



Past, Present, Future

Information Coding Group Linköpings universitet

expanding reality



### Motivation

- James Camerons Avatar first Hollywood fullength feature film to be filmed and produced completely in both 2D and 3D
  - But not first 3D movie in recent years!
  - Movies tailored to 3D (documentations e.g. Deep Sea, concerts e.g. U2 3D)
  - Feature films containing 3D scenes (e.g. Harry Potter and the Half-Blood Prince)
  - Animation movies (e.g. Pixar's Up); older 2D animation movies are planned to be rereleased in 3D
- 3D version of a movie generally more popular than its 2D counterpart
- Part of ongoing trend towards 3D



### Why now?

- Price aspects
  - 3D systems became only recently cheap enough for broad usage
  - and common enough to be interesting for content producers
- Quality aspects



## Bringing 3D home

- But still a lot to do to introduce 3D to private homes
- Cinema systems not applicable to living rooms
- Different usage scenario:
  - Living room is no cinema!
  - Event vs everyday life
  - Comfort much more important
  - Used as "background activity"



### Outline

Quality and usage aspects

3D display system overview

3D video coding and rendering

- Motion parallax:
  - The change of the perspective in accordance to the occurring movement
  - Can be introduced e.g. by using eye-tracking
  - Most only consider horizontal motion parallax, what about vertical?
- Eye fatigue:
  - General fatigue, headache, pain in or around eyes, blurred or double-vision
  - Different causes:
    - Crosstalk
    - Flickering image
    - Cannot focus correctly



- Other effects:
  - Keystone Distortion
    - Wrong parallax due to incorrectly matched views
  - Puppet Theater Effect
    - Size and distance of an observed object don't seem to match
  - Cardboard Effect
    - Perceived depth to small for perceived size
  - Stereo-Inversion
    - Left eye receives right image and vice versa
  - Picket-fence Effect
    - Moiré effect caused by interference of the screen raster and the 3D filter





- Reducing of depth can reduce crosstalk and eye strain, but may not be visible
- Generally: artifacts and distortion less visible as in 2D, except for disparities and blockiness which have a greater impact on the subjective quality and can cause eye strain!



 Asymmetric coding: the higher quality signal blocks out artifacts and distortion the from the lower quality signal



- Usage aspects
  - Action movies, live events, sports & concerts
  - Depth impression and switch between 2D/3D key features
  - Main reason is to be entertained, experience of 3D itself less important
  - 3D leads to a higher immersion than 2D => less used as background activity?



### Display techniques: Stereoscopic

- Presenting a different image to each eye
- Side-by-side method





## Display techniques: Stereoscopic

- Presenting a different image to each eye
- Side-by-side method (since 1840)





### Display techniques: Stereoscopic

- Presenting a different image to each eye
- Side-by-side method (since 1840)
- Modern variant: VR systems





Anaglyph method





- Anaglyph method
- "color multiplexing"
  - limited colorspace
  - highly susceptible to crosstalk
  - + glasses very cheap
  - + directly compatible to existing systems



- Shutter glasses: time multiplex
- Needs synchronization with displaying system
- Need to introduce guardbands to avoid crosstalk
- Used in Nvidias 3D initiative





- Shutter glasses: time multiplex
- Needs synchronization with displaying system
- Need to introduce guardbands to avoid crosstalk
- and in Segas Master System back in the 80s





- Shutter glasses: time multiplex
- Needs synchronization with displaying system
- Need to introduce guardbands to avoid crosstalk
  - susceptible to crosstalk even with guardbands due to bad synchronization and after-images

- expensive glasses due to synchronization logic, glasses battery powered

- due to "black period" for each eye: flicker (if framerate is too low) and subjective brightness reduction possible

+ partly compatible to existing solutions



- Polarization multiplex
- 1952: first 3D cinema movie in color





- Polarization multiplex
- 1952: first 3D cinema movie in color
- Stilled used in IMAX 3D today, but:
- nowadays circular polarization used (to remove crosstalk)

- reduces brightness by approx. half (depending on projector)

- needs special, expensive screens (silver or aluminum alloy) (not suited for living rooms)



