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1 Further considerations on elementary 2-variable models

1.1 From exact integral feedback model to integral feedback with memory
decay

This section is meant to explain why on elementary models a simple exact integral feedback is
not suitable to reproduce the data analyzed in the paper. For the sake of simplicity, we take
as reference the experiments with olfactory neurons shown in Fig. 2 of the paper, in which
the input positively stimulates the state variable y of the system (and hence the output). We
review (basic) models starting from the one in [31] and adding elements to it, with the aim of
“qualitatively” satisfying the following dynamical features:

• reproduce the step adaptation of the paper, with its steady state value which is similar
but not exactly equal to the pre-stimulus level;

• reproduce the two-pulse adaptation protocol shown in the paper, with its recovery profile;

• avoid non-physiological signals. These correspond for example to negative concentrations
of a substance, but also to unrealistic transient excursions. In particular in all our ex-
perimental data for olfactory response (see [9]), the output current never undershoots the
basal level of current, neither in a step adaptation nor in a multipulse protocol.
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Figure S1: Input responses of the 2-variable model (1) of the paper. The various plots
of Fig. 1B of the paper are shown here more in detail. The 4 panels show the time course of the
input (u) and state variables (y and x) of model (1) of the paper in response to steps (top) and
multiple pulse pairs (bottom) for 4 different values of the ratio δy/δx. The same classification
as in Fig. 1B is followed. A: perfect step adaptation / no recovery in multipulse adaptation;
B: almost perfect step adaptation / slow recovery in multipulse adaptation; C: partial step
adaptation / fast recovery in multipulse adaptation; D: no step adaptation / no multipulse
adaptation.

Model 1. The basic integral feedback model. Following the notation of the caption of Fig. 2
of [31], the basic model is

y = k1(u− x)− yo (S1a)
dx

dt
= y, (S1b)

where y is the output variable, yo its basal level, and x the feedback variable.

A characteristic of this model is that when y ≥ 0 ∀ t ≥ 0 (physiological condition for
most biological models, including ours) x(t) =

∫ t
0 y(τ)dτ is monotonically growing. Hence

no matter how delayed is the second pulse of a two-pulse protocol, y(t) > 0 implies
x(t2) > x(t1) ∀ t2 > t1, meaning that the adapted response does not recover increasing
the lag time between the two pulses. The only way to decrease x (to “discharge” the
integrator in control engineering language) is to allow for negative y, see Fig. S2. Notice
that the model is exactly the same as the following one, with baseline “shifted”

y = k1(u− x)
dx

dt
= (y − yo),

where integration is with respect to the baseline value yo. Now the output y “moves
around” yo, hence when yo > 0 it could remain positive even if y − yo < 0. However,
in the multipulse response the problem of possible negative values of y reappears if the
amplitude of u is increased, meaning the model is not structurally consistent for biological
signals. Furthermore, the profile for the deactivation phase (following the end of a pulse)
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is not physiological, and differs from any experimentally observed profile. More comments
on this in next subsection.

In addition, y has jumps when u has jumps, since (S1a) is a static input-output relation-
ship.

Model 2. Adding a kinetics to the input-output relationship. The static input-output trans-
duction of Eq. (S1a) can be replaced by a differential equation, describing the kinetics
from input u to output y

dy

dt
= f(u, x) (S2a)

dx

dt
= y, (S2b)

where f(·) is any kinetic function, for example a linear one: f(u, x) = u− k1x.

In this way we obtain a linear system ξ =
[
y
x

]
dξ

dt
= Aξ + Bu,

where A =
[
0 −k1

1 0

]
, B =

[
1
0

]
. A system like this is not asymptotically stable (trace(A) =

0 means the eigenvalues are purely imaginary) and typically induces oscillations in re-
sponse to steps, see Fig. S2. However if we add a damping, i.e., a negative term on the
diagonal of A, then asymptotic stability is recovered.

Model 3. Adding a damping term to the y equation. A first possibility is to place the damp-
ing term (a first order decay) in the input-output transduction:

dy

dt
= u− k1x− δyy (S3a)

dx

dt
= y, (S3b)

or, in presence of a nonzero baseline yo,

dy

dt
= u− k1x− δyy (S4a)

dx

dt
= y − yo. (S4b)

From Fig. S2, these curves are qualitatively correct for double pulse adaptation and show
perfect step adaptation. However, as in Model 1 the double pulse adaptation is ob-
tained only because y becomes negative (or undershoots its baseline), hence the model is
inadequate for the same reasons.

