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Abstract

This thesis presents an in-depth study on the problem of object recognition, and in particular the detection

of 3-D objects in 2-D intensity images which may be viewed from a variety of angles. A solution to this

problem remains elusive to this day, since it involves dealing with variations in geometry, photometry

and viewing angle, noise, occlusions and incomplete data. This work restricts its scope to a particular

kind of extrinsic variation; variation of the image due to changes in the viewpoint from which the object

is seen.

A technique is proposed and developed to address this problem, which falls into the category of

view-based approaches, that is, a method in which an object is represented as a collection of a small

number of 2-D views, as opposed to a generation of a full 3-D model. This technique is based on the

theoretical observation that the geometry of the set of possible images of an object undergoing 3-D rigid

transformations and scaling may, under most imaging conditions, be represented by a linear combination

of a small number of 2-D views of that object. It is therefore possible to synthesise a novel image of an

object given at least two existing and dissimilar views of the object, and a set of linear coefficients that

determine how these views are to be combined in order to synthesise the new image.

The method works in conjunction with a powerful optimization algorithm, to search and recover the

optimal linear combination coefficients that will synthesize a novel image, which is as similar as possible

to the target, scene view. If the similarity between the synthesized and the target images is above some

threshold, then an object is determined to be present in the scene and its location and pose are defined,

in part, by the coefficients. The key benefits of using this technique is that because it works directly

with pixel values, it avoids the need for problematic, low-level feature extraction and solution of the

correspondence problem. As a result, a linear combination of views (LCV) model is easy to construct

and use, since it only requires a small number of stored, 2-D views of the object in question, and the

selection of a few landmark points on the object, the processwhich is easily carried out during the off-

line, model building stage. In addition, this method is general enough to be applied across a variety of

recognition problems and different types of objects.

The development and application of this method is initiallyexplored looking at two-dimensional

problems, and then extending the same principles to 3-D. Additionally, the method is evaluated across

synthetic and real-image datasets, containing variationsin the objects’ identity and pose. Future work on

possible extensions to incorporate a foreground/background model and lighting variations of the pixels

are examined.
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Chapter 1

Introduction

Object recognition is one of the most important and basic problems in computer vision. It may broadly

be defined as the task of recognizing and locating objects from the real world in a representation (image)

of the world, using object models that are known a priori. In this scenario, the system is given image data

that contain foreground (areas of interest) and backgroundobjects, and a set of labels that correspond

to a set of models known to the system. The object recognitionsystem must then assign the correct

labels to the appropriate regions in the image. Object recognition has been studied extensively in the

past, resulting in a number of publications and a variety of different approaches [Jain et al. (1998); Pope

(1994); Yang et al. (2002); Besl and Jain (1985)] aiming to solve different aspects of the problem.

Nevertheless, accurate, robust and efficient solutions remain elusive to this day because of the inher-

ent difficulties when dealing in particular with 3-D objectsthat may be seen from a variety of viewpoints.

Variations in geometry, photometry and viewing angle, noise, occlusions and incomplete data are some

of the problems with which object recognition systems are faced. In all cases, prior information about

the object is available in the form of a model which is matchedto the object(s) in the input image, in

some kind of optimisation scheme often expressed as an “energy” minimisation.

This work examines a view based approach in which 2-dimensional view-centred representations

of 3-dimensional objects, called aspects, characteristicviews [Koenderink and van Doorn (1979)] or ba-

sis views [Ullman and Basri (1991)] are used. Such methods have recently become quite popular be-

cause, in principle, they are applicable in many areas and easy to implement, since they avoid generating

and storing a full 3-D model. In addition, there is evidence to suggest that view-based representa-

tions may be used by the human visual system for object recognition [Bülthoff and Edelman (1992);

Tarr and B̈ullthoff (1998); Tarr et al. (1998)].

1.1 Problem statement

Any 3-D object may be represented as one or more images taken from different viewpoints. In most

object recognition scenarios the object of interest is at a viewing distance that gives a clear view of the

object as a whole with sufficient detail visible to render it distinctive. In such a scenario, the depth

variation across the object of interest is usually sufficiently small in comparison to its distance from the

camera that the perspective projection may be well-approximated by an affine projection. In a view-
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based object recognition approach, or in other words, the problem of recognising a flat object from a

single 2-D image may then be formulated as follows:

Suppose we are given a prototype template functionF0, a “target” scene image function

I and a transformationT that transforms the template as:F = TF0. F , F0, I are all

discrete functions that may represent feature vectors in afeature-based approach or pixel

intensities or colour attributes in animage-based approach. The goal of object recognition

is to minimise the expression:

p̂ = argmin
T

g(I(x), F (x)), (1.1)

with respect to the transformationT , defined by a set of parametersξ. g(...) is a matching

metric giving rise either to a dissimilarity or similarity score (e.g. Euclidean distance or

cross-correlation coefficient), both of which may be cast ascriteria to be minimised. If the

minimum at̂p is less than or equal to some thresholdτ , then we say we have a match, attach

the appropriate labels to the region of the image functionI corresponding to the model

defining the object of interest in the templateF0, and say that the object in the image has

been recognised.

The main difficulty that arises in the above formulation is the determination of the transformation

parametersξ that minimise (1.1) since solving forξ depends on the type of transformationT . There is

a closed form solution of (1.1) whenT is an affine transformation acting on point features and a sumof

squared error metric is used, but this requires solution to both the feature extraction and correspondence

problems, both of which are not usually straightforward as we shall see later. If on the other hand we

use pixel values, then there is no closed-form solution and the problem becomes one typical of template

matching. In this case, and for complicated transformationsT , minimisation of of (1.1) is a non-linear,

non-invertible process that requires a different approachto its solution. Determination of the optimal

coefficientsξ of the transformationT for the image-based case when pixel values are used, is one ofthe

main focus areas of this research.

Once this problem has been resolved for a single 2-D view, thenext step is to make use of the

view-based approach. This involves using more than one representative view of the object at the same

time. In this approach, 3-dimensional objects are represented by methods based on a combination of

2-D images or line drawings. [Ullman and Basri (1991)] developed this approach for representing pri-

marily rigid objects by using a linear combination of line drawings or edge maps, often known as a

linear combination of viewsor LCV for short. Following the initial work of [Ullman and Basri (1991)],

others have taken this concept further to the combination ofimages themselves [Koufakis and Buxton

(1998b); Hansard and Buxton (2000b); Peters and von der Malsburg (2001)]. These techniques produce

very good, realistic looking representations of an image, but are limited to rigid objects and break down

when used for models that can undergo non-rigid deformations. Recently, Dias [Dias (2004)] has ad-

dressed this problem and extended the LCV technique to work for objects that can change shape. His
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method however, is a feature-based approach that does not take into consideration pixel intensity or

colour information, but instead relies on the existence of known landmark points around prominent fea-

tures both in the model and in the target image.

In summary, determination of the optimal transformation parametersξ and extension of (1.1) to

utilise LCV representations, in order to build a system ableto recognise a rigid 3-D object from its 2-D

views, using pixel intensity information alone, are the primary areas of research addressed in this work.

1.2 Aim

The main aim of this research has been to carry out a new study on the area of object recognition

via model-based, multi-view template matching and its associated problems and deficiencies. More

specifically, we focused on examination of the linear combination of views theory and its extension to

more complicated objects and, in particular, using image pixel values rather than simplistic line drawings

or point features.

This is in fact the principal hypothesis on which this thesisis based, namely that such an extension

is possible and can lead to a successful object recognition and localisation scheme. The intention is

therefore to propose a new strategy for solving a number of problems associated with this pixel-based,

LCV approach to object recognition and extraction, such as the problem of localisation and matching,

template search and optimisation in a high dimensional space, and image variation due to changes in

the viewpoint from which the object is seen. Each of these problems is addressed in more detail in later

sections.

1.3 Objectives

In order to meet the main aim of this research of demonstrating that a successful pixel-based, LCV object

recognition scheme can be developed, a system is implemented that will be characterised by the extent

to which it fulfils the following objectives:

• Automatic detection and classification of the modelled object(s) in image data from viewing di-

rections within or close to the set of basis views.

• Characterisation of an object via a small number of basis views.

• Ability to handlesufficiently complicatedreal-world objects without giving preference to a specific

class of shapes (e.g. curved or planar surfaces).

• Ability to function with a certain amount ofnoisein the data, without an un-due, disproportionate

degradation in performance.

• Ability to handle arbitrary combinations of a relativelylarge numberof objects in a variety of

orientations and locations without being overly sensitiveto small amounts of occlusion.

In addition to the above the system should be able to perform within some error limits. More

specifically, it should have a low tolerance formiss errors(when an object’s presence is not detected),
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false alarm errors(when the presence of an object is indicated even though it isnot present in the

input target image) andlocalisation errors(when an object’s presence in the target image is correctly

determined but its identified location is incorrect).

It is also to be noted that incorporating the effect of occlusions is almost but not entirely straight-

forward because of the need, in principle, for a correct statistical approach to estimate the likelihood

of a particular object’s presence by using data from over thewhole of the target image. Occluding ob-

jects thus naturally become part of the recognition scheme along with the image background and they

must be known a-priori or modelled in some manner. For the most part, we will usually assume that

the background is known a-priori though we note the possibility of modelling it statistically as char-

acteristic of say, natural or man-made scenes [Huang and Mumford (1999); Grenander and Srivastava

(2001); Sullivan et al. (1999)]. In principle, of course, the whole image both foreground and background

could and should be modelled by the same LCV methods. This would take us beyond the scope of the

present work, but given that an occluding object is necessarily in front of the foreground object of inter-

est, such an approach would be most appropriate. Other ways of modelling of occluding objects can be

problematic. This thesis therefore includes only a small number of experiments on synthetic data that

although they may not be rigorously valid, help to demonstrate the performance of the method in the

presence of a limited amount of occlusion. There is also the case of self-occlusions when the modelled

object is non-convex, which although are not specifically tested in this thesis, could also be taken into

account in the LCV approach by utilising the affine depth as in[Hansard and Buxton (2000b)]. Since

[Hansard and Buxton (2000b)] shows that the appearance of a self-occluding object can be modelled

well in the LCV approach, there is little reason to suppose that an extension of our object recognition

scheme to cover such cases would not work.

1.4 Main hypothesis statement

The main hypothesis underlying this research may be given asfollows:

A successful pixel-based scheme can be developed and implemented as a solution to the ob-

ject recognition problem by integration of the linear combination of views technique (LCV)

with a view-based object recognition methodology and used to build a framework for the

recognition of three-dimensional, rigid objects under a variety of configurations, using a

small number of images taken from different viewpoints.

There are a number of words and phrases in the above that require further clarification. These are

listed below:

• successful: The method or ’scheme’ must be shown to work over a set of testdata to a useful

level of performance in particular for the recognition error rates and location accuracy as indicated

in section 1.1. Synthetic data will be used for ’closed-loop’ controlled experiments and widely

available image databases used for more realistic tests.

• pixel-based: The input data pertaining to the target image (or images) inwhich the presence or
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absence of the object (or objects) of interest is to be determined consist solely of the image pixel-

values or attributes. No online pre-processing of the target image data, in particular for feature

extraction, is assumed and evaluation of recognition hypotheses is carried out by reference to the

target image pixel-values.

• view-based: Objects are to be represented by a finite (usually a small) number of images or

“views” of themselves. These views orbasis images, are to be taken under good conditions, i.e. at

an appropriate resolution from a distance that allows reasonable detail on the object to be visible

under affine imaging conditions, with the whole object in view, under typical illumination that

does not create artefacts and is bright enough to enable appropriate surface texture and colour to

be apparent.

• object recognition problem: The object recognition problem as defined in section 1.1.

• framework : An approach to object recognition based on theory and implemented in a systematic

manner so that it can be followed and utilised in subsequent work by others.

• three-dimensional rigid objects: 3-D objects (i.e. ones that are not flat) that do not change their

form in 3-D, but whose apparent shape in an image may change owing to a change of viewpoint.

• variety of configurations: Images taken while the camera or object is rotated about an arbitrary

axis in space. Rotation about axes perpendicular to the lineof sight are of most interest as they

reveal the 3-dimensional nature of an object. However, thisdoes not exclude rotations about the

line of sight, also known as image-plane rotations. Such image-plane rotations may be modelled

by an equation such as (4.9) as we shall see later on, which is equivalent to the LCV method using

a single basis view.

• integration: Combination of the view-based object recognition solution with the LCV method in

order to build a single unified framework.

1.4.1 Hypothesis 1

It is possible to synthesise a novel view of an object and match it to a target image of that

object. A good matching score will indicate that the object is present in the scene and,

barring the unlikely or deliberate presence of fakes, that it has been located accurately. The

object’s pose is represented by the LCV coefficients or parameters that give the best match.

This sub-hypothesis asserts that, as is known from previouswork, realistic-looking images of novel

views of an object can be created from a combination of a smallnumber of basis views. Below we list

words or phrases in the above, first sub-hypothesis that require clarification:

• synthesise: Creation of a new image of an object by linearly combining other images (usually

two) of that object taken from nearby, but otherwise arbitrary viewpoints. First the geometry of

the new image of the object is determined from a number of landmark points and by solving the
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LCV equations, and then its appearance (colour, texture andso on) is synthesised using a series of

piecewise affine warps.

• novel view: A view that is not in the modelling or training data set.

• match: A comparison between a scene and a model image that results in a good matching score,

using either a similarity or dissimilarity measure. As a result the parameters of the target image

object can be determined from the matched model.

• target image: An input image to our system in which a specific object that needs to be detected

and located may exist in an arbitrary configuration. Usually, and for the purpose of this thesis,

such configurations are typically the set of 3-D rigid deformations.

• good matching score: A matching score obtained from a predefined matching function between

a model and a target image. The score is usually compared to a predetermined threshold. A value

sufficiently higher or lower that the threshold (depending on whether we are using a similarity or

dissimilarity matching function respectively) will indicate a high probability of a good match of

the correct model to the object.

• pose: Model parameters associated with the extrinsic degrees offreedom of the object representing

as far as possible from the available image information its position and orientation in space relative

to the camera (or other frame of reference) respectively.

• LCV coefficients: The coefficients of the linear combination of views equations that determine

(to the extent possible under affine imaging) the pose of the object in question.

1.4.2 Hypothesis 2

The introduction of prior probability distributions in thetemplate deformation process,

based on previous knowledge of the underlying image generation process and imaging con-

ditions, can improve the accuracy and speed of the recovery of the model parameters from

an image of a rigid, 3-D object.

This sub-hypothesis asserts that the imaging process and conditions can be used to predict the

parameters determining the form of the model template to be matched to the foreground of the target

image. Again, there are a number of words and phrases that require further explanation. These are:

• prior distribution : A parametric probability density function that represents our existing knowl-

edge about the data (i.e. the process that generated the data), which is typically used in a Bayesian

framework to bias the possible values of the parameters in order to avoid invalid solutions and/or

guide a solution toward a specific range of values.

• template deformation process: Since an object may be viewed from a range of orientations, its

shape in the target image will vary. The shape of the model template that is to be matched must

also correspondingly vary. This is referred to as ’the template deformation process’.
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• previous knowledge: This means that we have some scientific knowledge about the processes that

generated the data. Such knowledge can be implied from the fact that object recognition is being

attempted and that the object of interest must therefore appear in the target image at sufficient size

and with sufficient detail visible. Ultimately such information constraining the range of possible

parameter values can be expressed via a probabilistic modeldefined for example by a typical value

or mean and the standard deviation. In practice, univariate, Gaussian distributions will be used -

i.e. it will be assumed the parameters are normally distributed and correlations between them will

be ignored.

• imaging conditions: The various properties of a scene, such as camera parameters, lighting con-

figuration, noise and so on.

