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Abstract. We use the theory of group representations to construct very
fast image descriptors that split the vector space of local RGB distribu-
tions into small group-invariant subspaces. These descriptors are group
theoretical generalizations of the Fourier Transform and can be computed
with algorithms similar to the FFT. Because of their computational effi-
ciency they are especially suitable for retrieval, recognition and classifica-
tion in very large image datasets. We also show that the statistical prop-
erties of these descriptors are governed by the principles of the Extreme
Value Theory (EVT). This enables us to work directly with parametric
probability distribution models, which offer a much lower dimensionality
and higher resolution and flexibility than histogram representations. We
explore the connection to EVT and analyse the characteristics of these
descriptors from a probabilistic viewpoint with the help of large image
databases.

1 Introduction

With the considerable increase in online visual content, there has been a great
demand for tools to handle efficiently, large and dense collections of image data.
Furthermore, online images exhibit a large variation in content, appearance and
quality. An automated image search engine must therefore be able to process
quickly such large datasets and accurately recover a selection of images that fit
a user’s query. As a result, many sophisticated feature descriptors [1], are not
capable of dealing with image databases comprised of many million samples, in
a reasonable time frame.

Motivated by these observations, we suggest a novel spatio-chromatic image
descriptor and an associated model selection method that are well suited for
very fast search over very large image databases. These descriptors (or filters)
are designed to preserve important image information (e.g. colour edges and line
features), while being invariant under certain spatio-chromatic changes. Such
characteristics can be useful in tasks of object recognition, image retrieval and
classification. In this paper, we explore the visual significance of these descriptors
and demonstrate that they form effective tools, which may be used to investigate
the internal structure of the image databases.
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In the rest of this paper, we briefly introduce the theory behind the con-
struction of our descriptors in Sec. 2. In Sec. 3 we review the main properties of
EVT and explain how it is connected to the descriptors. In Sec. 4 we propose
a simple approach for EVT model estimation and selection. We continue with
experiments and their analysis on public image datasets in Sec. 5. Finally, we
conclude with a succinct summary discussion in Sec. 6.

2 Spatio-chromatic descriptors

In this work, we propose a number of spatio-chromatic descriptors that have
been constructed using the representation theory of finite groups (see [2]). The
groups used are the dihedral groups D(3) and D(4). The dihedral group D(n)
is defined as the group of all geometry preserving transformations (rotations
and reflections) of the regular n-sided polygon, in this case the triangle and the
square. The group D(4) exploits the square grid structure of most modern image
sensors. The details of the usage of D(4) are described in [3]. The usage of D(3)
is based on the observation that in a statistical sense, the three color channels
R,G,B are interchangeable. This statistical permutation property suggests the
usage of the permutation group S(3) of three elements, which is identical to
the group D(3). For an intuitive understanding it might be helpful to identify
the three channels R,G and B as corners of the regular triangle. For additional
details see [4].

For the descriptor construction, we use only RGB vectors on 4×4 neighbor-
hoods around a pixel. These vectors are all located in a 48-dimensional space.
The tools of representation theory are applied to split this space into its small-
est subspaces that are invariant under all spatial and RGB transformations in
D(4) and D(3). The result is that the RGB space is first transformed into the
1-dimensional R+G+B (intensity) component and the 2-dimensional color op-
ponent space given by the combinations RG=R-G and YB=R+G-2B. This is
then followed by a combination with the spatial D(4) filters. The final result
is a decomposition of the original 48d space into 24 subspaces of dimensions 1,
2 and 4. The first 12 are spatial filters operating on the intensity component
R+G+B whereas the other 12 filters operate on the two-dimensional opponent
color space (RG,YB). This decomposition is implemented by an orthonormal
transformation and so the norms of the vectors in the subspaces are preserved
under the spatial and color operations in D(4) and D(3). To summarize: the
original image is first filtered with 48 filters, then the magnitudes of 24 col-
lections of filter results, are computed and the produced images r1, ..., r24 with
non-negative pixel/magnitude values provide the spatio-spectral descriptors of
the original image. Figure 1 gives an illustration of the relation between the orig-
inal image and the 24 computed descriptor images. A computer implementation
of the filtering process is available from [5].

