
A Tiny VHDL Guide

Petter Källström
petter.kallstrom@liu.se

Version: 2.1

Abstract

This VHDL guide is aimed to show you some common constructions in VHDL, together with their
hardware structure. It also tells the difference between concurrent and sequential VHDL code. The
emphasize is on RTL level (synthesizable code).

Contents

1 Introduction 1
1.1 A Simple Example 1
1.2 RTL vs Behavioral VHDL 1
1.3 Concurrent vs Sequential Syntax 2

2 Data Types 3
2.1 std logic Based Data Types 3

3 Declarations and Definitions 3
3.1 Use Package Declarations 3
3.2 Entity Definitions 3
3.3 Architecture Definitions 4
3.4 Signal Declarations 4
3.5 Process Definitions 4

4 Basic VHDL 4
4.1 Assignments . 4

4.2 Logic Operations 4

4.3 Arithmetic Operations 5

4.4 Test Operations 5

4.5 Vectors and Indexing 5

5 Concurrent Constructions 6

5.1 When-Else: Multiplexer Net 6

5.2 With-Select: One Hugh Multiplexer 6

6 Sequential Constructions 7

6.1 If-Then: “Multiplexer Net” 7

6.2 Case-Is: “A Hugh Multiplexer“ 7

Appendix A Misc Package Declarations 8

A.1 ieee.std logic 1164 8

A.2 ieee.numeric std 8

1 Introduction

library ieee;

use ieee.std_logic_1164.all;

-- this is a comment

entity and_dff is

port(clk : in std_logic;

a,b : in std_logic;

y : out std_logic);

end entity;

architecture rtl of and_dff is

signal foo : std_logic;

begin

process(clk) begin

if rising_edge(clk) then

foo <= a and b;

end if;

end process;

y <= foo;

end architecture;

Code 1: A simple VHDL example.

This document is a very brief VHDL summary, intended as a simple
non-covering help during the labs.

1.1 A Simple Example

A simple example of a VHDL file is depicted in Code 1.
• library,use ieee.std logic 1164.all; ⇒ Access the standard

types and functions defined in VHDL.
• entity port(...); end entity;⇒ Defines the “public interface”.
• std logic ⇒ “The” data type for digital logic. Mostly ’0’ or ’1’.
• architecture ... end architecture ⇒ The “engine”.
• RTL stands for “Register Transfer Level”.
• signal foo : std logic; ⇒ Declares an internal signal.
• process(clk), rising edge(clk) ⇒ Generates the D-flip-flop.
• foo <= a and b; ⇒ The AND gate, assigned to the DFF.
• y <= foo; ⇒ direct connection.

1.2 RTL vs Behavioral VHDL

VHDL can, in some sense, be divided into RTL and behavioral code.

1

A Tiny VHDL Guide

1.2.1 RTL VHDL

RTL (“Register Transfer Level”) code can be directly synthesized into hardware, in terms of gates, registers
etc.

1.2.2 Behavioral VHDL

Behavioral VHDL is used for simulation only. In addition to what can be described as RTL code, it can use
much more complex constructions, e.g. file access.

1.3 Concurrent vs Sequential Syntax

VHDL code can, in some sense, be divided into concurrent and sequential code.
By default, the code in the architecture is concurrent. Each statement corresponds to a hardware block.

You can have processes, and within those, the code is sequential.

1.3.1 Concurrent VHDL

Concurrent VHDL will always generate combinational logic.
Code 2 shows three ways of writing the logic net in (d). The intermediate signal x is not defined in (c).

x <= a or b;

y <= x and c;

(a)

y <= x and c;

x <= a or b;

(b)

y <= (a or b) and c;

(c) (d)

Code 2: Some examples of the same thing.

1.3.2 Sequential VHDL

Use processes to generate registers, DFFs etc. The code in the process is understandable if you think it
as a sequential execution, that starts on the clock edge, and where all assignments are updated when the
“execution” is done. Versions (a) and (b) in Code 3 gives the behavior depicted in (c).

process(clk) begin

if rising_edge(clk) then

x <= a or b; -- (1)

y <= x and c; -- (2)

end if;

end process;

(a)

process(clk) begin

if rising_edge(clk) then

y <= x and c; -- (2)

x <= a or b; -- (1)

end if;

end process;

(b) (c)

Code 3: Two ways of writing the same thing. Note that c is “AND:ed” with the old version of (a OR b).

