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Abstract

This paper presents a method for rectifying video se-
quences from rolling shutter (RS) cameras. In contrast to
previous RS rectification attempts we model distortions as
being caused by the 3D motion of the camera. The camera
motion is parametrised as a continuous curve, with knots
at the last row of each frame. Curve parameters are solved
for using non-linear least squares over inter-frame corre-
spondences obtained from a KLT tracker. We have gener-
ated synthetic RS sequences with associated ground-truth
to allow controlled evaluation. Using these sequences, we
demonstrate that our algorithm improves over to two pre-
viously published methods. The RS dataset is available on
the web to allow comparison with other methods.

1. Introduction
Today consumer products that allow video capture are

quite common. Examples are cell-phones, music players,
and regular cameras. Most of these devices, as well as cam-
corders in the consumer price range, have CMOS image
sensors. CMOS sensors have several advantages over the
conventional CCD sensors: they are cheaper to manufac-
ture, and typically offer on-chip processing [9], for e.g. au-
tomated white balance and auto-focus measurements. How-
ever, most CMOS sensors, by design make use of what is
known as a rolling shutter (RS). In an RS camera, detec-
tor rows are read and reset sequentially. As the detectors
collect light right until the time of readout, this means that
each row is exposed during a slightly different time window.
The more conventional CCD sensors on the other hand use
a global shutter (GS), where all pixels are reset simultane-
ously, and collect light during the same time interval. The
downside with a rolling shutter is that since pixels are ac-
quired at different points in time, motion of either camera
or target will cause geometrical distortions in the acquired
images. Figure 1 shows an example of geometric distor-
tions caused by using a rolling shutter, and how this frame
is rectified by our proposed method, as well as two others.

Figure 1. Example of rolling shutter imagery. Top left: Frame
from an iPhone 3GS camera sequence acquired during fast mo-
tion. Top right: Rectification using our rotation method. Bottom
left: Rectification using the global affine method. Bottom right:
Rectification using the global shift method. Videos are available
on the web and in the supplementary material.

1.1. Related work

A camera motion between two points in time can be de-
scribed with a three element translation vector, and a 3DOF
(degrees-of-freedom) rotation. For hand-held footage, the
rotation component is typically the dominant cause of im-
age plane motion. (A notable exception to this is footage
from a moving platform, such as a car.) Many new cam-
corders thus have mechanical image stabilisation (MIS)
systems that move the lenses (some instead move the sen-
sor) to compensate for small pan and tilt rotational motions
(image plane rotations, and large motions, are not hand-
led). The MIS parameters are typically optimised to the fre-
quency range caused by a person holding a camera, and thus
work well for such situations. However, since lenses have
a certain mass, and thus inertia, MIS has problems keeping
up with faster motions, such as caused by vibrations from a
car engine. Furthermore, cell phones, and lower end cam-
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corders lack MIS. There is thus a large volume of video out
there, that exhibit RS artifacts.

For cases when MIS is absent, or non-effective, one can
instead do post-capture image rectification. There exist
a number of different approaches for dealing with special
cases of this problem [5, 13, 16, 6, 7, 8]. Some algorithms
assume that the image deformation is caused by a globally
constant translational motion across the image [5, 16, 8].
After rectification this would correspond to a constant op-
tical flow across the entire image, which is rare in practise.
Liang et al. [13] improve on this by giving each row a differ-
ent motion, that is found by interpolating between constant
global inter-frame motions using a Bézier curve. Another
improvement is due to Cho et al. [6, 7]. Here geometric
distortion is modelled as a global affine deformation that is
parametrised by the scan-line index.

All current RS rectification approaches perform warp-
ing of individual frames to rectify RS imagery. Note that
a perfect compensation under camera translation would re-
quire the use of multiple images, as the parallax induced by
a moving camera will cause occlusions. Single frame ap-
proximations do however have the advantage that ghosting
artifacts caused by multi-frame reconstruction is avoided,
and is thus preferred in the related problem of video stabil-
isation [14].

