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Abstract—In this paper, we present a model-based video coding
method that uses input from colour and depth cameras, such
as the Microsoft Kinect. The model-based approach uses a 3D
representation of the scene, enabling several other applications
besides video playback. Some of these applications are stereo-
scopic viewing, object insertion for augmented reality and free
viewpoint viewing.

The video encoding step uses computer vision to estimate the
camera motion. The scene geometry is represented by keyframes,
which are encoded as 3D quads using a quadtree, allowing
good compression rates. Camera motion in-between keyframes
is approximated to be linear. The relative camera positions at
keyframes and the scene geometry are then compressed and
transmitted to the decoder.

Our experiments demonstrate that the model-based approach
delivers a high level of detail at competitively low bitrates.

I. INTRODUCTION

Video coding using 3D models can reach very low bitrates
compared to the traditional block-based approach. The reason
for this is that textures need to be transmitted less often, as
they are coded separately from the 3D structure and camera
motion.

The difficulty with 3D model-based coding lies in extract-
ing unknown 3D structure from the captured scene. Dense
structure from motion for a single camera is not yet plug-
and-play for arbitrary sequences. Recently, devices that deliver
both colour and depth streams, such as the infrared structured
light systems developed by Primesense [1] (Microsoft Kinect,
and the Asus WAVI sensors are consumer products that use
this technology), have made production of dense structure and
motion video much easier. See Fig. 1 for an illustration of the
Kinect sensor, and its output.

Previously, 3D video coding systems have required multiple
sensors, either a colour camera and separate depth camera have
been used [2], or multiple colour cameras. As the registration
of the video streams require the relative poses of the sensors to
be known, such systems must be calibrated before each video
capture.

There are other advantages with model-based video coding
besides offering low bitrates. The available 3D representation
additionally allows for stereoscopic viewing of the video, by
having the decoder render two sidewise offset streams. The
3D representation also allows objects to be inserted into the

(a) Colour image. (b) Depth image.

(c) Structured light. (d) Kinect sensor.

Fig. 1. Colour and depth image captured with the Kinect.

scene for augmented reality, and free viewpoint viewing is also
possible [3], i.e. looking at the scene from different, freely
selectable points of view.

A. Related Work

Traditional video coders are block based. This means that
each video frame is segmented into blocks, which are encoded
independently, using still-image coding techniques. Already
early video codecs offered the possibility to encode the
difference of a block to another block instead of a direct
encoding [4]. Coding the difference allows the coder to exploit
redundancies between different images of the sequence. In
second generation video codecs [5] this redundancy was
further exploited, by introducing a 2D segmentation approach.
However, the most advanced video codecs like H.264 [6] do
not take full advantage of such advanced techniques – instead,
they offer a more traditional block-based solution, albeit with
the possibility of using different and much finer block sizes.

Model-based or object-based approaches have been tried
as well [7]. These exploit knowledge of the 3D structure of
scene objects or the imaged scene. Theoretically, by knowing



the geometry of the scene, the video can be encoded with
a minimal bitrate since the objects of a scene and their
textures have to be encoded only once. The textures, which
usually consume most of the bitrate in these videos, can
then be encoded using a highly optimized still-image coder
like JPEG2000 [8]. However, apart from a few specialised
applications like video-telephony [9] these techniques are only
seldom used. A more recent work in this area can be found
in [10], where the geometry of static scenes are encoded as
meshes.

For modern 3D and multi-view videos, several other ap-
proaches have been suggested, such as the encoding of several
video streams with inter-stream prediction to exploit spatial
redundancy [11], and the adding of a depth-image stream [12].

The system presented in this paper does 3D model-based
coding, and is most similar to [10] and [3]. Differences
compared to [10] and [3] are the use of a combined colour
and depth camera in our method, where [10] uses structure
from motion and [3] uses multiple colour cameras to capture
the depth. Because of the differences in input data, it is
difficult to make a fair comparison. Further differences are the
representation of the geometry, where [10] use a mesh, whilst
our method uses a quad-based approach similar to [3]. The
advantage when using a quad-based representation is that the
discontinuities in the 3D models do not have to be detected.
Moreover, our method for extracting and compressing quads
is different from [3] (differences will be highlighted in the
related section).

B. Overview of the Proposed Method
The method presented in this paper is split into an encoding

and decoding part. The encoding part receives data from
colour and depth cameras. Pre-processing of camera data
and relationship between the colour and depth cameras are
explained in section II. The encoder selects keyframes with a
variable number of frames between them. The camera motion
between these keyframes is estimated (section III) and 3D
models are fitted onto the keyframes (section IV). Camera
motion and 3D models for each keyframe are compressed and
transmitted to the decoder. The decoder reconstructs the video
given these keyframes which is briefly explained in section V.