1.4.3 Hypothesis 3

Recovery of the optimal LCV coefficients usually requires inprinciple exhaustive search of

the large solution space. By using an appropriate optimisation algorithm we can efficiently

recover the optimal set of coefficients and thus recognise the object in the scene.

This hypothesis reflects the fact that, as noted in section 1.1, the optimisation problem defined by equa-

tion (1.1) is, in general, complicated and non-linear and may be expected, unless the scene is very

simple, to have local optima in addition to the desired global optimum of the correct, best match. Words

or phrases that require further clarification are listed below:

• in principle exhaustive: In this case we are referring to a systematic search of the parameter space

that is able to guarantee that a globally optimum solution (if one exists) is found. We cannot rule

out the possibility that for simple scenes (and therefore models) the optimisation problem may be

convex and therefore sometimes soluble without an exhaustive search, but in general this will not

be the case in typical object recognition scenarios. We say ’in principle’ because such a procedure

in general is infeasible.

• large: The parameter space can span up to 10 dimensions depending on the use of multi-view

constraints. Obviously searching such a large space exhaustively is not practical.

• efficiently: The desirable property of the algorithm used to solve the optimisation so that recovery

of a near-optimal solution within feasible time and computation (determined as the number of

function evaluations) budgets is possible.

• optimal: Optimal in terms of a predetermined threshold which allowsus to be confident that the

solution found within a given time and computation budget isclose enough to a possible global

optimum.

1.5 The approach
The approach presented in this thesis for solving the objectrecognition problem as defined in section 1.1

falls within the framework of deformable template matchingalgorithms where we are looking for the
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transformation that maps a model to an image. In this setting, a function often from physical analogies

referred to as an energy function associates a cost with eachpotential transformation of the model. It is

desirable to find the transformation with the lowest cost below a suitable threshold.

Typically, this energy or cost function has a twofold purpose. First it attracts the deforming template

toward salient image regions. Second it biases against large or otherwise undesirable deformations of

the template. Since the number of possible transformationsmay be very large (recall the remarks above

about a large, possibly 10-dimensional parameter space), it is essential to be able to search the space

efficiently and guide the process toward promising regions where good solutions may lie. This is best

achieved by exploiting all available prior information about the object, the scene and the imaging process.

The use of a Bayesian framework combined with a powerful optimisation algorithm can achieve this

purpose.

We based our approach for solving the aforementioned problem, first for a single view and later

for multiple images, on the work by [Jain et al. (1996) and Bebis et al. (2002)]. These works combine a

simple model of an object, a set of parametric transformations that act upon the model, each of which

has an associated penalising probability distribution, and an optimisation algorithm that will recover the

appropriate transformation parameters that will most closely enable the model to match with the object

in the scene.

In our work, the first component, the object model, is a rectangular bitmap image (or images in

the multi-view case ) that contains grey-scale (or colour) pixel information of the object’s contour and

intensity without any additional background data. In the single view scenario (2-D objects) this bitmap

may be the result of training on a number of images of the object so that it represents the most likely

image appearance. For the multiple view case (3-D objects) the images are chosen so that they represent

the object from different viewpoints, each containing as much information about the object as possible,

since this will aid in the synthesis of the novel view and minimise any regions of missing or incomplete

data on the object. Care must also be taken not to choose a verywide angle between the views, so that

they do not belong to different aspects of the object, as thiscan lead to self-occlusions and missing data

during synthesis.

The next component is the set of probabilistic transformations. These are typically learnt from

appropriate training examples or empirically chosen. Theycombine a set of parametric transformations

that deform the model with probability distributions defined on those transformations that restrict the

choices of possible deformed models. The transformations we are currently considering include the 3-D

rigid transformations in the multi-view case as defined by the LCV equations (3.14) and a 2-D subset in

the single view case which are equivalent to a global 2-D affine transform on all the pixels in the image.

Furthermore, and only for the single view case, we experimented with the addition of a local quadratic

deformation designed to deal with any small non-linear effects generated during the image formation

process.

The probability distributions associated with the transformations serve as a means of restricting

these transformations. This can help to avoid large deformations that produce similarly substantial devi-
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ations from the initial template since it is logical to assume that the model exemplifies a likely,generic

view of the object. Furthermore, they help to avoid trivial solutions for the transformation parameters -

parameter values that may minimise the energy function but produce an uninteresting result (e.g. col-

lapse the model into a single point or line). Finally, we may also use the distributions deliberately to steer

the solution away from what is previously known and guide thesolution to regions of the energy surface

to which it may be difficult otherwise to converge, or even just in order to investigate a wider range

of possible solutions. These distributions are usually encoded as the prior distributions in a Bayesian

formulation.

Our method differs from that of [Jain et al. (1996) and Bebis et al. (2002)] first as we are using pixel

intensity information without the need to extract featuresfrom the target image or solve the correspon-

dence problem. Also, we use different distributions both inthe single view and multiple view cases and

do not assume that all transformations are equally likely. Additionally, the likelihood function we used

that expresses the probability of observing the input imagegiven a deformed model with specific trans-

formation parameters is based on different error metrics with which we have extensively experimented.

Finally, for the recovery of the optimal transformation parameters we are using a hybrid optimisation ap-

proach that combines a recent evolutionary algorithm with alocal deterministic method. This algorithm

is able to produce very good results within a pre-allocated optimisation budget and without the need for

strict initialisation close to the location of the desired global minimum.

A Bayesian formulation which combines this prior knowledgetogether with information from the

input image expressed as the likelihood is therefore used inorder to find a match between the image

and the model. This combination of the prior and likelihood is realised in the posterior probability,

a maximum of which (or equivalently a minimum of its negativelogarithm) may indicate a possible

match.

1.5.1 Why a Bayesian approach?

We have decided to use a Bayesian approach because tasks suchas object localisation and recognition

offer themselves as ideal situations for statistical inference. Such tasks are often faced with situations

where only very limited and noisy data is available and, in addition, we may not be able to define an exact

model to apply to this data, especially in the presence of complicated information in the background. If

the data alone is unable to provide a unique solution to the problem it follows that reliable declarations

about the parameters of the model (i.e. pose, location, scale and so on) cannot be made and that, in a

purely data-drivel approach, the image may be well explained by a set of parameters that are, in practice,

completely unrealistic.

Instead, by utilising Bayes priors we can ensure we get closeenough to the correct solution with a

reasonable set of model parameter values by making assumptions about these parameters based on logi-

cal reasoning from our expectation (prior knowledge) combined with observation evidence (likelihood)

from the data. In our object recognition framework, Bayes’ rule may be written as as:

P (ξ|I) =
P (I|ξ)P (ξ)

P (I)
(1.2)
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General information about the model parametersξ is encoded in the prior probability distributionsP (ξ)

of the transformation parametersξ. These distributions represent our certainty about a situation before

the data is observed. The likelihood of observing the imageI given a set of parametersξ is encoded in

P (I|ξ). This usually reflects noise processes that would cause the target image to deviate in detail from

the model, but in our approach we must also allow for the possibility of gross errors when the model is

incorrectly located or the wrong model has been selected. From the product of the likelihood and the

prior probabilities we can calculate the posterior probability P (ξ|I) which represents our certainty that

we have explained the observed, target imageI. We usually require a single model configuration to be

presented as the most probable explanation. A typical choice is that for which the posterior probability

is maximal (known as the maximum a-posteriori or MAP solution).

This is the main reason why probability theory and in particular Bayes’ rule are appropriate tools

for these kind of tasks. There are of course alternative theories that can provide similar probabilistic

inference mechanisms such as the maximum likelihood (ML) solution (see [Sebe and Lew (2001, 2002);

Olson (2002)]). ML tries to find a match using only the likelihood information of an event. According

to [Jaynes (2003)], a model defined solely on the likelihood is incomplete, but defines only a parametric

space, the maximum of which indicates a good match between model and data. By introducing the prior

probability, we can incorporate information about the likely values of the model parameters that can help

guide the result toward a preferred solution. Since the MAP solution differs from the ML solution only

in the existence and use of the prior, it means that choosing an appropriate prior is one of the most critical

aspects for the effectiveness of the MAP approach.

It is useful to note here that there are two interpretations for the prior in Bayesian theory. In the first,

the “objective view”, the prior represents knowledge acquired in a previous experiment. In other words,

it might be (and usually is) the posterior probability of theprevious experiment. In such cases, we start

our inference by using an uninformative prior (such as the uniform distribution) and we iteratively update

our knowledge (i.e.Pm(ξ) = Pm−1(ξ|Im−1) wherem is the iteration number andIm−1 the information

available afterm− 1 iterations) as the new data is made available. In the second,the “subjective view”,

there is no data from previous experiments, but instead the data is made available simultaneously and

not sequentially as in the previous case. If we have some general information about the parametersξ we

can chose an appropriate prior distributionP (ξ) that reflects this knowledge in order to restrictξ so that

the posterior provides additional information to that available from the likelihood alone.

In our case, we use the latter interpretation where we do not acquire our data in sequence but have

a good idea about the general location and range of the model parameters. This information comes from

the analysis of the problem and of the likely parameter values. We shall examine this more closely in the

following chapters.

1.6 The contributions made in this thesis
The main contribution made in this thesis is that encapsulated in the main hypothesis - namely the

extension of the linear combination of views theory with appropriate probabilistic constraints and the

combination with the resulting MAP estimation with an optimisation algorithm so that it may be used
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for solving the recognition problem for 3-dimensional objects using only pixel information and models

derived from a small number of nearby 2-dimensional intensity images of the objects of interest.

By initially examining the 2-dimensional image-based object recognition problem in detail, we

soon realised that efficient and accurate recovery of the optimal transformation parameters that would

bring a model and a scene object into agreement required the use of probabilistic constraints in the

transformations. Additionally, we discovered that it was essential to consider the transformationT as

a product of independent, primitive transformations, eachassigned a separate prior distribution. Such a

separation of the degrees a freedom revealed that the primitive transformations are not equally likely in a

typical object recognition setting and should be biased differently. The use of such priors in a Bayesian

model together with the use of a powerful optimisation algorithm produced very good recognition results

without the requirement for extensive off-line training, time consuming search or the need for good

initialisation. The same principle was then extended to multiple views in 3-D and to the LCV paradigm.

As a result, we developed a system that can recognise 2-dimensional intensity projections of 3-D

objects from a variety of poses via a small number of stored views of each of the objects of interest. The

system may be applied to a variety of elaborate problems in different recognition scenarios and is very

simple to set-up (generate a database of models) and use (no need for good initialisation or complicated

configuration of the optimisation algorithm).

The work carried out for this thesis has also produced a number of secondary novel ideas and results,

the most interesting of which we list here:

• Analysis of the posterior space both graphically and numerically: During the course of our

research we explored the properties of the error space near the optimal solution, collecting both

graphical and numerical information. This gave us valuableinsight into the complexity of the

space under various recognition set-ups (e.g. simplistic versus more elaborate backgrounds) which

in turn allowed us to adjust our model and solution approaches accordingly. Information on error

surfaces not previously seen in such detail is introduced inthis thesis.

• Comparison of different error metrics : In our attempt to discover a good error metric well suited

to the specific needs of image-based template matching we compared different solutions, such as

use of: the normalised cross-correlation, the Huber norm and mutual information, each of which

produced different error surfaces and as a result, different optimisation results. This information

can now be exploited in other applications where pixel intensity is used and the solution depends

on the scene complexity, the type of object of interest and the imaging process.

• Comparison of different optimisation methods: For recovery of the optimal model transfor-

mation parameters it is essential to choose an appropriate optimisation method. That generally

means an algorithm that enables one to find a good-enough solution as early as possible in the

computation, without the need for time-consuming parameter tuning or strict initialisation. Fur-

thermore, the algorithm should, in general, improve quickly on discovery of a good solution.

As a consequence, we contrasted several solutions in a number of problems with varying de-

grees of difficulty. In addition, certain algorithms that weexplored such as differential evolution
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[Storn and Price (1997)] and SOMA [Zelinka (2004)] have not received adequate attention in com-

puter vision tasks. We believe that the results from this thesis may be relevant in other research

involving optimisation on intensity images, such as medical image registration.

• Extended simplex algorithm: As part of our investigation into various optimisation algorithms,

we used the simplex method developed by Nelder and Mead (1965)] as a way of improving on

the discovery of good solutions found by use of other algorithms. The simplex method is a direct

search, local optimisation method able quickly to minimisean energy function, but it can easily

get stuck in local minima and not make significant progress after the first few iterations.

We thus extended the basic form of the algorithm by incorporating a restart stepthat allows the

simplex to “jump-out” of a local minimum and continue from a nearby location. Furthermore,

as the algorithm progresses the jumps get smaller accordingto an ’annealing’ schedule. This

modification allows the simplex to burrow further into the error surface, dramatically improving

the optimisation results even on functions with multiple local minima. In fact, it may be used as

a way of quickly improving the results already identified by slower-converging, global stochastic

optimisation algorithms in a hybrid minimisation scheme.

• Foreground - background model: In this work we mainly focused our efforts on building robust

geometrical models for the objects in the foreground. This worked well enough, provided that

the scene contained trivial (simplistic) background data and there was no change of illumination

between the model and the imaged object.

This however, limited the applicability of our method to synthetic or highly-controlled scenes, or

where the background was explicitly provided as a separate entity. Near the end of our research

we experimented with inclusion of a background model, first in the 2-D approach and later in the

LCV 3-D approach, and incorporated a basic affine model to accommodate illumination changes.

Although developed theoretically, we did not have the time systematically to test these new models

in extensive experiments. These models however represent asignificant first step in extending the

LCV equations correctly to deal with background data and accounting for the additional degrees

of freedom from lighting variations.

1.7 The significance of this work

The work we have carried out in this thesis is one of the first systematic attempts to use view-based

techniques which allow pose-invariant modelling and recognition of 3-D rigid objects directly from

2-dimensional intensity images using pixel information alone. Neither feature extraction nor the estab-

lishment of a dense correspondence is necessary at any time during the model building or recognition

stages.

We thus anticipate that the probabilistic LCV method owing to its practicality, ease of initial set-up

and use and its good results across a range of different objects will be useful in a variety of applications

including, but not limited to:
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• robotic and autonomous navigation,

• medical image registration and data extraction,

• object tracking, and

• automated control and access systems.

1.8 Papers resulting from this thesis
In the course of the work described in this thesis, seven papers have been produced for publication at

conferences and in journals. They represent various stagesin the development of our approach and are

listed below in chronological order:

• V. Zografos and B. F. Buxton,“Affine Invariant, Model-Based Object Recognition Using Robust

Metrics and Bayesian Statistics”, International Conference on Image Analysis and Recognition

(ICIAR) 2005, pp. 407-414.

• B. F. Buxton and V. Zografos,“Flexible Template and Model Matching Using Intensity”, Digital

Image Computing: Techniques and Applications (DICTA)2005, pp. 438-447.

• V. Zografos and B. F. Buxton,“An evaluation of common distributional models for a Bayesian

prior of the scale transformation”, initial draft prepared for submission to Elsevier Science2006.

• V. Zografos and B. F. Buxton,“Pose-invariant 3-D object recognition using linear combination of

2-D views and evolutionary optimisation”, International Conference on Computing: Theory and

Applications (ICCTA)2007, pp. 645-649.

• V. Zografos and B. F. Buxton,“Evaluation of linear combination of views for object recognition” ,

in Advances in Intelligent Information Processing: Tools and Applications,2007ed. B. Chanda

and C. A. Murthy, World scientific, pp. 85-106.

• V. Zografos and B. F. Buxton,“A Bayesian approach to 3-D object recognition using linearcombi-

nation of 2-D views”, 3rd International Conference on Computer Vision Theory and Applications

(VISAPP)2008.

• V. Zografos“Comparison of optimisation algorithms for deformable template matching”, Sub-

mitted to ISVC2009.