• For own experiments:

Using cellophane to convert a liquid crystal display screen into a three dimensional display (3D laptop computer and 3D camera phone)



- Autostereoscopic displays
- Parallax barrier vs lenticular sheet







- Autostereoscopic displays
- Parallax barrier vs lenticular sheet
  - Parralax barrier simpler switch between 2D and 3D
  - Lenticular sheet less brightness loss
  - and bigger viewing window
- Brightness vs crosstalk
  - reduces resolution & brightness
  - susceptible to picket-fence effect

- only one viewer possible, which needs to sit still in one position



- Autostereoscopic displays with eye-tracking
- Move parallax barrier / lenticular sheet or LEDs / projector according to head movement
- Could also be used to introduce motion parallax (in reality however seldom done)
  - reduces resolution & brightness
  - still only one viewer
  - + full motion parallax possible



- Autostereoscopic multiview displays
- Project several (e.g. 4, 5, 7 or 8) different views





- Autostereoscopic multiview displays
- Project several (e.g. 4, 5, 7 or 8) different views
- Easier to introduce using lenticular sheets
- Guard band needed to avoid stereo inversion
- Brightness vs crosstalk vs number of views
- Number of views vs resolution
- Already in usage for 3D-CAD, medical appliances but mainly advertisement



- Autostereoscopic multiview displays
- Project several (e.g. 4, 5, 7 or 8) different views
  - reduces significantly resolution and brightness as well
  - susceptible to picket-fence effect
  - + partly motion parallax possible



- Autostereoscopic displays with super multiview
- Parallax interval needs to be less than diameter of the pupils of the viewer (ca. 3 to 8 mm)
- Volumetric display?

 high number of views needed => needs very high DPI, reduces heavily resolution

- artifacts?
- + fully motion parallax



- Swept volume displays:
  - Voxel vs pixel
  - Susceptible to flicker
  - Occlusion hard, if not impossible to introduce



Swept volume displays: projector + mirror





Swept volume displays: moving display







Swept volume displays: static display





cardboard effect vs depth resolution

- Swept volume displays: static display
- Laser writing image
- Known since early 70s







- Swept volume displays: static display
- Laser writing image
- Known since early 70s





#### Electroholographic displays



Safes not only wavelength, but also angle and phase



#### Electroholographic displays



Safes not only wavelength, but also angle and phase



#### Holographic displays



 Use acousto-optic modulator: diffracts light, steerable via soundwaves (normal radio frequency are used)



- Products on the market, used in industry (3D cat) and for medical appliances
  - susceptible to puppet theater effect
  - many voxels => high demand on computation power and bandwidth
  - + full motion parallax





## The future?

- No mass acceptance of 3D home cinema in the next few years
- Autostereoscopic displays with supermultiview vs electroholographic displays
- Until then: increasing number of 3D systems among early adopters
- 3D content (movies) will be made available



### 3D vs multiview vs freeview

- Multiview: different videostreams of same motive but from different perspectives
- 3D: special case of multiview
- Freeview: viewpoint selectable



### View stream vs video stream

- View stream: a stream containing all images associated with one particular view
- Video stream: contains one or more view streams

### Independent compression of view-streams

- Each view stream is encapsulated in its own video stream
  - very inefficient compression
  - + directly compatible to existing systems
  - + errors from one view stream cannot spread to another





 Exploit spatial redundancies by predicting the images from one view stream by the images of another view stream





- Exploit spatial redundancies by predicting the images from one view stream by the images of another view stream
- Camera normalization might be added for further encoding improvement
- Best proposal (yet) for h.264/MVC
  - very difficult to decode
  - + very good coding performance
  - + compatible to existing solutions



- Most of coding gain from obsessive usage of b-frames and interspatial coding of keypictures
- Omit inter-view decoding for non-key pictures?





- Most of coding gain from obsessive usage of b-frames and interspatial coding of keypictures
- Omit inter-view decoding for non-key pictures?
- Much easier to decode
- Results?



