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ABSTRACT
Given a large-scale biological network represented as an influence
graph, in this paper we investigate possible decompositions of the

Milo et al. (2002); Papin et al. (2005); Shen-Orr et al. (200hief-
fry (2007). Important dynamical problems that can be ingased
on an influence graph include:

network aimed at highlighting specific dynamical properties. The first
decomposition we study consists in finding a maximal directed acyclic 1. compute the equilibria of the system (Soulg, 2003);
subgraph of the network, which dynamically corresponds to searching
for a maximal open-loop subsystem of the given system. Another
dynamical property |nv§st|g§ted Is strong monptommty' we propose 3. identify the largest open-loop subsystem of a given syste
two methods to deal with this property, both aimed at decomposing .

the system into strongly monotone subsystems, but with different (Ispolatov & Maslov, 2008);

structural characteristics: one method tends to produce a single large 4. study the monotonicity and strong monotonicity projesrtof
strongly monotone component, while the other typically generates the dynamics (Sontag, 2007).

a set of smaller disjoint strongly monotone subsystems. Original
heuristics are provided for all the methods investigated.

2. investigate the stability properties of the dynamicsi(RQ&
Ruppert, 1965; Deangelis et al., 1986);

In this paper we are interested in the problems (3) and (defist
above.

In graph theoretical terms, finding the largest open-loopsgu
stem corresponds to identifying a maximum-sdieected acyclic
graph (DAG) within a network by dropping all feedback loops. In
the computer science literature, this is called thmimum feed-
back arc sefproblem, and it is well-known to be NP-hard (Karp,
1972). Although several heuristic methods are alreadylavai for
it (Festa et al., 1999; Ispolatov & Maslov, 2008), the novgba
rithm we propose in this paper has the advantage that alaitab
priori knowledge on the open-loop part of the system can be easily
taken into account when computing a maximal DAG. We will show
in the large-scale examples of Section 6 that the perforemiod

1 INTRODUCTION

One of the outstanding challenges that Systems Biologyrisistly
facing is to provide the right tools for the investigation thfe
dynamical behavior of the large-scale networks used toessmt
complex biological systems, such as gene regulatory né&syor
signaling pathways and chains of metabolic reactions. Hvear
knowledge of the interactions among the molecular specied-i
ved in these systems is growing at a fast pace, the detailseof t
dynamics that they describe are seldom available and oftizkely our algorithm are comparable to those of the best heuristics

to be obt.alnable in a near future. What is oftep more plaasibl In a series of papers by E. Sontag and colleagues (DasGupta
assume is that only an influence graph is available for _theee N et al., 2007: Ma'ayan et al., 2008; Sontag, 2007) it was shown
works .(Klam.t et al.,, 2006; Fages & Soliman, 2008). An |nf|tfenc that influence graphs can be used to study an important gyoper
graph is a signed graph where an edge represents the actin ofof dynamical systems, namely monotonicity (Smith, 1988959

variab_le on a_not_hgr variat_)le, and the s_igns may have th(_eingean Sontag, 2007). Monotone systems have nice properties detor
of actlvatoryllnhlpltory actlpn, or may S|mplly represehet.S|g.na- in their dynamical behavior. For example, they do not adrt s
ture of the Jacobian linearization of a nonlinear vectodfighich ble periodic orbits nor chaotic behavior. Moreover, forosigly

is unknown but sign constant over the entire state spacenfeom -\ systems (i.e., monotone systems whose grapheis irr

forms of the kinetics, such as mass action and Michaelistdfen ducible, see Smith (1995): Sontag (2007)), Hirsch theortates
normally obey to this condi_tion). In choosing thi? level aital that aln,mst all bounded sc;lutions converge’ to the set ofliegai
for our netwqus, we are guided by an abundant literature es. (Hirsch, 1983). The concept is particularly attracting awlogical
Fages & Soliman (2008); Huber et al. (2007); Klamt et al. €00 networks, because it is well-known that these systemsgtinoam-
plex, have indeed outstanding stability properties, agelg devoid
of spurious sustained oscillations and are definitively clwiotic.
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Hence the paradigm of monotonicity has gained some momenturfresp. odd) number of negative edges. We will der@te;) C V

in recent years and there is by now a consistent literaturesamg
these properties to study biological networks (DasGupah €2007;
lacono & Altafini, 2010; lacono et al., 2010; Ma’ayan et aD08;
Sontag, 2007).

