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What Is motion segmentation

“The task of separating a sequence of images
Into different regions, each corresponding to a
distinct, consistent 3d motion”
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More specifically

« 3d rigid motions

« Sparse features in correspondence
across all frames

« Simplifications:
— Weak perspective effects
— Number of motions assumed known
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Applications

of motion segmentation

* Tracking

* Multi-body structure from motion
* Navigation

 Activity / Anomaly detection

* Image semantic analysis
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Why is it a difficult problem?

* Relying only on geometry (motion
trajectories) can be difficult

 Humans rely also on secondary
features (spatial, colour, texture)

* Such secondary features can aid
segmentation

« But the core problem has to be solved
INn geometry

Garnics British Machine Vision Conference 2011, Dundee
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Example (motion trajectories only)
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Example (including spatial configuration)
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Example (All features)
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Current methods

* Most are subspace clustering
methods that work In trajectory space

 Some employ spatial relations
* Differ on their definition of affinity
* Very slow or too complex
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@_ Multi-view geometry
Affine camera

« 3d scene with N points on a Po 7N P1
single object —

Pj = [Xj?]{iazjal]!r 7=1,.... N

« Fimages t=1,...,F
e

- Projected to the it" image Pij = M b

« T js the 2x4 affine camera projection matrix
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Multi-view geometry
Affine camera: The View

* The set of N 2d points, In Image |I,
define a view of the object:

v; = m; [P Py ... Py] = m@ i=1,.. F

* The 4xN matrix@is the 3d shape
matrix of the object.
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@_ Multi-view geometry
Affine camera: The trajectory

 Alternatively, a single 3d point projected

onto all the images defines a trajectory:
o
tj — @ 7 =1,.
| ME

e The 2Fx4 matrix@is the motion matrix
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@_ Multi-view geometry
Affine camera

« Combine everything into the 2FxN
measurement matrix W:

r 1 1 1 7

i X3 ... TN
yi Y3 e YN

W=| : : -~ : |=MS
N
A T

e Also rank(W)<min (rank(M),rank(S))<4
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!_ The Tomasi-Kanade
factorisation

« Use SVD to obtain a similar factorisation of W
Into shape x motion

« Provides basis vectors that span the R?4F space
of W called the Joint Image Space (JIS)

 The JIS represents a connection between 2d
and 3d where the camera parameters have
been eliminated

Garnics British Machine Vision Conference 2011, Dundee
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The T-K factorisation
for motion segmentation

i i Joint Image Space
ﬁ A
Y| Y2 - \

. Rank 4 means a 4d linear subspace

« For k rigidly moving objects, their trajectories will lie
in a union of k linear subspaces in R?"

. Motion segmentation equates to subspace clustering

Garnics British Machine Vision Conference 2011, Dundee =/l
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Ullman-Bastri
L iInear combination of views

er Vision Laboratory

« We can instead look at the
row-space of W.

« Each row is a vector in RN
space called the Joint-Point-
Space (JPS)

(

,/1
L7

ml
~—1 2

1 T
Yyi  Ys

Half-view

The JPS represents a connection between 2d

and camera parameters where the 3d shape has

been eliminated
Garnics
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L iInear combination of views

« Given any 2 basis views v,, V, we can
reconstruct the 3d shape S by:
[’“1 ] —[ml } S=MpyS = S=M3 ['”1 ]

U2 m2 U2

 We are not interested in S explicitly but

a third view can be synthesised by:
U1

U3=m38=m3M1_21{

U2 7
Garnics British Machine Vision Conference 2011, Dundee
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* The inversion of M, Is valid if it has full
rank. For the general case:

1
- - ap a1 a4z daz daq
U3 = Q |: U1 :| ) Q - [ bO bl bg bS ‘bd ]

V2

* This leads to the familiar equations:

2
:1:3.9’ = ag + alzz:; -+ agy} e agat_? -+ a4Y;

y? = bo + b1xj + bay; + bsx? + bay7,
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| Inear combination of views

* This expression Is valid for all the points on
an object in the third view

* Q Is not known but can be found from 5 or
more corresponding points, visible In 3 views
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LCV In summary

* Given 2 basis views of an object
 And a set of LCV coefficients Q

* We can synthesise a novel view of
the object

» Applications: Object recognition
and view synthesis
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K!_LCV for motion segmentation:
What is required?

* Motion-based affinity (n-tuple or
pairwise)
— If pairwise then we can use standard

clustering approaches (e.g. spectral
clustering)

« Some clustering algorithm
Garnics British Machine Vision Conference 2011, Dundee 7
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!_LCV for motion segmentation:
Simple concept

* Given a set Q of LCV coefficients we can
synthesise a trajectory t; of a point Pj
and compare it with its real trajectory ¢

* We may then say something about P; and
the points used to estimate Q.