2

A Tiny VHDL Guide

2 Data Types

There are some data types in VHDL that is good to know about.

2.1 std logic Based Data Types

The package ieee.std logic 1164 contains the data type std logic, and a set of operations on this, and
some derived data types from this, e.g., std logic vector.

2.1.1 std logic

The type std logic has binary values, as ’0’, ’1’ or ’-’ (don’t care).

2.1.2 std logic vector

A std logic vector is an array of std logic. It must have non-negative indices. The array spans from
left to right, and the index can be increasing or decreasing, e.g. (0 to 2) or (5 downto 1).

Constants are given as "1001". Hexadecimal constants can be written as X"a3".
The packages ieee.std logic signed andieee.std logic unsigned contains arithmetic operations on

those.

2.1.3 signed, unsigned

The package ieee.numeric std declares the data types SIGNED and UNSIGNED, both have the same definition
as std logic vector. They are treated as unsigned and two’s complement signed number respectively.

3 Declarations and Definitions

3.1 Use Package Declarations

Some examples:
• library ieee; – Declares that we want to access the entire content defined by ieee.
• use ieee.std logic 1164.all; – We want simple access to all declarations in the package.
• use ieee.std logic unsigned.CONV INTEGER; – Simplified access to CONV INTEGER.
• use ieee.std logic signed."+"; – The “+” operator (e.g. a + b).
Without the use command, you can access the “+” operator as ieee.std logic signed."+"(a,b)

instead of "a+b".
You can find a good list of the standard packages, and what they contains on the web page [1], and in

App A.

3.2 Entity Definitions

The entity describes the module I/O pins. The definition usually looks like:

entity {ename} is port({plist}); end entity;

• {ename} ⇒ The name of the entity.
• {plist} ⇒ A list of design “pins”, on the form “a1,a2,... : {dir} typeA; b1,b2,... : {dir}
typeB; ...”.
• {dir} ⇒ the direction of the pins. Typically in or out. You can read from (but not write to) an in

pin. You can write to (but not read from) an out pin.

3

A Tiny VHDL Guide

3.3 Architecture Definitions

The architecture is like the engine. The syntax for the architecture definition is

architecture {aname} of {ename} is {declarations} begin {body} end architecture;

• {aname} ⇒ The name of the architecture, e.g., rtl.
• {ename} ⇒ The name of the entity it implements.
• {declarations} ⇒ Declare/define signals, functions, aliases, constants, component etc. here.
• {body} ⇒ Here is the body of the architecture – the logic definition.

3.4 Signal Declarations

Signals are declared before the begin in the architecture. It can look like in Code 4.

architecture rtl of foo is

signal sl1,sl2 : std_logic; -- two signals of type std_logic

signal sl3 : std_logic := ’0’; -- initiates to ’0’

signal slv1 : std_logic_vector(7 downto 0); -- a byte.

signal slv2 : std_logic_vector(11 downto 0) := X"3ff"; -- initial value = 1023.

begin

Code 4: Examples of signal declaration.

3.5 Process Definitions

A process is placed in the concurrent code, and contains sequential code.

{pname} : process({sensitivity list}) begin {body} end process;

• {pname} : ⇒ An optional name of the process.
• {sensitivity list} ⇒ A list of signals that should “trig the process to start”. Most often just (clk), or
(clk,reset).
• {body} ⇒ The sequential code.

4 Basic VHDL

What is stated here holds in both concurrent and sequential VHDL.

4.1 Assignments

The “<=” operator is used to assign signals.

4.2 Logic Operations

Those operations works typically on std logic, and element wise on std logic vector.
• not

• and, nand
• or, nor
• xor, xnor

Example of a multiplexer implemented with logic gates:

res <= (a0 and not s) or (a1 and s);

4

A Tiny VHDL Guide

4.3 Arithmetic Operations

You can use arithmetic operations like a+b, a-b, -a or a*b.
Those operations works on numerical data types, like std logic vector, signed or unsigned. When

used on std logic vector, the functions are available in the packages ieee.std logic unsigned and
ieee.std logic signed, that might behave differently (since, e.g. "1011" is −5 in a signed system, and
+11 in an unsigned system).

