Fast and accurate motion segmentation using Linear Combination of Views

Vasileios Zografos and Klas Nordberg Computer Vision Laboratory
Linköping University, Sweden

What is motion segmentation

"The task of separating a sequence of images into different regions, each corresponding to a distinct, consistent 3d motion"

More specifically

- 3d rigid motions
- Sparse features in correspondence across all frames
- Simplifications:
- Weak perspective effects
- Number of motions assumed known

Applications
 of motion segmentation

- Tracking
- Multi-body structure from motion
- Navigation
- Activity / Anomaly detection
- Image semantic analysis

Why is it a difficult problem?

- Relying only on geometry (motion trajectories) can be difficult
- Humans rely also on secondary features (spatial, colour, texture)
- Such secondary features can aid segmentation
- But the core problem has to be solved in geometry

Example (motion trajectories only)

Example (including spatial configuration)

Example (All features)

Current methods

- Most are subspace clustering methods that work in trajectory space
- Some employ spatial relations
- Differ on their definition of affinity
- Very slow or too complex

British Machine Vision Conference 2011, Dundee

Multi-view geometry Affine camera

- 3d scene with N points on a single object

$$
P_{j}=\left[X_{j}, Y_{j}, Z_{j}, 1\right]^{T} j=1, \ldots, N
$$

- Fimages $i=1, \ldots, F$

- Projected to the $\mathrm{i}^{\text {th }}$ image $p_{i j}=m_{i} P_{j}$
- m_{i} is the 2×4 affine camera projection matrix

Multi-view geometry Affine camera: The View

- The set of N 2 d points, in image i , define a view of the object:

$$
v_{i}=m_{i}\left[P_{1} P_{2} \ldots P_{N}\right]=m_{i} S, \quad i=1, \ldots, F
$$

- The $4 x N$ matrixS. is the $3 d$ shape matrix of the object.

Multi-view geometry

Affine camera: The trajectory

- Alternatively, a single 3d point projected onto all the images defines a trajectory:

$$
t_{j}=\left[\begin{array}{c}
m_{1} \\
\vdots \\
m_{F}
\end{array}\right] \quad P_{j}=M P_{j}, \quad j=1, \ldots, N
$$

- The 2 Fx 4 matrix M is the motion matrix

Multi-view geometry Affine camera

- Combine everything into the 2 FxN measurement matrix W:

$$
W=\left[\begin{array}{cccc}
x_{1}^{1} & x_{2}^{1} & \ldots & x_{N}^{1} \\
y_{1}^{1} & y_{2}^{1} & \ldots & y_{N}^{1} \\
\vdots & \vdots & \ddots & \vdots \\
x_{1}^{F} & x_{2}^{F} & \ldots & x_{N}^{F} \\
y_{1}^{F} & y_{2}^{F} & \ldots & y_{N}^{F}
\end{array}\right]=M S
$$

- Also $\operatorname{rank}(W) \leq \min (\operatorname{rank}(M), \operatorname{rank}(S)) \leq 4$

The Tomasi-Kanade factorisation

- Use SVD to obtain a similar factorisation of W into shape \times motion
- Provides basis vectors that span the $\mathrm{R}^{2 \mathrm{~F}}$ space of W called the Joint Image Space (JIS)
- The JIS represents a connection between 2d and 3 d where the camera parameters have been eliminated

The T-K factorisation for motion segmentation

Joint Image Space

- Rank 4 means a 4d linear subspace
- For k rigidly moving objects, their trajectories will lie in a union of k linear subspaces in $R^{2 F}$
- Motion segmentation equates to subspace clustering

Ullman-Basri Linear combination of views

- We can instead look at the row-space of W.
- Each row is a vector in R^{N} space called the Joint-PointSpace (JPS)

Half-view

The JPS represents a connection between 2 d and camera parameters where the 3d shape has been eliminated

Linear combination of views

- Given any 2 basis views $\mathrm{v}_{1}, \mathrm{v}_{2}$ we can reconstruct the 3d shape S by:

$$
\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
m_{1} \\
m_{2}
\end{array}\right] S=M_{12} S \Rightarrow S=M_{12}^{-1}\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]
$$

- We are not interested in S explicitly but a third view can be synthesised by:

$$
v_{3}=m_{3} S=m_{3} M_{12}^{-1}\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]
$$

Linear combination of views

- The inversion of M_{12} is valid if it has full rank. For the general case:

$$
v_{3}=Q\left[\begin{array}{l}
1 \\
v_{1} \\
v_{2}
\end{array}\right], \quad Q=\left[\begin{array}{lllll}
a_{0} & a_{1} & a_{2} & a_{3} & a_{4} \\
b_{0} & b_{1} & b_{2} & b_{3} & b_{4}
\end{array}\right]
$$

- This leads to the familiar equations:

$$
\begin{aligned}
x_{j}^{3} & =a_{0}+a_{1} x_{j}^{1}+a_{2} y_{j}^{1}+a_{3} x_{j}^{2}+a_{4} y_{j}^{2} \\
y_{j}^{3} & =b_{0}+b_{1} x_{j}^{1}+b_{2} y_{j}^{1}+b_{3} x_{j}^{2}+b_{4} y_{j}^{2},
\end{aligned}
$$