Other related work on RS images include structure and
motion estimation. Geyer et al. [10] study the projective ge-
ometry of RS cameras, and also describe a calibration tech-
nique for estimation of the readout parameters. The derived
equations are then used for structure and motion estima-
tion in synthetic RS imagery. Ait-Aider et al. demonstrate
that motion estimation is possible from single rolling shut-
ter frames if world point-to-point distances are known, or
from curves that are known to be straight lines in the world
[1]. They also demonstrate that structure and motion esti-
mation can be done from a single stereo pair if one of the
used cameras has a rolling shutter [2].

1.2. Contributions

All the previous approaches to rectification of RS video
[5, 13, 16, 6, 7, 8] model distortions as taking place in the
image plane. We instead model the 3D camera motion using
calibrated projective geometry. We introduce two models,
one purely rotational, and one with rotation and translation
with respect to an estimated plane in the scene. In projective
geometry terms, these can be thought of as a sequence of
parametrised homographies, one for each image row.

This far, no controlled comparison of RS algorithms
have been published. Instead each new algorithm has just
been published together with images that show how well
images distorted by particular motions can be rectified. In
related fields such as stereo, and optical flow computation
[3], evaluation datasets have been important for ensuring

that new algorithms actually improve on previous ones. For
these reasons we have generated synthetic RS sequences,
with associated ground-truth rectifications. Using these
sequences, we compare our own implementations of the
global affine model [6], and the global shift model [8] to
the new method that we propose. Our dataset and supple-
mentary videos are available for download at [18].

1.3. Overview

This paper is organised as follows: In section 2, we de-
scribe how to calibrate a rolling-shutter camera, and intro-
duce models and cost functions for camera ego-motion es-
timation. In section 3 we discuss interpolation schemes for
rectification of rolling-shutter imagery. In section 4 we de-
scribe our evaluation dataset. In section 5 we use our dataset
to compare different interpolation schemes, and to compare
our camera ego-motion approach to our own implementa-
tions of [13] and [8]. The paper concludes with outlooks
and concluding remarks in section 6.

2. Camera motion estimation
In this paper, we take the intrinsic camera matrix, the

camera frame-rate and the inter-frame delay to be given.
This reduces the number of parameters that need to be esti-
mated on-line, but also requires us to calibrate each camera
before the algorithms can be used.

2.1. Rolling shutter camera calibration

A 3D point, X, and its projection in the image, x, given
in homogeneous coordinates, are related according to

x = KX , and X = λK−1x , (1)

where K is a 5DOF upper triangular 3× 3 intrinsic camera
matrix, and λ is an unknown scaling [12]. We estimate K
using the Zhang method in OpenCV. [21].

The RS chip frame period 1/f (where f is the frame
rate) is divided into a readout time tr, and an inter-frame
delay, td as: 1/f = tr + td. The readout time can be cal-
ibrated by imaging a flashing light source with known fre-
quency [10], see figure 2, left. If we measure the period T
of the vertical oscillation in pixels, tr can be obtained as:

tr = Nr/(Tfo) , (2)

whereNr is the number of image rows, and fo is the oscilla-
tor frequency. The inter-frame delay can now be computed
as td = 1/f − tr. For our purposes it is preferable to use
rows as fundamental unit, and express the inter-frame delay
as a number of blank rows:

Nb = Nrtd/(1/f) = Nr(1− trf) . (3)



Figure 2. Calibration of a rolling-shutter camera. Left: Image of
a flashing LED used for calibration of the readout time. Right:
Corresponding image after subtraction of the temporal average.

Camera fo tr
5.02 60.94

W890i 6.5 60.76
7.5 60.88
avg. 60.86

Camera fo tr
4.01 30.54

3GS 5.01 31.22
6.5 30.5
avg. 30.75

Table 1. Used oscillator frequencies fo, and obtained readout times
tr , for the SonyEricsson W890i and Apple iPhone 3GS camera
phones. Units are milliseconds.

We have performed both Zhang [21], and Geyer [10] cal-
ibrations for the cameras built into the Apple iPhone 3GS,
and the SonyEricsson W890i cell phones. As the Geyer cal-
ibration is a bit awkward (it requires a signal generator, an
oscilloscope and an LED), we have reproduced the calibra-
tion values we obtained in table 1. The camera frame rates
are f = 30 Hz for the 3GS, and f = 14.7059 Hz for the
W890i (according to manufacturer specifications).

