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ABSTRACT
Motivation: Inferring a gene regulatory network exclusively from
microarray expression profiles is a difficult but important task. The
aim of this work is to compare the predictive power of some of the
most popular algorithms in different conditions (like data taken at equi-
librium or time courses) and on both synthetic and real microarray
data. We are in particular interested in comparing similarity measu-
res both of linear type (like correlations and partial correlations) and
of nonlinear type (mutual information and conditional mutual informa-
tion), and in investigating the underdetermined case (less samples
than genes).
Results: In our simulations we see that all network inference algo-
rithms obtain better performances from data produced with “struc-
tural” perturbations, like gene knockouts at steady state, than with
any dynamical perturbation. The predictive power of all algorithms
is confirmed on a reverse engineering problem from E. coli gene
profiling data: the edges of the “physical” network of transcription
factor–binding sites are significantly overrepresented among the hig-
hest weighting edges of the graph that we infer directly from the data
without any structure supervision. Comparing synthetic and in vivo
data on the same network graph allows us to give an indication of
how much more complex a real transcriptional regulation program is
with respect to an artificial model.
Availability: Software and supplementary material are freely availa-
ble at the URL http://people.sissa.it/∼altafini/papers/SoBiAl07/
Contact: altafini@sissa.it

1 INTRODUCTION
Of the various problems one can encounter in Systems Biology,
that of reverse engineering gene regulatory networks from high
throughput microarray expression profiles is certainly one of the
most challenging for a number of reasons. First, the number of
variables that come into play is very high, of the order of the
thousands or tens of thousands at least, and there is normally no
sufficient biological knowledge to restrict the analysis to a subset
of core variables for a given biological process. Second, the num-
ber of gene expression profiles available is typically much less that
the number of variables, thus making the problem underdetermi-
ned. Third, there is no standard model of the regulatory mechanisms
for the genes, except for a generic cause–effect relationship bet-
ween transcription factors and corresponding binding sites. Fourth,
little is known (and no high throughput measure is available) about
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the post-transcriptional modification and on how they influence the
regulatory pattern we see on the microarray experiments. In spite of
all these difficulties, the topic of reverse engineering of gene regu-
latory networks is worth pursuing, as it provides the biologist with
phenomenologically predicted gene–gene interactions.

Many are the methods that have been proposed for this scope
in the last few years, like Bayesian networks (Friedman et al.,
2000), linear ordinary differential equations (ODEs) models (Yeung
et al., 2002), relevance networks (D’haeseleer et al., 1998; Butte and
Kohane, 1999) and graphical models (Kishino and Waddell, 2000;
de la Fuente et al., 2004; Magwene and Kim, 2004; Schäfer and
Strimmer, 2005).

The aim of this work is to compare a few of these methods,
focusing in particular on the last two classes of algorithms, that
reconstruct weighted graphs of gene–gene interactions. Relevance
networks look for pairs of genes that have similar expression pro-
files throughout a set of different conditions, and associate them
through edges in a graph. The reconstruction changes with the
“similarity measure” adopted: popular choices for gene networks
are covariance-based measures like the Pearson correlation (PC)
(D’haeseleer et al., 1998; Butte and Kohane, 1999), or entropy-
based like the mutual information (MI) (D’haeseleer et al., 1998;
Butte and Kohane, 2000). While PC is a linear measure, MI is nonli-
near. These simple pairwise similarity methods are computationally
tractable, but fail to take into account the typical patterns of inter-
action of multivariate datasets. The consequence is that they suffer
from a high false discovery rate, i.e., genes are erroneously associa-
ted while in truth they only indirectly interact through one or more
other genes.

