
Software development 
for Smartphones/tablets



  1/25Motivation

 In a few years time tablets and smartphones will be 
running PC applications / on PC hardware



  1/25Motivation

 In a few years time tablets and smartphones will be 
running PC applications / on PC hardware
 Promised for a long time



  1/25Motivation

 In a few years time tablets and smartphones will be 
running PC applications / on PC hardware
 Promised for a long time
 Progress, but a limit is reached (or will be soon)



  1/25Motivation

 In a few years time tablets and smartphones will be 
running PC applications / on PC hardware
 Promised for a long time
 Progress, but a limit is reached (or will be soon)
 At the same time, the performance of embedded systems 

increases significantly



  1/25Motivation

 In a few years time tablets and smartphones will be 
running PC applications / on PC hardware
 Promised for a long time
 Progress, but a limit is reached (or will be soon)
 At the same time, the performance of embedded systems 

increases significantly

 Smartphones / tablets will replace PCs in normal 
households



  1/25Motivation

 In a few years time tablets and smartphones will be 
running PC applications / on PC hardware
 Promised for a long time
 Progress, but a limit is reached (or will be soon)
 At the same time, the performance of embedded systems 

increases significantly

 Smartphones / tablets will replace PCs in normal 
households
 Already happening



  1/25Motivation

 In a few years time tablets and smartphones will be 
running PC applications / on PC hardware
 Promised for a long time
 Progress, but a limit is reached (or will be soon)
 At the same time, the performance of embedded systems 

increases significantly

 Smartphones / tablets will replace PCs in normal 
households
 Already happening
 PCs in future: only at work, probably for hardcore gaming



  2/25Market

 Android

 iOS (iPhone, iPad)

 Other
 Firefox, Ubuntu
 Blackberry OS
 Windows



  2/25Market

 Android (>50%)

 iOS (iPhone, iPad)

 Other (<10%)
 Firefox, Ubuntu
 Blackberry OS
 Windows



  2/25Market

 Android (>50%)

 iOS (iPhone, iPad)

 Other (<10%)
 Firefox, Ubuntu
 Blackberry OS
 Windows



  3/25Market

 CPUs: Arm



  3/25Market

 CPUs: Arm

 GPUs
 Imagination Technologies PowerVR (market leader)
 Arm Mali
 Qualcomm Adreno (former: ATI)
 NVIDIA Tegra



  4/25Market

 Chip-producer
 Texas Instruments
 Qualcomm
 ST Ericsson (?)
 Samsung
 NVIDIA (ARM+Tegra)
 Apple (ARM+PowerVR)



  4/25Market

 Chip-producer
 Texas Instruments
 Qualcomm
 ST Ericsson (?)
 Samsung
 NVIDIA (ARM+Tegra)
 Apple (ARM+PowerVR)

 Current Maximum: 1.8 Ghz, 2 Mbytes of memory



  5/25PC architecture



  6/25Embedded System architecture



  7/25PC vs Embedded System

 PCs
 Several, star-organized 

busses

 Mobile Gaming
 One central bus



  7/25PC vs Embedded System

 PCs
 Several, star-organized 

busses
 Distributed memory and 

caches

 Mobile Gaming
 One central bus

 Centralized memory, 
small caches (if at all)



  7/25PC vs Embedded System

 PCs
 Several, star-organized 

busses
 Distributed memory and 

caches
 Might be multicore, might 

have accelerators (GPU, 
modem) connected at 
periphery

 Mobile Gaming
 One central bus

 Centralized memory, 
small caches (if at all)

 Multicore, contains tightly 
coupled accelerators 
(System-on-a-Chip
 



  7/25PC vs Embedded System

 PCs
 Several, star-organized 

busses
 Distributed memory and 

caches
 Might be multicore, might 

have accelerators (GPU, 
modem) connected at 
periphery

 Optimized for Performance

 Mobile Gaming
 One central bus

 Centralized memory, 
small caches (if at all)

 Multicore, contains tightly 
coupled accelerators 
(System-on-a-Chip
 

  
 Optimized for Efficiency



  8/25Embedded Systems Programming

 Generally
 Code optimization very important



  8/25Embedded Systems Programming

 Generally
 Code optimization very important
 Bus and memory are bottlenecks, more so than in PCs



  8/25Embedded Systems Programming

 Generally
 Code optimization very important
 Bus and memory are bottlenecks, more so than in PCs
 Only 32 (or 16) bit: avoid double precision



