
A Virtual Tripod for Hand-held Video Stacking on Smartphones

Erik Ringaby and Per-Erik Forssén
Department of Electrical Engineering, Computer Vision Laboratory

Linköping University, Sweden
{ringaby,perfo}@isy.liu.se

Abstract

We propose an algorithm that can capture sharp, low-
noise images in low-light conditions on a hand-held smart-
phone. We make use of the recent ability to acquire bursts
of high resolution images on high-end models such as the
iPhone5s. Frames are aligned, or stacked, using rolling
shutter correction, based on motion estimated from the
built-in gyro sensors and image feature tracking. After
stacking, the images may be combined, using e.g. averag-
ing to produce a sharp, low-noise photo. We have tested the
algorithm on a variety of different scenes, using several dif-
ferent smartphones. We compare our method to denoising,
direct stacking, as well as a global-shutter based stacking,
with favourable results.

1. Introduction
In this paper we propose an algorithm that can capture

sharp, low-noise images in low-light conditions on a hand-
held smartphone. Recent smartphone models such as the
Apple iPhone5s, Acer Liquid S2 and Samsung Galaxy Note
3 have the ability to acquire bursts of high resolution im-
ages at a high rate. For smartphones equipped with a gyro-
scope sensor, such image bursts may be aligned or stacked
at low cost, using sensor data. The stacked frames can then
be fused into a single (less noisy) frame using e.g. averag-
ing, median or bilateral filtering. This enables hand-held
acquisition of sharp, low-noise images with long exposure
times, without the requirement of additional mechanical im-
age stabilisation hardware.

Video stacking on a smartphone currently requires a tri-
pod, due to the rolling shutter (RS) distortions that appear
during hand-held capture. In this paper we introduce an RS
based correction, that allows also images from hand-held
video to be stacked.

An illustration of the proposed approach is given in Fig-
ure 1. Instead of using one long exposure, with resultant
blurring, many short exposures are used in sequence. When
the photographer has a static aim (i.e. tries to aim at a fixed

1630 1640 1650
1200

1210

1220

3 2 1 0 1 2 3
3

2

1

0

1

2

3

3 2 1 0 1 2 3
3

2

1

0

1

2

3

2.0

8.
0

32.0

3 2 1 0 1 2 3
3

2

1

0

1

2

3

2.0
8.0

32.0

1

2

4

8

16

32

Figure 1. Illustration of video stacking idea. Top left: Trace of
central pixel of an iPhone5 during hand-held capture of 20 frames
at 14 fps, with 40 msec exposure time. The motion has been
recorded with an L3G4200D gyroscope at 800Hz, and colours in-
dicate time, ranging from red to green. Thick segments indicate
individual exposures. Top right: Alignment of the exposure seg-
ments. Bottom left: Iso contours of the effective PSF (scaled to
sum to 255), obtained by convolving the aligned exposure seg-
ments with the stationary PSF (here assumed to be a Gaussian
with σ = 0.5). Bottom right: corresponding iso contours for a
Gaussian with σ = 0.5.

point in space), these individual exposures tend to have blur
smears in a random distribution of directions. This means
that when the frames are aligned (using gyroscope readings
and image feature tracking), we obtain an effective point
spread function (PSF) that is much more compact than one
from a single long exposure.

1.1. Related work

Besides the stacking approach used in this paper, there
are several other approaches to low-light image capture.

c©2014 IEEE. Preprint from IEEE International Conference on Computational Photography 2014

One is to use pairs of flash and no-flash images, see e.g. [14]
and [3], and another is to use a pair with one blurry and one
noisy image, e.g. [22]. As these approaches rely on accu-
rate alignment of frames, they could also benefit from the
rolling shutter aware alignment procedure proposed here, if
they were to be used on mobile devices.

Another related approach is video denoising. Here the
exposure time is set low enough to obtain sharp, but noisy
images, and then spatiotemporal denoising [11, 15] is per-
formed. These methods find correspondences across sev-
eral frames, using e.g. dense optical flow, and approximate
KNN search, and this makes them infeasible to implement
on a smartphone.

