutation matrixP s.t. PAP =

»

A1 A2

0 A3

–

, with A1, A3 square

submatrices.A is said irreducible if it is not reducible.A is irre-
ducible if and only if the associated graph is strongly connected.
For a non strongly connected graph, finding the irreducible diago-
nal blocks of the matrix is equal to determining all of the SCCs of
the graph. Such operation can be carried out efficiently by e.g. the
Tarjan algorithm (Tarjan, 1972). A directed graphG(B), B ⊆ A,
is a DAG if and only if∃ a permutation matrixP such thatPBP
is upper triangular, see Deo (1974), Thm 9.16. In other words, the
adjacency matrix of a DAG is completely reducible.

2.2 Monotone dynamical systems
Dynamical systems and their signed influence graphsConsider the
autonomous dynamical system

ẋ = f(x), x ∈ X ⊆ R
n, f ∈ C1(X), (1)

and its linearization around an equilibrium pointxo, ż = Az, where

A = ∂f(x)
∂x

˛

˛

˛

x=xo

, and z = x − xo is the vector of perturbati-

ons aroundxo (signed, i.e., whose componentszi can assume both
positive and negative values). In the context of large-scale biolo-
gical networks, it is very difficult to have a precise knowledge of
the functional form of the vector fieldf(·) or even of the Jacobian
matrix A. It is often more reasonable to assume that only the sign
pattern is known ofA, i.e,A = sign(A) has nonzero entries of unit
amplitudeAij ∈ {±1, 0}. A is the signed adjacency matrix of the
so-called influence graphG(A) of the network (Fages & Soliman,
2008; Klamt et al., 2006), i.e., of the directed graph representing the
effect of thej-th variable on thei-th variable, which can be acti-
vatory, Aij > 0, inhibitory, Aij < 0, or nonexistent,Aij = 0.
In general, this effect can change of sign with the operatingpoint
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xo, but we shall not consider this scenario here. In other words,
we assume that the partial derivatives are sign constants, i.e., the

sign patterns of∂f(x)
∂x

˛

˛

˛

x=xo

and ∂f(x)
∂x

˛

˛

˛

x=x1

are the same for all

xo, x1 in X. Conventionally, the self edges of the influence graph
G(A), i.e., the diagonal elements ofA are disregarded when looking
at monotonicity properties (Sontag, 2007). We shall tacitly assume
this henceforth. The system (1) is said irreducible ifA is irreducible.
WhenG(A) is a DAG then the system is completely reducible, i.e.,
A is triangular up to a permutation.

Monotonicity, strong monotonicity, and their graphical characte-
rization For a thorough introduction to the theory of monotone
systems the reader is referred to Smith (1995, 1988); Sontag(2007).
In R

n, consider the coneK representing one of its orthants:K =
{x ∈ R

n such thatDx > 0} whereD is a diagonal matrix
D = diag(σ) of diagonal elementsσ = (σ1, . . . , σn), σi ∈ {±1},
and denote byφt(x1) the integral curve of (1) at timet in cor-
respondence of the initial conditionx1. The system (1) is said
monotonewith respect to the partial orderσ if ∀x1, x2 ∈ X such
thatx2−x1 ∈ K one hasφt(x2)−φt(x1) ∈ K ∀ t > 0. Likewise,
the system (1) is saidstrongly monotonewith respect to the partial
orderσ if ∀x1, x2 ∈ X such thatx2 − x1 ∈ K, x2 6= x1, one
hasφt(x2) − φt(x1) ∈ int(K) ∀ t > 0 (int(·) is the interior of the
cone). Monotonicity can be formulated in terms of the adjacency
matrixA by means of the so-called Kamke condition, which states
that the system (1) is monotone inX with respect to the orthant
orderσ if and only if

σiσjAij > 0 ∀ i, j = 1, . . . , n s. t. i 6= j. (2)

The starting point of our investigation is a graphical condition
for orthant monotonicity. Assume thatG(A) admits an undirected
graph, i.e., that all edge pairs of the digons ofG(A) have compa-
tible signs,AijAji > 0. DenoteAU the adjacency matrix of the
undirected graph obtained fromG(A). The following Lemma can
be found in e.g. Sontag (2007).

LEMMA 1. The system(1) is monotone inX with respect to
some orthant orderσ if and only if any of the following conditions
holds:

1. ∃ σ and a matrixD = diag(σ) such that all off-diagonal
entries ofDAUD are nonnegative;

2. all cycles ofG(AU ) have positive sign.

