Analog Filters Using MATLAB — Corrections, version 2016-04-25

Replace in all MATLAB programs () with («) and (—) with (-)

Page 33,

Equation (2.18) ..cos(,,(N+2k-1)/2N)

Note that $\sigma_p < 0$ for all poles and all of the coefficients in the denominator **have the same sign** in a stable analog filter.

Page 34 and 35 [GLP, ZLP, PLP] =

Page 42 Parameters have been changed to [G, Z, R_ZEROS, P] = CH_II_POLES(Wc, Ws, Amax, Amin, N)

Page 44 left column: (2.21

(2.21) be replaced with (2.27)

Page 45 Equation (2.44): the denominator for r_{pk} should read ...[(1/N)asinh(K)]

Page 47 Parameters have been changed to [G, Z, R_ZEROS, P, Wsnew] = CA_POLES(Wc, Ws, Amax, Amin, N)

Page 56

line 11-13 in the MATLAB program should be Att = MAG_2_ATT(H); axis([0 8 0 100]), subplot('position', [0.1 0.4 0.88 0.5]); PLOT_ATTENUATION_S(W, Att) hold on color = [0.7 0.7 0.7]; % Gray V = axis; patch([V(1) Wc Wc V(1)], [Amax Amax V(4) V(4)], color); patch([wstep(1) wstep(1) wstep(2) wstep(2) V(2) V(2)], [0 Amin(1) Amin(2) Amin(2) 0], color);

Page 59

Eq(2.58) is only valid for allpole filters

Page 61

[GLP, ZLP, PLP] = BW_POLES(Omegac, Omegas, Amax, Amin, NLP)

Page 62

GLP = 1.592185381683073e+23

Page 67 line 7 should read LP-BS transformation

Page 69

and lowpass filters using the LP-BS transformation is

Page 69 [GLP, ZLP, R_ZEROSLP, PLP, Wsnew] = CA_POLES(Omegac, Omegas, Amax, Amin, NLP);

Page 72

add at the end of the program for Example 2.10 patch([Wc1 Wc2 Wc2 Wc1], [Amax Amax 100 100], color);

Page 75

Problem 2.24 $\omega = 2$ Mrad/s and $r_p = 10$ Mrad/s. Problem 2.36 $\omega_{c2} = 15$ krad/s **Page 76** Problem 2.39 $\omega_{c1} = 2\pi$ 48.5 rad/s $\omega_{c2} = 2\pi$ 51.5 rad/s $\omega_{s1} = 2\pi$ 49.5 rad/s $\omega_{s2} = 2\pi$ 50.5 rad/s

Page 81

 $|C(s)|^2$ is proportional to the ratio

Page 95

line 14 replace Att with Anorm

Page 96

line 18 replace Att with Anorm

«

Page 97 line 4 change [....] to (....) and change N to Norder move line 6 to after line 3 line 8 replace KI with K line 12 replace Att with Anorm Example $3.7 A_{min} = 40$ dB

Page 98 should read

new line 9 Norder = 5; % We select a 5th-order filter line 10 [G, Z, R_ZEROS, P, Wsnew] = CA_POLES(Wc, Ws, Amax, Amin, Norder); line 12 [L, C, Rs, RL, Wo, K] = CA_LADDER(G, Z, R_ZEROS, P, Wc, Ws, Rs, RL, Ladder); line 16 Anorm = MAG_2_ATT(2*H); % Normalize attenuation to 0 dB

Page 117

A useful program for this step is HURWITZ.

Page 152

Eq(3.63) replace all L s with C s and vise versa Cauer II structure should be

Page 123 Example 3.20

Determine the element values in a sixth-order allpass filter built of cascaded bridged-*T* networks which equalizes the group delay of the ladder network in Example 2.4 when $R_s = R_L = 1000 \Omega$.

The poles of the allpass filter were determined by the program in Example 2.11-determined to

 $s_{p1,2} = -7.576348 \pm j 6.5452758$ krad/s $s_{p3,4} = -7.350304 \pm j19.284823$ krad/s $s_{p5,6} = -6.903609 \pm j32.393479$ krad/s

From Equation (3.67) we obtain the element values in the lattice structures. We get using: $1/RC_2 = -2 Re\{s_p\}$ and $1/L_2C_2 = r_p^2$ and $R = 1 k\Omega$. The Table have new values!

Bridged-T	$L_1[mH]$	$L_2[mH]$	$C_1[nF]$	$C_2[nF]$
1	65.99485	151.1616	151.1616	65.99485
2	68.0244	34.51403	34.51403	68.0244
3	72.42589	12.58637	12.58637	72.42589

Page 130

Problem 3.16 should read: Realize an *LC* ladder that meets the same specification as in Problem 3.15, but of Cheby-shev I type.

Problem 3.20 should read

..... $\omega_{s1} = 11.6$ Mrad/s, and $\omega_{c2} = 311.6$ Mrad/s.