Garnics British Machine Vision Conference 2011, Dundee
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lllustration of concept

PN

UL L. compare
'@ @ _ | \ ' N,
‘\ . /" Q
.. 2./ estimate synthesise )
Point cluster c t .
J
. If then &;~t; then Q describes well the motion of the
point Pj
« Also if Q was estimated from points c, where Pj e
then Pj and c probably lie on the same object 7
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K!_LCV for motion segmentation:
3-step algorithm outline

« Step 1: Motion hypotheses sampling

« Step 2: Trajectory synthesis + affinity
generation

« Step 3: Clustering

Garnics British Machine Vision Conference 2011, Dundee Ai;g
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<!_ Algorithm: Step 1 — Motion
hypotheses sampling

C. ., G, C Ql o
o . Each LCV
o ° 2 coefficient matrix
[ ] ... ° Q t
5 A AN represents a
IR ° e ° ° 3 “motion
)G ] S e, R Q3 - nypotesis.
®e o © ® . . .
~ o Estimate by inverting
¢ . @ oe®® Cgo a 5xn matrix for each - They are not
C4

necessarily unique

Sample in image space. Any
single frame will do.

* Using as basis views first and last frame of the sequence

« Sample C n-point clusters in any frame (e.g. n=7)

* n-closest point in Euclidean distance (spatial configuration implicit)

« Estimate the LCV coefficients Q¢ ?

Garnics British Machine Vision Conference 2011, Dundee e
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Algorithm: Step 2 — Trajectory
synthesis and affinity matrix

Synthesise with {;

|2 \ ]
/ 0ocC

QG t Real trajectory of Pg E(J ,6)

Synthetic o
trajectories of P n-tuple affinities

Garnics British Machine Vision Conference 2011, Dundee lﬁ;;
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Algorithm: Step 2 — Trajectory
synthesis and affinity matrix

The n-tuple affinity between the point P; and
the n-points c Is defined as:

E(j,c) = Ht _tJ|CHH F)

—1/2

Kis a kernel function K(z,0) = (z*+ o?)
HHH IS the robust Huber norm
Affinity Is defined In image space, in pixels
Pairwise affinity is then A ~ EET

Garnics British Machine Vision Conference 2011, Dundee /ﬁ;;
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@ Algorithm: Step 3 - Spectral
clustering

» Uses the eigen-structure of the affinity matrix
A for dimensionality reduction and clustering

« Usually one parameter (kernel width)
 We search for the optimal kernel width

‘ o= - . ; . ]
o -y
? tér ‘ |
%W % | N\
BT | |
= g 2 <
D ata S p ace -\‘;\'\"("'/)7:"’#/{“’-) Ke r n e I e I g e n _ S p ace “""‘u..___\\/-)K))}_),.,.x'""('

Garnics British Machine Vision Conference 2011, Dundee =/l



(} er Vision Laboratory

Experiments and comparison to
other methods

« State-of-the-art methods of the last few years (SSC, SCC,
SLBF, PAC). All of them use the T-K factorisation

* Hopkins155

— Standard dataset for sparse motion segmentation methods

— Manually refined, complete trajectories (20-30 frames, 100-500

points)

— 155 sequences of 2 and 3 motions.

— Varying difficulty (general, degenerate, articulated)
« No per sequence tuning. Either fixed parameters or determined
automatically.

« The number of motions are assumed known

Garnics British Machine Vision Conference 2011, Dundee sgvgmj;;;;gwom
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Accuracy and speed

Missclassification Error %
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Missclassification Error %

Method RANSAC | SCC-MS | SLBF-MS | SSC-N [ PAC | LCV
Average time (sec) 0.387 1.264 10.83 165 052.25 | 0.93
Total time (sec) 60 196 1680 25620 | 147600 | 145
Average error (%) 9.48 2.70 1.35 1.36 1.24 1.86

The average and total runtime on the full Hokpins155 dataset

Garnics
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Algorithm complexity overview

N: number of scene points, F number of frames, C: number of 7-
point clusters

« Stepl (motion sampling):
— K-means
— C*F matrix inversions of size 5x7
« Step2 (synthesis+affinity):
— N*C*F LCV equations
—  N*C*Affinity
« Step3 (spectral clustering with kernel width search):
— 10*eigen-decompositions of a NxN matrix

— 10*K-means
Garnics British Machine Vision Conference 2011, Dundee /ﬁ;;
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Conclusion

« Motion segmentation method based on LCV
theory for affine camera model

« Good combined accuracy and speed.

« Easy to implement and can be used Iin
practice (fast and parameters are auto tuned)

« Qutstanding Issues: missing trajectories,
number of objects, degeneracies
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