  8/25Embedded Systems Programming

 Generally
 Code optimization very important
 Bus and memory are bottlenecks, more so than in PCs
 Only 32 (or 16) bit: avoid double precision
 Use fixed-point instead of float wherever possible



  8/25Embedded Systems Programming

 Generally
 Code optimization very important
 Bus and memory are bottlenecks, more so than in PCs
 Only 32 (or 16) bit: avoid double precision
 Use fixed-point instead of float wherever possible
 Use the multicores & accelerators



  8/25Embedded Systems Programming

 Generally
 Code optimization very important
 Bus and memory are bottlenecks, more so than in PCs
 Only 32 (or 16) bit: avoid double precision
 Use fixed-point instead of float wherever possible
 Use the multicores & accelerators
 Low-level programming if possible



  9/25Embedded Systems Programming

 iOS: Objective-C

 Android: JAVA



  9/25Embedded Systems Programming

 iOS: Objective-C

 Android: JAVA

 Both object-oriented



  9/25Embedded Systems Programming

 iOS: Objective-C

 Android: JAVA

 Both object-oriented

 Apps run in sandboxes (due to security reasons)



  10/25iOS

 Model: manages and modifies data

 View: renders to screen

 Controller: handles inputs and outputs



  11/25iOS



 12/25iOS

 Delegates
 Do a task on behalf of another



  13/25iOS

 Advantages
 Low-level programming possible
 Easy-to-use toolchain, e.g. editor for screen layout, ready-to-

use objects for user interaction



  13/25iOS

 Advantages
 Low-level programming possible
 Easy-to-use toolchain, e.g. editor for screen layout, ready-to-

use objects for user interaction

 Disadvantages
 Limited freedom



  14/25Android

 Services

 Content providers

 Broadcast receivers

 Activities



  15/25Android

 Services
 Run in background
 Mostly computational



  16/25Android

 Content providers
 Access to shared resources, e.g. file-system, network

 Broadcast receivers
 e.g. rotation, energy-saving mode



  17/25Android

 Activities
 Control user in- and output
 Several per screen possible
 Contain at least on view



  17/25Android

 Activities
 Control user in- and output
 Several per screen possible
 Contain at least on view



  18/25Android

 View / Viewgroups



 19/25Android

 JNI (Java Native Interface)
 Low-level programming (C, C++) in Java
 Often faster, but might not be
 May have to be recompiled for different architectures
 Complicated data- and thread-sharing



 20/25Android

 Advantages
 More freedom
 Works on different architectures (mostly)



 20/25Android

 Advantages
 More freedom
 Works on different architectures (mostly)

 Disadvantages
 More complicated to use
 Less easy-to-use tools
 Java really good language for embedded systems? (Double 

as standard? No unsigned or fixed-point data-types?)



  21/25Object-oriented vs. data-driven

 Object-oriented
 Data grouped by abstract objects



  21/25Object-oriented vs. data-driven

 Object-oriented
 Data grouped by abstract objects

 Data-driven
 Data grouped by access patterns



  21/25Object-oriented vs. data-driven

 Object-oriented
 Data grouped by abstract objects

 Data-driven
 Data grouped by access patterns

 Data-driven approach can be implemented by using 
objects



  22/25Concurrent Progamming

 Android
 Up to developer
 Threads, barriers, atomic commands etc.
 Flexible, but can get complicated



  22/25Concurrent Progamming

 Android
 Up to developer
 Threads, barriers, atomic commands etc.
 Flexible, but can get complicated

 iOS
 Only asynchronous
 Waiting queues, managed by the OS
 Less freedom, but easy to use



  23/25Summary

 Android
 More flexible, but more complicated
 Odd language choice
 Biggest, fastest growing market



  23/25Summary

 Android
 More flexible, but more complicated
 Odd language choice
 Biggest, fastest growing market

 iOS
 Easy to learn and use, but locked to the apple-way
 Most important market?



  23/25Summary

 Android
 More flexible, but more complicated
 Odd language choice
 Biggest, fastest growing market

 iOS
 Easy to learn and use, but locked to the apple-way
 Most important market?

 Other?



  24/25Summary

 Be aware of limitations
 Optimize as much as possible
 Avoid bus- and memory-usage
 Be efficient! Try to make the most of it!



  25/25Summary


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54