Linear combination of views

- This expression is valid for all the points on an object in the third view
- Q is not known but can be found from 5 or more corresponding points, visible in 3 views

$$
\left[\begin{array}{l}
x_{1}^{3}, \ldots, x_{r}^{3} \\
y_{1}^{3}, \ldots, y_{r}^{3}
\end{array}\right]=\underbrace{\left[\begin{array}{ccccc}
a_{0} & a_{1} & a_{2} & a_{3} & a_{4} \\
b_{0} & b_{1} & b_{2} & b_{3} & b_{4}
\end{array}\right]}_{Q}\left[\begin{array}{c}
1, \ldots, 1 \\
x_{1}^{1}, \ldots, x_{r}^{1} \\
y_{1}^{1}, \ldots, y_{r}^{1} \\
x_{1}^{2}, \ldots, x_{r}^{2} \\
x_{1}^{2}, \ldots, x_{r}^{2}
\end{array}\right]
$$

LCV in summary

- Given 2 basis views of an object
- And a set of LCV coefficients Q
- We can synthesise a novel view of the object
- Applications: Object recognition and view synthesis

British Machine Vision Conference 2011, Dundee

LCV for motion segmentation: What is required?

- Motion-based affinity (n-tuple or pairwise)
- If pairwise then we can use standard clustering approaches (e.g. spectral clustering)
- Some clustering algorithm

LCV for motion segmentation: Simple concept

- Given a set Q of LCV coefficients we can synthesise a trajectory \hat{t}_{j} of a point p_{j} and compare it with its real trajectory t_{j}
- We may then say something about p_{j} and the points used to estimate Q.

Illustration of concept

- If then $\hat{t}_{j} \approx t_{j}$ then Q describes well the motion of the point p_{j}
- Also if Q was estimated from points c , where $p_{j} \notin c$ then p_{j} and c probably lie on the same object

LCV for motion segmentation: 3-step algorithm outline

- Step 1: Motion hypotheses sampling
- Step 2: Trajectory synthesis + affinity generation
- Step 3: Clustering

Algorithm: Step 1 - Motion hypotheses sampling

Each LCV coefficient matrix represents a "motion hypothesis".

They are not necessarily unique

Sample in image space. Any single frame will do.

- Using as basis views first and last frame of the sequence
- Sample C n-point clusters in any frame (e.g. $\mathrm{n}=7$)
- n-closest point in Euclidean distance (spatial configuration implicit)
- Estimate the LCV coefficients Q ${ }^{\text {c }}$

Algorithm: Step 2 - Trajectory synthesis and affinity matrix

Synthetic
trajectories of p_{j}
n-tuple affinities

Algorithm: Step 2 - Trajectory synthesis and affinity matrix

- The n-tuple affinity between the point p_{j} and the n -points c is defined as:

$$
E(j, c)=K\left(\left\|t_{j}-\hat{t}_{j \mid c}\right\|_{H} / F\right)
$$

- K is a kernel function $K(x, \sigma)=\left(x^{2}+\sigma^{2}\right)^{-1 / 2}$
- $\|\cdot\|_{H}$ is the robust Huber norm
- Affinity is defined in image space, in pixels
- Pairwise affinity is then $A \approx E E^{\top}$

Algorithm: Step 3 - Spectral clustering

- Uses the eigen-structure of the affinity matrix A for dimensionality reduction and clustering
- Usually one parameter (kernel width)
- We search for the optimal kernel width

Experiments and comparison to other methods

- State-of-the-art methods of the last few years (SSC, SCC, SLBF, PAC). All of them use the T-K factorisation
- Hopkins155
- Standard dataset for sparse motion segmentation methods
- Manually refined, complete trajectories (20-30 frames, 100-500 points)
- 155 sequences of 2 and 3 motions.
- Varying difficulty (general, degenerate, articulated)
- No per sequence tuning. Either fixed parameters or determined automatically.
- The number of motions are assumed known

British Machine Vision Conference 2011, Dundee

Accuracy and speed

Method	RANSAC	SCC-MS	SLBF-MS	SSC-N	PAC	LCV
Average time (sec)	0.387	1.264	10.83	165	952.25	0.93
Total time (sec)	60	196	1680	25620	147600	145
Average error (\%)	9.48	2.70	1.35	1.36	1.24	1.86

The average and total runtime on the full Hokpins155 dataset

Algorithm complexity overview

N : number of scene points, F number of frames, C : number of 7point clusters

- Step1 (motion sampling):
- K-means
- C*F matrix inversions of size 5×7
- Step2 (synthesis+affinity):
- $N^{*} C^{*}$ F LCV equations
- $\mathrm{N}^{*} \mathrm{C}^{*}$ Affinity
- Step3 (spectral clustering with kernel width search):
- 10*eigen-decompositions of a NxN matrix
- 10*K-means

Conclusion

- Motion segmentation method based on LCV theory for affine camera model
- Good combined accuracy and speed.
- Easy to implement and can be used in practice (fast and parameters are auto tuned)
- Outstanding issues: missing trajectories, number of objects, degeneracies