4.4 Test Operations

Those operates on numerical data types. The operations returns the data type boolean, used by, e.g. if

statements.
• =, /= ⇒ Equal or not equal. Those also works on std logic.
• <, <= ⇒ Less than (or equal).
• >, >= ⇒ Greater than (or equal).
Note that the operator <= is also an assignment operator.

4.5 Vectors and Indexing

VHDL have great support for vectors, e.g. std logic vector.

We use the signals in Table 1 to exemplify the operations.

Signal Type Content

x,y std logic ’x’, ’y’
an std logic vector(n-1 downto 0) "an−1 . . . a0"

bn std logic vector(n-1 downto 0) "bn−1 . . . b0"

Examples

a4 std logic vector(3 downto 0) "a3a2a1a0"

Table 1: Declaration of signals used in examples.

4.5.1 Vector Indexing

Indexing is illustrated by the examples in Table 2.

Expression Result

a4(2) ’a2’, a std logic

a4(2 downto 2) "a2", a vector with one element

a4(2 downto 3) "", a vector with zero elements

a4(3 downto 2) "a3a2"

a5(3 downto 2) <= "10"; a5 = "a410a1a0"

Table 2: Examples of vector indexing.

4.5.2 Vector concatenation

The “&” operator is used to merge vectors, and works for both std logic and std logic vectors. The
result is always a vector. Some examples are shown in Table 3

Expression Result

x & y; "xy"

a3 & b4 "a2a1a0b3b2b1b0"

x & b3 "xb2b1b0"

b5(0) & b5(4 downto 1) "b0b4b3b2b1"

a5 <= (’0’ & b4) + ’1’ "a4a3a2a1a0", where a3..0 = b4+1, a4 = carry out.

Table 3: Examples of vector concatenation

5

A Tiny VHDL Guide

4.5.3 Aggregation: The “(others=>’0’)” Syntax

In assignments, you can fill the target signal with, e.g., zeros, by a5 <= (others=>’0’);

4.5.4 Shifting

The easiest way of shifting is to use a combination of aggregation and indexing, as in Table 4.

Example Result Operation

x & b5(4 downto 1); "xb4b3b2b1" shift in x from left (right shift).

b5(3 downto 0) & x; "b3b2b1b0x" shift in x from right (left shift).

a5 <= b5(4) & b5(4 downto 1); a5 = "b4b4b3b2b1" arithmetic shift right.

b5(3 downto 0) <= b5(4 downto 1); b5 = "b4b4b3b2b1" arithmetic shift right1.
1 This should be performed in a process, or b0 = b1 = b2 = b3 = b4, e.g. just a wire with five names.

Table 4: Shift operators for the bit vector data type.

5 Concurrent Constructions

Concurrent VHDL statements are “executed” continuously, and corresponds to combinational logic.

5.1 When-Else: Multiplexer Net

The syntax for the when else assignment is

{res} <= {val1} when {cond1} else {val2} when {cond2} else ... else {valN};

If {cond1} is true, then {res} is assigned the value {val1}. Otherwise {cond2} is tested, and so on. If no
{condn} is true, {valN} is used. See example in Code 5.

res <= A when sel = "101" else

B when sel = "010" else

C when en = ’1’ else

Def;

Code 5: When-else: A multiplexer net, in VHDL and as a schematic (before and after optimization).

5.2 With-Select: One Hugh Multiplexer

The syntax for the With-Select statement is

with {expr} select {res} <= {val1} when {choice1}, {val2} when {choice2}, ... {valN} when others;

• If {expr} = {choice1}, then {res} is assigned the value {val1}.
• Otherwise {expr} = {choice2} is tested, and so on.
• If {expr}6={choicen}, n = 1, 2, . . . , (N − 1), then {valN} is used.

with sel select

res <= A when "101",

B when "010",

C when "011",

"0000" when others;

Code 6: With-select: One big multiplexer, in VHDL and as a schematic.