The non strict inequality in (2) implies that monotonicity is con-
cerned not only with “true” directed cycles and their sign, but also
for example with “parallel” directed paths starting and ending on the
same nodes (and forming cycles on the undirected graphG(AU )),
see Iacono et al. (2010); Sontag (2007). The restriction to directed
cycles is necessary when we are interested in strong monotoni-
city properties. A sufficient condition for strong monotonicity of a
monotone system is the irreducibility of the system. From Lemma 1,
we have the following graph-theoretical condition (see Smith (1995)
and Sontag (2007)).

LEMMA 2. Assume that the system(1) is irreducible inX. The
system(1) is strongly monotone with respect to some orthant order
σ if and only if any of the following conditions holds:

1. ∃ σ and a matrixD = diag(σ) such that all off-diagonal
entries ofDAD are nonnegative;

2. all directed cycles ofG(A) have positive sign.

3 CONSTRUCTION OF A MAXIMAL DAG
In systems-theoretical terminology, since DAGs lack directed
cycles, any dynamical system having a DAG as its influence graph
can be considered as an open-loop system: no state variable of the
system regulates in a feedback sense any other state. Various types
of heuristics have been proposed to approximate a maximum-size
DAG, see Festa et al. (1999) for a survey and Ispolatov & Maslov
(2008) for a recent application in the context of biologicalnetworks.
The aim of this Section is to propose a heuristic algorithm for com-
puting a maximal DAG in which any availablea priori information
on the open-loop part can be easily taken into account. Our approach
starts by choosing a spanning forest for the undirected graph, i.e., a
polytreeT for the directed graphG. The polytree is then incremen-
ted by adding edges to it, as long as these edges are guaranteed to
preserve acyclicity. For this purpose it is convenient to use the notion
of height of a vertex. One possible way to define the height of aver-
tex is as the maximum length of any path from any source vertex
to v, call it hmax(v) (this is normally called the depth in the graph-
theoretical literature). Alternatively, one can usehmin(v), defined
as the minimum length of any directed path from any source ver-
tex tov. Similarly, the height of a DAGG is defined respectively as
hmax(G) = maxv∈V hmax(v) or ashmin(G) = maxv∈V hmin(v).
hmin corresponds to the maximum path length needed to reach any
variable from at least one source, whilehmax corresponds to the
worst case path length from a source to all of its reachable vertices.

PROPOSITION1. LetG = (V,E) be a DAG. If an edgeℓi,j such
that hmax(vi) ≤ hmax(vj) is added toG, then the graph remains
acyclic. In particular, ifhmax(vi) < hmax(vj) in G, then after
adding the new edge thehmax of all vertices does not change. If
insteadhmax(vi) = hmax(vj) inG, then after adding the new edge
hmax(vj) = hmax(vi)+1, andhmax(vr) = hmax(vr)+1 for every
vr ∈ R(vj) such that∃ a path fromvj to vr of lengthhmax(vr) −
hmax(vj).

PROOF. A new cycle is created by the addition of the edgeℓi,j
to a DAGG only if there is a path inG from vj to vi, but in this
casehmax(vi) must be at leasthmax(vj) + 1, which contradicts the
hypothesis thathmax(vi) ≤ hmax(vj). Moreover, after the addition
of the new edge, thehmax can change only for the nodesvr ∈
R(vj), and can only increase. This happens when a longer path
from a source tovr is created, passing through the new edge. This
new path has lengthhmax(vi)+1+ k, wherek ≥ 0 is the length of
the longest path fromvj to vr. Since there is already a path fromvj

to vr, then the original height ofvr should be at leasthmax(vj)+k.
So, ifhmax(vi) < hmax(vj) inG, then the original height is greater
or equal than the new path lengthhmax(vi) + 1 + k, therefore the
height ofvr cannot increase. If insteadhmax(vi) = hmax(vj) inG,
when the edgeℓi,j is added to the DAG, thenhmax of vj becomes
equal tohmax(vi) + 1. Also for all vertices inR(vj) thehmax can
grow as a consequence.

Proposition 1 allows to increment a DAG while preserving acy-
clicity. Iterating the argument to all edges in the complement of the
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polytree, we have a heuristic procedure for the construction of a
maximal DAG.

