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Abstract. In this work we derive a novel density driven diffusion scheme
for image enhancement. Our approach, called D3, is a semi-local method
that uses an initial structure-preserving oversegmentation step of the in-
put image. Because of this, each segment will approximately conform to
a homogeneous region in the image, allowing us to easily estimate param-
eters of the underlying stochastic process thus achieving adaptive non-
linear filtering. Our method is capable of producing competitive results
when compared to state-of-the-art methods such as non-local means,
BM3D and tensor driven diffusion on both color and grayscale images.

1 Introduction

Image denoising is still an open problem in computer vision. The most com-
mon approach is to assume a noise distribution, often modeled as an additive
component of the observed image. Thus making the goal of image denoising the
reduction of the noise variance embedded in the image signal, such that the noise
free image can be recovered.

Estimation of the noise distribution from a noisy signal is an ill-posed prob-
lem and the challenge is to preserve lines and edges for achieving robust filtering.
In image processing, by the principles of ergodicity and stationarity, it is com-
monly accepted that an image pixel value can be assumed to belong to the same
stochastic process as its local neighborhood. Within this statistical interpreta-
tion of image representation, two coarse subgroups of denoising algorithms can
be identified; local and semi-local methods. One of the currently most notable
semi-local denoising algorithms is the non-local means (NLM) [1]. The basic
approach of NLM is to compute averages of similar image patches in a neighbor-
hood. The rationale being that with more similar patches the better the image
structure is represented. The mean shift method (MS) [2] also belongs to this
category. It estimates kernel density functions in feature space and using mode
locations of the densities they achieve a denoising effect by applying spatial and
range filters. Similarly to NLM, the image denoising method BM3D [3, 4] locates
patches in the image by grouping similar image features. This produces a sparse
3D representation on which a weighted filtering can be performed. Another recent
approach is the extended anisotropic diffusion (EAD) [5], which is a local method
that estimates the orientation of image structures using a diffusion tensor, thus
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Fig. 1. Overview of the three main components of our approach. First the noisy image
is oversegmented into multiple homogeneous regions (segments). Then local PDFs are
estimated using the segments’ information. The estimated PDFs drive the filtering
process, resulting in the final denoised image.

achieving adaptive filtering. The difference between EAD and anisotropic diffu-
sion as defined by Weickert [6] is that EAD models a non-symmetric tensor in
addition to the standard diffusion tensor.

Under the statistical motivation and in contrast to the other methods we
propose a novel Density Driven Diffusion scheme (D3) which incorporates prob-
ability density estimates derived from local information, such as texture or inten-
sities to achieve robust image filtering. The proposed method consists of three
components. The first part involves generating a structure preserving segmen-
tation map by applying an oversegmentation process to each image. Such a
map allows for simple, unimodal density models to be easily estimated from the
homogeneous information that will be contained in each segment. The second
part involves extracting density functions from the segmentation map and the
third part minimises the proposed energy functional, thus achieving a semi-local
non-linear adaptive filtering scheme. Therefore, our main contribution is to in-
corporate density information into an energy functional, resulting in an adaptive
filtering scheme based on a stochastic image representation.

2 Method Description
Our proposed method D3, consists of three basic steps. First we generate

a segmentation map from a given noisy image. That is, we oversegment the
image, obtaining a number of segments (image regions) that ideally exhibit two
important properties: i) they are homogeneous (e.g. in terms of colour, texture,
intensity and so on) and ii) they obey image boundaries, i.e. they align themselves
along strong discontinuity boundaries in the image, instead of crossing them.

The segmentation map is utilised in the next step, which is the estimation
of a number of density functions (PDFs), each describing the distribution of pixel
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values in each segment. We finally exploit the estimated PDFs in order to drive
the filtering process in the third and final step, and thereby obtain the denoised
image. Such a scheme takes advantage of the structure preserving properties of
the oversegmentation and thus filters more heavily in regions of near-uniform
colour/intensity (i.e. within each segment), while reducing the amount of filtering
near edges (i.e. between different segments). As a result, our method is more
powerful than the simple linear diffusion schemes.

In the following sections, we describe in more detail the three main compo-
nents of our approach, starting with the oversegmentation step. We follow with
the density-driven filtering scheme, and conclude with a discussion of the PDF
estimation process. An overview of the method is illustrated in Fig. 1.