In order to prune the reconstructed network of such false positi-
ves, one can use the notion of conditional independence from the
theory of graphical modeling (Edwards, 2000), i.e., look for resi-
dual PC or MI after conditioning over one or more genes. These
concepts are denoted as partial Pearson correlation (PPC) and con-
ditional mutual information (CMI). First and second order PPC were
used for this purposes in de la Fuente et al. (2004). If n is the number
of genes, the exhaustive conditioning over n−2 genes is instead used
in Schäfer and Strimmer (2005) under the name of graphical Gaus-
sian models (GGM). As for MI, conceptually the CMI plays the
same role of the first order PPC. In our knowledge, CMI has never
been used before for gene network inference, although an alternative
method for pruning the MI graph proposed in Margolin et al. (2006),
based on the so-called Data Processing Inequality (DPI), relies on
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the same idea of conditioning, namely on searching for triplets of
genes forming a Markov chain.

Since we miss a realistic large scale model of a gene regulatory
network, it is not even clear how to fairly evaluate and compare
these different methods for reverse engineering. A few biologically
inspired (small-size) benchmark problems have been proposed, like
the songbird brain model (Smith et al., 2002) or the Raf pathway
(Werhli et al., 2006), or completely artificial networks, typically
modeled as systems of nonlinear differential equations (Zak et al.,
2001; Mendes et al., 2003). Since we are interested in large scale
gene networks, we shall focus on the artificial network of Mendes
et al. (2003), in which the genes represent the state variables and
the mechanisms of gene–gene inhibition and activation are modeled
using sigmoidal-like functions as in the reaction kinetics formalism.
This network has several features that are useful for our purpo-
ses: (i) its size can be chosen arbitrarily; (ii) realistic (nonlinear)
effects like state saturation or joint regulatory action of several genes
are encoded in the model; (iii) perturbation experiments like gene
knockout, or different initial conditions, or measurement noise are
easily included.

Similar comparative studies have appeared recently in the litera-
ture (Werhli et al., 2006; Margolin et al., 2006). However, Werhli
et al. (2006) evaluates Bayesian networks, GGM and PC relevance
networks on one specific, very small (11 genes) network. Margo-
lin et al. (2006) instead compares Bayesian networks, MI relevance
networks and DPI using a number of expression profiles m much
larger than the number of genes n, while we are also interested in
more realistic scenarios. Our investigation aims at:

• comparing conditional similarity measures (like PPCs, GGM
and CMI) with “static” measures (like PC and MI);
• comparing linear measures (PC and PPCs) with nonlinear ones

(MI, CMI, DPI).

In particular, for the different reconstruction algorithms we are
interested in the following questions:

• what is the predictive power for a number of measurements
m � n? How does it grow with m?
• do the algorithms scale with size?
• what is the most useful type of experiment for the purposes of

network inference?

In order to investigate a more realistic setting, the afore-
mentioned methods were applied to a publicly available dataset
of 445 gene expression profiles for 4345 genes of E. coli. Since
a benchmark graph in this case is obviously unknown, in order
to evaluate the algorithms we used the network of transcription
factors–binding sites (TrF–BS) available in Salgado et al. (2006).
Needless to say, due to the complexity of the transcriptional and
post-transcriptional regulatory mechanisms of a living organism,
we expect the TrF–BS network to be only partially reflected in the
inferred network. Quite remarkably, though, we find that for all
algorithms the 3071 edges of the TrF–BS graph are markedly over-
represented among the highest weighting edges of the reconstructed
network, thus showing that (i) transcription factors indeed contribute
to the regulation of gene expression; (ii) the inference algorithms
have some predictive power also in real systems (although the
number of false positives remains unavoidably very high).

Furthermore, if we create an artificial dataset starting from the
TrF–BS graph of E. coli, we can also compare the predictive power
on an in silico model with that on the in vivo system with equal
amount of information. We will see that in the regime of much less
measurements than variables the differences are not so large. As
a byproduct, we also have an indicative estimate of how much our
artificial model is a simplification of a real transcriptional regulatory
network.