1.9 Definitions
In this section we include in order to avoid confusion some definitions of a number of terms commonly

used in this thesis that may, in publications, have more thanone shade of meaning. These are:

• Corresponding landmark points: By corresponding landmark points in two or more images we

mean landmark points in each image which are projections of the same 3-D world points, marked

on the imaged object or scene (i.e. a correspondence in a stereo vision sense).
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• View/pose: We shall not distinguish between a view of an object and its pose since variations in

either cause the same affects in a captured image.

• Basin of attraction: This is a region in the solution space of an algorithm in which all starting

points converge to the same solution, or possibly cycle of solutions.

1.10 Abbreviations
• LCV : Linear Combination of Views

• DE: Differential Evolution

• SOMA: Self-Organising Migrating Algorithm

• CATT : Centred Affine Trifocal Tensor

• ISPM: Integrated Shape and Pose Model

• PCA: Principal Components Analysis

• ASM: Active Shape Model

• MAP : Maximum A-Posteriori

• ML : Maximum Likelihood

• NFEs: Number of Function Evaluations

• MCMC : Markov-Chain Monte-Carlo

• d.o.f.: Degrees of Freedom

• pdf: Probability Density Function

• cdf: Cumulative Distribution Function

• SSD: Sum of Squared Differenecs

• SAD: Sum of Absolute Differences

• CC: Cross-correlation

• BP: Back-projection

1.11 Structure of this dissertation
The rest of this dissertation is organized as follows. Chapter 2 contains a review of the relevant literature

which is intended to locate our work within the context of previous research. Chapter 3 introduces

the theoretical background upon which this thesis is based and offers a summary of what are the most

important and recent topics in model-based object recognition. In chapters 4,5 and 6 we present the main

contribution of this thesis, starting from 2-D object recognition and expanding into 3-D, followed by our
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work with optimisation algorithms. Chapter 7 presents the analytical experiments of the probabilistic

LCV method on synthetic and real datasets and an explorationof different error measures for intensity-

based, template matching. We make use of chapter 8 to provideour thesis conclusions and offer some

possible avenues for future research work in this area. The bibliography follows at the end.
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Chapter 2

Related work

Object recognition in its general form has been widely studied and a plethora of different approaches

exist that attempt to solve different aspects of this problem depending on the application area. These

approaches vary according to the type of knowledge they employ, the restrictions placed upon the objects

recognised (for example objects may be 2-dimensional or 3-dimensional, simple or complex, rigid or

flexible), the object representation and coordinate systemused, and the overall strategy employed. In this

chapter, we will closely examine the main ideas behind recent research methods in object recognition. In

particular, we will consider model-based methods, in whichprior knowledge of the object’s appearance

is provided by an explicit model as these are most relevant toour research.

2.1 Choice of coordinate system

The first step in an object recognition system is to define an appropriate coordinate system. There are two

ways to define this coordinate system for a three-dimensional shape, theviewer-centred approachand the

object-centred approach. Since images represent a scene from a camera’s perspective, it is only natural

to represent objects in a viewer-centred coordinate system. Nevertheless, it is easy to transform from

one coordinate system to the other and use an object-centredapproach instead. The main reason behind

choosing one system over the other is efficiency in representation for feature detection and subsequent

low-level processing. A representation allows certain operations to be more efficient at the expense of

others, so obviously a choice has to be made based on the requirements of the application at hand.

2.1.1 Viewer-centred approach

If objects usually appear in a relatively few stable positions with respect to the camera then they can

be represented efficiently in a viewer-centred, viewing angle dependent, coordinate system, which de-

scribes the 3-D object using a set of 2-dimensional characteristic views or aspects. Each characteristic

view describes how the object appears from a single viewpoint. Typical examples of object recognition

using viewer-centred representations are the aspect graphs by [Koenderink (1990); Poggio and Edelman

(1990); B̈ulthoff and Edelman (1992); Ullman and Basri (1991)].

Matching in such approaches is straightforward because it involves comparing descriptions that are

both 2-dimensional. There is no need for model projection during matching and the continuous space

of viewpoints has been reduced to a discrete space of characteristic views. If the camera is far away
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from the object(s) of interest then, under suchaffine imaging conditionstheir three-dimensionality can

be ignored and objects may be represented sufficiently well by a limited set of views.

The disadvantage of using a viewer-centred representationis that for moderately complex objects, in

principle because of the large number of different aspects they may present, a large number of different

views need to be stored thereby increasing the storage spacerequirements relative to object-centred

approaches. This also means that, in the object matching stage, many more models need to be considered,

since each characteristic view is a separate model. Even so,testing each model is far less computationally

expensive than in the object-centred approach, since we aredealing with a 2-D instead of a 3-D match.

Furthermore, in practice, many of the aspects of an object differ only in small details and occupy only a

small portion of the view-sphere and may, for many object recognition purposes, be ignored.

Viewer-centred representations have become quite popular, as there is some interesting evidence

that the human visual system uses a similar representation for object recognition [B̈ulthoff and Edelman

(1992); Tarr et al. (1998); Tarr and Büllthoff (1998)]. Experiments have shown that humans are able to

recognise objects accurately and rapidly from particular viewpoints, which implies that those views of

the object are readily available (stored in memory) while others are computed as needed. In addition, the

availability of large amounts of RAM in modern computers (several GByte at the time of writing) makes

such an approach more attractive as it suggests trading computation for memory.

A viewer-centred representation, however, only provides an approximation to the object’s shape

and appearance. Each characteristic view represents a range of viewpoints over which the object varies

in shape and appearance. The more characteristic views we use, the smaller the range each view covers

and the more accurately the object is depicted over that range. We therefore have a trade-off between the

size of the description and its accuracy. One way to deal withthis problem is to take advantage of certain

invariant features that exist among a range of viewpoints. For example, certain relations between lines

(co-termination, parallelism, co-linearity), angles between lines and ratios of line lengths are invariant

with respect to view point. Use of such techniques can extendthe range of viewpoints covered by a

characteristic view and thus improve the trade-off betweenaccuracy and number of views. Another way

is to interpolate between characteristic views. As we will see later on, this can be achieved via the Linear

Combination of Views method, where a new view can be constructed from 3 or more stored views and a

linear operator.

2.1.2 Object-centred approach

The alternative to the viewer-centred approach is the object-centred approach, which describes objects

usually as a three-dimensional entity within a coordinate system attached to the object. [Marr (1982)]

for example, specified the object’s parts relatively to the object’s main axis. Object-centred represen-

tations are independent of the camera parameters and location and yield the most concise and usually

most accurate shape descriptions. However, in order to makethem useful for object recognition, the

representations should have enough information to produceobject images or object features for a given

camera parameterisation and viewpoint. This suggests thatan object-centred representation should ex-

plicitly capture aspects of an object’s geometry. Some common such representations are:constructive
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solid geometry, where simple geometric primitives are used together with Boolean operators to represent

an object andspatial occupancy, where an object in 3-D space is represented by using non-overlapping

sub-regions of the 3-dimensional space occupied by an object, such as a voxel representation, octree or

tetrahedral decomposition.

When object-centred coordinate systems are used for model description in object recognition we

must do one of the following: either i) derive a similar object-centred description from the image and try

to match that description with various models, or ii) derivea 2-D description from the image, and use

a matching procedure combined with a projection of the 3-D object to the same 2-D image description.

[Lowe (1985)] does exactly that by projecting each 3-D modelstored in memory to a hypothetical view-

point and matching the resulting projected locations of the2-D features to the input image. A similar

idea is presented by [Ullman (1989)] in his recognition by alignment approach.

2.2 Choice of strategy: features vs templates

There are also two main choices for the object recognition strategy: thefeature-basedstrategy,

which is based on shape information [Huttenlocher and Ullman (1990); Lamdan et al. (1988); Jacobs

(1997)] and theimage-basedstrategy, which is based on direct representation of image intensity

[Murase and S.Nayar (1995); Turk and Pentland (1991); Borotschnig et al. (2000)] or on a filtered ver-

sion of the image [Sullivan et al. (2001); Srivastava et al. (2002)].

2.2.1 Feature-based approach

This computational strategy for object recognition is based on the idea that much of the information

about an object is encapsulated by its geometrical properties. It usually relies on a geometrical model

of an object’s shape characteristics which is often appliedto simple data, and is used to explore the

correspondences between the model’s features and the detected features in the scene during recognition.

Given an unknown scene and an object model, both representedin terms of their features, in this

approach the objective is to find a partial match between the two and estimate the object’s location and

pose in the image. A match solution must satisfy the viewpoint consistency constraint [Lowe (1987)]

which stipulates that the locations of the object’s features in the image must be consistent with some pose

of the object. We are essentially looking for the transformation T that will bring the two corresponding

sets into alignment. These sets of features are usually stored in n-dimensional vectors, and matching is

carried out by minimising some dissimilarity metric, or measure of quality, over the parameters of the

transformationT . Such measures of matching quality are often based on error models that describe how

image features differ from model features. Two common errormodels are: i) abounded error model

which requires that each image feature is positioned withinsome fixed range of its predicted location.

The related match quality measure is usually just the count of matching feature; and ii) aGaussian

error modelwhich assumes that image features are distributed normallyand independently about their

predicted locations. The related match quality usually considers both the number of matching features

and the sum of squares of their normalised errors.

Since usually there is no a-priori information as to which model features (or parts) correspond to
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which scene features (or parts) it is necessary to solve the correspondence problem. If we consider, for

example two setsX andY , each containingN points, we need to ensure that each pointxi in the image

corresponds to the same physical pointyi on the object or projected from the object. Only then are the

two sets in correspondence. This requirement makes feature-based recognition computationally expen-

sive even for a moderate number of features, especially if feature detection in the image is imperfect and

there are false positives (false alarms due to clutter or other objects) and false negatives (features missing

dies to lack of sensitivity). Traditional object recognition systems thus often lack scalability especially

when faced with a large number of models, when image featurescannot reliably be grouped object by

object, or extensive variations in object appearance are encountered [Binford and Levitt (1996)]. To

limit the possible number of matches, methods have been proposed based on geometric constraints such

as the interpretation tree by [Grimson and Lozano-Perez (1986)], or minimum number of feature corre-

spondences [Huttenlocher and Ullman (1990)] and early localisation [Faugeras and Hebert (1983)]. The

method of indexing [Califano and Mohan (1994)] is an alternative approach that uses a-priori informa-

tion quickly to eliminate inappropriate matches during recognition.

Some common paradigms of feature-based object recognitionthat deal with changing object geom-

etry due to pose variations include the use of invariants [Leung et al. (1998); Maybank (1998)], explicit

3-D models [Blanz et al. (1996); Lee and Ranganath (2003)] and multiple views [Lamdan et al. (1988);

Binford and Levitt (1996)]. The first paradigm makes use during recognition of special invariant proper-

ties of geometric features (i.e. properties that vary little or not at all as viewing conditions change). The

most serious problem with this method is that quite often it is very difficult, if not impossible, to find

general geometric invariants. For example, no such invariants exist for single images of 3-dimensional

objects under a 3-D perspective projection [Clemens and Jacobs (1991)]. The second paradigm employs

a full, explicit 3-D model to which the image formation process is applied during recognition. This is

in fact a projection operation that generates new images of the object that can be compared with a given

scene. This idea works well if we have a 3-D model of the object- which is not always practical - and

provided that we know the specifics of the image formation process - which may not always be the case.

In the last paradigm, an object is modelled by a set of 2-D reference views that describe how the shape

of the object varies across different views on the viewing sphere. Such methods perform recognition by

matching the novel view with one of the reference views, or atleast a part of it. This strategy is quite

inefficient since a large number of views must be stored for each model, unless we utilise some of the

techniques we have seen in Section 2.1.1. Range and colour have also been employed in applications

such as face detection [Kim et al. (1998)]. In this work disparity maps are computed and objects are

segmented from the background by means of a disparity histogram. They use a Gaussian distribution in

normalised RGB colour space that classifies segmented regions with skin-like colour as faces. A similar

approach has been proposed by [Darell et al. (2000)] for facedetection and tracking.

In addition, one can classify the various feature matching methods according to whether they search

for a solution in correspondence space, transformation space or a mixture of both. Correspondence space

is the space where sets of image and model features are pairedtogether. Transformation space is the
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space of possible transformations between the object and the camera. Under the viewpoint consistency

constraint and with an appropriate error model the two spaces are closely related, with each match being

consistent with a set of transformations and each transformation with a set of matches. Typical exem-

plars of correspondence space search are the interpretation tree [Grimson and Lozano-Perez (1986)] we

have mentioned above, and graph matching methods [Siddiqi et al. (1999); Caelli and Kosinov (2004);

Marcini et al. (2002); Wiskott et al. (1999); Bergevin and Levine (1993)] where one tries to find a partial

match (sub-graph isomorphism) between a graph that represents the model’s features and a graph that

represents the detected image features. The biggest problem with correspondence space methods is their

computational cost which is generally exponential in the number of model features. Some techniques

such as relaxation (see [Grimson (1990)] for the heuristic search termination method) whereby we settle

for a near-optimal match can help alleviate the computational problem. When it comes to transforma-

tion space search methods, the generalised Hough transform[Ballard (1981); Grimson and Huttenlocher

(1988)] is one such representative example. Methods that search the transformation space generally

avoid the costly exponential search. Alternatively, we could also use a mixture of the two methods, and

carry out a portion of the search in each space. For example, the alignment method of [Ullman (1989)]

begins the search in correspondence space until it matches enough reference features to determine the

viewpoint transformation.

There are of course many questions that need to be addressed when using a feature-based approach.

For example, what kind of features should we detect and how can we detect them reliably and efficiently?

Most features can be computed in 2-D images, but they are related to 3-D characteristics of the objects.

Owing to the nature of the image formation process some features are relatively easy to compute while

others can be very difficult. We also need to establish how features in images can be matched to models

stored in a database. In most object recognition tasks, where there are many features and numerous ob-

jects, methods such as exhaustive searching may solve the problem but are probably too computationally

costly to be useful. Effectiveness of features and efficiency of a matching technique must be considered

when choosing an object recognition strategy.

2.2.2 Image-based approach

A desirable characteristic of image-based recognition is that object models can be compared directly or

fairly directly with input data, as both are of the same type (e.g. intensity images). Feature-based meth-

ods instead require that features be detected and describedbefore data and model can be compared. This

means that in distinction to the procedure in feature-basedapproaches, an image-based approach does not

need to recover the geometry of the objects but can learn their appearance characteristics from training

imagery. A model of the object is built off-line from a collection of different images depicting a variety

of object appearances taken under changing viewpoints and lighting conditions. In this way, each model

view is stored as a vector of image intensities in some low-dimensional space that captures the significant

characteristics of the object, such as the eigenspace [Murase and S.Nayar (1995); Lamdan et al. (1988)].

A hyper-surface in this space represents a particular object. Recognition is carried out by projecting

the image of an object to a point in the low-dimensional space. The object is recognised by calculating
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the shortest distance from a given hyper-surface. The location of the point determines the pose of the

object. Other image intensity methods include use of colourhistograms [Vinod and Murase (1996)] and

photometric invariants [Schmid and Mohr (1997)]. More recently, [Gross et al. (2004)] have used the

light-field of an object as a set of features projected into a low-dimensional eigenspace. This way they

have captured radiance values from arbitrary illuminationconditions and with the use of a classification

algorithm have applied this theory to face recognition across a range of poses.