- Several displays needs to calculate intermediate views (electroholographic systems, autostereoscopic displays with multiview)
- To be able to do that:
  - Camera parameters (3D-position, angle) have to be transmitted as well
- Other (computational) methods exists as well, but are imprecise and / or computational complex



Use only one video stream, add a stream containing depth information





Stereoscopic Image



- Use only one video stream, add a stream containing depth information
- Typical depth resolution: 1 byte
- Chosen by European ATTEST project
  - problems with occlusion and reflections (though additional stream might be added carrying that information)
  - + very efficient encoding
  - + rendering of different view points easily possible
  - + compatible to existing solutions



- How to encode depth stream?
- Possible to use a normal video codec (e.g. h.264)
- Prediction from depth image from the normal one (or vice versa)
- Sharing of motion vectors between view stream and depth image possible, too
- But: depth images other properties as normal ones
  - Consisting of large, smooth areas (less important)
  - and sharp edges (more important)
- Depth image coding profits from a variable blocksize



Flexible Motion Model with Variable Size Blocks for Depth Frames Coding in Colour-Depth Based 3D Video Coding



NGS UNIVERSITE



### **Combined approaches**

- Several view-streams and their accompanying depth streams
- Choose which views depending on occlusion in some views (ideally)
- Camera parameters might needed to be transmitted as well
- Results?
  - higher bitrate
  - + suited to deal with different viewpoints and occlusion

### **Object based approaches**

- Object based video coding has been a topic for quiet some time
  - Promises high data-rates
  - Proved to be problematic in practice
- Describe scene as background and several foreground objects
  - + theoretically high data-rates
  - + easy rendering of different viewpoints
  - hard to do in practice





### Object based approaches

- Scalable and Efficient Video Coding Using 3-D Modeling
  - Uses depth map to generate a 3D mesh, which is encoded using second-generation wavelets









### Object based approaches

- Scalable and Efficient Video Coding Using 3-D Modeling
  - Uses depth map to generate a 3D mesh, which is encoded using second-generation wavelets
  - Mesh reused for several pictures, updated during transmission
  - Textures are encoded using EBCOT (blockbased coder using wavelets and arithmetic coding) and IPP scheme
  - Camera parameters are transmitted as well
  - Results?



### 4D Wavelet

- Consider multiview video stream as 4D matrix of pixels
- Encode together using one single 4D wavelet
- But: spatial and temporal redundancy very different
- Practical approaches: do temporal and spatial prediction separately (using different techniques), a final wavelet on the data collected
- Coding performance of the approaches comparable, roughly the same as for the combined video approach
- Computational complexity?



- Hole filling
  - If occlusion occurs while rendering an intermediate view (most likely when using view-stream+depthmap)
  - Generally: use depth of the pixel around the hole which is most in the background
  - Use texture of the pixel whose depth was used: but only one color or whole patterns?
  - Possibility to use information of other images in the video stream?



- Cross-talk compensation:
  - Add distortion supposed to cancel out "ghosts"



- Need to know display parameters
- Not possible for all ghosts



- Rendering for multiview autostereoscopic displays
  - Often: lenticules oriented at small angle



- Reduces picket-fence artifacts
- Balances resolution loss in both directions



- Rendering for multiview autostereoscopic displays
  - But how to map the view images to the screen?
  - Approximate by subsampling on a lattice or a union of lattices
  - Alt. approach: approximate in frequency domain
  - Some diodes may get no corresponding pixels
  - Anti-aliasing filter should be added



- Rendering for electroholographic displays
  - Need to calculate fringes which determines how to diffract the light
  - Direct computation of fringes too slow for realtime applications
  - Transform 3D scene to holographic plane
    - Generate hogels: small enough to appear to the views as a point, contains color and brightness information
    - Corresponding hogel-vector: contains all information necessary to generate the diffraction necessary for the hogel
  - Combine with precomputed basic fringes to create the physically usable fringes
  - Further compression possible



- Rendering for electroholographic displays
  - Example: RIP algorithm (for electroholographic displays)
    - Reconfigurable Image Projection
    - Projects one or more views through a holographic-reconstructed image plane

# Thank you very much!

#### www.icg.isy.liu.se