2 METHODS

2.1 The artificial network
The model we used to generate artificial gene expression datasets is the
reaction kinetics-based system of coupled nonlinear continuous time ODEs
introduced in Mendes et al. (2003). The expression levels of the gene
mRNAs are taken as state variables, call them xi, i = 1, . . . , n. The influ-
ence on the transcription of each gene due to the other genes is described by
a (sparse) matrix of adjacencies A = (ai, j) and the rate law for the mRNA
synthesis of a gene is obtained by multiplying together the sigmoidal-like
contributions of the genes identified as its inhibitors and activators. Consi-
der the i-th row of A, i = 1, . . . , n, and choose randomly a sign to its nonzero
indexes. Denote by j1, . . . , ja the indexes with assigned positive values (acti-
vators of the gene xi) and with k1, . . . , kb the negative ones (inhibitors of xi).
The ODE for xi is then

dxi

dt
= Vi

∏
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where Vi represent the basal rate of transcription, θi, j (respectively θi,k) the
activation (resp. inhibition) half-life, νi, j (resp. νi,k) the activation (resp. inhi-
bition) Hill coefficients (in our simulations: νi, j, νi,k ∈ {1, 2, 3, 4}), and λi

the degradation rate constants. The ODE (1) always tends to a steady state,
which could be 0 or a (positive) saturation value. When xi(0) > 0, the abun-
dance xi(t) remains positive during the entire time course, hence the solution
is biologically consistent.

As for the topology of A, we shall consider two classes of directed net-
works widely used in literature as models for regulatory networks: scale-free
(Barabási and Albert, 1999) and random (Erdös and Rényi, 1959).

2.1.1 Data generated For the artificial network (1), a gene expression
profile experiment at time t corresponds to a state vector [x1(t) . . . xn(t)]
obtained by numerically integrating (1). For the purpose of reconstructing
the network of gene–gene interactions from expression profiles, one needs
to carry out multiple experiments, in different conditions, typically perfor-
med perturbing the system in many different ways. We shall consider the
following cases of perturbations:

1. randomly chosen initial conditions in the integration of (1), plus gene
knockout obtained setting to 0 the parameter Vi of the respective
differential equation, as in Mendes et al. (2003);

2. only randomly chosen initial conditions in the integration of (1);

and the following types of measurements:

1. steady state measurements;
2. time-course experiments, in which the solution of the ODE is supposed

to be measured at a certain (low) sampling rate.

The numerical integration of (1) is carried out in MATLAB. In all cases, a
Gaussian measurement noise is added to corrupt the output.

2.2 Pearson correlation and partial Pearson correlation
Methods based on PC relevance networks were proposed already in
D’haeseleer et al. (1998). If to each gene i we associate a random varia-
ble Xi, whose measured values we denote as xi(`) for ` = 1, . . . ,m, the PC

2



Comparing association network algorithms

between the random variables Xi and X j is

R(Xi, X j) =
∑m
`=1(xi(`) − x̄i)(x j(`) − x̄ j)

(n − 1)√viv j
,

where x̄i, vi and x̄ j, v j are sample means and variances of xi(`) and x j(`)
over the m measurements.

Since correlation alone is a weak concept and cannot distinguish between
direct and indirect interactions, (e.g. mediated by a common regulator gene),
an algorithm for network inference can be improved by the use of partial
correlations (de la Fuente et al., 2004). The minimum first order partial cor-
relation between Xi and X j is obtained by exhaustively conditioning the pair
Xi, X j over all Xk . If exists k , i, j which explains all of the correlation
between Xi and X j, then the partial correlation between Xi and Y j beco-
mes 0 and the pair Xi, Y j is conditionally independent given Xk . When this
happens, following Edwards (2000) we say that the triple Xi, X j, Xk has a
Markov property: on an undirected graph genes i and j are not adjacent
but separated by k. This is denoted in Edwards (2000) as Xi y X j | Xk . In
formulas, the minimum first order PPC is

RC1 (Xi, X j) = min
k,i, j
|R(Xi, X j | Xk)|,

where

R(Xi, X j | Xk) =
R(Xi, X j) − R(Xi, Xk)R(X j, Xk)
√

(1 − R2(Xi, Xk))(1 − R2(X j, Xk))
.