Both monotonicity and strong monotonicity admit a graphica
characterization: a system is monotone when all undirecyetes
of its influence graph have positive sign (i.e., have an evenbrer
of negative edges); an irreducible system is strongly nmmetvhen
the same property holds for directed cycles (Sontag, 200/Hjle
strong monotonicity implies monotonicity, the oppositelioation
is usually not true. For the stricter notion of strong momitdy,
the only study on large-scale biological networks we arerawéis
Aswani et al. (2009).

In this paper we propose two different methods aimed at extra
ting strongly monotone subsystems from large-scale infleegra-

phs. The first method is based on the minimization of the total

number of negative signs on the edges by means of “switclijog e
valences” (Zaslavsky, 1982), i.e., changes in the diraadfosome

of the axes ofR™ in order to align the system as much as possible

with the positive orthant oR™. This idea was developed in lacono
et al. (2010) for the monotonicity property and is extendecehto
the strong monotonicity properties.

the set of vertices reachable from. An undirected (resp. direc-
ted) graphG is connected (resp. strongly connected) if any vertex
is reachable from any vertex ¢f. In an undirected (resp. directed)
graphG, a connected component (resp. strongly connected compo-
nent, henceforth SCC) @ is a maximal connected (resp. strongly
connected) subgraph 6. Given an undirected graphl = (V, E),

a spanning forest’ = (V, Er) is a maximal acyclic subgraph 6f.

The number of edges of every spanning foreszat equal to]V'|
minus the number of connected component&:of

Directed acyclic graphsA DAG is a directed graph without any
directed cycle. When a DAG lacks also undirected cycles then
is called a polytree. Polytrees are typically obtained bysidering

a spanning forest’ on the undirected graph 6f and then restoring
the original direction of the edges @f (dropping one of the arrows
of each digon). For a directed graph a feedback arc set is a subset
of edges whose removal fro leaves a DAG. A feedback arc set
of G is minimal if no proper subset of it is a feedback arc set. A
subgraph of= is a maximal DAG ofGd if it is the complement to a
minimal feedback arc set @¥.

Irreducible adjacency matrices and SCOgnote A the signed
adjacency matrix of a signed grajgh For simplicity of notation,

The second method to decompose a network into strongly monowe shall indicate='(4) the graph obtained in correspondencedof

tone subsystems relies instead on the notion of DAG intreduc

while B C A will denote the adjacency matrix of the subgraph

above. When on an open-loop subsystem represented as a DAG(B) of a graphG(A). Ann x n matrix A is reducible if3 a per-

we start reinserting back the edges of the original netwask, (
the feedback loops for the original system), then strongiynec-
ted subgraphs begin to form. As long as all directed cyclesnef
of the strongly connected subgraphs have positive sigm the
corresponding subsystem will be strongly monotone.

A A,

0 Asl|’
submatrices A is said irreducible if it is not reducibleA is irre-
ducible if and only if the associated graph is strongly catee.
For a non strongly connected graph, finding the irreducilidegat

mutation matrixP s.t. PAP = with A1, Az square

In order to test the efficacy of the proposed algorithms, a-num nal blocks of the matrix is equal to determining all of the SQft

ber of large-scale biological networks are decomposed heit t
strongly monotone subsystems are identified. On these dgamp
the two methods we are proposing tend to highlight diffefeatu-
res: a single large strongly monotone subnetwork is obthinene
case, and several medium-size strongly monotone subsysteire
other. Depending on the context, each of these approachgbena
of help in better understanding the global structure ofdagstems
and in investigating more properly their dynamical projeest

The organization of this paper is as follows: the necessackb
ground material is introduced in Section 2, and the constmc

of a maximal DAG is discussed in Section 3. The two methods

for strong monotonicity decomposition are presented intiSect
and 5. Finally, in Section 6 the algorithms are applied tgdascale
biological networks.