There are of course simpler ways for fitting intensity modelsdirectly to photometric data. We

can divide such methods intorigid model fittingandflexible model fitting. In rigid methods, the shape

or photometry of the target object is known beforehand in theform of a template. The template may

represent an object as a rigid curve or an image and is matchedto the image data by means of a metric

that may represent either a similarity or dissimilarity measure. Where that metric is (say) maximal,

we have the optimum template location and therefore a match.The simplest such metric is normalised

cross-correlation, which has been applied successfully ingrey-scale and colour imagery with the use

of an exhaustive search technique [Tsai et al. (2003); Tsai and Lin (2003)]. Rigid model techniques

are ideal when the object shape or photometry are precisely specified because of their restricted search

space. In addition, they are relatively insensitive to noise. Nevertheless, when the exact object shape or

photometry is not known, or when we have to deal with many model types at the same time, or even in

the case when they have to be applied over foreground and background without an explicit background

model, such methods should generally be avoided. It is possible, however, to consider variants of the

technique , such as geometric hashing [Lamdan and Wolfson (1988); Grimson and Huttenlocher (1990)],

in order to deal with fitting a large database of models simultaneously.

In the case where the above application of a rigid template isnot possible, flexible model fitting

techniques may be more useful. These methods support the useof models that are governed by a number

of generic constraints on object characteristics (e.g. smoothness, curvature, compactness, symmetry and

homogeneity) and rely on an optimisation procedure that finds the best fit between the model and the

image data. The fit of the model to the image is measured by an objective function and matching is

performed by (say) minimising this measure. Like template matching, flexible model fitting operates at

the pixel level but because of the additional degrees of freedom that the flexibility allows, the search may

become computationally expensive. Therefore, flexible methods normally require a good initialisation

close to the basin of attraction of the correct match or the use of heuristics to control the search and

reduce the computation at the possible risk of a non-optimalsolution. As noted in the introductory

chapter, the basin of attraction is the region of the solution space within which an iterative optimisation

method will converge to an optimal solution, or solutions.

The most severe limitation of the intensity-based approachis that it requires isolating the object of

interest from the background. This approach has been demonstrated successfully on isolated objects or

pre-segmented images, but has been difficult to extend to cluttered and partially occluded scenes. There

have been a number of attempts to improve robustness to occlusion, such as using small eigen-windows

[Ohba and Ikeuchi (1997)] and parts from objects [Huang et al. (1997)] but such methods have extensive
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search requirements or rely on explicit 3-D models.

Image based methods can thus be successful in handling the combined effects of shape, pose, reflection

and illumination, but have serious difficulties in segmenting the object(s) from the scene and dealing

with occlusions. Since matching is performed directly in the image domain, rather than in the geometric

feature domain, performance is not affected by increasing geometric complexity. A great advantage of

image-based methods is that any shape can be represented no matter how complex as long as we can

take images of it. Relevant work by [Brunelli and Poggio (1993)] on comparing the two approaches in

their simplest form, has shown that template matching is superior in object recognition performance and

simpler in use. The feature-based strategy, however, may allow a higher recognition speed and smaller

memory requirements.

2.3 Choice of model representation
Object recognition techniques can also be categorised according to their choice of model representation.

These categories have traditionally been:feature points, curves, orthogonal basisandimage templates.

2.3.1 Feature points

Perhaps the most simple model representation is based on a set of landmark points. These points are

chosen in specific locations so as to convey the characteristic shape of an object. For example, along

edges and corners of the object boundary, or around important features, such as the eyes, the nose and

the mouth in a facial image. Object matching and recognitionrequire that we detect and label similar

feature points in the image and match them with our model using some kind of metric such as the sum

of squared differences or their coordinates. Feature detection however is very problematic since there

is no easy way effectively to detect all the correct features. Feature detection algorithms will often

either detect more features than exist in an image, or will not detect all the correct features. Therefore

techniques based on sub-graph matching [Caelli and Kosinov(2004)], methods such as the interpretation

tree [Grimson and Lozano-Perez (1986)], are necessary to overcome the feature detection problem.

Some of the existing challenges for object recognition (as we shall see in detail in later chapters)

is missing or corrupt data possibly due to occlusion, disjoint training and testing sets and the existence

of noise. Recent feature based methods such as the recognition-by-parts approaches, originating from

the early attempt by [Biederman (1993)] to model pattern recognition in terms of how a human observer

learns to discern patterns from their constituent parts, have recently been re-visited by the research com-

munity [Stommel and Kuhnert (2009); Vasanthanayaki and Annadurai (2005); Amit and Trouve (2007)]

in order to overcome these problems. In part-based models, asmall number of features and their rela-

tions (for example relative distance [Fergus et al. (2003)]) are used in order to determine if an object is

present in the scene and therefore they can deal, to some extent, with incomplete data.

2.3.2 Curves

One of the first and most popular curve-based representations is a labelled set of points with connec-

tivity information. This representation is similar to a vertex and edge representation (e.g. a polygon

or a linear spline). Numerous authors have used this point set representation, such as [Burr (1981);
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Jolly et al. (1996)]. Another popular representation is B-splines, which uses continuous curves to model

the geometry of an object. Compared to the point set representation, B-splines have the advantage of a

lower dimensional parameter space since a B-spline can be obtained via a few control points. In addi-

tion, B-splines have the additional, advantageous property of inherent smoothness. [Cipolla and Blake

(1990)] and [Menet et al. (1990)] were the first to develop deformable models using B-splines after which

they have been used in a number of different studies [Blake and Isard (1998); Isard and Blake (1998);

Klein et al. (1997)]. Finally, another representation thathas received much attention in the literature

is the use of level sets [Sethian (1999)]. Compared to other methods, level sets have the advantage of

allowing automatic merging and splitting of the initial contour. Research on level sets for object recog-

nition that may be regarded as characteristic of the field is that of [Paragios and Deriche (2000)] and

[Leventon et al. (2000)].

2.3.3 Orthogonal basis

Orthogonal basis representations usually apply a reduced or truncated parameter space in which only the

most important characteristics and descriptors are used. Perhaps the most widely used such represen-

tation is the Point Distribution Model, proposed by [Cooteset al. (1995)]. According to their method

an object is represented by the mean shape of a training set and a linear combination of the most im-

portant eigenmodes of the shape variation from this mean. The Point Distribution Model has played

an important role in the popular Active Shape Model [Cootes et al. (1995)] and has been extended with

texture in the Active Appearance Model [Cootes et al. (2001)]. Numerous other models such as that of

[Duta and Sonka (1998); Dias and Buxton (2002)] have been based on this representation. Other repre-

sentations are Fourier descriptors [Staib and Duncan (1992)] which use trigonometric functions as the

orthogonal basis and Wavelet descriptors [Yoshida et al. (1997)] that are defined as dilated and translated

versions of a basis wavelet. A comparison of shape models based on the above mentioned orthogonal

basis representations can be found in [Neumann and Lorenz (1998)].

2.3.4 Image templates

The last representation we will examine here is that of a prototype image template. Such a representation

is used in object recognition, and may be deformed under a similarity or affine group of transformations

to match a new object in an image. Most of these models can be classified as registration methods.

Typically, the template is the same type as the image (i.e. intensity data) but edge templates have also

been used [Jain et al. (1996)]. There is a rich collection of examples of this representation and some of

the best known are [Amit et al. (1991)], [Christensen et al. (1996)] and [Sclaroff and Isidoro (1998)].

Even though it is difficult to answer the question as to which of the considered representations is the

best, there are a number of properties which, though from a general point of view they are desirable, by

no means make a certain representation superior. These are:generality: the representation should be able

to model an arbitrary object.Specificity: the representation should enable particular objects, or object

classes, to be distinguished from others.Low dimensionality: a low dimensional representation with

little redundancy improves the computational efficiency and makes optimisation easier and more robust.

And finally, linear parameterisation: a restriction to linear parameterisation has certain advantages in
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simplifying fitting algorithms and avoiding problems with local minima [Blake and Isard (1998)].

2.4 Deformable template models
We have chosen to present deformable template models here separately since they not only constitute

the main focus of this work but also comprise a substantial proportion of recent research into object

recognition. Perhaps the most thorough review on deformable template models is that by [Jain et al.

(1998)] from which we have adopted the classification of different deformable template methods.

If we were to start with a definition, we could say that deformable template models are models

which under an implicit or explicit optimisation criteriondeform to match a known type of object in a

given image. Alternatively, we could recall that deformable models were designed to overcome one of

the most important obstacles to object recognition; that is, the integration and interpretation of different

local image cues (intensity, gradient, texture etc). In addition, of course, they also overcome the fact

that exact geometrical models of objects may not always be available because of the variability in the

imaging process and inherent within-class object variability. On the one hand, traditional approaches like

those we have seen in this chapter cannot cope with adverse imaging and viewing conditions, occlusion

and noise. On the other hand, model-free representations fail to converge to reasonable solutions owing

to the highly unconstrained nature of the problem. Deformable model matching, is a more powerful

technique because of its capability to deal with shape and appearance variations, or as [Jain et al. (1998)]

put it:

“...deformable models, which have been receiving increased attention lately, provide a

promising and powerful approach for solving computer vision problems, because of their

versatility and flexibility in object modelling and representation.”

A deformable model is able to adapt to fit the given data and in that sense it can be consideredactive.

It is a useful representation, because of its ability both toimpose constraints (geometric or photometric)

on the model but also to integrate local image evidence. Different deformable template approaches that

have appeared in recent literature can generally be partitioned into two main classes:free-formmodels

which can represent any arbitrary shape as long as some general constraints are satisfied, andparamet-

ric deformablemodels that are able to encode a specific characteristic shape and its variations. This

shape can be characterised by a parametric formula or by using a prototype shape and some deformation

scheme. Fig. 2.1 illustrates this classification.

2.4.1 Free-form models

Free-form models have no global template structure and apart from some general regularisation con-

straints, such as continuity and/or smoothness, they can bedeformed to match any salient image feature,

using, for example, potential energy fields produced by these features. One of the most widely known

free-form models is the active contour (snake) popularisedby [Kass et al. (1988)]. In this approach, an

energy minimisation contour is controlled by a combinationof physics-inspired forces or energies that

impose constraints on how its shape may very over space and time. This physical interpretation consid-

ers models as elastic bodies that respond naturally to externally applied forces and elasticity constraints.
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Figure 2.1: The classification of deformable template models in recent research.)

More specifically an active contour is governed by: aninternal contourenergyEint which may enforce

smoothness, animage potentialenergyEimg that attracts the snake to significant image features, and an

external potentialenergyEext which deforms the model. Each force creates its own potential field and

the contour actively adjusts its position and shape until itreaches a minimum of the total snake energy:

Esnake =

∫ 1

0

{Eint(v(s)) + Eimg(v(s)) + Eext(v(s))} ds (2.1)

wheres is the parameterisation of the contour andv(s) is a point on that contour. Given an appro-

priate initialisation the snake can quickly converge to a nearby energy minimum. However, the active

snake model is essentially a “myopic” approach since it usesonly local information and it is very vul-

nerable to image noise and sensitive to choice of its starting position. To overcome these limitations,

researchers have experimented with different energy forces, such as attractors and tangent constraints

[Fua and Brechbuhler (1996)], gradient vector flow [Xu and Prince (1998)] or different optimisation al-

gorithms [Cox et al. (1996)].

A similar approach to snakes is that of spline-based deformable models [Figueiredo et al. (1997)],

which though they do not encode specific shape information, have more structure than snakes since

they are expressed as a linear combination of a set of basis functions. Their shape is defined by the

coefficients of these basis functions. However, because selection of coefficients can be arbitrary spline-

based deformable models cannot represent a “default” shapewhen prior information is presented. For

that reason, spline-based methods under-perform comparedto more appropriate strategies such as the

parametric deformable models we will discuss below.

2.4.2 Parametric deformable models

Parametric deformable models are commonly used when prior information about the shape or appearance

of the object is available. A characteristic model derived from a set of training images and its variations

is encoded using a small number of parameters, achieving thus a compact representation of the object’s

shape and photometry. There are two general ways to carry outthe parameterisation, ananalyticalor a

prototype-basedparameterisation.
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Analytical

With an analytical parameterisation, one can represent thegeometric shape of an object using a set of

analytical curves (e.g. ellipses) and a number of parameters that uniquely describe the chosen set. The

shape of the template can be changed by using different values for the parameters and variations in shape

are determined by the distribution of the admissible parameter values. Common techniques based on

analytical models are the example by [Yuille et al. (1992)] in which they designed parametric models

for eye and mouth templates using circles and parabolic curves in order to extract facial features. Also

[Lakshmanan et al. (1995)] have used a parametric template to locate the airport runway boundary in

radar images. Based on prior knowledge, they derived a global shape of the runway parameterised by the

slopes and intercepts between the edges of two parallel lines. Finally in [Jolly et al. (1996)], polygonal

templates are used to characterise a general model for a vehicle and to segment vehicles from outdoor

traffic scenes.

All these techniques require a good initialisation of the model in order to obtain correct solutions

and in addition the approximate pose of the object to be recognised is assumed known. Analytical

deformable models have limited applicability because the objects under investigation must have a well-

defined shape that it is possible to represent by a set of curves and with a few parameters.

Prototype based

Prototype deformable models on the other hand are more flexible since they are derived from a set of ex-

ample images. Grenander with his pattern theory [Grenander(1993)] was the first to present a systematic

framework for representing a general pattern from a class ofshapes. A shape is represented by a set of

parameters, different values of which give rise to different shapes. A probability distribution on the pa-

rameters is also specified that allows for a flexible bias toward a particular shape. [Grenander and Keenan

(1993)] formulated a global, pattern-theoretic model of shape which provides a structured method to gen-

erate pattern from a class of shapes. This model can be represented by: i) a prototype template which

describes the overall appearance of the shape and ii) a parametric statistical mapping that controls the

random variations in the shape class. The prototype template is usually chosen based on prior knowl-

edge of the objects of interest and the parametric statistical mapping is chosen to reflect the allowed

deformations on the prototype template.

The success of these models depends on how well the parameters and the probability distribu-

tions can be defined accurately to represent the shape and itsvariability. Indeed, many researchers

have used a variety of choices for the prototype template andits possible deformations. For example,

[Grenander et al. (1991)] have used polygons to approximatethe contours of human hands while varia-

tions were described using a Markov process on the edges. [Jain et al. (1996)] used a grey-scale bitmap

of the mean object shape with edge information as a way to represent the prototype template. They

used parametric transformations with normally distributed parameters to deform this prototype bitmap

to match the image. [Zografos and Buxton (2005a)] have expanded on this by working directly with

pixel values, introducing more suitable prior distributions and treating the residuals with a robust error

norm. [Cootes et al. (1995, 2000, 2001)] have proposed the active shape and appearance models where
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the object’s shape and appearance is learnt from a set of example images. Once the images are aligned

and properly annotated, principal components analysis is used to generate an average shape (prototype)

along with modes of variation. [Dias and Buxton (2002); Dias(2004)] went a step further and proposed

the Integrated Shape and Pose Model (ISPM). The ISPM is an image based-model that is capable of rep-

resenting images of 3-dimensional, non-rigid objects without confounding the intrinsic shape variations

of the object with the extrinsic pose variations. The ISPM has been shown to outperform Cootes et al.’s

Flexible Shape Models and to be a more viable approach than the coupled-view Flexible Shape Model

[Cootes et al. (2000)]. Recently, [Felzenswalb (2005)] proposed a deformable model that represents

shapes as unique triangulated polygons using constrained Delaunay triangulation. He uses an energy

function conditioned on each triangle that has a data term, which attracts the template to the image, and

a penalty term that penalises large deformations. The matchis located at the point where the transforma-

tion has the lowest cost and is found by using a non-serial dynamic programming method that obviates

the need for a good initialisation. His technique is not goodfor objects that may have approximately the

same global shape, but have differences in their interior (e.g. faces where their boundary is pretty much

the same, but internally they have different features). Such intricacies cannot be captured efficiently by

Felzenswalb’s method.