If RC1 (Xi, X j) ' 0 then exists k such that Xi y X j | Xk . Sometimes conditio-
ning over a single variable may not be enough, and one would like to explore
higher order PPCs. The minimum second order PPC for example is given by

RC2 (Xi, X j) = min
k,`,i, j

|R(Xi, X j | Xk, X`)|,

with

R(Xi, X j | Xk , X`) =
R(Xi, X j | Xk) − R(Xi, X` | Xk)R(X j, X` | Xk)
√

(1 − R2(Xi, X` | Xk))(1 − R2(X j, X` | Xk))

and so on for higher order PPCs. Since the computation is exhaustive over all
n genes, the computational cost of the algorithm for the k-th order minimum
PPC is of the order of O(nk), and it becomes quickly prohibitive for k > 2, if
n is of the order of the thousands.

The weight matrix R can be used to rank the (n2 − n)/2 possible (undirec-
ted) edges of the graph. The use of PPC allows to prune the graph of many
false positives computed by PC alone. However, the information provided
by PC and PPC is one of independence or conditional independence, i.e.,
a low value of PC and PPC for a pair Xi, X j guarantees that an edge bet-
ween the two nodes is missing. A high value of the quantities R(Xi, X j) and
RC1 (Xi, X j) does not guarantee that i and j are truly connected by an edge,
as RC2 (Xi, X j) may be small or vanish.

In de la Fuente et al. (2004) it is shown how to choose a cut-off threshold
for the weight matrices and how to combine together the effect of R, RC1 and
RC2 .

2.3 Graphical Gaussian models
When the n × n matrix R of elements R(Xi, X j) is invertible, and we can
assume that the data are drawn from a multivariate normal distribution, then
the exhaustive conditioning over n − 2 genes can be expressed explicitly.
Denote Ω = R−1 the concentration matrix of elements Ω = (ωi, j). Then the
partial correlation between Xi and X j is

RCall (Xi, X j) = −
ωi, j√
ωi,iω j, j

.

When R is not full rank, then the small-sample stable estimation procedure
of Schäfer and Strimmer (2005) can be used. To compute RCall , we used
the R package GeneNet version 1.0.1, available from CRAN (http://cran.r-
project.org).

2.4 Mutual information and conditional mutual
information

In an association network, alternatively to PC and PPC, one can use the
information-theoretic concept of mutual information (Butte and Kohane,
2000; Margolin et al., 2006; Gardner and Faith, 2005), together with the
notion of conditional independence to discern direct from indirect interde-
pendencies. Given a discrete random variable Xi, taking values in the setHi,
its entropy (Shannon, 1948) is defined as H(Xi) = −

∑

φ∈Hi
p(φ) log p(φ),

where p(φ) is the probability mass function p(φ) = Pr(Xi = φ), φ ∈ Hi. The
joint entropy of a pair of variables Xi, X j, taking values in the sets Hi, H j

respectively, is
H(Xi, X j) = −

∑

φ∈Hi , ψ∈H j

p(φ, ψ) log p(φ, ψ),

while the conditional entropy of X j given Xi is defined as H(X j | Xi) =
H(Xi, X j) − H(Xi). The MI of Xi, X j is defined as I(Xi; X j) = H(Xi) −
H(Xi | X j) and can be explicitly expressed as

I(Xi; X j) =
∑

φ∈Hi , ψ∈H j

p(φ, ψ) log p(φ, ψ)
p(φ)p(ψ) > 0.

When the joint probability distribution factorizes, the MI vanishes:
p(φ, ψ) = p(φ)p(ψ) =⇒ I(Xi; X j) = 0. (2)

The MI conditioned with respect to a third variable Xk is:
I(Xi; X j | Xk) = H(Xi | Xk) − H(Xi | X j, Xk)

or, equivalently,
I(Xi; X j | Xk) = H(Xi, Xk) + H(X j, Xk) − H(Xk) − H(Xi, X j, Xk).