ALGORITHM 1. Construction of a maximal DAG

Input: polytreeT ⊆ A
Output: maximal DAGB ⊆ A
Procedure:B = T , L = A \B

for each edgeℓi,j ∈ L
• if hmax(vi) ≤ hmax(vj) thenB = B ∪ {ℓi,j}
• if hmax(vi) = hmax(vj) then

◦ hmax(vj) = hmax(vi) + 1
◦ ∀vr ∈ R(vj) if ∃ a path fromvj to vr of

lengthhmax(vr) − hmax(vj) then
hmax(vr) = hmax(vr) + 1

The heuristic steps are the initial choice of the polytreeT and
the order in which the edges are examined. In Algorithm 1, any
availablea priori knowledge on the open-loop part of the system
can be included in the initial polytreeT .

Example: yeast cell cycleThe network shown in Fig. 1 represents
the influence graph of an extremely simplified model of the yeast
(S. cerevisiae) cell cycle, in response to an “external” stimulation
at the only source nodecellsize. It was developed and studied in a
boolean setting in Li et al. (2004). Its main characteristicis that it
can reproduce faithfully the various phases of the yeast cell cycle,
and the proper state transitions at the checkpoints betweenthem.
The influence graph shown in Fig. 1 (with respect to the network of
Li et al. (2004) we drop self-loops for convenience) is not a DAG
and it is not monotone. Examples of frustrated cycles are thedigon
Clb1,2↔ Cdc20 or the cyclesMBF → Clb5,6→ Clb1,2→ MBF
andSBF → Cln1,2→ Sic1 → Clb1,2→ SBF. The last two cycles
encode both the propagation of the replication order from the source
cellsize and the feedback reaction of the system which concludes
the S phase of the cycle, inactivating its transcription factors MBF
andSBF, and consequently initiating mitosis. When we apply the
procedure of Algorithm 1, we obtain a minimal feedback arc set
of 7 edges, 5 of which are digons. One possibility for the resulting
DAG is shown in Fig. 2 (DAG is in black), where the heighthmax of
the network is used to render the layout of the graph. For thisDAG
hmin(DAG) = 2 andhmax(DAG) = 6. Notice that the DAG has 2
sources, and both are needed to reach the entire DAG. In particular,
for this choice of DAG the second source isClb1,2, which is the
master regulator of the entry and successive exit from the M phase
of the cycle. The DAG breaks any path from the sourcecellsize to
this critical vertex.

4 INVESTIGATING STRONG MONOTONICITY I:
GENERATION OF A SINGLE LARGE SCC

When a systems like (1) is not exactly monotone, measuring how
close it is to monotonicity is a computationally intense task. This
measure (hereafterδ) consists in identifying the smallest number of
edges whose sign switch (or removal) yields a graph with onlyposi-
tive undirected cycles. This problem is studied in detail inDasGupta
et al. (2007); Hüffner et al. (2009); Iacono et al. (2010). The main
idea behind the algorithms described in Iacono et al. (2010)for the
computation ofδ is to minimize the number of negative entries of
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Fig. 1. Yeast cell cycle influence graph (Li et al., 2004). The original signed
network is shown. Self-loops are disregarded.
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Fig. 2. DAG (edges in black) for the graph of Fig. 1. Using the heighthmax

to represent the graph, all edges of the DAG are “descending”. Adding the
two green “ascending” edges we obtain the two small stronglymonotone
SCCs mentioned in Section 5 (green nodes). Any of the red “ascending”
edges is instead forming negative directed cycles.

DAUD, where as beforeAU is the symmetrized version ofA and
D = diag(σ). In terms of the dynamical system (1), this opera-
tion means reversing the partial order along certain axes ofR

n, in
order to “align” the coneK with the positive orthantRn

+ as much
as possible. In Iacono et al. (2010) a theoretical upper bound on δ
(hereafterδmax) is described.

Example: yeast cell cycleThe adjacency matrix of the directed
graph of Fig. 1 has 14 negative edges out of a total of 30 (disregar-
ding self-loops). To understand how distant to monotone thesystem
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Fig. 3. The graph of Fig. 1 is transformed by changing sign to all edges
incident to the nodes in blue. Dropping the 5 red edges the whole subsystem
is monotone. The nodes of the large strongly monotone SCC mentioned in
Section 4 are shown in green.

is, we seek for a diagonal matrixD = diag(σ) whose signature
σ has a−1 in correspondence of the vertices having a majority of
negative incident edges. In Fig. 1 this happens for the following 4
vertices:Cln1,2, Clb1,2, Clb5,6 andMcm1/SFF. Switching the
sign to all the corresponding edges, then we are left with thegraph
G(DAD) of Fig. 3 in which there are only 5 negative edges left. In
this case 5 is exactly the distance to monotonicity, and by dropping
the 5 edges we are guaranteed that the subsystem is monotone.