2.5 Support vector machines

Recently, methods such as Support Vector Machines (SVMs) have become quite popular in object recog-

nition and thus we mention them here for completeness. SVMs can be considered as a new paradigm

to train polynomial function, neural networks or radial basis function (RBF) classifiers. While most

methods for training a classifier are based on minimising thetraining error (i.e. empirical risk), SVMs

operate on another induction principle, called structuralrisk minimisation, which aims to minimise an

upper bound on the expected generalisation error. An SVM classifier is a linear classifier where the sep-

arating hyperplane is chosen to minimise the expected classification error of unseen test patterns. This

optimal hyperplane is defined by a weighted combination of a small subset of the training vectors, called

the support vectors. Estimating the optimal hyperplane is equivalent to solving a linearly constrained

quadratic programming problem. However, the computation in both time and memory can be intensive.

Typical examples are by [Osuna et al. (1997)] where they developed an efficient method to train an SVM

for large scale problems and applied it to face detection. Also [Papageorgiou and Poggio (2000)] have

used an SVM system to detect faces of pedestrians in the wavelet domain. [Li et al. (2000, 2004)] have

used a support vector for determining the pose of an image by using it to choose among face detectors

arranged on the viewing-sphere. Face detection is carried out by a combination of Eigenfaces and SVM

methods. [Ng and Gong (1999)] achieved real-time, multi-view detection and pose estimation of human

faces that undergo non-linear change across the view-sphere. [Pontil and Verri (1998)] used SVMs for

3-D object recognition without the need for feature extraction or pose estimation. An efficient algorithm

for training SVMs has been proposed by [Dong et al. (2005)].
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2.6 Optimisation

In this section we examine in more detail the use of optimisation algorithms in deformable template

matching/registration problems. This will enable us to choose the appropriate solution from amongst a

selection of different optimisation strategies to use withour linear combination of views object recog-

nition method. We start with the examination of simple, direct-search methods and move on to more

complicated evolutionary algorithms.

2.6.1 Local methods

The tasks of computer vision such as object recognition [Peters (2000)], template matching [Jain et al.

(1998)], registration [Brown (1992); Hill et al. (2001)], tracking [Yilmaz et al. (2006)] and classification

[Zhou and Aggarwal (2001); Hasegawa and Kanade (2005)] usually involve a very important optimisa-

tion stage where we seek to optimise some objective functioncorresponding to matching between model

and image features or bringing two images into agreement. This optimisation stage requires a good al-

gorithm that is able to find the optimum value within some timelimit (often in real-time) and sufficiently

close to the global optimum.

Traditionally, such tasks have been tackled using local deterministic algorithms1 such as the sim-

plex method [Nelder and Mead (1965)], Gauss-Newton [Nocedal and Wright (1999)] or its extension by

[Levenberg (1944); Marquardt (1963)] and other derivative-based methods [Nocedal and Wright (1999)]

(see Fig. 2.2). Such algorithms although they usually converge relatively fast need to be initialised near

the proximity of the global optimum otherwise they may get stuck inside local optima and converge far

away from the correct solution. One way to overcome this problem is to use multi-resolution search

techniques [Maes et al. (1999)]. Such techniques, however,often introduce additional challenges like

the tracking of optimal points between different resolution levels that slow the overall process and make

it prone to errors. In this work we only examine the simplex and the pattern search methods owing to

their simplicity, ubiquity and tractability.

Downhill simplex

The simplex method2 is a self-contained strategy for optimising an objective function in N-dimensional

space and, unlike many other methods it does not make explicit use of a one-dimensional optimisation

algorithm as part of its computational strategy. The simplex method requires only function evaluations

but not their derivatives and although it might not be the most efficient method available in terms of the

number of function evaluations necessary, it is a very good solution when we need something working

quickly for a problem with a small computational cost.

A simplex is a polytope ofN+1 vertices inN dimensions, so in 1-D it is a line, in 2-D a triangle, in

3-D a tetrahedron and so on. The simplex is allowed to take a series of steps (see Fig. 2.3) most notably

thereflectionR, where the vertex with the worst function value is projectedthrough the opposite face of

1Algorithms that when given a particular input will always produce the same output for a problem that is fully specified and
dependent on known quantities.

2Also known as the downhill simplex method or the Nelder and Meadalgorithm. It is not to be confused with the simplex
algorithm [Dantzig (1963)] for the solution of the linear programming problem.
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Figure 2.2: Common optimisation methods traditionally used in computer vision.

the simplex to a hopefully better point. The simplex can alsochange its shape (expandE andcontract

C− andC+) to take larger steps when inside a valley or a flat region or squeeze through narrow regions.

It can also change direction (rotate) by discarding the worst pointW when no more improvements can

be made and considering the next-worst point amongst the simplex vertices. The simplex must be started

not with a single point but withN + 1 points so in terms of computational cost, starts and restarts (as

we shall see later on) can be expensive. This method is not recommended for problems with objective

functions that are costly to evaluate.

We introduced two small yet significant modifications to the basic algorithm [Nelder and Mead

(1965)] in order to deal with local optima. The first was the ability for the simplex torestartwhenever

its progress stalled (most likely inside a local optimum). The restart is quite simple. After a number of

function evaluations where there has been no change in the value of the tracked optimum we keep the

best vertexP0 and generateN new verticesPi using the formula:

Pi = P0 + λvi, (2.2)

wherevi areN random3 unit vectors,i = 1, . . . , N andλ is a constant which represents the step size.

The idea is that by restarting the simplex close to the best point P0 we can jump out of a local optimum

but without jumping so far away from the last good solution wehave found.

We also introduced an additional modification which is a reduction of the step sizeλ from (2.2)

based on the number of function evaluations. The rationale behind this is that by reducingλ the overall

area of the new simplex is also reduced as the optimisation progresses and it can “burrow” further into

smaller areas of the objective surface. This is illustratedin Fig. 2.4. Here we can see all the simplex

3This random component will undoubtedly change this particular simplex implementation from a deterministic to a stochastic
approach but despite that it still remains a local method.
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Figure 2.3: Possible simplex moves after the worst point (W) is identified and rejected.

function evaluations (not only the best ones) as it searchesthe objective surface. In Fig. 2.4(a) we

see the simplex using a fixed step size. After a certain point (e.g. ≈200 function evaluations or FEs

for short) it stalls and initiates therestart procedure. However, the fixed step at that location is too

large and the simplex keeps jumping in and out of the discovered good optimum without making any

significant improvement for the remaining 800 FEs. Observe now the same experiment with a reducing-

step simplex (Fig. 2.4(b)). When this algorithm first stalls it performs big jumps to become unstuck and

while it progresses the jumps get smaller as it tries to penetrate deeper into the landscape. If we compare

the two methods we can see that in the latter case the algorithm still introduces small improvements

driven by the reducing step whereas the fixed step version hasstalled many FEs earlier.

We experimented with two reduction schedules, typically encountered in Simulated Annealing

[Betke and Makris (1995); Press et al. (1993)]. These are:

λ = λ0R
(k−1) (2.3)

and

λ = λ0k
−1, (2.4)

which are illustrated in Fig. 2.5, withk being the current function evaluation andR the “cooling rate”.

After some initial tests we decided to use schedule (2.3) since it is more adjustable and changes less

abruptly in proportion to any modifications of its parameters. It also does not drop as sharply as (2.4)

which means that there is still some significant step length available for later function evaluations. A

pseudo-code algorithm of the reducing step restarting simplex is presented in Algorithm 1 in the appen-

dices.

Pattern search

Pattern search algorithms [Audet and Jr. (2003)] are a subset of direct search methods used for solv-

ing nonlinear, unconstrained optimisation problems. Similarly to the simplex algorithm, pattern search

approaches are considered direct since they neither compute nor approximate the derivatives of the objec-

tive function. Direct search methods, as opposed to more traditional approaches that rely on information

about the gradient and higher order derivatives to search for an optimal solution, examine the neighbour-

hood around the current point, looking for a solution where the value of the objective function is lower
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Figure 2.4: Comparison between a fixed (a) and a reducing-step (b) restarting simplex.
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than the current one. As a result, direct methods may be used to optimise objective functions that are

non-differentiable or even non-continuous.

A pattern search method proceeds by conducting a series of exploratory moves around the current

pointxk, sampling the objective functionf in search of a new point (trial point) xk+1 = xk + sk with

a lower function valuef(xk+1) < f(xk) (or higher if we are using a similarity metric), wherek is the

iteration number andsk is a vector called atrial step. The set of neighbourhood points sampled at every

iteration is called amesh, which is formed by adding the current point to a scalar multiple of a fixed

set of vectors called thepatternPk and which itself is independent of the objective functionf . If the

algorithm finds a new pointxk+1 in the mesh that has a lower function value than the current point xk,

then the new point becomes the current point at the next step of the algorithm.

Individual pattern search methods are distinguished by their specific exploratory moves algorithm

and they must all satisfy the following two requirements:

• The directionBCk of any accepted stepsk is defined by the patternPk and its length is determined

by the step length parameter∆k, wheresk = ∆kBCk. B is known as abasis matrix, andCk as

thegenerating matrix.

• If a simple decrease on the function value is found amongst any of the trial steps of the current

iteration, then the exploratory moves algorithm must produce a stepsk that also gives simple

decrease on the function value at the current iteration.

Every different pattern search method needs to have the basis matrixB, the generating matrixCk, the

exploratory moves algorithm to be used to produce the stepsk, and a method for updatingCk and the

length parameter∆k specified. Even so, we can outline a general pattern search algorithm (Algorithm

2), presented in the appendix section, that all individual methods should adhere to.

2.6.2 Global methods

In recent years a wide selection of global, stochastic optimisation algorithms has been introduced, such as

the genetic algorithms (GA) [Goldberg (1989)], mainly for engineering problems. Stochastic algorithms

are intended for optimising systems where the functional relationship between the independent input

variablesx and outputy of the system is not known. The effectiveness of these algorithms in global

optimisation has ensured their use in computer vision applications. Their main advantage is that they are

able to find the optimum value without the need for good initialisation. On the other hand they require

considerable parameter adjustment which in some cases is not an intuitive or straightforward process. In

addition they tend to be somewhat slower than local, deterministic algorithms since it is necessary to use

a higher number of function evaluations.

In this section we will introduce certain global optimisation methods, specifically differential evo-

lution (DE) [Storn and Price (1997)] and SOMA [Zelinka (2004)] that appear to be new to computer

vision applications and compare them with a traditional approach, that is a generic Genetic Algorithm

[Holland (1992)], to determine if these new methods are better suited for solution of typical computer

vision problems. We hope to demonstrate how much more suitable such stochastic, global algorithms
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are in overcoming typical problems, usually associated with the local methods already mentioned, so

that their use in computer vision can become more widespread.

Genetic algorithm

A genetic algorithm (GA) [Holland (1992)] belongs to a particular class of algorithms based on the

principles of evolutionary biology such as:inheritance, mutation, selectionandcrossoverin order to

find the optimum of an objective function. A GA maintains a collection of possible solutions each of

which is generated not only by some random perturbation (mutation) but also by a combination of two

random solutions from the collection. Suitable candidatesfor these mutation and combination are chosen

by probabilistic criteria. Almost all GAs, no matter how different they might appear, follow these basic

stages:initialisation, selection, reproductionand termination. What distinguishes one algorithm from

another is the variety of ways we can carry out the requirements of each of these stages. In more detail

we have:

1. Initialisation: Every GA starts with a randomly selectedpopulation of candidate solutions to our

optimisation problem (usually calledindividuals) which may be represented in a variety of ways

(binary strings, number strings, characters, number vectors). Usually, there is no prior knowledge

about the location of the global minimum apart from the approximate boundaries of the system

variables (e.g. in the case of template matching: size of scene image, angle of object rotation, mag-

nitude of object scaling and so on), and thus the initial population is generated in order to cover as

much of the search space as possible. One factor that is quiteimportant during the initialisation

stage because it determines the performance of a GA is thediversityof the initial population. If

the average distance between individuals is large then the diversity is high whereas if the average

distance is small then the diversity is low. A very low diversity will most probably cause the ge-

netic algorithm to stall or converge inside a local optimum,while a very large diversity will slow

the progress of the algorithm because of the increased search space. It is quite possible for a GA

to find the correct solution even if the latter was not inside the boundaries of the initial population

provided the following populations have sufficient diversity. Additionally, we can adjust the diver-

sity of the population after initialisation by increasing or decreasing the amount of mutation. An

increase in mutation brings about an increase in diversity and vice versa. Getting the right amount

of diversity is usually a process of trial-and-error.

2. Selection: In every generation, a number of the population individuals are selected to reproduce

and create a new generation of solutions. Individuals from the current generation are selected

through a probabilistic process using fitness-based criteria. In this way, fitter solutions are typically

more likely to be selected but a small proportion of less fit solutions will also be included in the

next step of reproduction so as to help maintain a high diversity of the population while preventing

premature convergence to sub-optimal solutions.

3. Reproduction: The aim of reproduction is to create a new generation of a population of solutions

from the current generation using the operations ofcrossoverandmutation. Once a pair of “par-
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Figure 2.6: Reproduction children in a typical genetic algorithm.

ent” solutions from the current population has been selected, they are genetically combined to

produce a “child” solution that retains some of the characteristics of its parents. This process con-

tinues until a new population of solutions is generated. As many new generations are produced the

individuals in later generations will differ considerablyfrom those of the initial generation but as

a result the average fitness should have increased. This is because only the best individuals from

the first generation would have propagated or have been selected for breeding. A “child” solution

can be any of the three following types: anelite child which is the individual (or indfividuals) of

the current generation with the best fitness value and is automatically propagated to the next gen-

eration; acrossover-childwhich is created by a combination of a pair of “parent” solutions; and a

mutation-childwhich is created by randomly changing (mutating) a current generation individual.

This is illustrated in Figure 2.6.

4. Termination: The steps of selection and reproduction arerepeated until a termination condition has

been satisfied. Usually, such conditions occur when an optimum solution has been found, when

the number of maximum generations has been exceeded, when the allocated time or computation

budget has been reached, if there is no significant improvement in the fitness of a number of

subsequent populations (stall), or because of manual intervention, or any combination of the above.

The pseudocode of a typical GA is given in Algorithm 3 in the appendices. GAs have been ap-

plied to the solution of a variety of problems in computer vision such as feature selection [Kim et al.

(2006)], face detection [Bebis et al. (1999); Xu et al. (2004)] and object recognition [Hill et al. (1992);

Bebis et al. (2002)]. GAs have been shown [Goldberg (1989); Holland (1992)] to perform well in prob-

lems involving large search spaces. This is because a GA can locate good-enough solutions very early in

the optimisation process while spending the remainder of its allocated time/computation budget trying

to improve on those solutions. Quite often the improvementsare very small in comparison to the time

spent optimising. This is not unusual for other evolutionary methods, some of which we will examine

later. That is why we believe that evolutionary optimisation in general may benefit from the inclusion of

a local search function after the most productive part of theglobal search has been carried out.
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Differential evolution

Differential evolution (DE) [Storn and Price (1997)] is an evolutionary population-based optimisation

algorithm that works on real-valued coded individuals. DE is capable of handling non-differentiable,

non-linear and multi-modal objective functions. As with all evolutionary methods, DE maintains a

population of candidate solution called theindividuals. In DE the individuals are represented simply

as vector-valued entities. This allows for easier representation of the system variables and handling of

objective functions that contain a mixture of discrete, integer and continuous parameters.

The basic way that DE works is that it adds the weighted difference between two randomly chosen

population vectors to a third vector and the fitness result iscompared with an individual from the current

population. In this way, no separate probability distribution is required for the perturbation step and DE is

completely self-organising. For example, DE can deduce theperturbation information from the distances

between the vectors that comprise the population. At the beginning (exploratory stage) we get a large

vector perturbation in order to explore as broad an area as possible. Later on when we are approaching

the optimum the distance between the vectors automaticallygets smaller and so the perturbations become

smaller. This way, DE can carry out a fine grained search for the optimum.