All pairs of nodes can be conditioned exhaustively on each of the remaining
n − 2 nodes and the minimum of such CMIs

IC(Xi; X j) = min
k,i, j

I(Xi; X j | Xk)

can be taken as a measure of conditional independence. When there exists
a Xk that explains the whole MI between Xi and X j, then the triplet has the
Markov property

I(Xi; X j | Xk) = 0 ⇐⇒ Xi y X j | Xk , (3)
implying IC(Xi; X j) = 0, otherwise IC(Xi; X j) > 0.

Just like for the PC and PPC case, the two conditions (2) and (3) can be
used to construct the graph of the gene network. I and IC can also be com-
bined together, and possibly with a cut-off threshold (computed e.g. through
a bootstrapping method). An alternative algorithm to implement the Markov
property Xi y X j | Xk is proposed in Margolin et al. (2006). It is based on
the so-called Data Processing Inequality (DPI) and consists in dropping the
edge corresponding to the minimum of the triplet I(Xi, X j), I(X j, Xk) and
I(Xi, Xk) for all possible triplets i , j , k. This method is shown in Margo-
lin et al. (2006) to prune the graph of many false positives. Denote IDPI the
matrix obtained by applying the DPI. Although IDPI and IC derive from the
same notion, the information they provide is not completely redundant. In
the computation of I and IC we used the B-spline algorithm of Daub et al.
(2004). The matrix I obtained in this way is quite similar to the MI one
gets from the Gaussian Kernel method used in Margolin et al. (2006), see
Supplement.

While the definition of CMI can be extended to higher number of conditio-
ning variables, from a computational point of view this becomes unfeasible
for n of the order of thousands: the time complexity of our algorithm for
complete data matrices is O(n3(mp3 + q3)), where p is the spline order and
q is the number of bins used.

3 RESULTS

3.1 Synthetic data
In order to evaluate the algorithms, we compare each (symmetric)
weight matrix with the corresponding adjacency matrix A and calcu-
late the (standard) quantities listed in Table 1. The ROC (Receiver
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Table 1. Quantities of interest in the evaluation of the algo-
rithms

TP (true positives) = correctly identified true edges
FP (false positives) = spurious edges
TN (true negatives) = correctly identified zero edges

FN (false negatives) = not recognized true edges

recall (or sensitivity) = T P
T P+FN

specificity = T N
T N+FP

precision = T P
T P+FP

Operating Characteristic) and the PvsR (Precision vs Recall) cur-
ves measure the quality of the reconstruction. To give a compact
description for varying m, the Area Under the Curve (AUC) of
both quantities will be used. The ROC curve describes the trade-
off between sensitivity and the false positive rate (1-specificity).
An AUC(ROC) close to 0.5 corresponds to a random forecast,
AUC(ROC) < 0.7 is considered poor, 0.7 6 AUC(ROC) < 0.8
fair and AUC(ROC) > 0.8 good. For gene networks, as A is gene-
rally sparse, the ROC curve suffers from the high number of false
positives. The PvsR curve instead is based only on comparing true
edges and inferred edges, and therefore highlights the precision of
the reconstruction (Margolin et al., 2006). All the quantities we con-
sider as well as the ROC and the PvsR curves are based on sorting
the edge weights (in absolute values for PC, PPCs and GGM) and on
growing the network starting from the highest weight down to the
lowest one. Fixing a cut-off threshold only means altering the tail of
the curves, thus we shall not make any such choice, but explore the
entire range of values for the edge weights.

In Fig. 1, the results for reconstructions of random and scale-
free networks of 100 genes with the different similarity measures
(R, RC1 , RC2 , RCall , I, IC and IDPI) are shown for different numbers
m of measurements. AUC(ROC), AUC(PvsR) and the number of TP
for a fixed value of acceptable FP (here 20) are displayed in the three
columns.