6

A Tiny VHDL Guide

6 Sequential Constructions

In sequential VHDL, the signal assignments are made to the input of DFFs/regs. If a signal is not assigned
during a clock cycle, it will keep it’s value (by pulling the en signal to the DFF/reg low).

6.1 If-Then: “Multiplexer Net”

The if statement works like in any programming language. The syntax is:

if {cond1} then {stats1} elsif {cond2} then {stats2} elsif ...else {statsN} end if;

• {condn}, n = 1, 2, . . . , N ⇒ Conditions of type boolean.
• {statsn}, n = 1, 2, . . . , (N − 1) ⇒ Statements that should be “executed”.
• elsif ... then ⇒ Optional.
• else ⇒ Optional.

if rstn = ’0’ then

A <= "00";

B <= "11";

elsif sel="101" then

A <= db;

else

B <= db;

end if;

Code 7: An if-then statement, and it corresponding net.

6.2 Case-Is: “A Hugh Multiplexer“

The case-is construction have the syntax:

case {expr} is when {choice1} => {stats1} when {choice2} => ... when others => {statsN} end case;

• {expr} ⇒ Signal or expression to test against.
• {choicen}, n = 1, 2, . . . , (N − 1) ⇒ Constant values to compare with {expr}.
• {statsn}, n = 1, 2, . . . , N ⇒ Statements to execute.

case sel is

when "101" => A <= db;

when others => B <= db;

end case;

Code 8: A case-is statement, with corresponding net.

References

[1] http://www.csee.umbc.edu/portal/help/VHDL/stdpkg.html

7

http://www.csee.umbc.edu/portal/help/VHDL/stdpkg.html

A Tiny VHDL Guide

Appendix A Misc Package Declarations

This appendix aims to give a quick-and-sloppy overview of some ieee packages. They are explained more
in details in [1].

Notations in this appendix:
• sl ⇒ std_logic.
• slv ⇒ std_logic_vector.
• int ⇒ An integer (e.g. 48).

• S ⇒ signed.
• U ⇒ unsigned.
• US ⇒ U or S.

• <=
> 6= ⇒ <, <=, =, /=, >= or >.

• aox ⇒ and, or, xor, nand,
nor or xnor.

A.1 ieee.std logic 1164

The “standard” package for synthesizable code.
Types
• std_logic ⇒ {’U’,’X’,’0’,’1’,’Z’,’W’,’L’,’H’,’-’}.
• std_logic_vector ⇒ array of std logic.
• ...and more.

Functions/operators
• not sl.
• not slv.

• sl aox sl.
• slv aox slv.

• rising_edge(sl).
• falling_edge(sl).

A.2 ieee.numeric std

Contains the definitions of the types SIGNED and UNSIGNED, and the operators on those.
Types
• SIGNED,UNSIGNED ⇒ identical definition as slv, but own types.

Functions/operators
• U+U, S+S, +US, U-U, S-S, -S
• U*U, S*S.
• abs S.
• RESIZE(US,int).
• not U, not S ⇒ bitwise not.

• TO_INTEGER(US) ⇒ S → int, U → nat.
• TO_UNSIGNED(int,int) ⇒ 2nd arg = size.
• TO_SIGNED(int,int).
• U<=

>6=U, S<=
>6=S, US<=

> 6=int, int<=
> 6=US

• U aox U, S aox S ⇒ logic operators.
• STD LOGIC VECTOR(...), UNSIGNED(...), SIGNED(...) ⇒ convert between S, U and slv.

8

	Introduction
	A Simple Example
	RTL vs Behavioral VHDL
	Concurrent vs Sequential Syntax

	Data Types
	std_logic Based Data Types

	Declarations and Definitions
	Use Package Declarations
	Entity Definitions
	Architecture Definitions
	Signal Declarations
	Process Definitions

	Basic VHDL
	Assignments
	Logic Operations
	Arithmetic Operations
	Test Operations
	Vectors and Indexing

	Concurrent Constructions
	When-Else: Multiplexer Net
	With-Select: One Hugh Multiplexer

	Sequential Constructions
	If-Then: ``Multiplexer Net''
	Case-Is: ``A Hugh Multiplexer``

	Appendix Misc Package Declarations
	ieee.std_logic_1164
	ieee.numeric_std