2 BACKGROUND MATERIAL

2.1 Signed graphs

A basic reference for this Section is Deo (1974). A signedated
graph is an ordered pa@® = (V, E) whereV is a set of vertices
of cardinalityn = |V, andE is a set of signed edgés; € {£1}

of cardinalitym = | E|. A pair of edged; ; and/; ; connecting the
same vertices but of opposite direction is called a digonekior
all digonssign(f;,;) = sign(;,), then we say tha€ admits an
undirected graph (obtained by dropping all arrows in theesjigrhe
sign of a path/cycle of is positive (resp. negative) if it has an even

the graph. Such operation can be carried out efficiently by the
Tarjan algorithm (Tarjan, 1972). A directed grapi{B), B C A,
is a DAG if and only if3 a permutation matrix’ such thatPBP
is upper triangular, see Deo (1974), Thm 9.16. In other wotfuks
adjacency matrix of a DAG is completely reducible.

2.2 Monotone dynamical systems

Dynamical systems and their signed influence gra@bssider the
autonomous dynamical system
= zeX CR", fec (X)),

f (@), 1)

and its linearization around an equilibrium point, 2 = Az, where
A= & ,andz = z — x, is the vector of perturbati-

ons aroundvom(smianed, i.e., whose componentscan assume both
positive and negative values). In the context of largees@éblo-
gical networks, it is very difficult to have a precise knowgedof
the functional form of the vector field(-) or even of the Jacobian
matrix A. It is often more reasonable to assume that only the sign
pattern is known of4, i.e, A = sign(.A) has nonzero entries of unit
amplitudeA;; € {£1,0}. A is the signed adjacency matrix of the
so-called influence grapfi(A) of the network (Fages & Soliman,
2008; Klamt et al., 2006), i.e., of the directed graph repnéisg the
effect of thej-th variable on the-th variable, which can be acti-
vatory, A;; > 0, inhibitory, A;; < 0, or nonexistent,A;; = 0.

In general, this effect can change of sign with the operapioigt
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zo, but we shall not consider this scenario here. In other words 1. 3 ¢ and a matrixD = diag(o) such that all off-diagonal

we assume that the partial derivatives are sign constaets,the
sign patterns ofag'—;‘")’ and ag—f)’ are the same for all

T=To r=xq
Zo, 1 IN X. Conventionally, the self edges of the influence graph

G(A), i.e., the diagonal elements dfare disregarded when looking
at monotonicity properties (Sontag, 2007). We shall tp@tsume
this henceforth. The system (1) is said irreducibld i irreducible.
WhenG(A) is a DAG then the system is completely reducible, i.e.,
A is triangular up to a permutation.

Monotonicity, strong monotonicity, and their graphicalachcte-
rization For a thorough introduction to the theory of monotone
systems the reader is referred to Smith (1995, 1988); S¢at4y).
In R™, consider the con& representing one of its orthant& =
{z € R"suchthatDz > 0} where D is a diagonal matrix
D = diag(o) of diagonal elements = (o1, ...,0n), 03 € {£1},
and denote byp:(x1) the integral curve of (1) at time in cor-
respondence of the initial condition;. The system (1) is said
monotonewith respect to the partial order if Va1, 22 € X such
thatzs — 21 € K one haspi(z2) — ¢i(x1) € K Vit > 0. Likewise,
the system (1) is saistrongly monotonevith respect to the partial
ordero if Vzi, x2 € X such thates — z1 € K, z2 # x1, one
hasg:(z2) — ¢¢(z1) € int(K) Vt > 0 (int(-) is the interior of the
cone). Monotonicity can be formulated in terms of the adjage

entries ofD AD are nonnegative;
2. all directed cycles of#(A) have positive sign.

3 CONSTRUCTION OF A MAXIMAL DAG

In systems-theoretical terminology, since DAGs lack diedc
cycles, any dynamical system having a DAG as its influencphgra
can be considered as an open-loop system: no state variatie o
system regulates in a feedback sense any other state. ¥ayjoes

of heuristics have been proposed to approximate a maxinizen-s
DAG, see Festa et al. (1999) for a survey and Ispolatov & Maslo
(2008) for a recent application in the context of biologisatworks.
The aim of this Section is to propose a heuristic algorithncfim-
puting a maximal DAG in which any availab&epriori information

on the open-loop part can be easily taken into account. Qaraph
starts by choosing a spanning forest for the undirectednyriag, a
polytreeT for the directed grapli:. The polytree is then incremen-
ted by adding edges to it, as long as these edges are guarantee
preserve acyclicity. For this purpose itis convenient ®the notion