A much faster, but less accurate approach than video de-
noising is to denoise a single frame captured with a short ex-
posure, using e.g. anisotropic diffusion [20]. We will com-
pare to single frame denoising in the experiment section.

Single frame deblurring using inertial sensors (INS) has
been investigated in [8]. Recently this has also been ex-
tended to use a rolling shutter camera model [19]. Such al-
gorithms are iterative in their nature, as they obtain the final
sharp images using e.g. Richardson-Lucy style deconvolu-
tion [16, 13]. If the sensor biases also need to be found, this
requires a second optimisation loop outside the first one [8].
In general, these algorithms are either relatively efficient,
but prone to ringing artifacts, or very expensive if complex
priors are employed.

Single frame deblurring without INS is also an option,
see e.g. [21], and the recent approach in [23]. In addition
to performing deconvolution, these approaches also need to
find the point-spread functions in each image location, and
as this is typically done using a second optimisation loop
outside the first one, these methods are an order of magni-
tude more expensive than methods that use INS data.

As nearly all digital video recording devices use rolling
shutters, the video stacking is related to video stabilisation
under rolling-shutter [17, 5]. Stabilisation of RS video has
also been done using inertial sensors [6, 9]. Basically, the
problem in video stacking is a video stabilisation, where
the desired camera trajectory is a single point in space with
static aim. In order not to introduce blurring however, stack-
ing has a much higher requirement on stabilisation accu-
racy than video stabilisation. For high accuracy we use
the cumulative quaternion B-splines introduced by Kim et.
al [10], to interpolate the gyro samples. These splines were
also recently used in an optimisation framework for SLAM
in [12], by minimising the reprojection errors on tracked
features and sensor data. Compared to [12] our algorithm is
many orders of magnitude faster, as our optimisation only
needs to solve for 4 unknowns, instead of several thousands.

Stacking has been popular for quite some time in as-
trophotography, and the idea actually originates here [1].
Here the camera is typically mounted on a telescope that

tracks slow motion (e.g. of the moon, or the celestial
sphere), and long exposure times are used. The motion to
be compensated for is thus the residual of the tracking and
the actual motion, and not the complex atmospherical aber-
rations observed at short time-scales.

Recently stacking using inertial sensors has been in-
troduced by compact camera manufacturers, in e.g. Sony
Cyber-Shot DSC RX100 [2]. These devices use the mo-
tion sensors to select a few frames (up to 6 for Sony) with
low amounts of motion. These are then stacked with global
frame alignment (as the camera appears to use the mechan-
ical shutter this is justified), using inertial sensors. In con-
trast, the method in this paper uses a rolling shutter distor-
tion model, and is able to make use of all frames in the ac-
quisition interval. It thus has a much better light collection
efficiency, and better noise suppression.

1.2. Video stacking

The method proposed in this paper makes use of the
built-in gyro sensor on a smartphone, and a sparse set
of tracked image features to stack frames acquired using
rolling shutter style exposure. The stacked frames can then
be fused into a single (less noisy) frame using e.g. averag-
ing, median or bilateral filtering.

For low-noise low-light photography, we should collect
as much light as possible during the time the shutter is
open. This means that for stacking, the light collection effi-
ciency, e, is an important performance metric. This mea-
sure is approximately equal to the product of the shutter
speed s in seconds, and the frame rate r in Hertz. For an
N frame stack it is defined as the effective exposure time
se = sN divided by the time required to acquire the stack
T = (N − 1)/r + s ≈ N/r.

e = se/T ≈ sr. (1)

For a single frame we always get e = 1, but e.g. a shutter
speed of s = 1/30 sec and r = 20 fps, gives us e ≈ 0.67.

Just like in classical photography, we have a built-in
trade-off here: in order to eliminate motion blur, the shutter
speed s should be short, but in order to collect more light it
should be as long as the frame rate permits.