2.1 Oversegmentation

The first step of our method involves dividing (oversegmenting) the image into
distinct, non-overlapping regions, each containing a number of pixels with some
consistent and perceptually meaningful set of properties (e.g. colour, texture or
intensity). These regions form the segmentation map, which in turn is used for
the estimation of the local PDFs necessary for the filtering stage. Since as we will
discuss later, we estimate a simple, unimodal PDF in each region/segment, we
assume that each segment spans approximately a homogeneous intensity/colour
image region and that the pixel values are i.i.d. across different segments. In other
words, the segments do not span strong discontinuity boundaries. Examples from
such segmentation maps can be seen in Fig. 3. Obviously, not every oversegmen-
tation method can produce segmentation maps with the above properties. There
is a line of approaches called “superpixel” segmentation methods that can gen-
erate such maps. In particular, we have used the “relaxation labelling” method
by [7], which adapts the size and shape of each segment (superpixel) according
to the image structure, always favouring map configurations where each segment
expands to fill a homogeneous image region, while avoiding crossing edges.

The advantage of using a segmentation map to drive the filtering process,
as opposed to a uniform, local PDF estimation scheme can be seen in Fig. 2.
In Fig. 2(a) we can see the noisy synthetic input image. Fig. 2(c) shows the
segmentation map produced by [7]. Compare this with the randomized uniform
grid in Fig. 2(f). In Fig. 2(d) and (g) we can see the “probability maps” esti-
mated from the segmentations in Fig. 2(c) and (f) respectively. A probability
map illustrates the diffusion strength as determined by the estimated PDFs. Red
indicates strong diffusion and that should occur in homogeneous image regions.
Blue indicates very weak diffusion and that should be along strong image edges.
Note that the probability map in Fig. 2(c) shows a more desirable diffusion be-
haviour leading to the very good denoising result in Fig. 2(e). This is because
the unimodal local PDFs that we have estimated in each segment from Fig. 2(c)
are good approximations to the true pixel distributions. Constrast this with the
probability map Fig. 2(g) estimated from the non-structure preserving segmen-
tation in Fig. 2(f). We see that because of the poor estimation of the local PDFs
in that case, the probability map is noisy, with artifacts and does not reduce



4 Freddie Åström, Vasileios Zografos, and Michael Felsberg

(a) Noisy (b) PSNR comparison

(c) Segmentation map from [7] (d) Probability map (e) Result

(f) Random grid (g) Probability map (h) Result

Fig. 2. Example of applying the proposed filtering method on an synthetic image driven
by an accurate segmentation map, compared to a map initialized with random labels.
See section 2.1 for more details.

the filtering strength sufficiently along edges. As expected the resulting image
in Fig. 2(h) contains the same artifacts, and also most of the edge information
has been lost. We can further see the quantitative difference between the two
examples in terms of the PSNR plots in Fig. 2(b).

2.2 Novel Filtering Scheme

In the motivation of the proposed filtering scheme, originally derived in [8], we
assume that content in a local neighborhood adheres to the same stochastic
process described by the random variable U . Then let m(u) be the probability
of a sample u(x, y) belonging to this process. The PDF associated with the
cumulative distribution function (CDF) m(u) is then the non-negative function
m′(u). Thus we define a functional E(u) such that

E(u) =

∫
Ω

(u− u0)2dx + λ

∫
Ω

|∇m(u)|2dx (1)
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Fig. 3. Typical segmentation maps produced by [7]. Notice how the segments are gen-
erally aligned with strong discontinuity boundaries in the image, while they adjust
their shape and size to better approximate the homogeneous image regions.

where m(u) : R → R and u : R → R. We require that m(u) ∈ C3(Ω) and λ > 0
is a parameter determining the influence of the smoothness term. The gradient
operator ∇ is defined as ∇ = ∂x The interpretation of the smoothness term is
that by minimizing the gradient of the density function, its variance is reduced,
i.e. the distribution is sharpened. In terms of noise estimation this implies that
the samples belonging to the new random variable describing the sharpened
distribution Ũ more accurately reflects the true value distribution of the signal.

In order to minimize the functional E(u) the variational derivative of the
smoothness term is computed using the Gâteaux derivative

〈∂R, v〉 = lim
ε→0

|∇m(u+ εv)|2 − |∇m(u)|2

ε
(2)

where v ∈ C1(Ω) is an arbitrary function such that ∂nv|∂Ω = 0. Using the chain
rule∇m(u) = m′(u)∇u we obtain with Green’s identity and Neumann boundary
conditions the Euler-Lagrange (E-L) equation{

u− u0 − λ(div(m′(u)2∇u) +m′(u)2∆u) = 0 in Ω

m′(u)2∇u · n = 0 on ∂Ω
(3)

Since m′(u)2 ≥ 0 it is guaranteed that a solution of (3) exists. If and only if
m is a globally linear function, (3) becomes identical to linear diffusion, that is,
only the Laplacian in (3) remains. Numerically we solve the E-L equation as an
initial value problem (IVP) to obtain the diffusion equation.