of height of a vertex. One possible way to define the heightvara
tex is as the maximum length of any path from any source vertex
to v, call it hmax (v) (this is normally called the depth in the graph-

matrix A by means of the so-called Kamke condition, which statestheoretical literature). Alternatively, one can usgi,(v), defined

that the system (1) is monotone X with respect to the orthant
ordero if and only if
O'iO'in]'ZO Vi,j:L...,n Stl#] (2)
The starting point of our investigation is a graphical coiodi
for orthant monotonicity. Assume thét(A) admits an undirected
graph, i.e., that all edge pairs of the digons(afA) have compa-
tible signs, A;;A;; > 0. DenoteAy the adjacency matrix of the
undirected graph obtained fro(A). The following Lemma can
be found in e.g. Sontag (2007).

LEMMA 1. The systen{l) is monotone inX with respect to
some orthant ordes if and only if any of the following conditions
holds:

1. 3 0 and a matrixD = diag(c) such that all off-diagonal
entries of D Ay D are nonnegative;

2. all cycles ofG( Ay ) have positive sign.

The non strict inequality in (2) implies that monotonicits/dgon-
cerned not only with “true” directed cycles and their signt blso
for example with “parallel” directed paths starting and ieigcon the
same nodes (and forming cycles on the undirected géphy)),
see lacono et al. (2010); Sontag (2007). The restrictiorirectbd

as the minimum length of any directed path from any source ver
tex towv. Similarly, the height of a DAG= is defined respectively as
hmax(G) = maxyev hmax(v) OF 8Shmin (G) = maxyev Amin (V).

hmin cOrresponds to the maximum path length needed to reach any
variable from at least one source, whilg,.x corresponds to the
worst case path length from a source to all of its reachahféces.

PROPOSITIONL. LetG = (V, E) be a DAG. If an edgé; ; such
that max (vi) < hmax(v;) Is added toG, then the graph remains
acyclic. In particular, if hmax(vi) < hmax(v;) In G, then after
adding the new edge thie... of all vertices does not change. If
insteadhmax (vi) = hmax(v;) in G, then after adding the new edge
hmax(V5) = hmax(vi)+1, andhmax (vr) = hmax(vr)+1 for every
v, € R(v;) such thatd a path fromw; to v, of lengthhmax (vr) —
hmax(l)j).

PROOF. A new cycle is created by the addition of the edge
to a DAG G only if there is a path inG from v; to v;, but in this
casehmax (vs) must be at leadimax (v;) + 1, which contradicts the
hypothesis thabmax (vi) < hmax(v;). Moreover, after the addition
of the new edge, thémax can change only for the nodes €
R(v;), and can only increase. This happens when a longer path
from a source ta, is created, passing through the new edge. This
new path has lengthmax (v; ) + 1+ k, wherek > 0 is the length of
the longest path from; to v,.. Since there is already a path fram

cycles is necessary when we are interested in strong manotontO vr then the original height af,. should be at least.ax (v;) + &

city properties. A sufficient condition for strong monotoity of a
monotone system is the irreducibility of the system. Froombea 1,
we have the following graph-theoretical condition (seetBrtfi995)
and Sontag (2007)).

LEMMA 2. Assume that the systg) is irreducible inX. The

systenm(1) is strongly monotone with respect to some orthant order

o if and only if any of the following conditions holds:

S0, if hmax (vi) < hmax(v;) In G, then the original height is greater
or equal than the new path lenglth.ax(vi) + 1 + &, therefore the
height ofv,. cannot increase. If instednax (vi) = hmax(v;) in G,
when the edgé; ; is added to the DAG, thehu.. of v; becomes
equal tohmax (vs) + 1. Also for all vertices inR (v;) the hmax can
grow as a consequence. O
Proposition 1 allows to increment a DAG while preserving-acy
clicity. Iterating the argument to all edges in the complat the
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polytree, we have a heuristic procedure for the constractiba O cellsize
maximal DAG. +¢

ALGORITHM 1. Construction of a maximal DAG

Input: polytreeT C A
Output: maximal DAGB C A
Procedure: B=T,L = A\ B
for each edgéd; ; € L
o if hmax(vi) < hmax(l)j) thenB = BU {&;7]'}
¢ if Amax(vi) = hmax(v;) then
o hmax(’l)j) = Rmax (1)1) +1
o Yo, € R(vj;) if 3 a path fromv; to v, of
lengthhmax (vr) — hmax(v5) then
hmax (U'r') = hmax(vr) +1

The heuristic steps are the initial choice of the polytéand
the order in which the edges are examined. In Algorithm 1, any
availablea priori knowledge on the open-loop part of the system
can be included in the initial polytreE.