In order to avoid negative values of y, the simplest solution is to introduce a nonlinearity
in the ODE for y, for example a quadratic term, in our case representing the “encounters”
of x and y in a mass-action formalism.
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Model 4. Adding a quadratic term on Model 3. Adding the quadratic term in the input-
output transduction and keeping the linear decay in y we get

dy

dt
= u− k1xy − δyy (S5a)

dx

dt
= y. (S5b)

From Fig. S3, the model (S5)

• avoids negative values for y;

• does not reach a steady state in x in the step response (dx/dt > 0 always);

• shows no recovery of the adaptation to a double pulse.

The latter item in particular is unavoidable regardless of the functional form chosen for
the kinetics of y, as long as the exact integral ODE (S5b) is used. In this case in fact the
only way to “discharge” the integrator is when y assumes negative values.

We deduce therefore that adaptation to a double pulse cannot be achieved by an exact
integral feedback in which the integrated variable is never negative. The argument is
similar in presence of a baseline yo (and of an output y s.t. y − yo ≥ 0 always, as in our
experiments).

Model 5. Quadratic term as in Model 4 and damped integral feedback.

In this model the diagonal damping term affects the feedback variable:

dy

dt
= u− k1xy (S6a)

dx

dt
= y − δxx. (S6b)

This is the starting point of our scheme of an integral feedback with a memory decay,
used in the paper.

From Fig. S3, the model (S6)

• avoids negative values of y (or of y − yo in case of nonzero baseline);

• shows a non perfect adaptation to a step;

• exhibits a recovery of the adaptation in a double pulse protocol.

Qualitatively this elementary model reproduces all the dynamical features observed in the
experimental data described in the paper. The presence of a damping term −δyy in (S6a)
does not alter this qualitative behavior provided that δx/δy is small enough (the time
constant of x is longer than the one of y, see main text).

Model 6. Adding a conservation law to Model 5.

If, as in our models, y represents a fraction of a certain molecular species of constant total
concentration (e.g. the fraction of open CNG channels in olfactory transduction), then its
value must be constrained, for example assuming 0 6 y 6 1. The Models 1÷5 do not
respect this constraint, because u is not linked to the value assumed by y. A conservation

4



law can be imposed multiplying u by the complement of y (i.e., by the fraction of closed
CNG channels in the olfactory pathway). The resulting model

dy

dt
= u(1− y)− k1xy (S7a)

dx

dt
= y − δxx, (S7b)

is the one used in the paper once a degradation term is added in (S7a). A similar con-
servation law can in principle be applied also to x (not necessary in our case). As can be
seen on Fig. S3, the behavior of Model 6 is qualitatively similar to that of Model 5 for
what concerns our input responses.

Whenever basal regulation is nonnegligible, nonzero baseline levels can be taken into
account for both y (as we did above with yo) and x (denote it xo). The model (S7) can
be amended as follows:

dy

dt
= u(1− y)− k1(x− xb)(y − yo) (S8a)

dx

dt
= (y − yo)− δx(x− xo) (S8b)

where the baseline may or may not be present in the first order degradation rates, de-
pending on the context.

1.2 “Discharging” an integral feedback by undershooting: confutation of an
alternative model.

Reviewing the behavior of the basic Models 1 through 5 of the previous section, it can be
observed that even with an integral feedback it is possible to generate output profiles which
match qualitatively the responses to both types of adaptation but do not exhibit the trade-off
mentioned in the paper. This case corresponds for example to Model 3 of this SI, see (S3) and
Fig. S2. In this model, the (exact) integrator is “discharged” through a signal that undershoots
the baseline level, avoiding any memory decay. From (S4) if yo is the baseline of y, then y < yo

implies that even with δx = 0 the integral x(t) =
∫ t
0 (y(τ) − yo)dτ is no longer monotone, i.e.,

the integral x(t) can indeed decrease also in a model with exact integral feedback.
The undershooting in the deactivation phase should however be observable experimentally,

i.e., it should produce an output current which becomes less than basal in olfactory transduction
or higher than basal in phototransduction. No experiment with the olfactory system shows
undershooting of the basal current. Also in phototransduction experiments, for both pulse and
step responses in dark, no overshooting above the noise level can be observed in the deactivation
phase. For both sensors, a large number of similar experiments available in the literature
confirms the lack of undershoot (overshooting for phototransduction) deactivation transients
[2, 12, 25, 6, 13, 22].

