
Software development 
for Smartphones/tablets
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 In a few years time tablets and smartphones will be 
running PC applications / on PC hardware
 Promised for a long time
 Progress, but a limit is reached (or will be soon)
 At the same time, the performance of embedded systems 

increases significantly

 Smartphones / tablets will replace PCs in normal 
households
 Already happening
 PCs in future: only at work, probably for hardcore gaming
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 CPUs: Arm

 GPUs
 Imagination Technologies PowerVR (market leader)
 Arm Mali
 Qualcomm Adreno (former: ATI)
 NVIDIA Tegra
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 Chip-producer
 Texas Instruments
 Qualcomm
 ST Ericsson (?)
 Samsung
 NVIDIA (ARM+Tegra)
 Apple (ARM+PowerVR)

 Current Maximum: 1.8 Ghz, 2 Mbytes of memory
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 PCs
 Several, star-organized 

busses
 Distributed memory and 

caches
 Might be multicore, might 

have accelerators (GPU, 
modem) connected at 
periphery

 Optimized for Performance

 Mobile Gaming
 One central bus

 Centralized memory, 
small caches (if at all)

 Multicore, contains tightly 
coupled accelerators 
(System-on-a-Chip
 

  
 Optimized for Efficiency
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 Generally
 Code optimization very important
 Bus and memory are bottlenecks, more so than in PCs
 Only 32 (or 16) bit: avoid double precision
 Use fixed-point instead of float wherever possible
 Use the multicores & accelerators
 Low-level programming if possible
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 iOS: Objective-C

 Android: JAVA

 Both object-oriented

 Apps run in sandboxes (due to security reasons)
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 Model: manages and modifies data

 View: renders to screen

 Controller: handles inputs and outputs
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 12/25iOS

 Delegates
 Do a task on behalf of another
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 Advantages
 Low-level programming possible
 Easy-to-use toolchain, e.g. editor for screen layout, ready-to-

use objects for user interaction

 Disadvantages
 Limited freedom
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 Content providers
 Access to shared resources, e.g. file-system, network

 Broadcast receivers
 e.g. rotation, energy-saving mode
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 View / Viewgroups
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 JNI (Java Native Interface)
 Low-level programming (C, C++) in Java
 Often faster, but might not be
 May have to be recompiled for different architectures
 Complicated data- and thread-sharing
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 Advantages
 More freedom
 Works on different architectures (mostly)

 Disadvantages
 More complicated to use
 Less easy-to-use tools
 Java really good language for embedded systems? (Double 

as standard? No unsigned or fixed-point data-types?)
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 Object-oriented
 Data grouped by abstract objects

 Data-driven
 Data grouped by access patterns

 Data-driven approach can be implemented by using 
objects
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 Android
 Up to developer
 Threads, barriers, atomic commands etc.
 Flexible, but can get complicated

 iOS
 Only asynchronous
 Waiting queues, managed by the OS
 Less freedom, but easy to use
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 Android
 More flexible, but more complicated
 Odd language choice
 Biggest, fastest growing market

 iOS
 Easy to learn and use, but locked to the apple-way
 Most important market?

 Other?
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 Be aware of limitations
 Optimize as much as possible
 Avoid bus- and memory-usage
 Be efficient! Try to make the most of it!
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