
SUCCESSIVE RECOGNITION USING LOCAL STATE MODELS

Per-Erik Forsśen

Computer Vision Laboratory
Department of Electrical Engineering

Linköping University, SE-581 83 Link̈oping, Sweden
perfo@isy.liu.se

ABSTRACT

This paper describes how a world model for successive recog-
nition can be learned using associative learning. The learned
world model consists of a linear mapping that successively
updates a high-dimensional system state using performed
actions and observed percepts. The actions of the system
are learned by rewarding actions that are good at resolving
state ambiguities. As a demonstration, the system is used to
resolve the localisation problem in a labyrinth.

1. INTRODUCTION

During the eighties a class of robotic systems known asre-
active robotic systemsbecame popular. The introduction
of system designs such as thesubsumption architecture[1]
caused a small revolution due to their remarkably short re-
sponse times. Reactive systems are able to act quickly since
the actions they perform are computed as a direct function
of the sensor readings, orpercepts, at a given time instant.
This design principle works surprisingly well in many sit-
uations despite its simplicity. However, a purely reactive
design is sensitive to a fundamental problem known asper-
ceptual aliasing.

Perceptual aliasing is the situation when the percepts are
identical in two situations when the system should perform
different actions. There are two main solutions to this prob-
lem:

• The first is to add more sensors to the system such
that the two situations can be told apart.

• The second is to give the system an internal state.
This state is estimated such that it is different in the
two situations, and can thus be used to guide the ac-
tions.

This paper will deal with the latter solution, which fur-
ther on will be calledsuccessive state estimation. We note

The author wants to acknowledge the financial support of WITAS, the
Wallenberg laboratory for Information Technology and Autonomous Sys-
tems.

here that the introduced state can be tailor-made to resolve
the perceptual aliasing.

Successive state estimation is calledrecursive parame-
ter estimationin signal processing, andon-line filtering in
statistics [2]. Successive recognition could potentially be
useful to computer vision systems that are to navigate in
a known environment using visual input, such as the au-
tonomous helicopter in the WITAS project [3].

2. SYSTEM OUTLINE

Successive state estimation is an important component of an
active perception system. The system design to be described
is illustrated in figure 1. The state estimation, which is the
main topic of this paper, is performed by thestate transition
andstate narrowingboxes.

The state transition box updates the state using informa-
tion about which action the system has taken, and the state
narrowing box successively resolves ambiguities in the state
by only keeping states that are consistent with the observed
stimulus.

motor
programs

state
narrowing

channel
coding

state
transitions

Action

Stimulus

System state

New Action

Fig. 1. System outline.

The system uses an information representation called
channel representation[4, 5]. This implies that informa-
tion is stored in channel vectors of which most elements are
zero. Each channel is monopolar (e.g. either positive, or
zero), and its magnitude signifies the relevance of a specific
hypothesis (such as a specific system state in our case), and
thus a zero value represents “no information”. This infor-
mation representation has the advantage that it enables very
fast associative learning methods to be employed [5], and
improves product sum matching [4].

The channel codingbox in figure 1 converts the per-
cepts into a channel representation. Finally, themotor pro-
grambox is the subsystem that generates the actions of the
system. The complexity of this box is at present kept at a
minimum.

3. EXAMPLE ENVIRONMENT

To demonstrate the principle of successive state estimation,
we will apply it on the problem shown in figure 2. The arrow
in the figure symbolises an autonomous agent that is sup-
posed to successively estimate its position and gaze direc-
tion by performing actions and observing how the percepts
change. This is known as therobot localisation problem[2].
The labyrinth is a known environment, but the initial loca-
tion of the agent is unknown, and thus the problem consists
of learning (or designing) a world model that is useful for
successive recognition.

The stimulus constitutes a three element binary vector,
which tells whether there are walls to the left, in front, or
to the right of the agent. For the situation in the figure, this
vector will look like this:

m =
(

0 0 1
)T

This stimulus is converted to percept channels in one of
two ways

p1 =
(

m1 m2 m3 1 − m1 1 − m2 1 − m3

)T

p2 =
(

p1 p2 p3 p4 p5 p6 p7 p8

)T
(1)

Where
ph =

{
1 if m = mh

0 otherwise

and{mh}8
1 is the set of all possible stimuli. This expan-

sion is needed since we want to train an associative network
[5] to perform the state transitions, and since the network
only has monopolar coefficients, we must have a non-zero
input vector whenever we want a response.

The two variantsp1 andp2 will be calledsemi-local,
andlocal percepts respectively. For the semi-local percepts,
correlation serves as a similarity measure, ormetric, but for
the local percepts we have no metric—the correlation is ei-
ther1 or 0.

The system has three possible actionsa1 = TURNLEFT,
a2 = TURNRIGHT, anda3 = MOVEFORWARD. These
are also represented as a three element binary vector, with
only one non-zero element at a time. E.g.TURNRIGHT is
represented like this:

a2 =
(

0 1 0
)T

Each action will either turn the agent90◦ clockwise or
anti clockwise, or move it forward to the next grid location
(unless there is a wall in the way).