Furthermore, if y represents a fraction of a (positive) quantity, 0 6 y, yo 6 1, the scheme
making use of undershooting to discharge the integral, in order to be plausible, requires that
yo is sufficiently large. In olfactory transduction, however, y reflects the fraction of open CNG
channels, and it is estimated that yo ∼ 0 in absence of stimulation (y reaches 0.9 upon strong
stimulations). Hence, to preserve nonnegativity of concentrations, the admissible undershooting
would in any case be extremely limited. The behavior in phototransduction is not completely
specular, in the sense that, for the “complementary variable” z = 1−y, zo (representing the basal
fraction of open channels) in dark is low, and during the transient it decreases further, z 6 zo
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Model 1
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dt = y
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Model 3

dy
dt = u− k1x− δyy
dx
dt = y

exact integral feedback
asymptotically stable
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Figure S2: Step and multipulse response for the Models 1-3. The main dynamical
properties of the models are summarized below the equation box.

(i.e., CNG channels close even more, up to a complete closure for saturating illuminations). In
spite of this, it is worth observing that when stimulated in dark, overshooting transients in the
deactivation phase of a pulse/step are not seen in experiments with rods.

The similarity of the behavior in the two sensors confirms that “discharging” of the feed-
back variable(s) has to be accomplished by some other mechanism such as the memory decay
described in the paper. Other pieces of evidence in favor of the memory decay mechanism
include the graded steady state level reached in response to graded step inputs, see [9] for a
relate discussion in the olfactory transduction system. Remarkably for cones (which are known
to never saturate [23]) some form of undershooting is instead observed [16].
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Model 4

dy
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Model 5

dy
dt = u− k1xy
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dt = y − δxx

integral feedback with memory decay
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Model 6

dy
dt = u(1− y)− k1xy
dx
dt = y − δxx

conservation law for y
integral feedback with memory decay
never undershooting
multipulse adaptation
(non-perfect) step adaptation
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Figure S3: Step and multipulse response for the Models 4-6. The main dynamical
properties of the models are summarized below the equation box.

2 Signaling pathways and their models

2.1 Olfactory transduction

Pathway. In the absence of stimuli, the cyclic nucleotide-gated (CNG) channels in the olfac-
tory transduction are almost completely closed. The arrival of the odorant molecules increases,
through a G-protein cascade, the amount of activated adenylyl cyclase, which in turn leads
to the accumulation of cyclic AMP, thus triggering the opening of the CNG channels. This
allows various types of cations to enter the cell. Among these, the calcium ions further open the
calcium-activated chloride channels, leading to a second current of chloride anions which flows
out from the cell, amplifying the original response [15, 21]. Calcium is also responsible for sev-
eral feedback loops in the pathway: by binding to proteins (among these possibly calmodulin)
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which are natively attached to the CNG channels, it decreases the sensitivity of the channels to
cAMP thus inducing their closure [1, 5, 8]. Furthermore, by binding to calmodulin free in the
cytoplasm it causes the hydrolysis of cAMP through a phosphodiesterase (PDE) [4], and this
calcium-calmodulin (CaCaM) complex can activate also the enzyme CaCaM-dependent protein
kinase II (CaMK) which inhibits the adenylyl cyclase activity [29]. Calcium is finally extruded
through the Na/Ca exchanger [20]. More details on the pathway are available e.g. in [15, 2].

Dynamical model. For the sake of simplicity, these feedback actions are lumped together
into the single feedback shown in Fig. S4A. Extensive analysis of more complex models carried
out in [9] in fact suggests that the multiple feedback actions are redundant for what concerns
the adaptation behavior considered in this paper. Our “minimal” model includes therefore
3 state variables: [CNG] (fraction of open channels), [Ca] (concentration of Ca2+ ions) and
[CaBP] (concentration of the complexes that calcium forms with the protein complexes natively
bound to the CNG channels, here indicated as BP). The first and the latter of these variables
obey a conservation law. The total number of CNG channels (normalized to one) is the sum of
the closed and the open channels (respectively [CNGc] and [CNG]). Furthermore the equation
[BP]+[CaBP] = 1 represents the conservation of the total concentration of the calcium-binding
proteins BP. For this reaction a mass-action kinetic is considered:

Ca2+ + BP
αCaBP−−−−⇀↽−−−−
βCaBP

CaBP.