In order to improve the light collection efficiency (1) we
will in general allow some motion blur. The rationale for
this is illustrated in Figure 1. When the photographer has a
static aim, the blur directions in consecutive images will be
randomly distributed (see Figure 1 and 4), and this means
that the final effective blur kernel will be much smaller than
the smear in individual frames. The example in Figure 1
shows the effective PSF for stacking of 20 frames with 40
msec exposure time. Even though the smear length is about
3 pixels in each frame, the effective PSF is similar to a
Gaussian of σ = 0.5.

2. Motion Model

We make use of a motion model that consists of a time
continuous 3D rotation, and a frame global 3D translation.
These models are estimated and applied in corrective fash-
ion, one after the other. Such an approach normally requires
alternating optimisation. The reason this works in one shot
here is that the rotation model makes use of gyro sensors
to estimate the rotation, and visual tracking to estimate the
gyro bias and the time delay between gyro and camera. As
the gyro sensors only sense rotation and not translation, the
translation will not interfere with the rotation compensation,
and the two models need only to be estimated once.

2.1. Rotation model

We use the 3D rotation model introduced in [4]. In this
model, a point in the first frame, expressed in homogeneous
coordinates as x = (x1 x2 1)

T , is related to its position in
a subsequent frame y = (y1 y2 1)

T according to:

x ∼ KR(tx)RT (ty)K−1y . (2)

Here K is the intrinsic camera matrix, R(t) is the time-
continuous camera rotation to be estimated, and ∼ denotes
equality up to scale. The times tx and ty correspond to
when the image points x and y were observed.

2.2. Translation model

In [17] the authors found that the rotation model was
good for rolling-shutter rectification since rotation is the
dominant cause for the distortions. This model is used pair-
wise on neighbouring frames, but for a global alignment
between all the frames, we also take translations into ac-
count. For the translations, we approximate the scene with
a fronto-parallel plane. A point y in one of the frames may
be re-projected onto this scene plane as u using:

u = λK−1y = λ (u1 u2 1)
T
. (3)

Now we may add a 3D displacement d =
(∆X ∆Y ∆Z)

T , and re-project the result into the
first image:

x = K(λK−1y + d) =

y1s+ a
y2s+ b

1

 , (4)

where {s, a, b} are functions of the elements of K and d.
We may thus estimate {s, a, b} instead of d. Estimation of
{s, a, b} can be done efficiently from a set of correspond-
ing points using least squares. This is the 2D equivalent of
Horn’s rigid motion estimation method [7].

3. Interpolation of Rotations
In order to obtain a smooth representation of the con-

tinuous rotation R(t), we use the cumulative quaternion
splines proposed in [10]. A B-spline curve defined by knots
pk ∈ Rn is evaluated as:

p(t) =

K∑
k=0

pkBk(t) . (5)

The cumulative form of (5) is:

p(t) = p0B̃0(t) +

K∑
k=1

∆pkB̃k(t) ,where (6)

∆pk = pk − pk−1 and B̃k =

K∑
l=k

Bk . (7)

In analogy with this, cumulative splines on the rotation
manifold may be defined, using unit quaternion knots, qk =
(cosαk, n̂k sinαk) ∈ Spin(3), and quaternion operations
as [10]:

q(t) = q
B̃0(t)
0

K∏
k=1

exp(ωkB̃k(t)) where (8)

ωk = log(q∗k−1qk) . (9)

Here ∗ denotes the quaternion conjugate, and for a unit
quaternion q, the logarithm is defined as:

logq = log (cosα, n̂ sinα) = (0, αn̂) , (10)

and exp() is the corresponding inverse operation. In [10]
B-spline kernels were used, and these define a curve by
approximation. As we are interested in interpolation, we
will also try replacing the B-spline kernels with the classi-
cal interpolating cubic spline (with the common choice of
∂B/∂t(1) = −0.5, see e.g. [18]), as well as the following
quartic spline:

Bint(t) =

− 1

2 t
4 + 5

2 |t|
3 − 3t2 + 1 if |t| < 1

1
2 t

4 − 7
2 |t|

3 + 9t2 − 10|t|+ 4 if |t| ∈ [1, 2]

0 otherwise.
(11)

This spline is the unique piecewise quartic that satis-
fies the following 10 constraints: constant sum (1dof),
B : [−2,−1, 0, 1, 2] → [0, 0, 1, 0, 0] (5dof), ∂B/∂t and
∂2B/∂t2 continuous at t = 1 (2dof). ∂B/∂t : [0, 2] →
[0, 0] (2dof).