Page 131

3.26terminated π ladder network with Page 137 where the function $\tan(\omega \tau)$ is periodic with period

Page 141

In Example 4.2. $\tau = 0.25$ ns

and $\omega_c T = 2,, 300 \ 10^6 \ 0.25 \ 10^{-9} = 0.15$, rad

$$\left|H(e^{j\omega T})\right|^{2} = \frac{1}{1 + \left(\frac{\sin\left(\frac{\omega T}{2}\right)}{\alpha}\right)^{2N}}$$

where $\alpha = \varepsilon^{-\frac{1}{N}} \sin\left(\frac{\omega_c T}{2}\right) \dots$

with period ". The impedance...

Page 142

In Example 4.3. $\tau = 0.25$ ns and $\omega_c T = 2,, 300 \times 10^6 \times 0.25 \times 10^{-9} = 0.15$, rad Figure 4.10 The x-axis should be from 0 to ,, The function RICHARDS EQ has an error do not yiels a correct passband!

Page 143

Figure 4.11 The x-axis should be from 0 to "

Page 144

$$Z_1 = \frac{L_1 R_0}{\Omega_c} = 3.1147435 \ \Omega$$
$$Z_2 = \frac{\Omega_c R_0}{C_2} = 0.160527 \ \Omega \qquad Z_3 = \frac{L_3 R_0}{\Omega_c} = 3.1147435 \ \Omega$$

Page 146

Example 4.5 change to a Chebyshev I filter

Page 146

line -7: $X = \frac{K}{1 - (\frac{K}{Y_0})^2}$

Page 152 Problem 4.8 the relative 3-dB bandwidth

Page 152

Equation(5.74) simplifies for ideal amplifiers to $Z_{in} = Z_1 Z_3 Z_5 / Z_2 Z_4$

Page 200

$$Q_{nominal} = \frac{-r_p}{2\sigma_p} = \frac{-\sqrt{(5\pi)^2 + (50\pi)^2}}{2 \cdot (-5\pi)} = 5.0249378$$

Page 201

 $D(s) + \frac{E(s)}{A} =$

Page 201 Fig. 7.10 Tow-Thomas

Page 201 6.5.3.7 NF2 Sections

Page 205

where the amplifier has a positive gain of $K = (1 + R_8/R_7) > 1$. We shall later discu

Page 206 delete the line a positive gain of $K = (1 + R_8/R_7) > 1$. We shall

Page 213 Spreads in passive elements are $\propto Q^2$.

Page 224 Table, second line HP 0 V_{in} V_{in} $R_2 = R_1$ Page 237 7.3.2 Flicker Noise

Page 245 Fig. 7.14 Coupled form of type FLF

Page 260 Line 3, second column: example $k = 10^5$ [1/s].

Page 273 output wave is B_2 , which corresponds to the output voltage V_{B2} . Page 279 the marked minus signs across the nodes..

Page 279 Hence, the sign of V₇ is changed

Page 280 Figure 10.9 Interchange the inputs to the rightmost amplifier

Page 281 determined by comparing the circuits

Page 282 from the node that is

Page 289

10.1 .. leapfrog filter

Pages 309 and 310

BESSEL_ORDER 59 BESSEL POLES BESSEL LADDER BP 2 LP SPEC BS 2 LP SPEC BW LADDER 94, 95 BW ORDER 34 BW_POLES 34 BW SINGLY LADDER CA POLES 50 CA_B_POLES 52 CA_C_POLES 53 CA LADDER 97 CA MIN Q POLES CA ORDER 48 CH I C POLES 53 CH I LADDER 96 CH I POLES 39 CH_I_SINGLY_LADDER CH II B POLES 52 CH II LADDER 96 CH II POLES 46 CH_ORDER 39, 44

CIRCULATOR_THREE_BP 271 CIRCULATOR_THREE_LP 271 COMPLETE_ELLIPTIC_INTEGRAL EQ_TG_LP_S 73 HURWITZ 113 HURWITZ POLY 32 HURWITZ ROOTS 32 LADDER_2_H 96 $LP_2_HP_LADDER$ LP_LADDER PART_FRACT_EXPANSION 120 PLOT A TG S 35 PLOT_ATTENUATION_S PLOT_h_s_S 36 PLOT HP SPEC S PLOT_IMPULSE_RESPONSE_S PLOT_LP_SPEC_S PLOT_MAG_PHASE_S PLOT PHASE S PLOT PZ S 35 PLOT_STEP_RESPONSE_S PLOT_TG_S POLE_PLACER_BP_EQ_S 56 POLE_PLACER_BP_MF_S 56, 71 POLE_PLACER_HP_EQ_S 56 POLE PLACER HP MF S 56 POLE PLACER LP EQ S 56 POLE_PLACER_LP_MF_S 56 POLY_AT_X POLY_PRIM POLYADD POLYMULT POLYSUB PRAXIS PRB 249 PZ_2_FREQ_S 35 PZ 2 G SYM BP S 65 PZ_2_G_SYM_BS_S 69 PZ_2_HP_S 61 PZ_2_IMPULSE_RESPONSE_S 36 PZ 2 MAG S PZ 2 PHASE S PZ_2_STEP_RESPONSE_S 36 PZ_2_TG_S 35 RICHARDS_EQ 141 RICHARDS_MF 141 **RICHARDS REACTANCE 140** ROOTS 2 POLY T LADDER 2 PI UNIQUE_ROOTS xtick ytick ZIN_LADDER