As noted in section 1, the purpose of the system state
is to resolve perceptual aliasing. For the current problem

Fig. 2. Illustration of the labyrinth navigation problem.

this means that the system state has to describe both agent
location and absolute orientation. This gives us the number
of states as:

Ns = rows× cols× orientations (2)

For the labyrinth in figure 2 this means7× 7× 4 = 196
different states.

4. LEARNING SUCCESSIVE RECOGNITION

If the state is in a local representation, that is, each com-
ponent of the state vector represents a local interval in state
space, successive recognition can be obtained by a linear
mapping. For the environment described in section 3, we
will thus use a state vector withNs components.

The linear mapping will recursively estimate the state,
s, from an earlier state, the performed action,a, and an ob-
served perceptp. I.e.

s(t + 1) = C [s(t) ⊗ a(t) ⊗ p(t + 1)] (3)

Where⊗ is theKronecker product, which generates a
vector containing all product pairs of the elements in the
involved vectors. The sought linear mappingC is thus of
dimensionNs × NsNaNp whereNa andNp are the sizes
of the action and percept vectors respectively.

In order to learn the mapping we supply examples ofs,
a, andp for all possible state transitions. This gives us a
total of NsNa samples. The coefficients of the mappingC
are found using a least squares optimisation with monopolar
constraint:

arg min
cij>0

||u − Cf ||2 where

u = s(t + 1)
f = s(t) ⊗ a(t) ⊗ p(t + 1)

For details of the actual optimisation see [5].

5. NOTES ON THE STATE MAPPING

The first thing to note about usage of the mapping,C, is
that the state vector obtained by the mapping has to be nor-
malised at each time step, i.e.


s̃(t + 1) = C [s(t) ⊗ a(t) ⊗ p(t + 1)]

s(t + 1) =
s̃(t + 1)∑
k s̃k(t + 1)

(4)

Another observation is that in the environment described
in section 3, we obtain exactly the same behaviour when we
use two separate maps:{

s∗(t + 1) = C1 [s(t) ⊗ a(t)]
s̃(t + 1) = C2 [s∗(t + 1) ⊗ p(t + 1)] (5)

An interesting parallel toon-line filteringalgorithms in
statistics is thatC1 andC2 actually correspond to the stochas-
tic transition modelp(s(t + 1)|s(t),a(t)) and the stochas-
tic observation modelp(p(t)|s(t)) respectively (see for in-
stance [2]).

The mappings have sizesNs ×NsNa andNs ×NsNp,
and this gives us at mostN2

s (Na + Np) coefficients com-
pared toN2

s NaNp in the single mapping case. Thus the split
into two maps is advantageous, provided that the behaviour
is not affected.

Aside from the gain in number of coefficients, the split
into two maps will also simplify the optimisation of the
mappings considerably. If we during the optimisation sup-
ply samples ofs∗(t + 1) that are identical tos(t + 1) we
end up with a mapping,C2, that simply weights the state
vector with the correlations between the observed percept
and those corresponding to each state during optimisation.
In other words, equation 5 is equivalent to:

s̃(t + 1) = diag(Pp(t + 1))C1 [s(t) ⊗ a(t)] (6)

WhereP is a matrix with rown containing the percept
observed at staten during the training, anddiag() generates
a matrix with the argument vector in the diagonal.

6. EXPLORATORY BEHAVIOUR

How quickly the system is able to recognise it’s location
is of course critically dependent on which actions it takes.
A good exploratory behaviour should strive to observe new
percepts as often as possible, but how can the system know
that shifting its attention to something new when it does not
yet know where it is?

In this system the actions are chosen using apolicy,
where the probabilities for each action are conditional on
the previous actiona(t − 1) and the observed perceptp(t).
I.e. the action probabilities can be calculated as:

p(a(t) = ah) = ch [a(t − 1) ⊗ p2(t)] (7)

Where{ah}3
1 are the three possible actions (see section

3). The coefficients in the mappings{ch}3
1 should be de-

fined such that
∑

h p(a(t) = ah) = 1.

Time 0 1 2 3

Estimate
(usingp1)

Estimate
(usingp2)

Actual state

Time 4 5 6 7

Estimate
(usingp1)

Estimate
(usingp2)

Actual state

Fig. 3. Illustration of state narrowing.

A random run of a system with a fixed policy{ch}3
1 is

demonstrated in figure 3. The two different kinds of per-
ceptsp1 andp2 are those defined in equation 1.

7. EVALUATING NARROWING PERFORMANCE

The performance of the localisation process may be evalu-
ated by observing how the estimated states(t) changes over
time. As a measure of hownarrow a specific state vector is
we will use:

n(t) =
∑

k sk(t)
max

k
{sk(t)} (8)

If all state channels are activated to the same degree, as
is the case fort = 0, we will getn(t) = Ns, and if just one
state channel is activated we will getn(t) = 1. Thusn(t)
can be seen as a measure of how many possible states are
still remaining.