The results achieved using the proposed method are shown
and compared to H.264 in section VI.

II. COLOUR AND DEPTH CAMERAS

Combined colour and depth cameras have recently become
popular, with the introduction of the Microsoft Kinect (see
Fig. 1), and the Asus WAVI sensors. Both of these devices
use structured light, and are based on a patented reference
implementation by the company Primesense [1].

Full-frame depth sensors that use the time-of-flight principle
are also available, and an alternative way to obtain a combined
colour and depth camera is thus to place a colour camera next
to a time-of-flight sensor [2].

In both structured light, and time-of-flight systems, the
colour image sensor and the depth image sensor are separate
units, and thus by necessity offset with respect to each other.

The relationship between the colour and depth cameras can
be expressed using the pinhole camera model [13]. The origin
of the coordinate system is set to the camera centre of the
depth camera, yielding a camera matrix

CDepth = KDepth[RDepth | tDepth] = KDepth[I | 0] . (1)

where I is the identity matrix, 0 is the null vector and KDepth
is the depth camera’s calibration matrix. The colour camera,
with calibration matrix KRGB, is rotated RRGB and translated
tRGB relative to the depth camera

CRGB = KRGB[RRGB | tRGB] . (2)

A point x in the depth image with homogeneous coordinates
xh, can be reprojected as a line L through the origin out into
the world [13]

L = {x : x = γK−1
Depthxh, γ ∈ R} . (3)

The value in the depth image z for point x, z(x), then tells us
where on the line the point is

y = z(x)K−1
Depthxh . (4)

The point in the world y, with the homogeneous coordinates
yh, is then projected onto the colour camera

xRGB = CRGByh . (5)

Note that this transfer of the depth map to the colour
image requires the camera matrices to be known. A calibration
procedure that finds them is described in [14]. Furthermore,
note that this calibration needs only to be performed once for
each device, and that it is even stored on the device itself, and
is accessible using the OpenNI drivers [15].

A. Depth Filtering

The depth image can contain a significant amount of missing
data. Data may be missing in several circumstances, such as
when the object is too close or far away. Other circumstances
when data may be missing in are if surfaces are reflective, or
when structured light cannot be projected and deciphered, due
to the angle of the surface being too narrow relative to the
camera. Since the infrared projector and camera are not in the
same position, occlusion will also cause missing data.

To improve the motion estimation and 3D model, the depth
image is filtered. The missing data is first interpolated with a
2D isotropic Gaussian filter

z(x) =

∑
xi∈N (x)

exp

(
−||x − xi||2

2σ2
p

)
z(xi)c(xi)

∑
xi∈N (x)

exp

(
−||x − xi||2

2σ2
p

)
c(xi)

(6)

where N (x) is the neighbourhood of point x and c is a mask
that is 0 if the data is missing in that point, otherwise 1. A
small N is preferred, so that only a small local neighbourhood
is used when filling in missing data. Since the first iteration
will not always fill in all missing data, the process is repeated



(a) Input depth image. (b) After three iterations using a Gaus-
sian filter.

(c) Gaussian filtered depth image. (d) Bilateral filter applied to the Gaus-
sian filtered image.

Fig. 2. Filling in depth data using Gaussian and bilateral filters.

until all missing data is filled in (Fig. 2c). Then, a bilateral
filter [16] is used to smoothen out this filtered missing data,
whilst still preserving the edges (Fig. 2d).

z(x) =

∑
xi∈N (x)

exp
(
− (z(x)− z(xi))2

2σ2
d

)
z(xi)

∑
xi∈N (x)

exp
(
− (z(x)− z(xi))2

2σ2
d

) (7)

This operation is only run on missing data points, i.e. when
c(x) = 0.

III. CAMERA MOTION ESTIMATION

The rotation and translation between two keyframes are
estimated by finding corresponding features in both keyframes’
colour images. Features in an image are found by using the
Harris corner detector [17]. A patch in an image represents a
corner if both eigenvalues of the patch’s structure tensor, A,
are large.

A(x) =
∑

xi∈N (x)

∇I(xi)(∇I(xi))> (8)

Correspondences between features in two images are then
estimated using the OpenCV [18] implementation of the
Lucas-Kanade optical flow algorithm [19].

The 3D coordinate for each feature is determined by finding
the 3D point whose projection in the colour image is the
closest to the feature (Euclidean distance).