3 Extreme value Theory

Extreme Value Theory (EVT) deals with the behaviour of the extrema (minima
and maxima), of a probability distribution. EVT has been applied to many
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Fig. 1. The intensity (middle row) and colour (lower row) filter results from a typical
image. Note that the first three filters represent averaging of pixel values.

natural processes and also in biological and computer vision. In this paper, we
suggest a connection between filtered image data and EVT, and we have used the
latter to model and analyse the distribution of the former. In the next chapter,
we will show experimental results, which demonstrate that the vast majority of
examined filtered images follow the EVT model.

3.1 The basics of univariate EVT

EV theory, similarly to the central limit theorem, states that the non-degenerate
asymptotic distributions of the sample extremum of a process, must belong to
one of just three possible general families regardless of the original distribution
function F . Furthermore, it is not necessary to know the detailed nature of F
or which limiting form (if any) it gives rise to. As a matter of fact, we just need
to know the behaviour of the tails of F (x) for large x, so that a good deal may
be said about the asymptotic properties of the extremum.

More formally, suppose that we have an i.i.d. sequence of random variables
XN whose common distribution is F (x)=Pr{Xi ≤ x}. Also let sn=Max(n)(XN )
denote the nth sample maximum of the process. Then Pr{sn ≤ x}=F (x)n. For
non-trivial limit results, and suitable normalising constants an>0, bn, the pre-
vious equation converges to Pr{an(sn − bn) ≤ x}= F (a−1

n x+ bn)→H(x). In [6]
it is shown that the possible non-degenerate limiting forms of H are:

H(x) = exp
(
− exp(µ−xσ )

)
,∀x Gumbell

H(x) = 1− exp
(
−
(
x−µ
σ

)k)
, x > µ Weibull

H(x) = exp
(
−
(
x−µ
σ

)−k)
, x > µ Fréchet

(1)

where µ, σ, k are the location, scale and shape parameters of the distributions
respectively.

3.2 A simple stochastic model

The utility of EV theory in the study of low-level vision can be explained with
the following simple model: consider a black-box unit U with input X the pixel



values from a finite window in a digital image (a similar analogy can be applied to
the receptive fields of a biological vision system). The purpose of this black-box
is to measure the amount of some non-negative quantity, X(t) that changes over
time. We write u(t)=U(X(t)). We also define an accumulator s(n)=

∫ n
0
u(t)dt

that accumulates the measured output from the unit, until it reaches a certain
threshold s(n)=Max(n)(X) or a certain period of time, above which the accu-
mulator is reset to zero and the process is restarted. If we consider u(t), s(n) as
stochastic processes and select a finite number N of random samples u1,...uN ,
then their joint distribution J(u1,...,uN ) and the distribution Y (sN ) of sN , de-
pend on the underlying original distribution F (XN ). At this point we may pose
two questions:

1. When N→∞ is there a limiting form of Y (s)→Φ(s)?
2. If there exists such a limit distribution what are the properties of the black-

box unit U and of J(u1,...,uN ) that determines the form of Φ(s)?

In [7] the authors have demonstrated that under certain conditions on Y (s) the
possible limiting forms of Φ(s) are the familiar forms in (1) and depend on the
tail behaviour of F (X) at large X. In our particular case, we use as units U
the black-box that computes the absolute value of the filter result vectors from
the irreducible representations of the dihedral groups. The filter vectors not
associated with the trivial representation, are of the form s=

∑
(xi-xj) where xi,

xj are pixel values. We can therefore expect that these filter values are usually
very small and that high values will appear very seldom. In addition, these
sums are calculated over a small, finite neighbourhood, and for this reason, the
random variables are highly correlated. In short, the output for each filter has
a form similar to the sums described in [7], and so it should be possible to use
the EVT to model their distribution. As we will show experimentally later, the
EVT models in (1) provide a good fit to our filtered data, which is a strong
indication that the requirements for EVT equivalence from [7] generally hold.
We also note, that since we are always dealing with positive quantities (norms
of sums) that have a strictly positive support, we do not use the Gumbel model,
which is unbounded, but only the Weibull and Fréchet models.