In our dynamical model the cyclic AMP can be considered as the input of the system (here
called u):

d[CNG]
dt

= (1− [CNG])u− k1[CNG][CaBP]2 (S9a)

d[Ca]
dt

= k2[CNG]− δCa[Ca]

−αCaBP[Ca](1− [CaBP]) + βCaBP[CaBP] (S9b)
d[CaBP]

dt
= αCaBP[Ca](1− [CaBP])− βCaBP[CaBP]. (S9c)

In (S9a) the first term represents the opening of the CNG channels due to cyclic AMP and
the second term the negative feedback (which includes a cooperative action, known to hold for
calmodulin [5]). Equations S9b and S9c include the mass-action terms introduced above and the
inflow of calcium due to the opening of the channels (term k2[CNG]). The linear degradation
term δCa[Ca] includes also the extrusion of calcium through the sodium-calcium exchanger.
More details on the kinetic terms are available on [9].

In the cilia the CNG current is further amplified by the chloride current flowing through the
calcium-activated chloride channels. Therefore the output of our model (total elicited current)
is calculated as the sum of the current flowing through the CNG channels (proportional to the
fraction of open channels), and of that carried by chloride anions. To account for this second
component we use a Hill-dependence on the calcium concentration with a cooperativity index n
equal to 2 (as in [15, 2, 28]) and with the half-activation constant K1/2 equal to 4 µM [15, 2, 9].
Furthermore we have added a weight of 0.2 for the current carried by CNG channels and of
0.8 for the calcium-activated chloride current, to reflect their proportionality in the biological
data [3]

Iolf = 0.2 [CNG] + 0.8
( [Ca]n

[Ca]n + Kn
1/2

)
. (S10)
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2.2 Phototransduction

The signaling mechanisms involved in the phototransduction of vertebrate rods are described
at length in several survey papers, such as [6, 11, 23, 22]. Also several detailed mathematical
models exist, see e.g. [13, 14, 22, 27]. Coherently with the approach followed in this paper, only
the basic ingredients needed to have a minimal regulatory system are considered in our model.

Pathway. In darkness, rods are characterized by Ca2+ and Na+ currents which circulate
through cGMP-gated CNG channels (inflow) and exchange pumps (outflow). Light photoiso-
merizes rhodopsin which, through the mediation of G-proteins, activates PDE. Activated PDEs
hydrolize cGMP, and the drop of cGMP induces the closure of the CNG channels and hence
a drop in the Ca2+ current. As the efflux through the exchange pumps is not affected, also
the cytoplasmic concentration of Ca2+ drops. In dark, Ca2+ binds to the guanylate cyclase
activating protein (GCAP) reducing its function of inhibitor of guanylate cyclase (GC) activity.
The drop of Ca2+ during light response implies calcium-free GCAP binds to GC and increases
its catalytic activity for second messengers. Hence the synthesis of cGMP passes from a basal
level to a higher rate, thereby completing the negative feedback loop which forms the core of
the regulation considered in our model. Calcium is responsible for at least two more feedback
mechanisms present in the phototransduction pathway1. It decreases the affinity of CNG chan-
nels through the binding with calmodulin, and the calcium-binding protein recoverin inhibits
the phosphorilation of rhodopsin due to G-protein-coupled-receptor-kinase 1 (GRK1) prevent-
ing the complete deactivation of rhodopsin by arrestin. Therefore, a decreasing concentration
of calcium promotes the activity of GC, the opening of the CNG channels and the quench of
rhodopsin [22, 18, 30]. The feedback involving the modulation of the GC is considered dominant
at low and intermediate light intensities, whereas the feedback due to recoverin-arrestin seems
to play a more important role at higher intensities [30]. The feedback action of calcium ions on
CNG-channels is of little importance in rods phototransduction compared with the other two
mechanisms [17].