The algorithm behind DE is very simple and works as follows. First we generate an initial popula-

tion ofN individual candidate solution vectors. If there is no priorknowledge about the location of the

global optimum we initialise the first population with random values from the known or expected limits

of the system variables (boundary constraints). Then for each individual−→x i,G in the current generation

G DE generates a new vector−→x ′
i,G by adding the weighted difference between two randomly selected

individuals−→x r1,G and−→x r2,G to a third randomly selected vector−→x r3,G. The new vector−→x ′
i,G is then

crossed-over with the original individual−→x i,G to produce atrial vector−→u i,G+1. The fitness of−→u i,G+1

is then compared with that of the original individual−→x i,G. If the fitness of−→u i,G+1is greater than the

fitness of−→x i,G then−→x i,G is replaced by−→u i,G+1, otherwise−→x i,G survives in the new population as
−→x i,G+1. A more concise pseudocode for a single generation loop can be seen in Algorithm 4 in the

appendices, whereF is the weighting factor.

In differential evolution, just as in every other evolutionary strategy there are two separate mecha-

nisms that play a central role in the way that the overall population evolves and determine the characteris-

tic behaviour of the optimisation algorithm. The first mechanism is the population’s tendency to expand

and explore the optimisation landscape. In DE, because of the way new trial vectors are generated, there

is a high probability that perturbations yielding acceptable new points will enlarge the search region

that is covered by the population and thus prevent prematureconvergence. The second mechanism is

the selection process and is important because of the way it removes vectors in unproductive regions

thereby counteracting the continuous expansion of the firstmechanism. If left unchecked, the expansion

mechanism would cause the population to continue to expand and therefore increase the diversity of the

population and diverge to regions which are not of interest.By including the selection process we avoid

this problem while ensuring there is enough diversity to explore new territory and make sure that the

population is still evolving, thus avoiding a population stagnation.
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SOMA

Finally, we examine the Self-Organizing Migrating Algorithm (SOMA). SOMA is a stochastic optimi-

sation algorithm that is modelled on the social behaviour ofco-operating intelligent individuals and was

chosen because it has been proven that the algorithm has the ability to converge towards the global opti-

mum [Zelinka (2004)]. SOMA was successfully tested on various examples like real-time plasma reactor

control [Nolle et al. (2005); Zelinka and Nolle (2004)], deterministic chaos control [Zelinka (2006)] and

genetic programming on artificial ant trajectory synthesis[Oplatkova and Zelinka (2006)].

SOMA maintains a population of candidate solutions in everyiteration, the latter called amigration

loop. The initial population is generated randomly inside predetermined boundaries of the solution space

at the beginning of the search. In every subsequent migration loop the whole population is evaluated and

the individual with the highest fitness (or lower error value) is designated as the leaderL (Fig. 2.7(a)).

The remaining individuals will “migrate” towards the leader, that is, travel in the solution space at the

direction of the fittest individual (Fig. 2.7(b)). The normalised distance travelled by each individual is

called thepath lengthwhich is of defined size and is randomly perturbed.

Mutation, as he have seen already in the GA, is the random perturbation of individuals in a pop-

ulation and plays the important role of maintaining the diversity amongst the individuals. Mutation is

somewhat different in SOMA than in other evolutionary strategies. SOMA uses a parameter calledPRT

to perturb the individuals and is defined in the range[0, 1]. This parameter is then used to construct a

perturbation vector (PRTVector) as follows:

if randj < PRT then PRTVectorj = 1 else 0, j = 1, ..., N,

whererand is a random value fromU(0, 1) andN is the number of dimensions. The PRTVector deter-

mines the final position of a non-leading individual and essentially controls the dimensionality of each

individual’s movement in the search space. For example, if an element of the perturbation vector is set

to 0, the individual is not allowed to change its position in the corresponding dimension.

In most evolutionary methods thecrossoveroperation usually creates new individuals based on

the information from the existing and previous generations. In SOMA a series of new individuals are

obtained with a special crossover operator which in turn determines the movement of an individual in

the solution space and thus the overall behaviour of SOMA. The crossover operator is defined as:

−→x = −→x0 + −→m t PRTVector, (2.5)

where−→x is a new candidate solution,−→x0 is the original individual,m is the difference between the leader

and the starting position of the individual,t ∈ [0,PathLength] and PRTVector is the perturbation control

vector. We can observe from (2.5) that the PRTVector causes an individual to move toward the leader in

N−k dimensions. This is because theN elements of the PRTVector are randomly set to either 0 or 1 and

therefore the parameters of an individual will not change inthe dimension where PRTVectorj = 0. If we

denote byk the number of unchanging parameters, that is the number of dimensions that are not taking

part in the actual search process, we can see that the optimisation takes place inN−k dimensional space,
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Figure 2.7: 2-D examples of the SOMA algorithm.

with at mostN dimensions. Such a property can reduce significantly the time SOMA spends searching

for a solution. The SOMA algorithm is shown in pseudocode in Algorithm 5 in the appendices.

2.7 Active Appearance Models

Active Appearance Models (AAM) originally proposed by [Cootes et al. (2001)], belong to the general

class of linear shape and appearance models and are aimed at solving, among other things, the pose-

invariant object recognition problem. AAMs are a very well known and established method that has

been used extensively in the past [Edwards et al. (1998); Mitchell et al. (2001); Beichel et al. (2005);

Cho and Kim (2007)].

An AAM is a matching technique that combines a parametrised statistical model of the shape and

grey-levels4 of the object and an estimate of the statistical relationship between model parameter errors

and resulting image residuals. The AAM is defined by a set of landmarked images that compose the

off-line training set. Landmarks are chosen on each training image at key points, such as discontinuity

boundaries and feature points, in a similar manner to that weused to landmark the basis views in the LCV

training step. In fact, for the AAM tests we have used precisely the same landmark positions to build

the appearance models, as we did for the LCV approach. This further facilitates the direct comparison

between the two methods, since we are dealing with models of the same shape. Where AAMs and LCV

differ, is how the grey-level information is modelled and the combined appearance variation is expressed.

Given thus a set of such landmark points, an AAM is able to generate a statistical model of the

shape variation. This is achieved by alignment of all the shape sets from all the training images, into

a common coordinate frame (e.g. by using Procrustes alignment [Goodall (1991); Gower (1975)] and

carrying out principal component analysis (PCA) [Joliffe (1986)] on the data. Any example of a trained

object may therefore be approximated by:

x = x+ Psbs, (2.6)

4We would like to make the distinction between shape appearance, gray-level appearance and combined shape + gray-level
object appearance. In this thesis we shall be using the terms shape, gray-levels and appearance to refer each of the object’s visual
properties respectively.
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where,x is the mean aligned shape,Ps a set of orthogonal modes of variation andbs is a set of shape

parameters.

For the grey-levelsg, in a manner similar to that used in the LCV, a triangulation defined on the

landmark points is used. In this case however, each trainingexample is warped to the mean shapex,

and the pixel informationgim is sampled over the region covered by the mean shape. In this manner,

the object is segmented from the background and only the foreground pixels are used for modelling.

The effects of global lighting variation may subsequently be minimised by normalising the resulting

samples using a simple affine transformation, and attempting to match each sample to the mean of

the normalised datag, which in itself is an iterative process. It is now possible to apply PCA to the

normalised appearance data and obtain:

g = g + Pgbg, (2.7)

wherePg is a set of orthogonal modes of intensity variation andbg a set of grey-level parameters.

The combined shape and grey-level appearance of any modelled object may be reached using the

vectorsbs andbg. Since there may be some correlations between the shape and grey-level variations, an

additional PCA is carried out on the appearance data:

b =





Wsbs

bg



 , (2.8)

whereWs is a matrix of weights5 used to cater for the differences in units between the shape and intensity

models. The end result is the combined model, which is given by:

b = Qc, (2.9)

whereQ are the appearance eigenvectors (or orthogonal modes of appearance variation) andc the eigen-

values (or appearance parameters), that control both the shape and grey-levels of the object. As such

given a set of parametersc, an example image of a modelled object may be generated by first creating

theshape-freegrey-level imageg using:

g = g + PgQgc, (2.10)

and warping it by means of the landmark points defined by:

x = x+ PsWsQsc, (2.11)

whereQ =
(

Qs

Qg

)

.

The final component of the AAM is the active search, where given an appearance model, a novel

5The choice of weights is determined by using a displacement-and-error-test methodology [Cootes et al. (2001)], similar to our
approach in section 6.3.2.
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image and good initialisation, the parametersc are iteratively adjusted in such a way, that in the end,

the model matches the novel image as closely as possible. Thematching is achieved by minimising the

difference∆ = |Ii − Im|2 of the grey-scale values in the imageIi and those in the modelIm. This

matching step is decoupled from the AAM and indeed any kind ofsearch method may be employed

here. [Cootes et al. (2001)] initially proposed a local search method, which is in fact the one we used

to evaluate the AAMs on the three datasets. This local optimisation approach makes the search fast and

accurate,provideda very good initialisation is available close to the global minimum. [Cootes et al.

(2001)] do not attempt to solve the general optimisation search over a high dimensional space every time

the model is required to fit to the image. Instead they exploitthe fact that the optimisation problem is

similar each time and that the similarities can be learned off-line, as long as the required object and scene

properties have been sufficiently sampled by the training set.

[Cootes et al. (2001)] assume a simplistic linear relationship as an approximation6 between the

change of the model parameters and the error∆, in order to aid optimisation efficiency. The learning

process, during offline training, involves randomly perturbing the model and calculating the error∆ from

ground truth images. Once enough such perturbations have been performed, multi-variate regression is

used to obtain the parameters of the linear modelA.

The pseudocode behind the active search method for a single model search-update iteration, and

assuming that the current estimate of the model parameters is c0, is given in the appendix section in

algorithm 6.

The above steps are repeated until the error minimisation isstalled or after some predetermined

number of iterations where convergence is assumed. [Cooteset al. (2001)] also use a multi-resolution

pyramid search method to achieve convergence at each level before moving on to higher, finer resolu-

tions. This is more efficient than single resolution search when local optimisation methods are used.

Tests we carried out using the pyramid approach on global or hybrid optimisation methods for the LCV,

did not indicate any better accuracy performance than single resolution alternatives. The only potential

advantage of using the pyramid search with a global method oncoarser levels is that the latter can be

much faster since the image is smaller.

6It is only linear over a limited range of values and thus perturbations must be kept low (e.g.± 2 pixels translation and 10%
scale variation). [Matthews and Baker (2004)] show that this assumption is not correct.
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Chapter 3

Background theory

In this chapter we will look into the background theory of multi-view geometry, leading to the formu-

lation of the linear combination of views approach which is an essential part of this thesis. This theory

will explain why it is possible to synthesise novel views using 2-D information alone and without the

need to recover the 3-D structure of the object.

3.1 Single view geometry

We begin with the simple case of a general projective, pinhole camera model with focal lengthf and the

projection centre placed at the origin of the world frame (Fig. 3.1).

A 3-D world pointP = (X,Y,Z) is projected onto the image planeΠ through a line that passes

from the optical centreC, and is mapped to the 2-D image pointp with coordinates given by:

x =
fX

Z
, y =

fY

Z
. (3.1)

Equation (3.1) is non-linear. However, if the world and image points are represented using homogeneous

Figure 3.1: Pinhole camera geometry showing the projectionof a point P to the image planeΠ.
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coordinates, then the projection can be expressed linearlyin matrix form as:
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. (3.2)

The≈ sign implies that the left and right hand sides are equal up toa non-zero scale multiplication. (3.2)

can be simply rewritten as:

Zp = KP, (3.3)

which is known as thegeneral projective equation, with P = [X,Y,Z, 1]T andp = [fX/Z, fY/Z, 1]T .

The matrixK in (3.2) represents a very simplistic case since it containsonly information about the focal

lengthf . More generally,K is a 3×4 matrix with 11 d.o.f. defined up to a scale factorλ 6= 0, sinceK

andλK describe the same camera that may be decomposed as follows:

K = CΓG. (3.4)

Taken in turn, the 4×4 matrixG =





R[3×3] t[3×1]

0[1×3] 1



 represents the positiont and orientation

R of the camera with respect to the world coordinate system. These 6 parameters are called theexternal

camera parameters. MatrixΓ =











1 0 0 0

0 1 0 0

0 0 1 0











performs the projection from homogeneous world

space to homogeneous image space. Finally, matrixC =











f/sx f/sy cot θ ox

0 f/sy oy

0 0 1











is thecamera

calibration matrixwhich performs a 2-D affine transformation of the image planeand depends on the

intrinsic camera parameters: focal lengthf , principal point (or image centre) coordinates(ox, oy), pixel

width sx and heightsy and angleθ between the axes (usuallyπ/2). The ratiosx/sy ≈ 1 is the aspect

ratio. If these are parameters are known, the camera is said to be calibrated.

The projective camera equation (3.3) is a non-linear transformation from world to image coordinates

which complicates further analysis. To avoid this, we can use one of the available approximations to the

projective/perspective camera (Fig. 3.2). The most basic case is the orthographic camera:

Kortho = C











1 0 0 0

0 1 0 0

0 0 0 1











G, (3.5)

which reduces to a mere parallel projection onto the image plane. However, the orthographic camera is

overly simplistic since it does not model the effects ofdistance(i.e. the image of an object will change
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Figure 3.2: Common approximations to the perspective camera.

size as the object’s distance from the camera is varied) andposition (i.e. the image of an object will

change as its position in relation to the optical axis is varied). We can approximate the former effect

using the average depth̄Z of the scene points in equation (3.1), yielding:

x =
fX

Z̄
, y =

fY

Z̄
. (3.6)

In matrix form we have:

Kweak = C











1 0 0 0

0 1 0 0

0 0 0 1















R[3×3] t[3×1]

0[1×3] Z̄



 . (3.7)

This is called the weak perspective camera and it is simply the perspective camera with individual point

depthsZ replaced by an average constant depthZ̄ (see Fig. 3.2). The matrixKweak includes two stages:

parallel projection onto the average depth plane and uniform scaling of the resulting projection. The

weak perspective model is valid when the average variation of the depth of the object∆Z̄ along the line

of sight is small compared to thēZ and the field of view. As such,Kweak does not model position effects

leading to a poor approximation when the object is far from the optical axis.

We thus consider an alternative approximation, the para-perspective cameraKpara where the pro-

jection is performed on an arbitrary direction, usually theray linking the optic centre to the 3-D centroid

of the object, which is consistent for all the points.Kparacan be written as:

Kpara = C











1 0 − cotφ cotφ

0 1 − cot θ cot θ

0 0 0 1















R[3×3] t[3×1]

0[1×3] Z̄



 . (3.8)

All three approximations: (Kortho, Kweak, Kpara) can be considered as special cases of theaffine
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camera model which is obtained by constrainingK such that:

KA =











K11 K12 K13 K14

K21 K22 K23 K24

0 0 0 K34











, (3.9)

thereby reducing the degrees of freedom from 11 to 8. In termsof image and world coordinates, the

mapping takes the form:

x = AX + t, (3.10)

whereA is a general 2×3 matrix with elementsAij = Kij/K34 andt is a general 2-vector representing

the image centre. AlthoughKA is not specified in terms of a decomposition like that given inequation

(3.4) it can account for the following: a 3-D affine transformation between world and camera coordi-

nate frames, a parallel projection onto the image plane and a2-D affine transformation of the world

coordinates. We should note here that a collection of homogeneous image points obtained byKA will

have the same projective depths (which by extension also applies toKortho, Kweak andKpara) which are

independent of the scene structure [Zisserman (1992)].