By comparing the first two rows of Fig. 1 it is possible to examine
the influence of the network topology on the reconstruction. Under
equal conditions (type and amount of experiments), all the algo-
rithms performed better for random networks, confirming that they
are easier to infer than scale-free ones (de la Fuente et al., 2004).
Also another network parameter, the average degree, is influencing
the performance of the algorithms: the predictive power is higher
for sparser networks than for less sparse ones (see Section 2 of the
Supplement).

If we now focus the attention on the scale-free topology (the
most similar to known regulatory networks), it can be seen from
the graphs that the performances of the reconstructions are much
higher with knockout perturbations (rows 2–3) than for data produ-
ced without knockouts (row 4). This suggests that knockouts (i.e.
node suppression on (1)) help in exploring the network structure,
while perturbing only the initial conditions contributes very little
predictive information.

Moreover, when perturbing the system with knockouts, steady
state measurements (row 2) are able to generate good reconstructi-
ons with much less samples than time-course experiments (row 3),

in agreement with the results of Bansal et al. (2007). For steady
states, the performances of the algorithms improve increasing m
up to n, then stabilize (for some, like GGM, even decrease). For
time-course data, instead, the graphs tend to level off only when
each gene has been knocked out once, regardless of the number
of samples taken during the time series. This can be seen on the
third row of Fig. 1, where the AUCs keep growing until 1000 samp-
les (corresponding to 100 time series each contributing 10 samples)
and only then tend to stabilize (data beyond 1000 samples are not
shown in Fig. 1). The same trend can be observed increasing the
number of samples per series (data not shown). Learning a network
by means of time series alone (without any knockout) is very dif-
ficult as can be deduced from the low values of AUCs achieved in
the forth row of Fig. 1. Notice, however, that these values get much
worse (essentially random) if we consider no-knockout and steady
state samples.

As for the different algorithms, the PPCs perform well in all con-
ditions, and are significantly improving performances with respect
to PC for both AUC(PvsR) and TP for fixed FP. On the contrary,
applying the DPI to MI (with a tolerance of 0.1, see Margolin et al.
(2006)) only slightly improves the precision of the MI. Since the
DPI simply puts to zero the weights of the edges it considers false
positives, one should not forget that DPI is penalized with respect to
the other measures when computing AUC(ROC). Like PPCs, GGM
gives good average results, but looks promising especially for time-
course experiments, where also CMI is far superior than MI and
DPI.

Finally, it is important to remark that the results we obtained for a
network of 100 genes are qualitatively and quantitatively similar to
those for larger gene networks: as an example in the Supplement a
scale-free network of 1000 genes yields AUCs that are comparable
to those shown in Fig. 1 for an equal ratio m/n.

3.2 E. coli network inference
We downloaded the Escherichia coli gene expression database M3D

“Many Microbe Microarrays Database” (build E coli v3 Build 1
from http://m3d.bu.edu, T. Gardner Lab, Boston University). This
dataset consists of 445 arrays from 13 different collections corre-
sponding to various conditions, like different media, environmental
stresses (e.g DNA damaging drugs, pH changes), genetic pertur-
bations (upregulations and knockouts), and growth phases. The
experiments were all carried out on Affymetrix GeneChip E. coli
Antisense Genome arrays, containing 4345 gene probes. A global
RMA normalization was performed on the data prior to network
inference. All methods described above were applied, except RC2 ,
which is computationally very heavy for thousands of genes and
behaves in much the same way as RC1 . Calculating CMI took us
approximately 12 days on a 3GHz processor. IDPI was computed
from I with a tolerance equal to 0.3 (the tolerance suggested in
Margolin et al. (2006), 0.1, prunes 95.75% of the TrF–BS edges).