Dynamical model. In what follows we will disregard the feedbacks mediated by calmodulin
and by recoverin and concentrate on the GC feedback loop. The resulting basic pathway
considered in our model is depicted in Fig. S5A. For this pathway we consider a model of
4 variables: [cGMP] (concentration of cGMP), [CNG] (fraction of open CNG channels), [Ca]
(concentration of Ca2+ ions), [GC] (fraction of active guanylate cyclase). GCAP is not modeled
explicitly. Conservation laws are imposed on [CNG] and [GC]. Denoting [CNGc] and [GCi]
respectively the fraction of closed CNG channels and the fraction of inactive GC enzyme, these
conservation laws can be expressed as [CNG]+[CNGc] = 1 and [GC]+[GCi] = 1. The reactions
for which we use mass-action kinetics are the following:

CNGc + 2cGMP
αCNG−−−⇀↽−−−
βCNG

CNG

GC + 2Ca2+ αCa−−⇀↽−−
βGC

GCi

cGMP δCNG−−−→ ∅ (hydrolized to GMP)

Ca2+ δCa−−→ ∅ (outflow from the outer segment).

The second reaction models the (GCAP mediated) inhibition of GC by Ca2+, which occurs in
darkness. Additional (non-mass action) reactions express the inflow of Ca2+ through the open

1Several extra feedback loops are actually mentioned in [22] but will not be described here.
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CNG channels (linear term, with gain constant k2), and the feedback action (linear production
of cGMP, whose substrate, GTP, is considered abundant). The ODEs we will use are the
following:

d[cGMP]
dt

= −(u + δcGMP)[cGMP] + k1[GC]

−2αCNG[cGMP]2(1− [CNG]) + 2βCNG[CNG] (S11a)
d[CNG]

dt
= αCNG[cGMP]2(1− [CNG])− βCNG[CNG] (S11b)

d[Ca]
dt

= k2[CNG]− δCa[Ca]− 2αGC[GC][Ca]2 + 2βGC(1− [GC]) (S11c)

d[GC]
dt

= −αGC[GC][Ca]2 + βGC(1− [GC]) (S11d)

In the phototransduction experiments the only affected current in response to light stimuli is
the one flowing through the CNG channels. Therefore the output of the model (reproducing the
measured current) is considered proportional to the fraction of open CNG channels. To account
for the normalization and the shift of the recorded currents (otherwise impossible to compare
because of the different amplitudes and responses) we inserted in the model two parameters:
KI representing the amplification of the current and I0 to account for a different dark current
level:

Iphoto = I0 + KI [CNG]. (S12)

2.3 Parameter fitting

Modeling the input stimulus. For phototransduction, the input of our model is the PDE
which hydrolyzes the cGMP. Since we do not describe the early steps of the pathway, the
dynamics of activation is taken from literature. For instance, the tailed peak of PDE from a
pulse stimuli reported in [24] is here reproduced (normalized) with the following expression

u(t) =

{
0 t < to

(t− to)λe1−λ(t−to) t > to
(S13)

where the parameter λ = 6.0. Step inputs are reproduced holding the maximum value of
this function for the whole length of the pulse. Moreover, we assume that the stronger action
induced by a step (with respect to a short pulse) reflects also in a slower decay. In these cases the
parameter λ is reduced to 2.2. The same input modeling is used for the olfactory transduction,
with values of λ = 2 and λ = 1 respectively.

Fitting procedure. The parameters of the models (S9) and (S11) have been fitted to the
data presented in Figs. 2 and 3-4 of the main text. To perform this fit, we used the MATLAB
function lsqcurvefit. This function minimizes the residuals sum of squares of the different
datasets simultaneously with a nonlinear least square method (using the trust-region-reflective
algorithm). The resulting values of the parameters are reported in Tables S1 and S2.

Inducing adaptation via negative feedback: faster and slower time constants. As
mentioned in the main text, if in a model like (1) exact integral feedback implies an infinite
time constant for the variable x, achieving partial step adaptation still requires a system with
a faster (y) and a slower (x) kinetics, see Fig. S1. Also the models (S9) and (S11) obey this
principle.
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Name Description Value
k1 CaBP feedback gain 215
k2 inflow of Ca2+ through CNG channels 23
δCa outflow of Ca2+ 1.5

αCaBP association rate between Ca2+ and BP 0.10
βCaBP dissociation rate between Ca2+ and BP 0.21

Table S1: Parameter set used to fit the olfactory transduction data of Fig. 2.