Fig. 1. Yeast cell cycle influence graph (Li et al., 2004). The orgisigned

Example: yeast cell cycl&he network shown in Fig. 1 represents Network is shown. Self-loops are disregarded.
the influence graph of an extremely simplified model of thesyea
(S. cerevisiagcell cycle, in response to an “external” stimulation
at the only source nodeellsize. It was developed and studied in a
boolean setting in Li et al. (2004). Its main characterigtithat it
can reproduce faithfully the various phases of the yeastcyele,
and the proper state transitions at the checkpoints beturesn.
The influence graph shown in Fig. 1 (with respect to the netvedr
Li et al. (2004) we drop self-loops for convenience) is not&D
and it is not monotone. Examples of frustrated cycles arelitpen sB
Clb1,2 «» Cdc20 or the cyclesViBF — Clb5,6 — Clb1,2 — MBF
andSBF — CIn1,2 — Sicl — Clb1,2 — SBF. The last two cycles
encode both the propagation of the replication order froestburce cint.2
cellsize and the feedback reaction of the system which concludes
the S phase of the cycle, inactivating its transcriptiondessMBF

and SBF, and consequently initiating mitosis. When we apply the
procedure of Algorithm 1, we obtain a minimal feedback art se
of 7 edges, 5 of which are digons. One possibility for the Itesm
DAG is shown in Fig. 2 (DAG is in black), where the height.x of

the network is used to render the layout of the graph. ForDA&
huin(DAG) = 2 andhmax (DAG) = 6. Notice that the DAG has 2 Cdh1

sources, and both are needed to reach the entire DAG. Irtpiarti

for this choice of DAG the second sourceGé#b1,2, which is the ~ Fig- 2. DAG (edges in black) for the graph of Fig. 1. Using the height.x
master regulator of the entry and successive exit from thehisp O represent the graph, all edges of the DAG are “descendifdding the

of the cycle. The DAG breaks any path from the souzelisize to two green “ascending” edges we obtain the two small strongiynotone
this critical vertex O SCCs mentioned in Section 5 (green nodes). Any of the redetalng”

edges is instead forming negative directed cycles.

Clb1,2

4 INVESTIGATING STRONG MONOTONICITY I

GENERATION OF A SINGLE LARGE SCC DAy D, where as beforely is the symmetrized version of and
D = diag(o). In terms of the dynamical system (1), this opera-

tion means reversing the partial order along certain axé®"gfin
order to “align” the coneX with the positive orthanR’} as much
as possible. In lacono et al. (2010) a theoretical upper daum)
(hereaftedmax) is described.

When a systems like (1) is not exactly monotone, measuring ho
close it is to monotonicity is a computationally intensektabhis
measure (hereafté consists in identifying the smallest number of
edges whose sign switch (or removal) yields a graph with poki-
tive undirected cycles. This problem is studied in detabasGupta

et al. (2007); Huffner et al. (2009); lacono et al. (2010heTmain  Example: yeast cell cycl&he adjacency matrix of the directed
idea behind the algorithms described in lacono et al. (26di0he graph of Fig. 1 has 14 negative edges out of a total of 30 (gksre
computation of§ is to minimize the number of negative entries of ding self-loops). To understand how distant to monotonesyiséeem
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O cellsize
'

Mcm1/SFF

Cdc20

Fig. 3. The graph of Fig. 1 is transformed by changing sign to all edge
incident to the nodes in blue. Dropping the 5 red edges thderndubsystem

is monotone. The nodes of the large strongly monotone SCQioned in
Section 4 are shown in green.

is, we seek for a diagonal matri® = diag(c) whose signature

o has a—1 in correspondence of the vertices having a majority of

negative incident edges. In Fig. 1 this happens for theidtig 4
vertices:CInl,2, Clb1,2, CIb5,6 and Mcm1/SFF. Switching the
sign to all the corresponding edges, then we are left withgtiaph

splitA, = AT + A7
return the SCCs aD AL D

As the maximization oft-1 entries ofA, is heuristic, the whole
procedure is heuristic.