Figure 2 shows a B-spline kernel and the kernel defined
in (11), and their corresponding cumulative kernels.

Note also that it is possible to move smoothly between
interpolation and approximation by blending the interpolat-
ing and the approximating kernels:

B̃(t, γ) = γB̃int(t) + (1− γ)B̃approx(t) . (12)

3 2 1 0 1 2 3
0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

3 2 1 0 1 2 3
0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Figure 2. Kernels. Left: Interpolating quartic spline (solid blue)
and B-spline (dashed red). Right: The corresponding cumulative
kernels.

Here B̃approx(t) is the B-spline kernel, and γ is a blending
parameter.

3.1. Integration

Interestingly, the tangent vectors ωk in (9) are closely re-
lated to angular velocities. This allows us to compute them
from the gyro data {gk}K0 , using the expression:

ωk = (0,∆t(gk + gk−1 − 2b)/2) , (13)

where ∆t is the gyro sample time, and b is the gyro bias
vector to be estimated. The rationale for (13) is that for
small angles (i.e. small ∆t) it is a good approximation of
trapezoidal integration on the manifold of rotations.

4. Parameter Optimisation
The use of gyro data together with a camera requires esti-

mation of the time delay td between gyro samples and cam-
era frame timestamps, as well as the three element gyro bias
vector b, see (13).

In [9] a calibration procedure that finds td and b is pro-
posed, our approach is quite similar, but we have replaced
an initial global-shutter geometric constraint with a geom-
etry free rejection, and added a rolling-shutter geometry
based rejection later on.

First the reprojection error of (2) is used to define resid-
uals for correspondences between neighbouring frames. As
we want to avoid imposing geometric constraints on the
correspondences, we use cross-checking rejection on KLT-
features, as suggested in [4]. We start with setting the gyro
bias to the sample mean and estimate the time delay td using
point correspondences from a few frames in the beginning
of the sequence. The parameter that minimises the squared
sum of the residuals is found using non-linear optimisation.
After convergence of this optimisation, we obtain residu-
als that approximately follow a Gaussian distribution. We
have found that better accuracy of the sought parameters
can be obtained by removing correspondences with residu-
als beyond the 3σ limit at this stage. After removal of these
correspondences, we optimise for both td and b using cor-
respondences from the whole sequence until convergence.

Figure 3. Zoomed in examples between global frame alignment
(left) and our rolling shutter aware method (right). For full frames,
see Figure 7, top left, and Figure 6, bottom left.

4.1. Robust Estimation

After td and b have been found, we can apply the rota-
tion model (2) to all points. We do this and resample the
images using forward interpolation as suggested in [4].

After image resampling, we have a fairly well aligned
stack, but if the imaged scene is close to the camera we still
need to apply the 3D translation model from section 2.2.
In order to do this, we again run a KLT-tracker between
the first frame, and each successive frame, and remove out-
liers using cross-checking. We then use the found corre-
spondences to estimate the translation model (4) within a
RANSAC [18] loop. For the model (4) the minimal number
of sample correspondences is 2. This, and the low number
of remaining outliers together mean that RANSAC usually
finds the correct model after just a few trials. Once a model
with a large ratio of inliers has been found, we re-estimate
the model using all inliers.

In the final result, we want to avoid any unnecessary
blurring caused by resampling the images twice. The fi-
nal correction is thus obtained by applying both the rota-
tion model and the translation model to the original image
coordinates, and then resampling the original frames using
forward interpolation.