In his paper [10], Geyer suggests removing the lens, in
order to get a homogeneous illumination of the sensor. This
is difficult to do on cellphones, and thus we instead recom-
mend to collect a sequence of images of the flashing LED,
and then subtract the average image from each of these, see
figure 2, right. This removes most of the shading seen in
figure 2, left, and allows us to find the oscillation period
from the first frequency above DC.

2.2. Rolling shutter camera under pure rotation

Our first model of camera motion is a rotation about the
camera centre during frame capture, in a smooth, but time
varying way. We represent this as a sequence of rotation
matrices, R(t) ∈ SO(3).

Two homogeneous image points x, and y, that corre-
spond in consecutive frames, are now expressed as:

x = KR(t1)X , and y = KR(t2)X . (4)

This gives us the relation:

x = KR(t1)R
T (t2)K

−1y . (5)

The time parameter is a linear function of the current image
row (i.e. x2/x3 and y2/y3). Thus, by choosing the unit of

R2Rs R3R1

ttr td

Figure 3. Rotations, R1, R2, . . . are estimated for last rows of
each frame. Intermediate rotations are interpolated from these and
Rs. Readout time tr , and inter-frame delay td are also shown.

time as image rows, and time zero as the top row of the first
frame, we get t1 = x2/x3. In the second image we get
t2 = y2/y3 + Nr + Nb, where Nr is the number of image
rows, and Nb is defined in (3).

Each correspondence between the two views, (5) gives
us two equations (after elimination of the unknown scale)
where the unknowns are the rotations. Unless we constrain
the rotations further, we now have six unknowns (a rotation
can be parametrised with three parameters) for each corre-
spondence. We thus parametrise the rotations with an inter-
polating spline with knots at the last row of each frame, see
figure 3. Intermediate rotations are found using spherical
linear interpolation [20].

As we need a reference world frame, we might as well
fixate that to the start of frame 1, i.e. set Rs = I. This gives
us 3N unknowns in total for a group of N frames. These
can be resolved if we have at least three correspondences
between each pair of views.

2.3. Rolling shutter imaging of a planar scene

In our second camera motion model, we assume that we
are imaging a purely planar scene. We now model the mo-
tion as a sequence of translations d(t) ∈ R3, and rotations
R(t) ∈ SO(3), with respect to a coordinate system located
on the world plane. The world coordinate system needs
not be explicitly estimated, it suffices to know that we can
choose it such that the 3D points have a zero third coordi-
nate, i.e. (0 0 1)X = 0. The projection of such a point in
the image, after a translation d(t1), and a rotation R(t1),
can be written:

x = KR(t1)(X+ d(t1)) = KR(t1)D(t1)X̃ , (6)

where D =

1 0 d1
0 1 d2
0 0 d3

 , (7)

and X̃ is a three element vector containing the non-zero el-
ements of X, and a 1 in the third position.

Since (6) is invertible, in the same sense as (1), we can



relate the projections of the 3D point in two images as:

x = KR(t1)D(t1)D(t2)
−1R(t2)

TK−1y . (8)

Note that by setting D(t1) = D(t2) = I we obtain the pure
rotation model (5) as a special case.

In contrast to the pure rotation case, we have now a vari-
able origin, so we need also to find Rs and ds. However,
we note that a point in the world plane, expressed in nor-
malised camera coordinates Xc = λK−1x, has to satisfy a
plane equation:

r̂TXc − ρ = r̂T (Xc − r̂ρ) = 0 . (9)

We now let this equation define the transformation from the
camera to the third (zero valued) world coordinate:

X = RT
s (Xc − r̂ρ) for Rs =

(
r̂⊥ r̂× r̂⊥ r̂

)
. (10)

This gives us the projection from the plane into the camera
as:

Xc = Rs(X+ (0 0 ρ)
T
) . (11)

Finally, as a monocular reconstruction is only defined up
to scale, we can fixate the plane at ρ = 1. This locks the
translation to ds = (0 0 1)

T , and we thus only get the extra
3 parameters in Rs.