As mentioned before, we chose as “true” matrix the E. coli K12
transcriptional network compiled in the RegulonDB database, ver-
sion 5.6 (Salgado et al., 2006), from which we derived a direct
graph of 3071 interactions. As the number of possible undirected
edges is 9437340, this matrix is too sparse for any of the previous
statistics to be meaningful, for example AUCs(ROC) are all around
0.6. Furthermore, biologically the transcription regulation cannot
be expected to be manifestly dominant over all other processes that
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Fig. 1. Evaluating the reconstructions via R, RC1 , RC2 , RCall , I, IC and IDPI algorithms on 100 gene artificial networks for increasing numbers of measurements.
Top row: random topology, knockout perturbations and steady state measurements. Second row: scale-free topology, knockout perturbations and steady state
measurements. Third row: scale-free, knockout and time-course experiments. Fourth row: scale-free, only initial conditions perturbations and time-course
experiments. On the two time courses 10 (equispaced) samples are taken on each time course. The x axis label “N. of measurements” refers to the total number
of samples taken (for example 200 means 200 experiments of steady state type, but only 20 experiments on the two time courses). Left column: AUC(ROC).
Central column: AUC(PvsR). Right column: number of TP for a number of FP equal to 20. Values shown are means over 10 repetitions.
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Fig. 2. Histograms showing the percentage of TrF–BS edges in each of the
100 bins in which the values of the similarity matrix (corresponding to calcu-
lated edge weights) is subdivided for the different reconstruction algorithms.
The binning is according to the inferred edge weights, and each bin contains
94373 edges, and the bin weights (taken as the median of the weights of the
edges in each bin) are normalized to 1. Overrepresentation towards the hea-
viest weighted edges is clearly visible for all the reconstruction algorithms.
On the contrary, a randomization of the dataset, applied before the network
reconstruction with the GGM algorithm, produces a uniform distribution of
the TrF–BS edges, corresponding to a value of '1% on each bin.

determine the gene expression levels in a living organism. Neverthe-
less, if we look at the weights assigned to the TrF–BS edges (“true”
edges) by the reconstruction algorithms, we see that they are signifi-
cantly overrepresented in the highest weighting region (right part of
the graph in Fig. 2) that in the medium/low weight ones (center/left
in Fig. 2), regardless of the similarity measure adopted. To confirm
the validity of our approach, we applied a randomization to the M3D

dataset and then inferred the network with the best reconstruction
algorithm (GGM). In this case, as one would expect, the TrF–BS
edges are uniformly distributed on the bins (rand RCall in Fig. 2).

If we focus only on the highest weighting bin of each reconstruc-
tion algorithm, the concordances on the identified edges (i.e. the
intersection of TP) among the algorithms are shown in Table 2.
Notice the high degree of concordance between correlation and
mutual information.

In absolute terms, of course, there is a huge number of edges with
high weights not corresponding to any TrF-BS interaction (i.e., FP),
reflecting the complexity of the gene expression regulation program.

3.3 Artificial vs in vivo data, given a network
Starting from the E. coli TrF–BS direct graph, it is possible to create
an artificial dataset using the model (1) and compare the predictive
power of the algorithms on synthetic data with the previous real
expression profiles. For this scope we generated the same amount
of synthetic data (445 measurements), describing experiments of
steady state knockout type. The same type of score based on coarse
grain binning shown in Fig. 2 is shown in Fig. 3 for these synthetic
data. Clearly the predictive power has grown in average, although
the difference is not so drastic as one could have expected. Simi-
larly, the concordances of TP in the top bins (Table 2) are better
than on the real data for all the intersections. As expected, all these
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Fig. 3. Percentage of TrF–BS edges in the 100 bins in which the values
of the similarity matrix is subdivided for an artificial dataset with the same
graph as the E. coli TrF–BS. Binning is done as described in Fig. 2. Overre-
presentation towards the heaviest weighting edges is on average higher than
in Fig. 2.

indexes agree in saying that our artificial network is simpler that the
real network, although the difference that emerges from the data is
not so dramatic. Finally notice that also here concordances between
unconditioned similarity measures (PC, MI) alone are very high.
This confirms that conditioning allows to identify edges otherwise
not detectable.