2.3 Estimating Density Functions

For every segment s ∈ S, where S is the set of segments, found by the overseg-
mentation step, we fit a Gaussian distribution with µs and σ2

s being the mean
value and the variance of the value distribution. Due to the properties of the
oversegmentation we can assume that the distributions in S are independent.
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Fig. 4. Overview of the estimation of density functions in homogeneous regions giving
rise to a single local density estimate. On the other hand, in textured regions they
will give rise to mixture models. The number of mixtuers are given by the number of
spanned segments, and since the distributions are independent inside each segment,
the mixture fitting is trivially determined.

Therefore, let the derivative of the mapping function in the E-L equation (3)
be the product of n distributions in a spatial neighborhood L at a pixel with
location (x, y) ∈ Ω then

m′(u) =
∏
i∈L

m′
i(u) (4)

where m′
i(u) = N (u;µi, σ

2
i ). Fig. 4 shows this process on an synthetic image for

two cases; first for a homogeneous region where a single PDF is estimated and
second in the case when a mixture of two regions give rise to a corresponding
mixture model. The corresponding CDF of m′

s(u) is given by the error function

ms(u) =
1

2

(
1 + erf

(
u− µs
σs
√

2

))
(5)

Note that the interpretation of the CDF is that it is a non-linear function which
adaptively selects a range of intensity values corresponding to the segments
value distribution. This can be interpreted in contrast to linear diffusion where
the value domain is considered equally since m′(u) would be a constant function.
The difference to non-linear diffusion as defined by Perona and Malik [9] is that
m′(u) is selected by the image value distribution rather than an ad-hoc function
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(a) Barbara (b) Cameraman (c) House (d) Boat (e) Lena

Fig. 5. Standard grayscale test images used in the evaluation.

operating on the gradient domain. In practice we are never required to compute
the actual CDF since it does not appear in the E-L equation (3).

3 Evaluation

In the next sections we first investigate the sensitivity of the parameter setting of
the oversegmentation with respect to obtained error values. Then a qualitative
and quantitative evaluation using the peak-signal-to-noise (PSNR) ratio and the
structural similarity index [10] (SSIM) is presented for a number of standard
grayscale test images and color images. The usage of PSNR is a common metric
in the denoising literature to measure image quality. However the SSIM index
has been shown to better correlate error values with the perceptual impression
of the image quality [10].

3.1 Sensitivity Analysis

Since the filtering performance will depend on how accurately the estimated
density functions represent the local image regions, we are interested in under-
standing how sensitive the parameter selection of the used segmentation method
is. The oversegmentation is controlled by two parameters: the “clique size” with
determines the initial size of the segments and a the “clique cost” which is a
sensitivity parameter. Depending on the image content different values of these
parameters will be required. Typically for images with large homogeneous re-
gions larger segments and a more rigid sensitivity parameter suffice. If the scene
is highly textured then smaller segments are preferable. If noise is present then
the sensitivity parameter needs to be set not to model the noise as structure.

In Fig. 6 (left), by setting the sensitivity parameter to 0.3 the segment size
parameter is plotted against the obtained error value for 9 different noise levels
in the range 1 to 100. Here we used an 8-bit quantisation representation of the
noise. In Fig. 6 (right) we set the segment size to a fixed value (10× 10 pixels)
and the sensitivity parameter is plotted against the corresponding SSIM value.
In both cases, the SSIM values are averaged over all the grayscale images seen
in Fig. 5 with the corresponding segmentation sizes and sensitivity coefficients.
We can see in Fig. 6 that the selection of parameters for a large number of noise
levels is not critical for the performance of the density driven diffusion. This
illustrates that the filtering method is robust in terms of parameter selection.
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Fig. 6. Analysis of SSIM values for varying segmentation sizes for a fixed sensitivity
value (left) and evaluation of the sensitivity parameter for a fixed segment size (right)
as a function of different noise levels. See text for details. Best viewed in color

3.2 Denoising Results

We evaluate the method on a number of color images and a set of standard
grayscale test images. For the considered test images the error values (given in
Fig. 7 and 8) are comparable to the state-of-the-art denoising methods BM3D [3,
4], NLM [1] and EAD [5]. The implementation of each evaluated method was
obtained from their respective authors. Since all methods except the proposed
method, D3, rely on the image noise we follow [5] who estimated the noise
according to the method presented in [11].