All the features’ 3D coordinates belonging to one image are
centred around their own origin. The rotation between two sets
of corresponding features can then be estimated by solving
the orthogonal Procrustes problem [20]. If (3 × n) matrix A
contains the 3D points from the first image in its columns, and

(3× n) matrix B contains the corresponding 3D points from
the second image, the orthogonal Procrustes algorithm finds
the transformation, R, that minimises

ε = ‖A − R B‖2. (9)

This can be solved by using singular value decomposition

USV> = SVD(BA>) (10)

where rotation R is given by

R = VU>. (11)

Data from the depth camera can contain noisy points
(outliers) that will reduce the quality of the transformation.
RANSAC [21] is used to eliminate outliers and only using the
less noisy points (inliers) when estimating the transformation.

The full transformation chain (in homogeneous coordinates)
from 3D points in the second image to 3D points in the first
image is then given by

H =
[

I tA
0> 1

] [
R 0
0> 1

] [
I −tB

0> 1

]
(12)

where I is a 3×3 identity matrix, 0 is a 3-element null vector,
tA and tB are the translations used to centre the points of the
first and second images around their origin.

IV. SCENE GEOMETRY REPRESENTATION

The geometry used to represent the scene for each keyframe
is 3D quadrilaterals (denoted quads in the following). Each
3D quad is made up of four vertices describing its world and
texture coordinates.

A quadtree of a pre-defined depth is first fitted onto the
keyframe’s colour image. This quadtree is then tessellated to
allow for large quads on large flat surfaces, and smaller quads
where there are high details. For each quad in this quadtree,
the 3D midpoint and average normal are calculated from the
3D points that are projected onto the quad. Given the quad
midpoint p and its average normal n̂, the distance, D, from
the origin to the plane of a quad can be calculated with the
plane equation

p · n̂ + D = 0 . (13)

The distance from the plane is then measured for every 3D
point that projects onto the plane’s quad

Nε =
N∑

i=1

{
1, |pi · n̂ + D| > ε

0, otherwise
(14)

If the number of points, Nε, that are further away than ε from
the plane is large, then the quad is split into four new quads.
Otherwise the quad is marked for having the possibility to
merge with its parent’s other children. If all four children
belonging to a parent are marked as being able to merge, then
the plane normal in each one of the children is checked to see
if they are close to being parallel.

n̂i · n̂j ≥ tn, i, j ∈ {1, 2, 3, 4}, i 6= j (15)



(a) The colour camera’s point of view. (b) Seen from the side.

Fig. 3. Geometry generated from a quadtree seen from two different views.
Frame is from the same video sequence as Fig. 2.

where tn is a threshold close to 1. If all four normals are close
to being parallel, then their parent is merged into a child. An
example of a tessellated quadtree can be seen in Fig. 3.

The method presented in [3] fits a quadtree on the depth
image which is in the same coordinate system as the colour
image. Their quadtree is then tessellated if the depth difference
between two pixels is above a specified threshold. Our method
fits the quadtree on the colour image and tessellates it given
the 3D points’ distance from its plane.

V. COMPRESSION AND DECODING

For each keyframe the encoder transmits the relative camera
movement to the previous keyframe, the 3D model and its
texture. Instead of sending all the vertices for the 3D model,
the quadtree structure and each quad’s plane equation is
transmitted. To further reduce the number of bits, the floating
point numbers used to represent the plane equations are
converted to integers and compressed using a fixed-length
Huffman code. The 3D model’s texture (the camera colour
image) is compressed using JPEG2000 [8].

Compressing and transmitting the plane equation is another
difference compared to [3]. In their method the depth of each
vertex is compressed. Our method compresses the plane equa-
tion instead because the normal is less sensitive to quantization
errors.

Given the quadtree structure and the plane equations, the
decoder can reconstruct the keyframe’s 3D model. Frames
in-between the keyframes are predicted by interpolating the
camera movement with SLERP [22] for the rotation and
linear interpolation for the translation. The current and next
keyframes’ 3D models are projected onto the predicted frame’s
colour image in two separate images. These two images are
then linearly blended together to create a smooth transition
between keyframes.

VI. PERFORMANCE EVALUATION

The performance of the proposed method has been evaluated
against the H.264 standard using the H.264/AVC JM reference
software [23] at low bitrates. In the results shown here the
target bitrate is set to 270 kbit/s.

Unlike H.264, our method contains information about the
depth of the scene. To be able to get this information using
H.264 a separate stream needs to be encoded. This extra stream
would need to reduce the video’s visual quality to maintain

(a) Frame #0. (b) Frame #120.

(c) Frame #220. (d) Frame #359.