Just like in the pure rotation case, each correspondence
gives us two equations, but now we have 6N +3 unknowns
for a group of N frames. These can be determined if we
have at least 3N + 2 correspondences, and at least 6 corre-
spondences between each pair of frames (8 is required for
the first pair).

2.4. Pure translational motion

It is also possible to constrain the planar scene model to
translations only. For this we simply set all rotation ma-
trices equal to the first, i.e Rn = Rs ∀n ∈ [1, N ]. This
gives us 3N + 3 unknowns, which again requires at least 3
correspondences between each pair of frames.

2.5. Motion interpolation

We interpolate the translational component of the camera
motion, d(t) ∈ R3 in-between two key translations d1, d2,
using regular linear interpolation. Using a parameter w ∈
[0, 1], this can be written as:

dinterp = (1− w)d1 + wd2 . (12)

For the rotational component, the situation is more compli-
cated, due to the periodic structure of SO(3).

We have chosen to represent rotations as three element
vectors where the magnitude corresponds to the rotation an-
gle, and the direction is the axis of rotation, i.e. n = φn̂.
This is a minimal parametrisation of rotations, and it also

ensures smooth variations, in contrast to e.g. Euler angles.
It is thus suitable for parameter optimisation. The vector n
can be converted to a rotation matrix using the matrix expo-
nent, which for a rotation simplifies to Rodrigues formula:

R = expm(n) = I+ [n̂]x sinφ+ [n̂]2x(1− cosφ) (13)

where [n̂]x =
1

φ

 0 −n3 n2
n3 0 −n1
−n2 n1 0

 . (14)

Conversion back to vector form is accomplished through
the matrix logarithm in the general case, but for a rotation
matrix, there is a closed form solution. We note that two of
the terms in (13) are symmetric, and thus terms of the form
rij−rji will come from the anti-symmetric part alone. This
allows us to extract the axis and angle as:

n = logm(R) = φn̂ , where


ñ =

r32 − r23r13 − r31
r21 − r12


φ = sin−1(||ñ||/2)
n̂ = ñ/||ñ|| .

(15)
It is also possible to extract the rotation angle from the trace
of R [17]. We recommend (15), as it avoids numerical
problems for small angles. Using (13) and (15), we can
perform SLERP (Spherical Linear intERPolation) [20] be-
tween two rotations n1 and n2, using an interpolation pa-
rameter w ∈ [0, 1] as follows:

ndiff = logm (expm(−n1)expm(n2)) (16)
Rinterp = expm(n1)expm(wndiff) (17)

2.6. Optimisation

We now wish to solve for the unknown motion parame-
ters, using iterative minimisation. For this we need a cost
function:

J = ε(n1, . . . ,nN ) or (18)
J = ε(ns,n1, . . . ,nN ,d1, . . . ,dN ) , (19)

for the pure rotation, and the planar scene models respec-
tively. To this end, we choose to minimise the (symmet-
ric) image-plane residuals of the set of corresponding points
xk ↔ yk:

J =

K∑
k=1

d(xk,Hyk)
2 + d(yk,H

−1xk)
2 (20)

where H = KR(xk)R
T (yk)K

−1 or (21)

H = KR(xk)D(xk)D(yk)
−1RT (yk)K

−1 (22)



Here the distance function d(x,y) for homogeneous vec-
tors, is given by:

d(x,y)2 = (x1/x3 − y1/y3)2 + (x2/x3 − y2/y3)2 . (23)

The rotation matrices are obtained as:

R(x) = SLERP(n1,n2, w) , for w = x2/(x3Nr), (24)

where SLERP is defined in (16,17), and Nr is the number
of image rows.

In our experiments, we have minimised (20) using the
MATLAB optimiser lsqnonlin. Rewriting the optimisa-
tion in e.g. C should however be done if real-time operation
is to be achieved.

For speed, we have chosen to optimise over short inter-
vals of N = 2, 3 or 4 frames. For the pure rotation model,
there is a simple way to initialise a new interval from the
previous one. Once the optimiser has found a solution for a
group of frames, we change the origin to the second camera
in the sequence (see figure 3), i.e.