4 Proposed approach

In the previous section, we have discussed the connection between our proposed
filters and the EVT models. In this section, we suggest a simple approach for
estimating the parameters of these models, using maximum likelihood, and then
selecting the model that has the best fit using a residual analysis approach.

Distribution parameter estimation: We begin with a log-likelihood func-
tion Λ(θ) that expresses the conditional probability of realising the data sample
given the model parameters θ=(µ, σ, k), and then try to determine the choice of
parameters (ML estimates) that maximise the likelihood for the available data.



Since the 3-parameter Weibull and Fréchet distributions, do not have closed form
expressions of the ML estimates, we need to apply an iterative method, such as
the Newton-Rhapson approach. The iteration step, which usually is executed
until convergence, is given by θ̂t+1=θ̂t+pt, for t=0,1,2..., where pt=-∇2f−1

t ∇ft
is a search (descend) direction on the log-likelihood function. As such, we need
expressions for the gradient ∇ft and Hessian ∇2ft of the Weibull and Fréchet

distributions. For the Weibull, the gradient ∇ft =
[
∂Λ(θ)
∂θ

]
is given by:
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and the Hessian ∇2ft =
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Similarly for the Fréchet:
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(5)
For a discussion on more advanced iterative ML estimators and appropriate
initial estimates for θ̂0 we refer to the excellent book by [8] on the Weibull
distribution. Similar techniques apply for the Fréchet.



UW results ODB results

Fig. 2. Typical EVT model fitting results from the two databases using the R2 g.o.f.
statistic. Note that the numbers are comparable to those in Table 1.

Model selection: Once we have fitted the two models by ML, we can choose
the most appropriate of the two, using a goodness-of-fit (g.o.f.) criterion. This
criterion is chosen as the deviation between each of the fitted distributions and
the data. Given the empirical cumulative distribution function (cdf) ∆̂n of the
data sample (x1, ..., xn) [9], and cdf Fn (evaluated at the same points as the
data sample) from the Weibull and Fréchet distributions separately (equations
in (1)), then the g.o.f. measure, called the coefficient of determination, is defined
as:

R2 = 1−
(n− 1)

∑n
i=1 (∆̂n − Fn)2

(n− ζ)
∑n
i=1 (∆̂n − ∆̄n)2

, with ζ = 3 the model degrees of freedom.

(6)
We choose the model with the maximum R2 value. If in addition we wish to
reject a sample (“no-fit”), we can impose a lower threshold on R2.

5 Experiments

We have used two datasets for our experiments and subsequent analysis. The
first is the UW database [10], which consists 1109 colour photos of various
vacation locations and natural, outdoor scenes e.g. “Barcelona”, “Iceland” etc.
The images have been obtained by different cameras and resolutions, but most
of them are 756×504 pixels. The second dataset, ODB [11], contains 30000
thumbnail images (reduced in size so that the maximum size in one direction is
128 pixels), across 15 object categories. These images were automatically crawled
from public web pages using a variety of textual keywords.

5.1 Statistical analysis: Goodness of fit

In this section, we show experimentally the following:

I) the R2 g.o.f. test is more reliable and robust than common statistical g.o.f.
tests for model selection.

II) the 3-parameter Weibull-Fréchet models provide a good fit to the distribu-
tion of filtered natural images across different datasets.



F3 W3 W2 no-fit hard F3 hard W3

Kolmogorov-Smirnov 80.3% 23% 99.2% 25% 93.1% 1.1%

g-test 0.81% 16% 66.1% 92.4% 19.4% 4%

χ2 12.4% 31.6% 88% 98.8% 0% 0%

R2 99.5% 88.7% 89.7% 87.9% 85.5% 77.3%

Table 1. Goodness-of-fit comparative results (as percentage of correct classifications).

III) The 3-parameter Weibull-Fréchet models are more flexible and can describe
a larger portion of the data, than the 2-parameter Weibull model alone can.