4.2. Algorithm Bottlenecks

The proposed algorithm is quite efficient. The current
implementation is in Python, and runs on a PC, for ease of
analysis. Currently, the most expensive part of the algo-
rithm is image resampling and saving to disk, followed by
optimisation, and feature tracking. Most of the time is cur-
rently spent on saving to disk and image re-sampling, but if
resampling was to be done on the smartphone GPU, the cost

Figure 4. Columns 1-7: Example frames from a hand-held sequence showing different blurs. Right: Our result. (Best viewed electronically)

Figure 5. Scene captured using a physical tripod. Left to right, top to bottom: denoised image using 64 frames, zoomed in detail using 1,
2, 4, 8, 16, 32 and 64 frames respectively. (Best viewed electronically)

of these steps would be negligible. Thus, an efficient imple-
mentation on a smartphone should be straight forward.

5. Experiments

We have tested our method on many real-life sequences
and compare our results with the following methods: (1) the
single frame denoising implemented in Photoshop CS 5.11,
(2) direct averaging of the unaligned frames in the stack, (3)
global frame alignment (i.e. without rolling shutter correc-
tion). In the experiments, our method uses 32 frames, and
B-spline kernels, unless stated otherwise.

When capturing images in low light we usually get both
motion blur and image noise. Since most of the motion
blur is from rotation, the blur kernel is non-uniform, both
across the frame [21] and temporally. In Figure 4 we give an
example of how different it may look like across a sequence
of frames from a hand-held sequence.

If we assume a rigid scene we could use as many frames
as we want to obtain the final result, but since this is not
always the case we have to trade the capture duration and
the output noise level. In Figure 5 the noise level for stacks
with increasing number of frames is shown. In this partic-
ular example, improvements beyond 16 frames are difficult
to see.

1Note that Photoshop CC also has a Shake Reduction feature, which
has not been tested here.

5.1. Data collection

We have implemented an app for iOS that logs time-
stamped full resolution frames, as well as gyro sensor data
at 100 Hz. The obtained frame-rate is a function of the
bus-speed, the chosen video-quality, and the computational
power of the device. We have configured the app to record
using the JPEG encoder, with quality set to 85%. This re-
sults in a recording speed of about 9 Hz on iPhone 4s, 14 Hz
on iPhone 5, and 30 Hz on iPhone 5s. For the same amount
of denoising, the 5s thus has a shorter stacking time, due to
its superior light collection efficiency, see (1).

The five stacks used in this experiment have been made
available in a public dataset2. This includes full resolution
input images, frame timestamps, and logs from the builtin
gyroscope.

5.2. Comparative Experiments

Here we compare our results with a single frame from
the stack, a denoising of this frame using Photoshop CS 5.1,
and the average of the non-aligned frames in the sequence,
see Figures 6 and 7. The Photoshop denoising was set to
standard settings except “strength” and “preserve details”
which were changed to 10 and 10% respectively.

It is also interesting to see how our method compares to
a global alignment of the frames. In order to do this we

2Dataset: http://www.cvl.isy.liu.se/research/datasets/stacking-dataset/

Full frame result from our method First frame Direct stacking Photoshop Our method

Figure 6. Results for Table (iPhone 4s), Grass (iPhone 5), and Books (iPhone 5) datasets. Left: Full frames after stacking with our method.
Right columns: first frame in sequence, stacking of original frames, denoised first frame using Photoshop and our results. (Best viewed
electronically)

Full frame result from our method First frame Direct stacking Photoshop Our method

Figure 7. Results for Church (iPhone 4s) and Tree (iPhone 5s) datasets. Left: Full frame after stacking with our method. Right columns:
first frame in sequence, stacking of original frames, denoised first frame using Photoshop and our results. (Best viewed electronically)

used our estimated motion and applied a global rotation and
translation on each frame. Please note that this motion has
been estimated taking rolling shutter into account and that
the first row of the global alignment will thus be the same
as in our method. Figure 3 shows how the global alignment
gets worse further down the image, whereas the proposed
method has consistent performance at all image rows. As
can be seen in the detail subplots, our algorithm success-
fully averages out the noise, while preserving structural de-
tails. An interesting observation is that our algorithm of-
ten manages to average out lens flares, (see e.g. Figure 7,
bottom), as these move around quite a bit when shooting
handheld photos. In the case of lens-flares this is a desired
behaviour, but of course actual scene objects that move dur-
ing the 1− 2 sec exposure will also be averaged out.