3.2 Multi-view geometry

We can now move to the geometry of multiple points in multipleviews. For this we assume a 3-D scene

comprised of a multiple-point vector[P1, P2, . . . , Pn]
T . A particular 2-D view of the scene, associated

with one camera matrix (e.g.K) may be defined as:

S = [KP1,KP2, . . . ,KPn][3×n] = K[3×4] [P1, P2, . . . , PN ][4×n] . (3.11)

According to [Tomasi and Kanade (1992)], S can in principle be factored into two components repre-

senting ’joint projection’ and ’shape’, and its rank is at most 4, which happens to be the least dimension

of the factors.

On the assumption that we take a series of imagesV of the scene each associated with a camera

matrix [K1,K2, . . . ,KV ] we get:

SV =

















K1P1 K1P2 . . . K1Pn

K2P1 K2P2 . . . K2Pn
...

...
...

...

KV P1 KV P2 . . . KV Pn

















3V×n

=

















K1

K2

...

KV

















3V×4

[

P1 P2 . . . Pn

]

4×n
= Joint projection× shape.

(3.12)
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Each3 × n row vector in theSV matrix contains all thex, y coordinates and the projective depthsZ.

We may now consider the transpose ofSV written using the inhomogeneous image coordinates

p = ( xZ ,
y
Z ) as:

STV =

















p
′T
1 p

′′T
1 p

′′′T
1 . . .

p
′T
2 p

′′T
2 p

′′′T
2 . . .

...

p
′T
n p

′′T
n p

′′′T
n . . .

















n×2V

, (3.13)

wherep
′

, p
′′

, p
′′′

, . . . represent the first, second and third views of a pointp. If we use the terminology

from [Shashua (1997)] each column ofSTV is part of the Joint Point Space (JPS). Furthermore, each

“semi-view” (collection of allx andy coordinates from all points) is inside the column space ofSTV , the

latter being a subspace of the JPS. As a result it should be possible to represent all the views inside the

column space provided we construct the appropriate linearly independent basis for it. By definition, the

dimension of the column space ofSTV is equal to the rank ofSTV , which as we have mentioned previously

under affine imaging is at most 4.

3.3 Linear combination of views

[Ullman and Basri (1991)] were the first to point out that we only require three semi-views to span the

column space ofSTV , although as shown in [Buxton et al. (1998)] four semi-views(i.e. 2 views) might

be preferable from a practical viewpoint as it results in a symmetric manipulation of the subspace and

improved numerical properties in the basis views (e.g. for the solution of the linear system and recovery

of the coefficients). More specifically, [Ullman and Basri (1991)] showed that under the assumption of

orthographic projection and 3-D rigid transformations, two views are sufficient to represent any novel

view of a polygonal object from the same aspect. The proof mayeasily be extended to any affine imaging

condition. Thus, to a good approximation, given two images of an object from different (basis) viewsI ′

andI ′′ with corresponding image coordinates(x′, y′) and(x′′, y′′), we can represent any point(x, y) in

a novel, target viewIT according to, for example:

x = a0 + a1x
′ + a2y

′ + a3x
′′ + a4y

′′

y = b0 + b1x
′ + b2y

′ + b3x
′′ + b4y

′′
. (3.14)

The target view is reconstructed from the above two equations given a set of valid coefficients(ai, bj).

Provided we have at least 5 corresponding landmark points inall three images(IT , I ′, I ′′) we can es-

timate the coefficients(ai, bj) by using a standard least squares approach.(ai, bj) are functions of

the camera parameters but without any dependence on 3-D world coordinates. Based on a method for

weighting the combination of the intensities (or colours) of corresponding points in the basis views

I ′ andI ′′ several others have taken this concept further from its initial application to line images and

edge maps, to the representation of real imagesIT [Bebis et al. (2002); Koufakis and Buxton (1998b);

Hansard and Buxton (2000b); Peters and von der Malsburg (2001); Revaud et al. (2007)].

Such results suggest a straightforward yet powerful framework for object recognition: novel views
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of an object can be recognised by simply matching them to combination of a small number of stored

views (basis views) of the object. The main problem with thisidea is the choice of parameters for the

combination scheme. As suggested by Ullman and Basri the parameters can be recovered either by: i)

identifying a set of features from the novel view that approximately match a set of features from the

known views or ii) searching the space of parameters explicitly. In i) one has to compute the transfor-

mation that aligns the model with the scene by solving a system of linear equations similar to (3.14).

The problem here is the correspondence problem because evenunder the unrealistic assumption that the

correct features have been detected, the number of model-scene feature matches grows exponentially as

the number of scene features increases. Techniques that aimto solve this problem, such as the interpre-

tation tree [Grimson and Lozano-Perez (1986)], will be overwhelmed by the sheer number of possible

correspondence matches. Strategy ii) avoids this feature-matching step and the correspondence problem

but may be very time consuming owing to the high dimensional space that needs to be explored.

In this thesis, we will attempt to use the LCV method directlyon intensity images, without ex-

tracting any features, establishing correspondences or solving for the LCV coefficients. Instead, we will

have to search the high-dimensional parameter space to recover the coefficients with the help of a good

and efficient optimisation algorithm. In this context, employing LCV for object recognition has several

advantages over existing methods. First, it is more practical than methods which require explicit 3-D

models. In fact, a sparse set of 2-D views may be all that is required to represent a 3-D object, and the

scheme is as powerful as using 3-D models. Second, it is more efficient since it stores and manipulates

2-D views only. In contrast to multi-view approaches, novelviews in LCV are compared topredicted

views (i.e. combination of reference views) rather than thecomparison being the reference views them-

selves. Since the predicted views can be different from the reference views, recognition does not depend

on close similarity between novel and reference views as in the case with multi-view approaches.
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Chapter 4

2-D object recognition

In this chapter, we introduce the work carried out during ourinitial research on the object recognition

problem for 2-dimensional objects. The solution we proposeconsists of aprototype model template

which describes the representative appearance of a class, aset ofparametric transformationsthat deform

the template and a set ofconstraintsthat bias the choices of possible deformations. We begin with basic

deformations and continue with their extension and the introduction of probabilistic constraints to build a

Bayesian framework. This led us, in addition, to explore thebasics of foreground/background modelling

and its effect on the template matching process.

4.1 Model representation

The starting point of our investigation into 2-D object recognition is a simple representation for a flat,

planar object. We will introduce parametric transformations of such an object later on, but as we wish

to avoid additional parameterisation in the model [Cootes and Taylor (2004); Cootes et al. (2001, 1995)]

these will only represent global information on the object without explicitly defining a parametric form

for each class of objects.

Instead, to aid simplicity, we are going to use a “prototype template”,Im, which is essentially the

exemplary appearance or ’model’ of an object (or class of objects) and is based on our prior knowl-

edge about the characteristics of the object of interest. Our template thus contains only grey-level and

boundary information in the form of a bitmap and is thereforeappropriate for general object recognition

tasks since, in order to apply the same approach to a different class of objects, we only need to generate

a new prototype image of this class. The prototype is usuallyobtained from training samples, using

a training procedure that could be based on Principal Components Analysis (PCA) [Cootes and Taylor

(2004)], shape alignment [Viola and Wells (1995); Larsen and Eiriksson (2002); Liang et al. (2006)], or

the prototype template could simply be the mean appearance of the class.

If we now revisit the problem statement in section 1.1, we mayreformulate (1.1) using the prototype

intensity template. We assume a scene or ’target’ imageIT (x, y) where(x, y)T are pixel coordinates. If

we allow for a transformationT of the template, our aim is to minimise the difference between the pixel

values in the templateIm(x, y) and those in the imageIT (x, y) using, for example, a sum of squares

error criterion
∑

x,y [IT (x, y) − TIm(x, y)]2. The most simple choice for the transformationT is the 2-
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dimensional translation of the co-ordinates(x, y) that positions the centre of the template, say, at(u, v).

If we also restrict the comparison of target image and template to the area covered by the template, we

may thus reformulate (1.1) as:

∑

x,y

h(x− u, y − v)[IT (x, y) − Im(x− u, y − v)]2, (4.1)

where the window functionh(x − u, y − v) restricts the sum to be over all the pixels(x, y) under the

template located at(u, v). We can now expand (4.1) and obtain:

∑

x,y

h(x− u, y − v)[IT
2(x, y) − 2IT (x, y)Im(x− u, y − v) + Im

2(x− u, y − v)]. (4.2)

In (4.2) the term
∑

Im
2(x− u, y − v) is constant and if we assume that

∑

IT
2(x, y) does not fluctuate

very much over different regions of interesth(x − u, y − v) of the target image, we may replace min-

imisation of the sum of squared differences in (4.2) by maximisation of thecross-correlationor overlap

term:

O(u, v) =
∑

x,y

IT (x, y)Im(x− u, y − v), (4.3)

which is a similarity measure between the target image and the template. However, strictly speaking,
∑

h(x− u, y − v)IT
2(x, y) is not approximately constant across the image, especiallywhen there is

clutter in the background, but varies with the position of the windowh(x− u, y − v). It is thus possible

for matching using (4.3) to fail to give consistent results.In particular, this can happen when the correct

position where the object is located returns a lower correlation value than, say a bright region in the

image where there is a high intensity inIT (x, y).

We can avoid this particular problem by normalising the intensities of both the target image and the

template to unit energy or ’length’ by replacing (4.3) with:

c(u, v) =

∑

x,y h(x− u, y − v)[IT (x, y) − IT ][Im(x− u, y − v) − Im]
√

∑

h(x− u, y − v)[IT (x, y) − IT ]2
∑

h(x− u, y − v)[Im(x− u, y − v) − Im]2
, (4.4)

which is called thenormalised cross-correlationandIm andIT are the means of the template and the

portion of the image under the windowh(x− u, y − v) respectively.

It is immediately obvious that (4.1) does not have a closed form solution and that it must be min-

imised numerically, using one of the various numerical optimisation algorithms available. Likewise,

since it is a similarity measure (4.4) must be maximised numerically. As we can see from Fig. 4.1(a)

however, this is not so straightforward since even an elementary transformation, such as translation of

the template, can generate very noisy surfaces replete withlocal minima and is as a result very difficult

to optimise without a complete global search. Such a complete global search is usually carried out in

template matching by scanning the template over all possible locations in the target image but this pro-

cedure, does not extend well to cases where the transformationT is more complicated and the search is
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Figure 4.1: surfaces and curves composing the affine transformation.

higher-dimensional. For this reason, we need to simplify the problem by regularising the error surface

and/or starting the optimisation process much closer to thebasin of attraction1. We shall revisit this idea

later in this chapter.

4.2 Parametric transformations

Although we assume that the prototype template exhibits theinstance of the object that is most likely

a-priori, we still need the ability to deform it to match the image. The 2-D translation previously used is

very restrictive for most object recognition applicationsso we would like to extend it to a more powerful

transformation, the global affine transformation with 6 degrees of freedom (d.o.f.) which, for example,

can be used approximately to account for changes in the apparent shape of a 2-D object with viewpoint.

The affine transformation is represented here as:T = M + d, where

M =





c1 c2

c3 c4



 (4.5)

is a2 × 2 linear transformation matrix with 4 d.o.f. andd = (dx, dy) a translation vector with 2 d.o.f..

These transformations may be the result of variations in thelocation and shape of the object itself or, as

noted above, variations in the camera viewpoint (distance,viewing angle and so on).

If we now try to minimise the dissimilarity between the template and scene image with respect to

1In the context of the optimisations we have to carry out, we will loosely define the basin of attraction as the region of space
(i.e. set of points) such that initialisation within this region will guarantee convergence of the optimisation algorithm to the global
optimum. In this sense, the basin of attraction is algorithm-dependent.
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the 6 parameters of the affine transformT , we will soon discover that for the majority of cases (excluding

very simplistic objects over constant backgrounds and for trivial differences between scene and template)

this is indeed a difficult task that can defeat, for example, pyramid-based matching procedures and

even more sophisticated optimisation algorithms. This is because, as noted above, pixel-based template

matching usually involves dealing with very complicated error surfaces.

A possible solution to this problem would be somehow to assist the search algorithm. This usually

either means initialising the optimisation close to where we believe the solution might be or by incorpo-

rating prior information into the optimisation process that will, we hope, constrain the solution towards

the desired global optimum. The latter might take the form ofa restriction of the search to possible

good areas in the parameter space that should be explored or of a regularisation of the error surface by

addition of a term or terms which are convex and sufficiently strong to dominate the pixel-based match-

ing term everywhere except near the desired global optimum.Since good initialisation without explicit

knowledge of the solution set might not always be possible, we decided to introduce prior information by

associating probability distributions with the parameters of the affine transform and building a Bayesian

model. To achieve this we need to choose a suitable parameterisation of the affine transformation. Ide-

ally, the chosen representation would isolate the individual degrees of freedom into separate independent

transformations and assign a probability distribution to each one. The reason for this is that dealing with

statistically independent parameters is both more practical and more intuitive than dealing with mul-

tivariate distributions. In particular, we are able to examine independent univariate transformations in

isolation and assign to them pdfs chosen specifically for their individual characteristics

It is therefore necessary todecomposethe linear matrixM as far as possible into individual

meaningful transformations (primitive matrices). One wayto proceed is via polar decomposition

[K.Shoemake and Duff (1992)] and to decompose the (in general) non-singular matrixM asM = QS,

whereQ is an orthogonal matrix with 1 d.o.f. that, depending on the sign of its determinant, may be a

pure rotation andS is a symmetric and (in general) positive definitestretchmatrix (i.e. a non-uniform

scale along orthogonal axes that may be turned at an angle to the coordinate axes) with 3 d.o.f.. Polar

decomposition will produce unique matricesQ andS. Unfortunately in general this is as far as we can

go and we cannot uniquely2 decomposeS any further into scale or shear matrices. In addition the order

in which the constituent matrices are multiplied matters, introducing further ambiguity.

Given these difficulties, another way to proceed is tocomposethe linear matrixM as a product of

primitive matrices. For example, if we adopt a canonical order for the transformations we can say:

M = SRUx, (4.6)

where:

S =





sx 0

0 sy



 is an anisotropic scale matrix with 2 d.o.f. ,

2We could try a further polar decomposition onS to obtain a shear matrix but this will not work because of the interaction
effects of the shear transformation. See [K.Shoemake and Duff(1992)].
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R =





cosθ −sinθ
sinθ cosθ



 is a rotation matrix with 1 d.o.f. and

Ux =





1 −tanφ
0 1



 a shear matrix on the x axis with 1 d.o.f. .

As we can see, we have accounted for all the degrees of freedomof the linear matrixM . Of course,

this composition is not unique, and indeed any such combination that has 4 d.o.f. will be valid. Since

we are only interested in the transformations from an optimisation point of view, the order in which the

transformations take place (e.g. shear followed by rotation and then anisotropic scale) should not matter

as long as we use the same representation throughout.

Having representing the matrixM in such a way, we may begin by exploring the characteristics of

the individual transformations independently from each other, near and inside their respective basins of

attraction. In Fig. 4.1 we show the SSD error response for each of these transformations. These were

produced by placing a windowed template directly over the imaged object and varying each of the 6

transformation parameters in turn while having conditioned the remaining ones at their optimal values.

The results are only 1- and 2-dimensional slices of the overall basin of attraction which owing to the high

dimensionality cannot be viewed in its entirety. They are still however very useful in identifying where

potentially interesting solutions may exist and helping tochoose the appropriate prior distributions.