The obtained SSIM values for the grayscale images in Fig. 5 are seen in Fig. 7.
The differences in SSIM value are on average not significant and the perfor-
mance of respective method is correlated with the image content. Observe that
BM3D [4] performs well in images with large homogeneous regions such as the
House image. Color images indexed 8143 (owl), 87065 (lizard), 175043 (snake),
208001 (mushroom) available through the Berkeley segmentation dataset [12]
were used in [5]. Thus we evaluate D3 also on these images. It has been shown
in previous works that color image denoising in the RGB (red, green and blue)
color space is suboptimal due to high correlation of the R,G and B color com-
ponents [13, 5]. Our approach for applying D3 on color images is to again use
the segmentation method of [7]. The produced segmentation map conforms to
homogeneous color regions and it is used to estimate density functions using an
opponent color transform derived in [14]. The density functions are now esti-
mated in the transformed space based on the derived segmentation map. This
approach is natural since the spatial location of the pixel has not changed.

The result of the color image evaluation is seen in Fig. 8. The poor error value
of NLM and CBM3D [3] particularly seen in Fig. 9(a) is due to inaccurate esti-
mation of the noise, thus illustrating that they heavily depend on the accuracy
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(a) Barbara (b) Cameraman
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(c) House (d) Boat
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Fig. 7. Obtained SSIM values for standard grayscale test images. Where “Noise” cor-
responds to the image baseline noise. Best viewed in color

of any noise estimation technique to define their filtering parameters. The pro-
posed method D3, compares well with the tensor-based EAD for the investigated
color images. Here we point out that the EAD is a local tensor-based method
estimating the local orientation, thus achieving adaptive filtering. In contrast,
D3 is a semi-local method considering the density functions estimated from each
segment of the segmentation map independently of the estimated noise. Example
images of the denoising result can be seen in Fig. 9, indicated for each image is



10 Freddie Åström, Vasileios Zografos, and Michael Felsberg

0 20 40 60 80 100
0.2

0.4

0.6

0.8

1

S
S

IM

σ

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

S
S

IM

σ

(a) Owl (b) Lizard
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(c) Snake (d) Mushroom

Fig. 8. Obtained SSIM results for color images. Where “Noise” corresponds to the
image baseline noise. Best viewed in color.

the corresponding SSIM and PSNR values at noise level 30 in Fig. 8. For the im-
ages with many high-frequency components such as branches, leafs and feathers
it is clear that the local method EAD performs well preserving these structures,
particularly visible in the owl image. CBM3D and NLM have an advantage in
images which contain many similar patches, i.e. in the mushroom image. The
filtering result obtained by D3 appears crisp and no apparent oversmoothing is
visible in the owl and the snake as is for the CBM3D and NLM. We have also
tested the MS method by [2] but produced very poor results and for that reason
is not illustrated here.

4 Conclusion

We have presented a novel method for image enhancement called Density Driven
Diffusion (D3). D3 works by incorporating local density estimates into the dif-
fusion process. These estimates are derived from a structure-preserving over-
segmentation of the input image. The oversegmentation results into a number
of homogeneous, edge-aligned segments, within which, density functions can be
easily and independently estimated. The estimated densities drive the diffusion
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S: 0.56, P: 18.8 S: 0.75, P: 24.0 S: 0.68, P: 22.5 S: 0.87, P: 26.2 S: 0.86, P: 37.8

S: 0.48, P: 18.7 S: 0.72, P: 25.2 S: 0.65, P: 23.6 S: 0.83, P: 26.7 S: 0.83, P: 26.7

S: 0.31, P: 19.0 S: 0.80, P: 29.0 S: 0.72, P: 27.6 S: 0.80, P: 28.6 S: 0.78, P: 38.3

S: 0.65, P: 19.0 S: 0.72, P: 22.0 S: 0.62, P: 20.1 S: 0.89, P: 25.9 S: 0.88, P: 38.2

Noisy CBM3D [3] NLM [1] EAD [5] D3

Fig. 9. Results of color images. The images in the first column have been corrupted by
30 standard deviation noise. Best viewed in color.
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process such that it adheres to image boundaries resulting in a non-linear im-
age enhancement scheme, comparable to state-of-the-art denoising methods. We
have tested our approach on a number of images and compared with other meth-
ods in literature. We have found that D3 can produce very good results in line
with the competing methods. Where D3 particularly excels however, is in the
enhancement of colour images.
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