5.3. Limitations

The proposed method, in essence, implements the be-
haviour of a tripod, and as such the final result is sensitive
to moving objects in the scene. For small objects, the trans-
lation estimation will lock on to the background scene, and
the moving objects will be smeared just like on a tripod.
For large objects, on the other hand, the translation estima-
tion will tend to lock on to the object instead. If the object
satisfies the assumption of a fronto-parallel plane, see sec-
tion 2.2, the result will be a sharp object, and a smeared
background. In general however the result is unpredictable.
Note however that other stacking functions than the frame
average that we currently use, may to some extent remedy
these limitations.

1620 1640 1660 1680 1700
1130

1150

1170

1190

1210

1560 1580 1600 1620 1640 1660
1130

1150

1170

1190

1210

1230

1610 1630 1650
1175

1195

1215

1605 1625 1645
1165

1185

1205

1590 1610 1630 1650
1180

1200

1220

1240

Figure 8. Trace of central pixel for the five stacks used in our ex-
periments. Colours indicate time, ranging from red to green, and
thick segments indicate the 32 individual exposures. Left to right,
top to bottom: Table (4s), Grass (5), Books (5), Church (4s), Tree
(5s)

5.4. Estimated PSFs from Gyroscope data

We have used an externally mounted L3G4200D gyro to
record the device motion at 800Hz, as illustrated in Figure
1. Using the built-in gyro recording at 100Hz in the three
iPhones (4s,5,5s), we obtain similar pixel traces, shown in
Figure 8. By comparing the curves in Figure 1 and Figure
8, we see that the curves are similar, and thus conclude that
the 100Hz sampling is sufficient.

In Figure 9 we have plotted iso-contours of the effective
PSF for the central pixel in each of the datasets. The contour
levels are set to 1/255, 2/255. . . 32/255. This means that
beyond the first iso contour, the central pixel will not be
influenced beyond the 8-bit quantization level. Beyond the
second contour, a change of more than 128 in pixel value is
required to influence the blurred pixel value, and so on.

It is interesting to relate the PSFs in Figure 9 to the imag-
ing situation. The Grass sequence was imaged with elbows
resting on a ledge, and consequently it has the smallest
PSF. The Church and Tree sequences were recorded in cold
weather, and consequently they have slightly more hand-
shake. The Table, Books, and the 800Hz recording in Figure
1 were all recorded in warmer conditions, and consequently
have better concentrated PSFs.

5.5. Quantitative Experiments

For quantitative evaluation of the stacking result, we use
the standard deviation in time across a stack of frames. This
measure is then averaged across all pixels to obtain a scalar
measure. If we denote the c-th colour band of RGB frame

5.0 2.5 0.0 2.5 5.0
5.0

2.5

0.0

2.5

5.0

2.0
8.0

32.0

5.0 2.5 0.0 2.5 5.0
5.0

2.5

0.0

2.5

5.0

2.0

8
.0 3

2
.0

5.0 2.5 0.0 2.5 5.0
5.0

2.5

0.0

2.5

5.0

2.0

8.0

32.0

1

2

4

8

16

32

5.0 2.5 0.0 2.5 5.0
5.0

2.5

0.0

2.5

5.0

2.0

8.
0

32.0

5.0 2.5 0.0 2.5 5.0
5.0

2.5

0.0

2.5

5.0

2.0

8.0 32.0

5.0 2.5 0.0 2.5 5.0
5.0

2.5

0.0

2.5

5.0

2.0 8.0

32.0

1

2

4

8

16

32

Figure 9. Iso contours of the effective PSF for central pixel. PSF
values are scaled by 255, see text for details. Left to right, top to
bottom: Table (4s), Grass (5), Books (5), Church (4s), Tree (5s),
Gaussian with σ = 0.5.

k in a stack by Ik,c(x), the measure is computed as:

σavg =
1

3|Ω|
∑
x∈Ω

3∑
c=1

√√√√ 1

K

K∑
k=1

(Ik,c(x)− Iavg,c(x))2 ,

(14)

where Iavg,c(x) =
1

K

K∑
k=1

Ik,c(x) . (15)

Here Ω is the set of image coordinates in the frames, and
|Ω| is the set size.