The algorithms of Iacono et al. (2010) enabling the computation
of the “best”D are applicable also to directed graphs with only
minor adjustments.

PROPOSITION 2. Consider a signed directed graphG(A).
DenoteA+ andA− the two matrices containing respectively the
positive and negative entries ofA, A = A+ + A−. AssumeA+ is
irreducible. Then the subsystem of(1) havingA+ as its influence
matrix is strongly monotone.

PROOF. SinceA+ has only nonnegative entries, the correspon-
ding system is cooperative hence monotone. Furthermore, sinceA+

is irreducible so is the corresponding system. But a cooperative
irreducible system is strongly monotone, see Thm 4.1.1 of Smith
(1988).

WhenA+ is not irreducible, then its SCCs should be considered.
Needless to say, Proposition 2 is inefficient unless the number of
negative entries ofA is first minimized, as explained above. The
approach is summarized in the following Algorithm.

ALGORITHM 2. Strong monotonicity I

Input: signed adjacency matrixA
Output: set of strongly monotone subgraphs ofA
Procedure: find orthant orderσ so that the number of+1

entries ofAσ = DAD,D = diag(σ), is
maximized

splitAσ = A+
σ + A−

σ

return the SCCs ofDA+
σD

As the maximization of+1 entries ofAσ is heuristic, the whole
procedure is heuristic.

Example: yeast cell cycleThe monotone subsystem obtained in the
previous Section and shown in Fig. 3 has a SCC formed by the follo-
wing 6 nodes:Clb1,2, Mcm1/SFF, Clb5,6, Cdh1, Swi5 andSic1.
The remaining 6 nodes instead form trivial (i.e., dimension1) SCCs.
Hence, although the complete network is a “prototype” for nega-
tive feedback regulation, from Proposition 2, it hides in its structure
a remarkably large strongly monotone subsystem involving half of
the nodes of the network. In terms of the functioning of the cell
cycle, the strategy behind this decomposition is far from obvious,
except for the observation that the SCC is isolated from the source
vertexcellsize, and that the influence of this last vertex is comple-
tely disconnected from the network by the cuts of the edgesMBF
→ Clb5,6 andSBF → Cln1,2. Notice finally that deducing strong
monotonicity of this SCC directly on the original graph (without the
sign changes performed in Fig. 3) is a nontrivial task.

The large strongly monotone subsystem obtained in the example
is not a coincidence. As we will see in Section 6, the peculiarity
of the approach outlined in Algorithm 2 is that it often leadsto a
decomposition in which a single large strongly monotone subsystem
is present.

5 INVESTIGATING STRONG MONOTONICITY II:
CONSTRUCTION OF MULTIPLE SMALL SCCS

In this Section we propose a different approach to the problem of
decomposing a system into strongly monotone subsystems. This
approach is more prone to building small disconnected SCCs.Star-
ting with a DAG, at each step the incremented graph is split into
SCCs, on each of which strong monotonicity can be tested via
Lemma 2.

ALGORITHM 3. Strong monotonicity II

Input: signed DAGB ⊆ A
Output: set of strongly monotone subgraphs ofA
Procedure:C = B;L = A \B

for each edgeℓi,j ∈ L
• obtain the SCCs ofC ∪ {ℓi,j}
• if all SCCs are strongly monotone, then

◦ C = C ∪ {ℓi,j}
return the SCCs ofC

Algorithm 3 is heuristic with respect to the choice ofB and the
order of the edges inL. Its performances tend to improve if the DAG
we start with is maximal.

Example: yeast cell cycleOf the 7 edges dropped from the maximal
DAG of Fig. 2, only two can be inserted without inducing negative
directed cycles, and they both are in admissible digons (green edges
in Fig. 2). In this case two small strongly monotone SCCs are crea-
ted, both of dimension two (the two vertex pairs joined by digons)
as opposed to the single SCC of dimension 6 obtained in Section 4.
Notice that 4 of the 5 edges that destroy strong monotonicitypoint to
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Clb1,2. As already mentioned, in this modelClb1,2 is the regulator
whose activation and consecutive deactivation governs theentry and
exit from the M phase, phase which constitutes the regulatory part
of the cycle in response to the external stimulation, and allows the
cycle to progress. In the full model,Clb1,2 rises after the S phase,
due toClb5,6 and due to the double inhibitionsCln1,2 → Cdh →
Clb1,2 andCln1,2 → Sic1 → Clb1,2. Hence the 3 edges direc-
ted towardsClb1,2 are cut in order to have a strongly monotone
subsystem.