Name Description Value
δcGMP degradation rate of cGMP 0.38

k1 GC feedback gain 3480
αCNG association rate between CNG and cGMP 1.95
βCNG dissociation rate between CNG and cGMP 150

k2 inflow of Ca2+ through CNG channels 440
δCa outflow of Ca2+ 28
αGC association rate between Ca2+ and GC 0.10
βGC dissociation rate between Ca2+ and GC 0.0018

Table S2: Parameter set used to fit the phototransduction data of Figs. 3-4.

For example, it is known that in phototransduction the opening and closing of the CNG
channels occurs on a very fast time scale (milliseconds, [22]) when compared with the PDE-
mediated decline of the input stimulus and with the regulatory action of GC, which is induced
by GCAP reactivation following the Ca2+ drop. Therefore for the purposes of our modeling
we can consider the CNG gating (and the consequent kinetics of Ca2+ influx/efflux) as faster
processes when compared to the negative feedback regulation due to GC, see Fig. S5A.

Similarly in the olfactory transduction, the time constant of the feedback mechanism is
longer than that associated with the opening of the CNG channels. As just mentioned, this last
is known to be very fast, of the order of milliseconds, while the onset of the feedback is neatly
slower, as can be seen in Fig. 2 of the paper. Notice that also in [9], where related models are
studied in detail, similar ranges of values for the time scales of the system emerge naturally
when trying to fit step/multipulse response data.

Finally, it is worth remarking that the presence of fast and slow dynamics is a prerequisite
also in other models for adaptation not discussed in this paper, like the incoherent feedforward
loop (in this case a delay element is often used to mimic slower response).

On minimality of the model and identificability At the level of a single photorecep-
tor, much more detailed kinetic models than the one adopted here to fit the data have been
available for several years [13, 22, 14, 27]. The same consideration applies also to the olfac-
tory transduction [10, 9]. As we have recently observed for the latter pathway in [9], from the
perspective of the input-output dynamical modeling (i.e., without the possibility of monitoring
extra variables other than the stimulus and the output current) the introduction of extra de-
tails and of multiple feedback loops essentially introduces redundancy into the mathematical
model. The complications associated with “non-minimal” dynamical models are well-known in
the parameter identification literature [19, 26]. They essentially amount to the impossibility of
uniquely determining the kinetic parameters of a model. The drastic choice made in this paper,
namely to (deliberately) oversimplify the differential equations is also meant to avoid such type
of ill-posed identifiability problems.
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2.4 Response to a train of pulses: simulations

An intermediate situation between double pulse and step adaptation can be obtained through
an input of consecutive pulses. When the lag time between the pulses is short, the stimulus
obtained is similar to a step input. This protocol is sometimes used in experiments in alternative
or in conjunction with steps, see e.g. [7]. The results of simulations with the models (S9) and
(S11) of the two systems (see Figure S6) show an almost perfect adaptation for olfactory neurons
and a very weak adaptation for photoreceptors. A comparison with the corresponding plots of
a step input (panels B of Figure S4 and S5), highlights that the similarity concerns both the
output and all the internal variables. For the stimulation of Fig. S6, the pulse width and the lag
time reflect into the mean amplitude of the “effective” input (green curve), not in a substantial
change of its functional form.
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Figure S4: Olfactory transduction. A: the diagram represents the core regulatory action
included in the model (S9) for the olfactory transduction, described in these SI. B: behavior of
the state variables of (S9) for the step response of Fig. 2A of the paper. The top panel shows
in black the “ideal” input and in green the more plausible input shape as described in (S13).
C: state variables (and input) for the pulse pairs of Fig. 2B.
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Figure S5: Phototransduction. A: the diagram shows the pathway used for phototransduction
with its calcium-mediated GC feedback loop, see text and (S11). The panels B, C and D show
the input u (both the ideal profile in black and the more realistic shape obtained from (S13) in
color) and the 4 state variables of the model (S11) for B: the step response of Fig. 3A; C: the
multipulse response of Fig. 3B; and D: the double step response of Fig. 4B.
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Figure S6: Response to a train of equispaced pulses. The plots show the shaped input
(green) and the state variables of both models (S9) and (S11) (panel A a B respectively) in
response to consecutive equispaced ideal pulses u. Notice the similarity with step responses in
Figure S4B and S5B.
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