Example: yeast cell cycl&@he monotone subsystem obtained in the
previous Section and shown in Fig. 3 has a SCC formed by the fol
wing 6 nodesClb1,2, Mcm1/SFF, Clb5,6, Cdh1, Swi5 andSicl.
The remaining 6 nodes instead form trivial (i.e., dimensipSCCs.
Hence, although the complete network is a “prototype” fogaze
tive feedback regulation, from Proposition 2, it hides mstructure
a remarkably large strongly monotone subsystem involvialf ¢f
the nodes of the network. In terms of the functioning of thé ce
cycle, the strategy behind this decomposition is far fromiais,
except for the observation that the SCC is isolated from thece
vertexcellsize, and that the influence of this last vertex is comple-
tely disconnected from the network by the cuts of the eddB§
— CIb5,6 andSBF — CIn1,2. Notice finally that deducing strong
monotonicity of this SCC directly on the original graph (éut the
sign changes performed in Fig. 3) is a nontrivial task. a
The large strongly monotone subsystem obtained in the ebeamp
is not a coincidence. As we will see in Section 6, the pedtyiar
of the approach outlined in Algorithm 2 is that it often leadsa
decomposition in which a single large strongly monotonesgatem
is present.

5 INVESTIGATING STRONG MONOTONICITY I

CONSTRUCTION OF MULTIPLE SMALL SCCS

G(DAD) of Fig. 3 in which there are only 5 negative edges left. In |n this Section we propose a different approach to the proké

this case 5 is exactly the distance to monotonicity, and bpping
the 5 edges we are guaranteed that the subsystem is monotahe.
The algorithms of lacono et al. (2010) enabling the comjprat

decomposing a system into strongly monotone subsystems. Th
approach is more prone to building small disconnected SS@s-
ting with a DAG, at each step the incremented graph is spid in

of the “best” D are applicable also to directed graphs with only SCCs, on each of which strong monotonicity can be tested via

minor adjustments.

PROPOSITION 2. Consider a signed directed grapti(A).
Denote A™ and A~ the two matrices containing respectively the
positive and negative entries df, A = AT + A~. Assumed™ is
irreducible. Then the subsystem @f) having A™ as its influence
matrix is strongly monotone.

PROOF. SinceA™ has only nonnegative entries, the correspon-

ding system is cooperative hence monotone. Furthermareg di™
is irreducible so is the corresponding system. But a codpera
irreducible system is strongly monotone, see Thm 4.1.1 oittém
(1988). |

Lemma 2.
ALGORITHM 3. Strong monotonicity |1

Input: signed DAGB C A
Output: set of strongly monotone subgraphsiof
Procedure:C' = B;L = A\ B

for each edge; ; € L

e obtain the SCCs af' U {/;,; }

e if all SCCs are strongly monotone, then

oC=CU{l;}
return the SCCs of’

When AT is not irreducible, then its SCCs should be considered.

Needless to say, Proposition 2 is inefficient unless the b
negative entries ofd is first minimized, as explained above. The
approach is summarized in the following Algorithm.

ALGORITHM 2. Strong monotonicity |

Input: signed adjacency matrix

Output: set of strongly monotone subgraphsiof

Procedure: find orthant ordes so that the number of 1
entries ofA, = DAD, D = diag(o), is
maximized

Algorithm 3 is heuristic with respect to the choice Bfand the
order of the edges ih. Its performances tend to improve if the DAG
we start with is maximal.

Example: yeast cell cycl®f the 7 edges dropped from the maximal
DAG of Fig. 2, only two can be inserted without inducing negat
directed cycles, and they both are in admissible digon®(geelges
in Fig. 2). In this case two small strongly monotone SCCs ega-C
ted, both of dimension two (the two vertex pairs joined byodig)
as opposed to the single SCC of dimension 6 obtained in $ettio
Notice that 4 of the 5 edges that destroy strong monotonpaityt to
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Clb1,2. As already mentioned, in this modelb1,2 is the regulator
whose activation and consecutive deactivation governsribg and
exit from the M phase, phase which constitutes the reguylgiart

of the cycle in response to the external stimulation, andlalthe
cycle to progress. In the full modeClbl,2 rises after the S phase,
due toClIb5,6 and due to the double inhibitioréin1,2 — Cdh —
Clb1,2 andCInl1,2 — Sicl — Clb1,2. Hence the 3 edges direc-
ted towardsClb1,2 are cut in order to have a strongly monotone
subsystem. a