Fig. 4. Frames from the test sequence.

the same bitrate. However, an extra depth stream has not been
encoded in these experiments.

There are several parameters that can be changed in the
proposed method to impact the quality and size of the video.
The parameters that have the largest impact are texture quality
and the numbers of bits the plane equations are encoded with.

In the test sequence used, the camera moves along a
corridor. The camera mostly moves along the z axis, and
occasionally rotates. There is a significant amount of missing
depth data in this sequence due to reflections and the length
of the corridor. Selected frames from the uncompressed test
sequence can be seen in Fig. 4.

Two different quality measures have been used to eval-
uate the results. Using the common peak signal-to-noise
ratio (PSNR) shows that the proposed method peaks at each
keyframe (as seen in Fig. 5), and has its lowest points
between each keyframe. Putting keyframes closer together
(having more keyframes) increases the PSNR between them,
but also increases the total bitrate. The texture quality can be
increased when using sparse keyframes (blue line), but has to
be decreased when using more dense keyframes (green line),
in order to obtain the same bitrate.

The PSNR error measure does not often correspond to
how the human eye perceives the quality of an image. The
Structural SIMilarity (SSIM) index [24] is a more appropriate
method for evaluating visual quality perceived by the human
eye. Rather than evaluating the error pixel-by-pixel as PSNR
does, the SSIM looks at the structure of a pixel’s neighbour-
hood to locally adjust the contrast and luminance. Fig. 6 shows
the SSIM for the proposed method and H.264.

The errors for the two coding methods are very different.
Details are lost when using H.264 at low bitrates. In Fig. 7
the visual quality of H.264 compared to our method can be
seen. Our proposed method maintains the details, but has two
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Fig. 5. Comparison of PSNR between the proposed method and H.264.
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Fig. 6. Comparison of SSIM between the proposed method and H.264.

(a) Original frame #323. (b) Detail of original frame #323.

(c) Detail of frame #323
decoded using our method.

(d) Detail of frame #323
decoded using H.264.

Fig. 7. Visual quality comparison between our method and H.264.

other types of artifacts. The first three dips in the PSNR
curve (Fig. 5) are due to errors in the camera movement. For
example, frame #34 that has the lowest PSNR of all the frames
looks good (Fig. 8a), but the movement is incorrect which
reduces its PSNR value. The difference from the original
image can be seen in Fig. 8b. Later in the sequence the errors
are caused by imperfections in the geometry. Because of this
misalignment, the blending generates “ghosting effects” as
seen in Fig. 8d.

The bigger drops in PSNR for the sparse keyframes setting
in Figs. 5 and 6 are mainly caused by small camera pose errors
introduced by the linear interpolation of the camera motion.

(a) Frame #34
decoded using our method.

(b) Difference from the original frame
#34. Errors are due to incorrect cam-
era movement.

(c) Frame #309
decoded using our method.

(d) Errors due to geometry
misalignment in frame #309.

Fig. 8. Two types of errors when using the proposed method.

VII. CONCLUDING REMARKS

We have presented a method for compressing video using
a model-based approach given input from colour and depth
cameras. Our method encodes both the colour and depth
streams, but it has been compared to H.264 which encodes
only the colour stream.

The results show that the proposed method can achieve a
video with higher detail level compared to H.264. Even though
the proposed method does not reach the same average PSNR
as H.264, one has to consider that the encoded data stream also
contains depth information about the scene. This information
can be used for other applications such as stereoscopic viewing
of the video, object insertion for augmented reality and free
viewpoint viewing.

We have also shown that the artifacts in block-based and
model-based coding are different. In block-based coding de-
tails in texture are lost, whereas in model-based coding the
texture retains more detail, but is geometrically distorted.
Because both PSNR and SSIM measure the error pixel-by-
pixel, geometric distortions are treated as more severe.

Several details of the proposed method can be improved
upon. The proposed method uses a computer vision based
approach to estimate the camera motion. A large reduction of
the PSNR is because of an incorrect camera trajectory. This is
partly due to the linear approximation of the camera motion,
but a more sophisticated method for estimating the camera
motion could also lead to improvements.

The currently used extrapolation of missing data in the depth
stream is quite crude. Better results could possibly be obtained
by using locally planar assumptions in the extrapolation.

Representing the geometry using quads instead of a mesh
removes the problem of finding discontinuities and allows for a



compact data representation. To further improve the proposed
method, it would be of interest to allow for non-static scenes.
Giving each quad a motion vector would allow objects to move
within the scene.

What is shown in this paper is that although model-based
coding has its shortcomings, it also has great potential, espe-
cially with the growing prevalence of 3D applications.
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