Ro = SLERP(n1,n2, Nb/(Nr +Nb)) . (25)

Then we shift the interval one step, correct for the change
of origin, and use the previous rotations as initialisations

R′n = RT
o Rn+1 , for n = 1, . . . , N . (26)

As initialisation of the rotations in newly shifted-in frames,
we use identity rotations.

In the planar scene model, we initialise the rota-
tions to identity rotations, and the translations to dn =
(0 0 1)

T ∀n ∈ [1, N ].

2.7. Point correspondences

The point correspondences needed to estimate the ro-
tations are obtained through point tracking. First, Harris-
points [11] are detected in the current frame and these are
tracked using the KLT tracker [15, 19]. The KLT tracker
uses a spatial intensity gradient search which minimises
the Euclidean distance between the corresponding patches
in the consecutive frames. We use the scale pyramid im-
plementation of the algorithm in OpenCV. Using pyramids
makes it easier to detect large movements.

To increase the accuracy of the point tracker, a track-
re-track procedure is used [3]. When the points have been
tracked from the first image to the other, the tracking is re-
versed and only the points that return to the original position
(within a threshold) are kept. The computation cost is dou-
bled but outliers are removed effectively.

3. Image rectification
Once we have found our sequence of rotation matrices,

we can use them to rectify the images in the sequence. Each

row gets its own rotation according to (24). We can then
align them to a reference row Ro (typically the middle row),
using:

R′(x) = RoR
T (x) . (27)

This gives us the forward mapping as:

x′ = KRoR
T (x)K−1x (28)

This tells us how each point should be displaced in order to
rectify the scene. Using this relation we can transform all
the pixels to their new, rectified locations.

We have chosen to perform the rectifying interpolation
in three steps: First, we create an all-zero RGBA image.
Second, we apply (28) to each pixel in the RS image. The
3× 3 closest grid locations are then updated by adding vec-
tors of the form (wr,wg,wb, w). Here r, g, b are the colour
channel values of the input pixel, and w is a variable weight
that depends on the grid location u, according to:

w(u) = exp(−.5||u− x̃′||2/σ2) . (29)

Here x̃′ = (x′1/x
′
3 x′2/x

′
3)

T is the sub-pixel location of the
pixel, and σ is a smoothing parameter, which we set to σ =
0.15. Third, after looping through all pixels, we convert the
RGBA image to RGB, by dividing the RGB values by the
fourth element. This forward interpolation scheme is quite
fast, and its parallel nature makes it well suited to a GPU
implementation.

Alternatively, the irregular grid of pixels can be resam-
pled to a regular grid, by defining a triangular mesh over the
points, and sampling the mesh using bicubic interpolation.
This is done by the function griddata in Matlab.

Finally, it is also tempting to use regular, or inverse in-
terpolation, i.e. invert (28) to obtain:

x = KR(x)RT
o K
−1x′ . (30)

We can now loop over all values of x′, and use (30) to find
the pixel locations in the distorted image, and cubically in-
terpolate these.

4. Synthetic dataset
In order to do a controlled evaluation of algorithms for

RS compensation we have generated six test sequences
(available at [18]), using the Autodesk Maya software pack-
age. Each sequence consists of 12 RS distorted frames of
size 640 × 480, corresponding ground-truth global shutter
(GS) frames, and masks that indicate pixels in the ground-
truth frames that can be reconstructed from the correspond-
ing rolling-shutter frame. In order to suit all algorithms, the
ground-truth frames and masks come in three variants: for
rectification to the time instant when the first, middle and
last row of the RS frame were imaged.



Figure 4. The four categories of synthetic sequences.

Each synthetic RS frame is created from a GS sequence
with one frame for each RS image row. One row in each GS
image is used, starting at the top row and sequentially down
to the bottom row. In order to simulate an inter-frame delay,
we also generate a number of GS frames that are not used
to build any of the RS frames. The camera is however still
moving during these frames.

We have generated four kinds of synthetic sequences, us-
ing different camera motions in a static scene, see figure 4.

In the first sequence type, the camera rotates around its
centre in a spiral fashion, see figure 4 top left. Three differ-
ent versions of this sequence exist to test the importance of
modelling the inter-frame delay. The different inter-frame
delays are Nb = 0, 20 and 40 blank rows (i.e. the number
of unused GS frames).

