Abstract
Using images to reconstruct the world in three dimensions is a classical computer vision task. Some examples of applications where this is useful are autonomous mapping and navigation, urban planning, and special effects in movies. One common approach to 3D reconstruction is ”structure from motion” where a scene is imaged multiple times from different positions, e.g. by moving the camera. However, in a twist of irony, many structure from motion methods work best when the camera is stationary while the image is captured. This is because the motion of the camera can cause distortions in the image that lead to worse image measurements, and thus a worse reconstruction. One such distortion common to all cameras is motion blur, while another is connected to the use of an electronic rolling shutter. Instead of capturing all pixels of the image at once, a camera with a rolling shutter captures the image row by row. If the camera is moving while the image is captured the rolling shutter causes non-rigid distortions in the image that, unless handled, can severely impact the reconstruction quality.
This thesis studies methods to robustly perform 3D reconstruction in the case of a moving camera. To do so, the proposed methods make use of an inertial measurement unit (IMU). The IMU measures the angular velocities and linear accelerations of the camera, and these can be used to estimate the trajectory of the camera over time. Knowledge of the camera motion can then be used to correct for the distortions caused by the rolling shutter. Another benefit of an IMU is that it can provide measurements also in situations when a camera can not, e.g. because of excessive motion blur, or absence of scene structure.
To use a camera together with an IMU, the camera-IMU system must be jointly calibrated. The relationship between their respective coordinate frames need to be established, and their timings need to be synchronized. This thesis shows how to automatically perform this calibration and synchronization, without requiring e.g. calibration objects or special motion patterns.
In standard structure from motion, the camera trajectory is modeled as discrete poses, with one pose per image. Switching instead to a formulation with a continuous-time camera trajectory provides a natural way to handle rolling shutter distortions, and also to incorporate inertial measurements. To model the continuous-time trajectory, many authors have used splines. The ability for a spline-based trajectory to model the real motion depends on the density of its spline knots. Choosing a too smooth spline results in approximation errors. This thesis proposes a method to estimate the spline approximation error, and use it to better balance camera and IMU measurements, when used in a sensor fusion framework. Also proposed is a way to automatically decide how dense the spline needs to be to achieve a good reconstruction.
Another approach to reconstruct a 3D scene is to use a camera that directly measures depth. Some depth cameras, like the well-known Microsoft Kinect, are susceptible to the same rolling shutter effects as normal cameras. This thesis quantifies the effect of the rolling shutter distortion on 3D reconstruction, depending on the amount of motion. It is also shown that a better 3D model is obtained if the depth images are corrected using inertial measurements.
BIBTEX
@phdthesis{diva2:1220622,
author = {Ovr\'{e}n, Hannes},
title = {{Continuous Models for Cameras and Inertial Sensors}},
school = {Linköping University},
type = {{Linköping Studies in Science and Technology. Dissertations No. 1951}},
year = {2018},
address = {Sweden},
}