6 LARGE-SCALE EXAMPLES

The large-scale biological networks considered in thisitare of
two different types: three are transcriptional networksainich a
directed edge represents the action of a transcriptiomifamt one
of its target genes, and the sign means activation (+) obitibn (-

). No stoichiometry is available for these networks. Thecotihree
networks instead represent signaling pathways. Thesebdamed
from stoichiometric reactions, taking the signature of daeobian
matrix, as described in Section 2.2, see also DasGupta 04l7)
for more details and a similar use. The details of the 6 neksvor
are:

e transcriptional networks

e E. coli: gene regulatory network of the. coli, downloaded
from RegulonDBdatabase
(http://regulondb.ccg.unam.mx), version 6.3.

e Yeast: gene regulatory network of. cerevisiaeoriginally
developed in Milo et al. (2002).

e B. subtilis: gene regulatory network foBacillus subtilis
downloaded from http://dbtbs.hgc.jp/.

e signaling networks

e EGFR:network for the Epidermal Growth Factor Receptor
pathway, created by Oda et al. (2005);

e Toll-like: signaling network for theToll-like-receptor.
Assembled from Oda & Kitano (2006).

Table 1. Networks used in this study, andm are the number of nodes
and edges of the directed graph;,, andr,4 the inadmissible/admissible
digons; p is number of SCCs in the original grapl, the distance to
monotonicity andmax its theoretical upper bound.

| Net\NOI’kl n | m | Tin, Tad | p | ) | Omax |
E. coli | 1475 3320 4;5 1452 | 371 | 1581
Yeast| 690 | 1082 1,0 688 | 41 | 401
B. subtilis| 918 | 1324| 2; 2 912 | 71 | 415
EGRF| 330 | 852 4; 65 138 | 193 | 376
Toll-like | 679 | 2204 1; 413 | 267 | 468 | 873
Macroph.| 697 | 1582 1; 155 | 359 | 330 | 704

Table2. Maximal DAG found for the 6 networks. The parameters shoven ar
the size of the minimal feedback arc sej,(the distance to monotonicity of
the maximal DAG §), the minimal/total number of sources needed to cover
the entire DAG ¢/ wtot) @and min/max height of a graph. Ferour results
are compared with those of Festa et al. (2001) and Ispolatov & Maslov
(2008) 6").

| Network | Yy (’Y/, '}/”) | € | Ww; Wrot | Pmin; Pmax |
E. coli 9 (9; 376) 371| 51;65 5,8
Yeast| 1(1;77) | 41| 7787 | 4:8
B. subtil. 5(5; 99) 71 | 663;759 2;7
EGFR | 104 (94, 185)] 169] 38,50 | 5. 37
Toll-like | 452 (467; 665) 450 76;85 8; 50
Macroph. | 176 (175; 335) 316 | 100; 115 9; 48

compared with those of other heuristics. In particular wease a
state-of-the-art local search method (GRASP: greedy naut
adaptive search procedure) from Festa et al. (2001), anchalasi
ted annealing algorithm recently used in the context ofdgmal
networks (Ispolatov & Maslov, 2008). It can be observed that
heuristic and the algorithm of Festa et al. (2001) have sinpkr-
formances. Both algorithms seem to be outperforming cenalady
Ispolatov & Maslov (2008).
If the influence graph of a system is a DAG, then the system may

e Macrophage: molecular interaction map of a macrophage not be strongly monotone or not even monotone. In fact, plelti

obtained from Oda et al. (2004).