In the second sequence type, the camera makes a pure
translation to the right and has an inter-frame delay of 40
blank rows, see figure 4 top right.

In the last two sequence types the camera makes an
up/down rotating movement, with a superimposed rotation
from left to right, see figure 4 bottom left. There is also a
back-and-forth rotation with the viewing direction as axis.
The last sequence type is the same as the third except that a
translation parallel to the image plane has been added, see
figure 4 bottom right.

For each frame in the ground-truth sequences, we have
created masks that indicate pixels that can be reconstructed
from the corresponding RS frame, see figure 5. These
masks were rendered by inserting one light source for each
image row, into an otherwise dark scene. The light sources
had a rectangular shape that illuminates exactly the part of
the scene that was imaged by the RS camera when located at
that particular place. To acquire the mask, a global shutter
render is triggered at the desired location (e.g. correspond-
ing to first, middle or last row in the RS-frame).

Figure 5. Left to right: Rendered RS frame from sequence of type
#2, with Nb = 40 (note that everything is slightly slanted to the
right), corresponding global-shutter ground-truth, and mask with
white for ground-truth pixels that were seen in the RS frame.
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Figure 6. Comparison of interpolation scheme errors. The plots
show the average Euclidean pixel distance between interpolated
images and rendered ground truth for each frame in sequence type
#1, Nb = 0 (left), and type #3, Nb = 40 (right).

5. Experiments

5.1. Interpolation accuracy

We have compared the errors of the three interpolation
approaches described in section 3, in figure 6. Here we have
used known ground-truth rotations to rectify each frame in
two pure camera rotation sequences, sequence type #1, with
Nb = 0, and sequence type #3, with Nb = 40 (see section
4 for a description of the sequences). We have used two
pure rotation sequences, as for these an almost perfect re-
construction is possible, and thus the errors shown are due
to interpolation only. The error measure used is average Eu-
clidean distance to the RGB pixel values in the ground truth
images, within the valid mask.

In some frames, the methods differ quite a bit, while in
others they are very similar. The reason for this is that only
for larger rotations, do the neighbours in the distorted and
undistorted images start to differ. As can be seen in figure
6, griddata and our forward interpolation are superior to
inverse sampling. Among the three methods, griddata
stands out, by being approximately 40× more expensive on
640 × 480 images. As our forward interpolation scheme
is both fast and accurate, we recommend it over the other
methods.

For very fast motions, and a slow rolling shutter, the 3×3
grid used in forward interpolation may be too small. The in-
terpolated image would then have pixels where the value
is undefined. In our experiments on real video we have
however not experienced this. Should this effect occur, one
could simply increase the grid size to 5× 5.
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Figure 7. Sequence type #1 (rotation only), Nb = 0. Left: GA,
GS, and uncorrected frames, against our rotation model with 2-
frame reconstruction window. Right: GA, GS, and uncorrected
frames, against our rotation model with 3-frame window.
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Figure 8. Sequence type #3 (rotation only), Nb = 40. Left: GA,
GS, and uncorrected frames, against our rotation model with 2-
frame reconstruction window. Right: GA, GS, and uncorrected
frames, against our rotation model with 3-frame window.

5.2. Rectification accuracy

We have compared our methods to the global affine
model (GA) [6], and the global shift model (GS) [8] on our
synthetic sequences, see section 4. The comparison is done
using thresholded Euclidean colour distance. Pixels that de-
viate more than dthr = 0.3 are counted as incorrect. We have
also tried other threshold values, and while the exact choice
changes the locations of the curves, it does not change their
order (for reasonable values of dthr). As evaluation measure
we use the fraction of correctly reconstructed pixels within
the mask of valid locations. For clarity of presentation, we
only present a subset of the results on our synthetic dataset.
As a baseline, all plots contain the errors for uncorrected
frames, with respect to the first frame ground-truth.

As our reconstruction solves for several cameras in each
frame interval, we have simply chosen to present all of them
in the following plots. E.g. Rotation 1, 2, and 3 in figure 7
are the three solutions in a 3-frame reconstruction.