6 LARGE-SCALE EXAMPLES
The large-scale biological networks considered in this study are of
two different types: three are transcriptional networks inwhich a
directed edge represents the action of a transcription factor on one
of its target genes, and the sign means activation (+) or inhibition (-
). No stoichiometry is available for these networks. The other three
networks instead represent signaling pathways. These are obtained
from stoichiometric reactions, taking the signature of theJacobian
matrix, as described in Section 2.2, see also DasGupta et al.(2007)
for more details and a similar use. The details of the 6 networks
are:

• transcriptional networks

• E. coli: gene regulatory network of theE. coli, downloaded
from RegulonDBdatabase
(http://regulondb.ccg.unam.mx), version 6.3.

• Yeast: gene regulatory network ofS. cerevisiaeoriginally
developed in Milo et al. (2002).

• B. subtilis: gene regulatory network forBacillus subtilis,
downloaded from http://dbtbs.hgc.jp/.

• signaling networks

• EGFR:network for the Epidermal Growth Factor Receptor
pathway, created by Oda et al. (2005);

• Toll-like: signaling network for theToll-like-receptor.
Assembled from Oda & Kitano (2006).

• Macrophage:molecular interaction map of a macrophage
obtained from Oda et al. (2004).

In the following we shall simply refer to the networks as “transcrip-
tional” and “signaling”, but one should be aware that “transcriptio-
nal, at functional level” and “signaling, at stoichiometric level” is
probably a more proper connotation for them. In Table 1 we report
the data for the distance to monotonicityδ obtained in Iacono &
Altafini (2010). It can already be noticed that there is a systematic
difference between the two classes: the transcriptional networks are
closer to monotonicity (δ/δmax ∼ 10 − 20%) than the signaling
networks (δ/δmax ∼ 50%).

When we use Algorithm 1 to construct a maximal DAG, then ano-
ther key topological difference between the two classes emerges,
namely that the transcriptional networks are essentially free from
directed cycles, while in the signaling networks the numberof edges
that need to be dropped to get a DAG varies from∼ 11% to∼ 20%,
see Table 2. In Table 2, the performances of our Algorithm 1 are

Table 1. Networks used in this study.n andm are the number of nodes
and edges of the directed graph;πin andπad the inadmissible/admissible
digons; ρ is number of SCCs in the original graph,δ the distance to
monotonicity andδmax its theoretical upper bound.

Network n m πin; πad ρ δ δmax

E. coli 1475 3320 4; 5 1452 371 1581
Yeast 690 1082 1; 0 688 41 401

B. subtilis 918 1324 2; 2 912 71 415

EGRF 330 852 4; 65 138 193 376
Toll-like 679 2204 1; 413 267 468 873

Macroph. 697 1582 1; 155 359 330 704

Table 2. Maximal DAG found for the 6 networks. The parameters shown are
the size of the minimal feedback arc set (γ), the distance to monotonicity of
the maximal DAG (ǫ), the minimal/total number of sources needed to cover
the entire DAG (ω/ ωtot) and min/max height of a graph. Forγ our results
are compared with those of Festa et al. (2001) (γ′) and Ispolatov & Maslov
(2008) (γ′′).

Network γ (γ′; γ′′) ǫ ω; ωtot hmin; hmax

E. coli 9 (9; 376) 371 51; 65 5; 8
Yeast 1 (1; 77) 41 77; 87 4 ; 8

B. subtil. 5 (5; 99) 71 663; 759 2 ; 7

EGFR 104 (94; 185) 169 38; 50 5 ; 37
Toll-like 452 (467; 665) 450 76; 85 8 ; 50

Macroph. 176 (175; 335) 316 100; 115 9 ; 48

compared with those of other heuristics. In particular we choose a
state-of-the-art local search method (GRASP: greedy randomized
adaptive search procedure) from Festa et al. (2001), and a simula-
ted annealing algorithm recently used in the context of biological
networks (Ispolatov & Maslov, 2008). It can be observed thatour
heuristic and the algorithm of Festa et al. (2001) have similar per-
formances. Both algorithms seem to be outperforming considerably
Ispolatov & Maslov (2008).