We demonstrate I) on synthetic data, where the ground truth is known, and
compare 4 different approaches: the two sample Kolmogorov-Smirnov test, the
χ2 and g-test and the R2 test from (6). In total, we carried out 6000 tests, with
500 samples drawn from various distributions (2 and 3-param. Weibull “W2”,
“W3”; 3-param. Fréchet “F3”; and a 2-param. Lognormal, used here as a “no-
fit” sample), with realistic parameter settings, that is, ones that we are likely to
observe in natural images. The results are shown in Table 1. We can see that the
R2 is the only test that performs consistently well along the different samples
even for the “hard” W3 and F3 cases (these are samples with parameter choices
that lead to problematic ML surfaces). For this reason, we have decided to use
the R2 test in the remainder of our analysis.

II) and III) are demonstrated on the UW and ODB databases. We applied the
filters, selected the appropriate model and rejected any fits with a low R2 value.
The results are shown in Fig. 2. Due to space limitations, we have only included
2 filters (one intensity and one colour), but all the other filters exhibit the same
typical behaviour. In particular, for the intensity filters, W2 fits a much larger
percentage of data than in the colour case (sometimes the W2 model dominates
in the intensity filters), with the F3 being the least contributing sub-model. The
former is in line with the findings of [12] when intensity gradient filters are used as
image patch descriptors (our descriptors are essentially localised gradient filters).
Note however, that by combining all the EVT sub-models we can describe well
in excess of 80% of the data. This is something that the W2 alone cannot do.
This observation becomes more pronounced for the colour filters, where W3 and
F3 have a more prominent role, with W3 alone modelling between 50-70% of
the data. In this case, W2 is limited to around 10% and thus the approach of
[12] cannot be used to model colour edges, unless one applies W2 to each colour
channel separately [13].

We note here that around 15-20% of the fits have been rejected. The no-fit
portion includes outliers (i.e. non-natural images, trivial filter results etc) and
data where the ML estimation did not converge. These numbers are similar to
the no-fit results we have observed in the synthetic tests in Table 1, and are
therefore related to the characteristics of the algorithm as well as the data.

In conclusion, these experiments indicate that the EVT may be considered as
a viable hypothesis for modelling the distribution of our descriptors (or similar
types of intensity and colour gradient filters). Moreover, the additional modelling
capacity of W3 and F3, relative to W2 alone, has also been demonstrated.
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Fig. 3. A comparison between the extrema and other regions of a filtered image.

5.2 Further analysis: the σ, k-space

We continue with an analysis of the types of images that are assigned to each
submodel (W2, W3 and F3) for a specific filter (r9) and the image position in the
σ, k parameter space. For economy of space, we only demonstrate a single filter
on the UW dataset, but the results generalise to all filters and different datasets.
We omit the µ parameter since for these datasets it exhibits very little variation
and the most important behaviour is observed in the other two parameters. First
of all, if we look at Fig. 4 we see a correlated dispersion in the two axes, with the
F3 images spanning only a very small region of the space at low σ, k, and well
separated from W2 and W3. Also notice how the F3 set typically includes images
with near-uniform coloured regions with smooth transitions between them, or
alternatively very coarse-textured, homogeneous regions with sharp boundaries.
High frequency textures seem to be relatively absent from F3, and on average
the image intensities seem to be lower in F3 than in W2 and W3.

On the other hand, the W2 and W3 clusters are intermixed, with W2 mostly
restricted to the lower portion of the space. For smaller σ, k values, the W2
images exhibit coarser textures, with the latter becoming more fine-grained as
σ, k increase in tandem. Also, there seems to be a shift from low exposure, low
contrast images with shadows (small σ, k), to high contrast, more illumination,
less shadows when σ, k become large. Furthermore, W2 shows a preference for
sharp linear edges associated with urban scenes, whereas W3 mostly captures
the “fractal”-type edges, common in nature images.