In Table 1 we use the measure (14) to compare differ-
ent stacking approaches. Here Global refers to the global-
shutter based frame alignment, also used in Figure 3. The
other methods (Slerp, Cubic, Quartic, and B-spline) are
versions of our rolling-shutter based algorithm, with differ-
ent interpolation kernels. As can be seen in Table 1, all
rolling-shutter based stacking approaches are significantly
better than the global-shutter based alignment. We can also
see that the B-spline kernel is slightly better than than the
other approaches. The reason for this is probably that its
low-pass characteristic results in a denoising of the gyro
signal. It is also interesting to note that Slerp performs sur-
prisingly well. This may be caused by it being linear, just
like the trapezoid integration in (13).

We have also tried blending the Quartic and the B-
spline kernels according to (12), and then got the best re-
sults for a pure B-spline kernel. As the performance dif-
ferences are quite small, these results may however not be
significant, and are thus excluded from the Table.

6. Concluding Remarks
We have introduced an algorithm for accurate stacking

of full resolution frames on a smartphone. This algorithm
enables hand-held capture of low-noise images in low-light
conditions, and thus implements a virtual tripod. This is

Dataset Table Grass Books Church Tree
iPhone Device 4s 5 5 4s 5s
Global σavg 6.17 6.83 7.55 8.02 5.23
Slerp σavg 6.00 4.80 6.43 7.01 4.31

residual 0.707 0.611 1.11 1.10 1.04
Cubic σavg 6.00 4.77 6.42 7.02 4.31

residual 0.728 0.612 1.12 1.16 1.11
Quartic σavg 6.00 4.78 6.41 7.02 4.31

residual 0.721 0.612 1.11 1.13 1.09
B-spline σavg 6.00 4.77 6.41 7.00 4.31

residual 0.692 0.612 1.09 1.05 0.983

Table 1. Quantitative results for different versions of our method,
on the five datasets “Table”, “Grass”, “Books”, “Church”, and
“Tree”. The measure σavg is defined in (14), and “residual” is the
mean squared residual of the reprojection error on tracked features.
Best results in each column are shown in boldface. See Figures 6
and 7 for images of the different datasets.

accomplished using high accuracy motion estimation using
logged gyro sensor data and correspondences from image
feature tracking. In the experiments we demonstrate that the
use of cumulative quaternion splines for motion interpola-
tion results in a more accurate stacking than currently used
stacking approaches that implicitly assume a global shutter.
We also demonstrate that, while Photoshop style denoising
works well in some situations, our algorithm consistently
delivers a sharp, low-noise output.

The proposed motion estimation could also be used
in other applications where accurate frame alignment is
needed, such as flash-no-flash photography, and HDR imag-
ing using exposure brackets.

When stacking is used in astrophotography, it is com-
mon to apply deconvolution to the stacking result, e.g. us-
ing Richardson-Lucy (RL) [16, 13]. This could also be done
here to obtain a sharper final image. Since the PSFs in each
frame are different, another possibility is to apply RL to
the individual frames, before stacking. This will come at a
higher computational cost, but as ringing artifacts tend to
depend on both image structure and image smear, this may
improve the output quality.

In the paper we have only investigated frame combina-
tion using direct averaging. In future research we plan to
investigate how this compares to other commonly used ap-
proaches, such as temporal median and bilateral filtering.
It would also be interesting to investigate criteria for stop-
ping frame acquisition automatically when sufficient data
is available to average out the noise. Finally, moving the
entire algorithm onto a smartphone will also be tested.