In figure 7 we compare the GA, and GS methods with our
pure rotation model. The sequence used is type #1 (rotation
only), with Nb = 0. As can be seen, our methods do better
than GA, GS, and the baseline.

In figure 8 we compare the GA, and GS methods with
our pure rotation model on sequence type #3 (rotation only),
with Nb = 40. As can be seen our methods do better than
both GA, GS, and the baseline. GA, and GS, have problems
with this sequence, and sometimes fall below the baseline.
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Figure 9. Sequence type #2 (translation only), Nb = 40. Left:
GA, GS, and uncorrected frames, against our rotation model with
2-frame reconstruction window. Right: GA, GS, and uncorrected
frames, against our translation model with 3-frame window.
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Figure 10. Sequence type #4 (translation and rotation), Nb = 40.
Left: GA, GS, and uncorrected frames, against our rotation model
with 2-frame reconstruction window. Right: GA, GS, and uncor-
rected frames, against our full model with 2-frame window.

In general, other values of Nb give very similar results for
our methods. For GA and GS the variability is larger, but we
have not seen any consistent degradation or improvement.

In figure 9, left, we compare the GA, and GS methods
with our pure rotation model. The sequence used is type #2
(translation only), with Nb = 40. As can be seen our meth-
ods do slightly worse than GA and GS, but they still im-
prove on the uncorrected input. In figure 9, right, we com-
pare GA, GS, and our translation-only model. The transla-
tion reconstruction for the first frame is still worse than GA
and GS, but the other two do significantly better.

In figure 10 we have compared GA, GT, with our rotation
only model (left) and with the full model (right). As can be
seen, the rotation only model does consistently better than
the others. Note that the full model currently does worse
than the rotation only model. When we gave the optimiser
different starting points, (e.g. the result from the rotation
model) we obtained different solutions, thus we conclude
that the cost function for the full model is not convex. A
better initialisation may solve this problem, but this is out
of the scope of this paper.

5.3. Stabilisation of rolling-shutter video

We have done a simple comparison of RS compensa-
tion algorithms on real imagery, using image stabilisation.
Such a comparison requires that the imaged scene is static,
and that the camera translation is negligible. We do this



Figure 11. Image stabilisation. Left: Uncorrected RS frame. Cen-
tre: Rectified frame, with tracked points indicated. Right: Frame
stabilised by centring the tracked points along a vertical line.

by tracking two points through the RS frames, using the
KLT-tracker [15, 19]. After rolling-shutter compensation,
we perform a virtual rotation of the frames (using a global
homography), such that two points in the scene are placed
symmetrically about the image centre, along a vertical line,
see figure 11. The only manual input to this approach is that
the two points are indicated manually in the first frame.

We supply two such stabilised sequences as supplemen-
tal material (one for the iPhone 3GS and one from the
W890i), together with the corresponding uncorrected RS
sequences, and results for the GA and GS methods. A sin-
gle frame comparison of the rectification step is also shown
in figure 1, for the iPhone 3GS.

6. Concluding remarks

In this paper, we have demonstrated rolling-shutter recti-
fication by modelling the camera motion, and shown this to
be superior to techniques that model movements in the im-
age plane only. We even saw that image-plane techniques
occasionally perform worse than the uncorrected baseline.
This is especially true for motions that they do not model,
e.g. rotations for the Global shift model [8].

The method we currently see as the best one is the ro-
tation only model. In addition to being the overall best
method, it is also the fastest of our models. Note that even
this model corrects for more types of camera motion than
does mechanical image stabilisation (MIS). In future work
we plan to improve our approach by replacing the linear
interpolation with a higher order spline. We will also in-
vestigate better initialisations for the full model. Another
obvious improvement is to optimise parameters over full
sequences. However, we wish to stress that our aim is cur-
rently to allow the algorithm to run on mobile platforms,
which excludes optimisation over longer frame intervals
than the 2-4 that we currently use.

In general, the quality of the reconstruction should bene-
fit from more measurements. In MIS systems, camera rota-
tions are measured by MEMS gyro sensors [4]. It would be
interesting to see how such measurements could be com-
bined with measurements from KLT-tracking when recti-
fying video. There are also accelerometers in many cell-
phones, and measurements from these could also be useful
in ego-motion estimation.
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