These observations become more apparent when looking at Fig. 5(a) and (b).
In these experiments, we took one (grayscaled) image from the database, and
introduced different amounts of noise and smoothing to simulate high and low
frequency texture components (Fig. 5(a)) and also linear and nonlinear intensity
changes, in order to simulate variations in the amount of illumination (Fig. 5(b)).
The image was filtered and the distribution parameters fitted at each instance
are shown as trajectories in the σ, k-space. As we have already seen, the images



Fig. 4. Image type and model distribution in σ, k-space.

shift to the upper right corner of the space as higher frequency components
are added, and for the opposite (smoothing of textures) the images will move
towards areas of lower σ and gradually increase in k as the texture homogeneity
is increased. For textures that have an approximate constant colour (e.g. sky)
the images will cluster on the upper left corner of the space. The UW dataset
does not contain such images, and so that space in Fig. 4 remains empty.

If we now look at intensity variations, we see that an increase in gain will
move the image toward the upper right corner where all the well-illuminated
images lie. When the gain is decreased, we will move towards the upper left
corner where the very dark (almost constant) images are. If we now increase
the bias, then we see that mostly the k parameter increases (note that the two
parameters do not have the same units). Similarly, a decrease in bias will cause
a similar decrease in k, while leaving σ relatively intact. Finally, we examine
nonlinear changes in intensity (gamma correction). A decrease in gamma value,
first reduces the σ parameter only (unlike the bias) and then for additional
decreases, the k values start to increase when all the pixels take the same very
low (dark) values. Note however, that in this case, the increase in k is much
slower and converges to a much lower k, than when the gain was decreased. On
the other hand, if we increase the gamma without re-normalising the pixel values
between [0,255], then we see a shift towards the lower right corner of the space
(increase of σ without increase of k). This region of the σ, k-space is usually
empty, but when it is not (depending on the data) it mostly occupied by simple
pictorial images such as graphics, designs and logotypes on white background.

In Fig. 5(c) we see a scatter plot for all the images in UW using all the filters
(except r1,...,r3). We see two very distinct clusters, one for the intensity filters



(a) Noise and smoothing. (b) Image intensity changes.

(c) Intensity and colour filter scatter plot.

Fig. 5. The behaviour of filtered images in σ, k-space.

that is spread along a σ, k diagonal (as in Fig. 4), and one for the colour filters
spread mainly along the k-axis. In conclusion, all the above properties of the
σ, k-space are only applicable due to the EV theory and cannot be exploited
with histogram representations. The fact that the images exhibit clear clusters
and predictable variation in that space, is a good indication of the utility of the
EVT framework for retrieval and classification tasks.

Finally, we illustrate the importance of the data at the extrema of a filtered
image, as described by the EVT. In Fig. 3(a) we show an image from UW
(rescaled for comparison) and its filtered result using r8 in Fig. 3(b). This is
essentially a gradient filter in the x- and y-directions. Next is Fig. 3(c) that shows
the response at the tails of the fitted distribution. It it immediately obvious that
the tails contain all the important edges and boundary outlines that abstract
the main objects in the image (house, roof, horizon, diagonal road). These are
the salient features that a human observer will focus on, or that a computer
vision system might extract for object recognition or navigation. We also show
the regions near the mode in Fig. 3(d). We see that much of it contains small
magnitude edges and noise from the almost uniform sky texture. Although this
is part of the scene, it has very little significance when one is trying to classify
or recognise objects in an image. A similar observation holds for the grass area,
which although contains stronger edges than the sky and is distributed near the
median (Fig. 3(e)), it is still not as important (magnitude-wise and semantically)
as the edges in the tails are. Finally, Fig. 3(f) shows how all the components put
together, can describe different regions in the image: the salient object edges
in the tails (red); the average response, discounting extreme outliers, (median)



in yellow; the most common response in light blue (mode); and the remaining
superfluous data in between (dark blue). This is exactly the type of semantic
behaviour that the EVT models can isolate with their location, scale and shape
parameters, something which is not immediately possible when using histograms.