Table 2. TP concordances between simi-
larity measures for the TrF–BS network
with real and synthetic data.

algorithms in vivo in silico

R, RC1 , RCall 120 166
I, IC , IDPI 126 292
R, I 312 370
RC1 , RCall , IC , IDPI 58 94
all 54 94

4 DISCUSSION
For the networks generated with the model (1), we find that steady
state systematic gene knockout experiments are the most informa-
tive for the purpose of reconstructing this type of networks, yielding
an AUC(ROC) > 0.7 even with m � n. In particular for this class of
perturbations the linear similarity measures are enough. The nonli-
near measures MI and CMI instead are less precise. For time series,
the situation is different: relevance networks perform poorly even
when m � n. In this context, conditioned measures are relatively
good. The marked difference between inference on steady state
+ knockouts and the more “classical” dynamical inference from
time series alone without knockouts, is probably due to the highly
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nonlinear content of the transient evolution of (1). Reverse engi-
neering nonlinear dynamical systems is notoriously a very difficult
problem, and not even the use of nonlinear similarity measures is
enough to attain a decent predictive power. At steady state, such
nonlinear behavior has collapsed into a set of algebraic relations
(corresponding to dxi/dt = 0), which become sufficiently informa-
tive if “structurally” perturbed, e.g. by means of node suppressions.
In short, structural perturbations are more efficient than dynamical
perturbations for the purposes of (nonlinear) network inference.

For a real network like the one of E. coli, under the (biologically
plausible) assumption that gene expression reflects transcriptional
regulation through the TrF–BS interactions, we find that the predic-
tive power of essentially all algorithms is certainly nonzero, and that
GGM “guesses” a remarkably high number of edges, with respect
to the other similarity measures, but also in absolute value, taking
into account that in this case m/n ≈ 1/10. Using the same graph to
compare our artificial network and the “true” network of the in vivo
system we do not see a dramatic difference in the predictive power
between the two. This could be simply due to the above mentioned
low ratio m/n.

Other interesting observations are the following:

• After a certain threshold m0 ≥ n the inference ratio of all algo-
rithms tends to stabilize. To improve the predictive capabilities,
other types of perturbations should probably be used (like e.g.,
simultaneous multiple knockouts, external stimuli, etc.).
• AUC(ROC) around 0.9 are reached only by MI, PC and GGM

in the steady state knockout simulations.
• Conditioning is useful to improve the false discovery rate, and

the TP it identifies are to a large extent different from those
detected without conditioning.
• Of all algorithms tested only 2nd order PPC and CMI are too

computationally intensive to be used in a truly large network
(tens to hundreds of thousands of genes).
• MI, CMI and DPI depend heavily on the implementation

algorithm, and, at least in our B-spline implementation, on
the underlying model of probability distribution (for time-
course experiments the quality of the reconstruction improves
considerably with the pre-application of a rank transform to
the data). Correlations instead, are much less sensitive. For
example replacing PC with Spearman correlation yields no
substantial difference.
• The best performances vs runtime are achieved by the GGM

algorithm.
• Sparse networks are easier to identify than dense (or less

sparse) ones, regardless of the algorithms used, see Supple-
ment.
• Even with m � n (realistic situation), using steady state

knockout experiments all algorithms have a decent predictive
power.

5 CONCLUSION
If unsupervised graph learning problems are notoriously difficult
(Edwards, 2000; Pearl, 2000), the conditions under which these
problems must be studied for large scale gene regulatory network
inference (less data than nodes) are even more challenging. Nevert-
heless, we can see through simulation and through reasonable

biological assumptions on real data that the predictive power of
current methods is indeed nonzero, and that a certain amount of
structural information can be extracted even in this regime by means
of computationally tractable algorithms, although the precision is
very low and the number of false positives unavoidably very high.
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