Figure 4 (top) shows a comparison of systems using lo-
cal and semi-local percepts for50 runs of the network. For
each run the true initial state is selected at random, ands(0)
is set to1/Ns.

Since the only thing that differs between the two upper
plots in figure 4 is the percepts, the difference in conver-
gence has to occur in step2 of equation 5. We can further
demonstrate what influence the feature correlation has on
the convergence by modifying the correlation step in equa-
tion 6 as follows:

s̃(t + 1) = diag(f(Pp(t + 1)))C1 [s(t) ⊗ a(t)] (9)

10 20 30 40
10

0

10
1

10
2

10 20 30 40
10

0

10
1

10
2

5 10 15 20 25 30 35 40
10

0

10
1

10
2

Fig. 4. Narrowing performance.
Top left: n(t) for a system usingp1. Top right: n(t) for a
system usingp2. Each graph shows50 runs (dotted). The
solid curves are averages. Bottom: Solid:n(t) for p1 and
p2. Dashed:p1 using f1(). Dash-dotted:p1 using f2().
Each curve is an average over50 runs.

We will try the following two choices off() on correla-
tions of the semi-local percepts:

f1(c) =
√

c and f2(c) =

{
1 if c > 0
0 otherwise

(10)

All four kinds of systems are compared in the lower
graph of figure 4. As can be seen, the narrowing behaviour
is greatly improved by a sharp decay of the percept cor-
relation function. However, for continuous environments
there will most likely be a trade off between sharp corre-
lation functions and state interpolation and the number of
samples required during training.

8. LEARNING A NARROWING POLICY

The conditional probabilities in the policy defined in section
6 can be learned usingreinforcement learning[6]. A good
exploratory behaviour is found by giving rewards to condi-
tional actions{a(t)|p(t),a(t − 1)} that reduce the narrow-
ing measure in equation 8, and by having the action proba-
bilities p(a(t) = ah|p(t),a(t−1)) gradually move towards
the conditional action with the highest average reward. This
is called apursuit method[6].

In order for the rewards not to die out, the system state is
regularly reset to all ones, for instance whent mod30 = 0.
The first attempt is to define the reward as a plain difference
of the narrowing measure in equation 8. I.e.

r1(t) = n(t − 1) − n(t) (11)

With this reward, the agent easily gets stuck into sub-
optimal policies, such as constantly trying to move into a
wall. Better behaviour is obtained by also looking at the
narrowing difference one step into the future. i.e.

r2(t) = r1(t) + r1(t + 1) = n(t − 1) − n(t + 1) (12)

The behaviours learned using equations 11 and 12 are
compared with a random walk in figure 5.

10 20 30 40
10

0

10
1

10
2

10 20 30 40
10

0

10
1

10
2

Fig. 5. Narrowing performance.
Left: n(t) for a policy learned usingr1(t). Right: n(t) for
a policy learned usingr2(t). Each graph shows50 runs
(dotted). The thick curves are averages. Dashed curves
show average narrowing for a completely random walk.

9. CONCLUSIONS

The aim of this paper has not been to describe a useful
application, but instead to show how the principle of suc-
cessive recognition can be used. Compared to a real robot
navigation task, the environment used is way too simple to
serve as a model world. Further experiments will extend the
model to continuous environments, with noisy percepts and
actions.

10. REFERENCES

[1] R. Brooks, “A robust layered control system for a mo-
bile robot”, IEEE Trans. on Robotics and Automation,
, no. 2, pp. 14–23, 1986.

[2] N. Vlassis, B. Terwijn, and B. Kr̈ose, “Auxiliary parti-
cle filter robot localization from high-dimensional sen-
sor observations”, Tech. Rep. IAS-UVA-01-05, Com-
puter Science Institute, University of Amsterdam, 2001.

[3] Gösta Granlund, Klas Nordberg, Johan Wiklund,
Patrick Doherty, Erik Skarman, and Erik Sandewall,
“WITAS: An Intelligent Autonomous Aircraft Using
Active Vision”, in Proceedings of the UAV 2000 In-
ternational Technical Conference and Exhibition, Paris,
France, June 2000, Euro UVS.

[4] Per-Erik Forsśen, “Sparse Representations for Medium
Level Vision”, Lic. Thesis LiU-Tek-Lic-2001:06, Dept.
EE, Linköping University, February 2001, Thesis No.
869, ISBN 91-7219-951-2.

[5] Gösta Granlund, Per-Erik Forssén, and Bj̈orn Johans-
son, “HiperLearn: A High Performance Learning Ar-
chitecture”, Tech. Rep. LiTH-ISY-R-2409, Dept. EE,
Linköping University, January 2002.

[6] Richard S. Sutton and Andrew G. Barto,Reinforcement
Learning, An Introduction, MIT Press, Cambridge,
Massachusetts, 1998, ISBN 0-262-19398-1.