5.3 Classification and retrieval

We also include a a basic example on how our descriptors may be used, in
principle, for classification and retrieval tasks. For this example, we have isolated
4 classes from the ODB dataset, with tags “Andy Warhol”, “Claude Monet”,
“beach” and “garden”, each containing 1000 images. After filtering with r21 and
model selection, we used 75% of the images to train an SVM (with standard
settings), and classified the remaining 25%. For the SVM input, we generated
1000 samples from the probability density function of the model chosen for each
image.

The overall classification score was 40.5% with the random baseline at 25%.
This result is satisfactory considering the many outliers and high variation in the
data (due to the automated text-based harvesting) and the lack of specificity in
the 4 categories. The 10 top ranked images in each category (one-to-all retrieval)
are shown in Fig. 6. The goal here, just like in online image search, is not to
retrieve the most representative images for each class (means of the clusters) but
the ones that are the furthest away from the SVM decision boundaries (cluster
extrema). Therefore, a perfect classification score in CBIR is not as important
as fast and accurate retrieval of very few, relevant samples.

Observe in Fig. 6, the differences between the vivid, near-constant colours
and sharp edges in the “Warhol” set and the less saturated, softer tones and
faint edges of the “Monet” set. In the same way, the “garden” images contain
very high frequency natural textures and the “beach” images more homogeneous
regions with similarly coloured boundaries. These characteristics are the exact
information captured by the filters and the EVT models and which can be used
very effectively for image classification and retrieval purposes.

6 Conclusion

In this work, we have presented a set of spatio-chromatic, image content descrip-
tors that are inspired by the theory of group representations. We have demon-
strated that by using the EVT to model the output distribution of the descrip-
tors, we can take advantage of specific parametric distribution models that offer a
more flexible representation than histograms. Furthermore, additional important
characteristics of large image datasets only become visible inside this paramet-
ric probability space. These descriptors, combined with the EVT models, offer
themselves for very efficient and effective tools for content-based retrieval and
classification of image data.

We would like to explain here that the EVT is not the only model one may
use to describe similar image properties. In fact [14] have used fragmentation



Fig. 6. 4 class image retrieval from the ODB dataset using r21 with an SVM.

theory to describe the apparent Weibull distribution of gradient-filtered grayscale
images. Despite this, our experiments have shown that EVT is more flexible, since
[14] advocate a very restrictive fragmentation schedule that might not always
apply in practice; more descriptive, since EVT has 3 submodels instead of 1 as
in [14]; and finally EVT is easily applied to colour filters as well.
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Birkhäuser, Boston ; (1992)

3. Lenz, R.: Investigation of receptive fields using representations of dihedral groups.
Journal of Visual Communication and Image Representation 6 (1995) 209–227

4. Lenz, R., Bui, T.H., Takase, K.: A group theoretical toolbox for color image
operators. In: ICIP. Volume 3. (2005) 557–60

5. (http://people.isy.liu.se/en/cvl/zografos/CBIR)
6. Gumbel, E.J.: Statistics of Extremes. Columbia University Press, New York (1958)
7. Bertin, E., Clusel, M.: Generalised extreme value statistics and sum of correlated

variables. Journal of Physics A: Mathematical and General 39 (2006)
8. Rinne, H.: The Weibull Distribution: A Handbook. CRC Press (2008)
9. Kaplan, E.L., Meier, P.: Nonparametric estimation from incomplete observations.

J. Amer. Statist. Assn. 53 (1958) 457–481
10. Li, Y., Shapiro, L., Bilmes, J.: A generative/discriminative learning algorithm for

image classification. In: ICCV. Volume 2. (2005) 1605–1612
11. Solli, M., Lenz, R.: Emotion related structures in large image databases. In: ACM

CIVR. (2010) 398–405
12. Yanulevskaya, V., Geusebroek, J.M.: Significance of the Weibull distribution and

its sub-models in natural image statistics. In: VISAPP. Volume 1. (2009) 355–362
13. Gijsenij, A., Gevers, T.: Color constancy using natural image statistics and scene

semantics. IEEE PAMI 99 (2010)
14. Geusebroek, J.M., Smeulders, A.W.M.: Fragmentation in the vision of scenes. In:

ICCV. (2003) 130–135