If the influence graph of a system is a DAG, then the system may
not be strongly monotone or not even monotone. In fact, multiple
paths originating in a fan-out node and ending in a fan-in node may
have opposite signs, and hence carry opposite orders at the fan-in
(activatory on one channel, inhibitory on the other), a “frustration”
(i.e., a negative undirected cycle) which is a trademark forlack of
monotonicity. For all networks a large percentage ofδ is retained
when restricting to the maximal DAG (ǫ in Table 2), meaning that
the systems have a complex and potentially incoherent open-loop
dynamics. A qualitative difference between the two classesof net-
works can be observed looking athmax on the DAGs (Table 2):
the maximum length of a chain of events in the open-loop system
is always much shorter in the transcriptional networks thanin the
signaling networks. On the contrary, the chain of events of mini-
mum length required to reach every vertex (i.e.,hmin) is almost the
same in both types of networks. Notice how the complex regulatory
structure for the signaling networks implies that only a fraction of
the maximal DAG is unanimously identified as open-loop subsystem
over repeated runs of Algorithm 1, see Fig. 4.
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Fig. 4. Overlap between maximal DAGs in different runs of Algorithm1.
For each network, the histogram shows the distribution of the frequency of
selection of an edge in a large number of nearly optimal trials. For the three
transcriptional networks there exists basically only a wayto attain the maxi-
mal DAG. For the three signaling networks, instead, there isa degree of
ambiguity in determining the ”open-loop” part of the dynamics, with only a
fraction of the maximal DAG unanimously determined (from 1/3 for EGFR
and Toll-like, to 1/2 of Macrophage).

Table 3. Strongly monotone subsystems I: single large SCC. The following
parameters are shown: the distance to strong monotonicity (ξ), the number of
strongly monotone subsystems (λ), the size of the largest strongly monotone
subsystem (χ), and the number of edges dropped that belong to a strongly
monotone SCC (ψ).

Network ξ λ χ ψ

E. coli 10 1457 3 1
Yeast 3 688 3 1

B. subtilis 7 914 3 0

EGFR 163 197 111 73
Toll-like 548 398 164 329

Macroph. 236 484 38 82

Table 4. Strongly monotone subsystems II: multiple independent SCCs.
The same parameters of Table 3 are shown. Forξ also a comparison with
the values reported in Aswani et al. (2009) is shown (ξ′).

Network ξ (ξ′) λ χ ψ

E. coli 7 1459 2 0
Yeast 1 (1) 690 1 0

B. subtilis 2 914 3 0

EGFR 64 (45) 283 5 2
Toll-like 377 633 6 90

Macroph. 84 (75) 575 10 0

In Table 3 and 4 we compare the two procedures for the construc-
tion of strongly monotone SCCs. Obviously the difference can be
appreciated only on the three signaling networks, which have a suf-
ficient amount of feedback regulations. As anticipated, thesize of
the largest strongly monotone SCC detected (i.e.,χ) is consistently

much higher for the method of Section 4 than for the one of Sec-
tion 5. Apart from the large SCC, Algorithm 2 returns only trivial
subsystems. For Algorithm 3, instead, the distribution of size of the
nontrivial strongly monotone SCCs is shown in Fig. 5. Noticethat
our numbers for this last case are still higher than those reported in
Aswani et al. (2009) (and shown in Table 4), meaning that there is
probably still room for improvement in our Algorithm 3.
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Fig. 5. Size of the nontrivial strongly monotone SCCs created by Algo-
rithm 3 for the 3 signaling networks.

7 CONCLUSION
The investigation of the dynamical properties of large-scale bio-
logical networks poses a problem and a challenge for the fieldof
Systems Biology because of its complexity and lack of suitable
methodology. By using simple tools from graph theory, we have
shown in this paper that nearly-optimal solutions for a couple of
important dynamical problems, such as the identification ofa mini-
mum set of feedback loops whose removal leave the system without
regulation, and the decomposition of the network into dynamically
“simple” subsystems, may be found with heuristics which arecom-
putationally efficient also for networks of the several hundreds / few
thousands of molecular species. While not optimal and restricted to
a specific class of network representations (influence graphs), our
approach is promising and the insight it provides on the structure of
the networks already significant.
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