References
[1] K. Brasch. The origin of stacking. Sky and Telescope, March

2014.

[2] Sony RX100 review. www.dpreview.com, accessed Decem-
ber 18, 2013.

[3] E. Eisemann and F. Durand. Flash photography enhancement
via intrinsic relighting. ACM Trans. Graph., 23(3):673–678,
Aug. 2004.

[4] P.-E. Forssén and E. Ringaby. Rectifying rolling shutter
video from hand-held devices. In CVPR10, San Francisco,
USA, June 2010. IEEE Computer Society.

[5] M. Grundmann, V. Kwatra, D. Castro, and I. Essa. Effective
calibration free rolling shutter removal. IEEE ICCP, 2012.

[6] G. Hanning, N. Forslöw, P.-E. Forssén, E. Ringaby,
D. Törnqvist, and J. Callmer. Stabilizing cell phone video us-
ing inertial measurement sensors. In 2nd IEEE IWMV, 2011.

[7] B. K. P. Horn. Solution of absolute orientation using unit
quaternions. J. Opt. Soc. Am., 4:629–642, April 1987.

[8] N. Joshi, S.-B. Kang, L. Zitnick, and R. Szeliski. Im-
age deblurring using inertial measurement sensors. In SIG-
GRAPH’10, 2010.

[9] A. Karpenko, D. Jacobs, J. Baek, and M. Levoy. Digital
video stabilization and rolling shutter correction using gyro-
scopes. Technical Report CSTR 2011-03, Stanford Univer-
sity Computer Science, September 2011.

[10] M.-J. Kim, M.-S. Kim, and S. Y. Shin. A general construc-
tion scheme for unit quaternion curves with simple high or-
der derivatives. In SIGGRAPH’95, pages 369–376, 1995.

[11] C. Liu and W. Freeman. A high-quality video denoising al-
gorithm based on reliable motion estimation. In European
Conference on Computer Vision (ECCV10), 2010.

[12] S. Lovegrove, A. Patron-Perez, and G. Sibley. Spline fu-
sion: A continuous-time representation for visual-inertial fu-
sion with application to rolling shutter cameras. In British
Machine Vision Conference (BMVC’13), 2013.

[13] L. B. Lucy. An iterative technique for the rectification of
observed distributions. Astron. J., 79:745–754, 1974.

[14] G. Petschnigg, M. Agrawala, H. Hoppe, R. Szeliski, M. Co-
hen, and K. Toyama. Digital photography with flash and no-
flash image pairs. In Proceedings of SIGGRAPH’04, 2004.

[15] T. Portz, L. Zhang, and H. Jiang. High-quality video denois-
ing for motion-based exposure control. In 2nd IWMV, 2011.

[16] W. H. Richardson. Bayesian-based iterative method of image
restoration. J. Opt. Soc. Am., pages 55–59, 1972.

[17] E. Ringaby and P.-E. Forssén. Efficient video rectification
and stabilisation for cell-phones. IJCV, 96(3), 2012.

[18] R. Szeliski. Computer Vision: Algorithms and Applications.
Springer Verlag, 2011.

[19] O. Šindelář and F. Šroubek. Image deblurring in smartphone
devices using built-in inertial measurement sensors. Journal
of Electronic Imaging, 22(1), 2013.

[20] J. Weickert. Anisotropic Diffusion in Image Processing.
ECMI Series, Teubner Verlag, Stuttgart, Germany, 1998.

[21] O. Whyte, J. Sivic, A. Zisserman, and J. Ponce. Non-uniform
deblurring for shaken images. In IEEE CVPR. IEEE Com-
puter Society, June 2010.

[22] L. Yuan, J. Sun, L. Quan, and H.-Y. Shum. Image deblurring
with blurred/noisy image pairs. In SIGGRAPH’07, 2007.

[23] H. Zhang and D. Wifp. Non-uniform camera shake removal
using a spatially-adaptive sparse penalty. In NIPS13, 2013.