In the following we shall simply refer to the networks as ttsarip-
tional” and “signaling”, but one should be aware that “treniygtio-
nal, at functional level” and “signaling, at stoichiometievel” is
probably a more proper connotation for them. In Table 1 werep
the data for the distance to monotonicifyobtained in lacono &
Altafini (2010). It can already be noticed that there is a exysitic
difference between the two classes: the transcriptionaorés are
closer to monotonicity {/dmax ~ 10 — 20%) than the signaling
networks §/0max ~ 50%).

paths originating in a fan-out node and ending in a fan-inenocy
have opposite signs, and hence carry opposite orders aamhi f
(activatory on one channel, inhibitory on the other), a $tration”
(i.e., a negative undirected cycle) which is a trademarkdok of
monotonicity. For all networks a large percentagejas retained
when restricting to the maximal DAG (n Table 2), meaning that
the systems have a complex and potentially incoherent tymgmn-
dynamics. A qualitative difference between the two clasfaset-
works can be observed looking At..x on the DAGs (Table 2):
the maximum length of a chain of events in the open-loop gyste
is always much shorter in the transcriptional networks thmathe

When we use Algorithm 1 to construct a maximal DAG, then ano-signaling networks. On the contrary, the chain of events ofi-n

ther key topological difference between the two classesrgese
namely that the transcriptional networks are essentiaég from
directed cycles, while in the signaling networks the nundfe&dges
that need to be dropped to get a DAG varies freni1% to ~ 20%,

mum length required to reach every vertex (if€sin) is almost the
same in both types of networks. Notice how the complex régnja
structure for the signaling networks implies that only acfian of
the maximal DAG is unanimously identified as open-loop satesy

see Table 2. In Table 2, the performances of our Algorithmel ar over repeated runs of Algorithm 1, see Fig. 4.
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Fig. 4. Overlap between maximal DAGs in different runs of Algoritim

For each network, the histogram shows the distribution efftequency of
selection of an edge in a large number of nearly optimalsrigbr the three
transcriptional networks there exists basically only a Wwagttain the maxi-
mal DAG. For the three signaling networks, instead, thera tegree of
ambiguity in determining the "open-loop” part of the dynamiwith only a
fraction of the maximal DAG unanimously determined (fror8 16r EGFR

and Toll-like, to 1/2 of Macrophage).

Table 3. Strongly monotone subsystems I: single large SCC. Thevialig
parameters are shown: the distance to strong monotongityhe number of
strongly monotone subsystemyg)(the size of the largest strongly monotone

monotone SCCy).

| Network] ¢ | A | x | ¢ ]
E.coli | 10 | 1457| 3 1
Yeast| 3 688 | 3 1
B.subtilis| 7 | 914 | 3 0
EGFR | 163 | 197 | 111| 73
Toll-like | 548 | 398 | 164 | 329
Macroph.| 236 | 484 | 38 | 82

Table 4. Strongly monotone subsystems Il: multiple independent SCC
The same parameters of Table 3 are shown.galso a comparison with
the values reported in Aswani et al. (2009) is sho@/).(

| Network| €(¢&) | X [ x]v]
E. coli 7 14591 2 | O
Yeast| 1(1) | 690 | 1 | O

B. subtilis 2 914 |1 3 | O
EGFR | 64 (45)| 283 | 5 | 2
Toll-like 377 633 | 6 | 90
Macroph. | 84 (75)| 575 | 10| O

much higher for the method of Section 4 than for the one of Sec-
tion 5. Apart from the large SCC, Algorithm 2 returns onlytall
subsystems. For Algorithm 3, instead, the distributioniné ®f the
nontrivial strongly monotone SCCs is shown in Fig. 5. Noticat

our numbers for this last case are still higher than thoserteg in
Aswani et al. (2009) (and shown in Table 4), meaning thatether
probably still room for improvement in our Algorithm 3.

Toll-like Macrophage

size of SCC size of SCC size of SCC

Fig. 5. Size of the nontrivial strongly monotone SCCs created byoAlg
rithm 3 for the 3 signaling networks.

7 CONCLUSION

The investigation of the dynamical properties of largelesdaio-
logical networks poses a problem and a challenge for the &gld
ySystems Biology because of its complexity and lack of silgtab
methodology. By using simple tools from graph theory, weehav
shown in this paper that nearly-optimal solutions for a deupf
important dynamical problems, such as the identificatioa ofini-
mum set of feedback loops whose removal leave the systeroutith
regulation, and the decomposition of the network into dyicaity
“simple” subsystems, may be found with heuristics whichcme-
putationally efficient also for networks of the several hiauts / few
thousands of molecular species. While not optimal andiotstt to

a specific class of network representations (influence gapiur
approach is promising and the insight it provides on thecttine of
the networks already significant.
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