In addition, though it is not strictly necessary in this affine model, we have chosen to include a

local, flexible deformationL which is a continuous mapping(x, y) → (x, y) + [Lx(x, y), Ly(x, y)] in 2

dimensions. We define it as a simple sinusoidal wave function:

Lψ(x, y) = [Lx(x, y), Ly(x, y)] =

[

αcos(
2π∆

λx
), βcos(

2π∆

λy
)

]

, (4.7)

whereψ = (α, β, λx, λy, x0, y0) are the deformation parameters.α, β are the wave amplitudes,λx, λy

the wavelengths, and∆ =
√

(x− x0)2 + (y − y0)2 is the Euclidean distance from the wave centre

point (x0, y0). Although we assume an affine or weak perspective camera model it is important to

consider effects due to image distortion via lens aberration and other non-linear processes during image

formation. Such effects may of course be removed by means of asuitable camera calibration [Salvi et al.

(2002); Hemayed (2003)], however, un-calibrated cameras are frequently used in practice and this is

becoming increasingly the case as cheap digital cameras become widely available. Thus, the wave

deformationL is used to introduce any necessary curvature into the mapping process and to take care

of fine detailed adjustments that the affine transformation alone cannot explain. Defined in this way the

local deformation represents extrinsic variation, but there is no reason why it could not also be used to

represent intrinsic shape changes of the model especially if applied before the affine transformationM .

The deformationL is similar to the orthogonal base displacement used by Jain et al. [Jain et al. (1996)]

but in our case is simpler and easier to optimise.

The functionL is continuous and smooth for low values ofα, β andλx, λy approximately the size

of the template window and thus maintains the connectivity and smoothness of the template. For higher
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Figure 4.2: The sinusoidal wave (a) and its deformation effects (c) on a 2-D shape (b).

amplitudes and lower wavelength values we can obtain more complex, coarser deformations if required.

The wave function has simple parameters that are meaningfuland can easily be adjusted to control the

wave propagation over the image, and in addition, it is straight-forward to attach probabilistic priors to

them. An example of this local deformation function together with its effect on an image can be seen in

Fig. 4.2.

Suppose then that we have a prototype template functionIm(x, y) and a transformationT that

transforms the template as follows:

IS(x, y) = TIm(x, y) = Im([M(x, y)] + Lψ(x, y) + d). (4.8)

If we use (4.6) from above we see that:

IS(x, y) = Im(SRUx(x, y) + Lψ(x, y) + (dx, dy)) (4.9)

which is the parametric transformation that will deform thetemplate to produce a synthetic imageIS ,

say, to be matched to the scene or target imageIT . This transformation is realised by shearing the

template by an angleφ, then rotating by an angleθ, scaling the result bysx, sy along directionsx andy

respectively, locally deforming the resulting template byψ and finally translating byd.

We can now use equations (1.1) and (4.9) and minimise for the transformation parametersξ, say,

in order to obtain the optimal solution that will match the rectangular template to the image. Since
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this is a non-linear objective function we need an iterativemethod in order to minimise it successfully.

Furthermore, because only a limited set of parametersξ will produce a template that closely resembles

the object we may expect a narrow basin of attraction in a high-dimensional space. Unless we initialise

the optimisation very close to the solution representing the correct match, minimisation is likely to be

difficult. The alternative is to restrict the variability ofthe transformations known to be likely to represent

correctly matching solutions.

4.3 Probabilistic constraints

By choosing appropriate transformation parameters we can represent a large set of possible transforma-

tions of the prototype template. However, not all these choices will produce a valid template or even a

template that resembles the object(s) in the image. Constraining the choice of possible parametersξ may

thus yield better solutions. We do so by imposing a probability density function (pdf) on the parameters

of the transformationsT .

Consider the local deformationLψ(x, y) first. We have deduced constraints on the range of accept-

able parameter values based on experimentation and insightinto the transformations with which they

are associated. First and foremost, we have chosen a uniformdistribution for the wave centre param-

etersx0, y0 since any starting point (within the image range) has an equal probability of producing a

valid wave. Under the assumption that the amplitudesα, β of the two waves (one on the x-axis and the

other on the y-axis) are zero mean, independent and identically Gaussian distributed, with equal variance

σ2
α = σ2

β = σ2
w then their pdf will be:

P (α, β) = P (α)P (β) = 1
σα

√
2π

exp
{

− α2

2σ2
α

}

1
σβ

√
2π

exp
{

− β2

2σ2

β

}

.

= 1
σ2

w2π exp
{

−α2+β2

2σ2
w

}

.

(4.10)

Generally, if we choose large values forα, β we will obtain large deformations of the template and thus

large deviations from the original prototype. As we have indicated above we wish to avoid that and we do

so by adjusting the varianceσ2
w. Large values ofσ2

w allow for larger deformations and vice-versa smaller

values tend to restrict the parameters to representing smaller deformations. The wavelength parameters

λx, λy require a different pdf with positive or negative non-zero values (multiples of the image width and

height respectively) being more probable than wavelengthsclose to zero. Therefore, it is clear that we

need a distribution that is symmetric, with zero probability for when the wavelengthλ = 0, and which

increases as we move further away from the origin. Since sucha pdf is not easily expressed in a familiar

analytic form we have reformulated (4.7) by using wave number parameterskx = 1/λx, ky = 1/λy

each of which is the reciprocal of the wavelength.kx, ky have units of inverse length and represent the

number of waves (or cycles) per unit distance. The new wave deformation will thus be as follows:

Lψ(x, y) = [α cos(2πkx∆), β cos(2πky∆)]. (4.11)
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This reformulation allows us to use the parameterskx, ky instead ofλx, λy which is preferred because

the wave number parameterskx, ky have much simpler pdfs. More specifically, the probabilityP (kx, ky)

should have a maximum at 0 where each of the deformation wavelengths becomes very small since the

template will then undergo only insignificant deformations. The probability may be expected to decrease

quickly, for example exponentially, as we move away from0. Such a pdf has the characteristics of the

Laplacian (or double-exponential) probability density function but since its derivative has a discontinuity

at zero we decided to approximate the pdf using the much simpler Gaussian distribution. If we again

assume thatkx andky are independently and identically distributed with meansk̄x, k̄y = 0 and shape

parameterσk then their pdf is:

P (k) = P (kx)P (ky) = 1
σk

√
2π

exp
{

− k2

x

2σ2

k

}

1
σk

√
2π

exp
{

− k2

y

2σ2

k

}

= 1
σ2

k
2π

exp
{

−k2

x+k2

y

2σ2

k

}

.

(4.12)

. Note that (4.12) represents our empirical, expectation that waves with smaller wavelengths (thus

smoother deformations) are more probable since in generally we do not deal with severe non-linear

lens distortions.

For the rotation and translation, we may assume, for exampleas a default, that all rotations and

translations are equally possible and thus we can consider their parametersθ, d as being uniformly dis-

tributed. However the scale and shear transformations require a different approach and special care is

required in choosing their pdfs. The reason for this comes from the behaviour of the error function (4.9)

for certain values or ranges of values for the parameterss = (sx, sy) andφ. For example, if one or both

of the scale parameters are very small,IS(x, y) will collapse into a single point or to a line respectively.

This of course is not going to be a valid representation for the template but the error will undoubtedly

have a minimum for these values of the scale parameters. Suchtrivial solutions should not be allowed.

Similar behaviour occurs with the shear angleφ.

To illustrate this further we have carried out the followingexperiment. We took a grey scale template

of an object, created directly from an image, and placed thattemplate above the original scene object.

Then we sampled the sum of squared differences error function for different values of the scale parameter.

We started froms = 1 (original template size) and scaled it up untils = 3 and we also scaled down

the original template untils = 0. The resulting error function plot can be seen in Fig. 4.3, upper

left image. It is important to note how the error function behaves as we vary the scale parameter. As

expected, for a specific value ofs (in this cases = 1), we have a correct object-template match and the

error function is at a minimum. However, we can also see that for valuess < 0.8 the error function

decreases and eventually drops to zero ats = 0. In this case, where the template was constructed from

part of the image itself, along with the solution ats = 1 the solution ats = 0 is a global minimum.

An optimisation algorithm might correctly identify this asthe minimum but such a solution is not useful

since the template would have collapsed to a point. For the sear parameterφ, a shear defined in terms of

the shear angle (as opposed to the shear magnitude) will forφ = ±π/2 collapse the original template
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Figure 4.3: Error function appearance for a match located atsuccessively higher scale values.

into a line.

In addition to the behaviour of the error function when the scale parameters are close to zero,

another problem arises when the global minimum is located further away on the rightmost part of the

scale axis (see Fig. 4.3). It is noticeable that there is somedegradation in the quality of the minimum

and that as the value of the scale at which it occurs increasesthe minimum becomes less pronounced.

Eventually, for sufficiently large scale values the desiredresponse will completely disappear and thus

will be undetectable by any optimisation technique. This behaviour is caused by the fact that when we

need to scale-up the template in order to match with the imagewe have to use an interpolation method.

The more we have to interpolate, the more details of the object’s appearance may be omitted and the

greater the match degradation. This is a problem inherent tothe way the prototype is modelled and the

type of image to which it is applied. If the prototype were modelled at one scale but the object in the

image is at a considerably larger scale then we will have a situation like that described above. From

this point of view a solution to this problem is very difficultand care should be taken when building

and applying a prototype template so that the match is located within certain limits of the scale of the

original template. A hierarchy of templates constructed from training images at different magnifications

and/or different viewing distances3 might thus be used. We note that it is possible to a greater extent

to use a prototype template that is at a considerably larger scale than the object we are expecting to find

in the image. This will mean that we will have to reduce the scale in order to find a match but, because

unlike up-scaling, downscaling does not “invent” new information for the model but instead reduces the

3Note that in general changes in magnification and changes in viewing distance are not equivalent because occlusion changes
may be associated with the latter but not with the former.
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information content to match that of the image, the quality of the match will not be so badly affected

(provided of course we carry out the interpolation correctly)4.

To avoid the problems with the trivial, invalid solution we seek to forbid such problematic values for

the scale and shear parameters. For this reason we define a prior for these parameters that will bias them

away from such values. From the examples we have seen for the scale parameter it is obvious that we

need to impose a distribution that is applicable to random, continuous variables that are constrained not

to be zero but may take a few large values. We therefore require a distribution that is asymmetrical and

positively skewed, preferably with the possibility of adjusting the tail at large scale. A good choice (as

we shall explore later in the next section) for the scale parameterssx andsy is thelognormal distribution

[Evans et al. (2002)]. If we assume thatsx andsy are independent and their shape and scale parameters

are equalbx = by = b andσx = σy = σ respectively, this choice leads to:

P (sx, sy) =
1

sxsyb22π
exp

[

− (log(sx) − σ)2 + (log(sy) − σ)2

2b2

]

. (4.13)

The lognormal distribution assigns very low probability toquantiles close to zero while it allows us to

determine the probability of large values of the scale parameterssx, sy by adjusting the tail of the pdf.

For the shear angle, we would like to introduce a bias in favour of small deformations and that

specific values close to integer and a half multiples ofφ = ±π/2 are not admitted. In addition, when the

mean shear anglēφ is at or near to zero the distribution must be symmetric and have a high probability.

If on the other hand, the mean angle is close to±π/2 then the probability must fall sharply. It is

obvious then that the shape of the pdf must change from symmetric to positively or negatively skewed

as we movēφ along the shear angle axis. We have therefore chosen a mixture model of two opposite

Gumbel distributions(extreme value Type 1) [Evans et al. (2002)] with the mixtureweight parameters

chosen to ensure the following: First, when the mean shearφ̄ is at either of the two extremes of the

shear parameter axis (the range of the shear parameter is−π/2 < φ ≤ π/2) only the one of the two

Gumbel distributions with the appropriate skewness will contribute; Second, when̄φ = 0 both Gumbel

distributions will contribute equally thus enforcing symmetry in the mixture. The pdf of this mixture

may be formulated as:

P (φ) =
(1 −A)e−

φ−φ̄
b

−e−
φ−φ̄

b +Ae−
φ−φ̄

b
−e−

φ−φ̄
b

b
, (4.14)

whereb is the shape parameter andA = φ̄+π/2
π . An illustration of the mixture model can be seen in Fig.

4.4. Since the individual transformation parameters whereassumed independent, the total prior pdf is

the product of the individual pdfs (4.12), (4.13) and (4.14), P (ξ) = P (k)P (sx, sy)P (φ).

4In this case too, if the template is constructed from too small aviewing distance, interpolation will not, in general, correctly
represent non-linear occlusion effects.
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Figure 4.4: The mixture model (bold line) for the distribution of the shear parameterφ.

4.4 Objective function

Now that we have established the form of the prior pdf we complete definition of the objective function by

means of a Bayesian formulation as described in Chapter 1. Ifwe return to the general object recognition

equation (1.1) this means that, having identified the appropriate transformation (4.9) which will deform

the prototype templateIm, all we need now is to define a suitable measureg. Two widely used such

measures are the sum of squared differences (SSD) orL2 norm, and the sum of absolute differences

(SAD) orL1 norm, which measure the dissimilarity between the image andthe template.

Although the SSD metric has been used in a variety of object recognition problems it is not without

serious limitations. First and foremost, SSD is sensitive to outliers and not robust to template variations.

Even though it is valid from a maximum likelihood perspective when the template is actually a model

of the object of interest in the target image, a SSD metric assumes a normal distribution on the residuals

(i.e. the error) and independence on the variables used to derive the likelihoods. However, [Tian et al.

(2004)] have shown that additive noise in real images is generally not independently and identically

normally distributed. Noise models that are normally distributed usually assume statistical independence

of adjacent pixels. Since however in practice the majority of variation in an intensity image is due to

illumination changes or to intrinsic variation between similar in-class objects and since such variations

are spatially correlated, this assumption is not plausible. Furthermore, the residuals are very different and

very differently distributed when the template lies over the object and when it lies over the background.

In the former case the residuals may be assumed to be small anddue to noise and/or accumulation of

modelling inaccuracies. In the later case the residuals will be large and, for an arbitrary template and

image background, distributed in the same kind of way that natural imagery is. Since the intensity of

an image depends on both the illumination conditions and camera settings and properties, it is difficult
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to model its distribution for images of natural or man-made scenes in detail, but the distribution of the

outputs of banks of filters applied to such images has been described for example by [Srivastava et al.

(2003, 2002); Mumford (1996); Huang and Mumford (1999)]. Inaddition, as we noted in section 4.1 it

has been pointed out by [Sullivan et al. (2001)] that, in a valid Bayesian analysis, our data observations

must be regarded as fixed and not as a function of the hypothesis as to what the image template represents,

how big and what shape it is, and where it is located in the image. The SSD metric as commonly

used violates this principle by considering only the portion of an image directly under the templateIm.

Instead, we should incorporate the background informationfrom the image, for example: by sampling

the background so that it is known a priori, by choosing it to be very simple, such as a uniform bland

image or dark, or by building a probabilistic model of the image background.

Contrary to the SSD metric, the SAD metric is more robust since it does not give such high im-

portance to large residuals. The SAD metric may be justified from a maximum likelihood perspective

when the noise distribution is Laplacian. Nevertheless this function is not smooth and is singular when

the error residuals approach zero. Such a singularity may cause difficulties in numerical optimisation

in particular if gradient-based methods are used. This metric has the advantage that large residuals are

given only the same importance or “influence” as smaller residuals.

Thus we require a more robust error measure, one that treats residuals over foreground areas with

one metric and residuals over background with a different metric. A first approach is to use one of the

L1 − L2 hybrid norms, such as the one proposed by [Huber (1973)]:

gτ (IT , Im) =







(IT −Im)2

2τ , 0 ≤ |IT − Im| ≤ τ

|IT − Im| − τ
2 , τ ≤ |IT − Im|

, (4.15)

whereτ is the threshold at which the function switches between theL1 andL2 norms. Fig. 4.5(a) shows

the Huber norm as a function of the residuals and how it treatssmall residuals (between−τ andτ ) with

theL2 norm and large residuals with theL1 norm. The marks represent the point where we switch

fromL1 toL2 and vice versa. Even though the Huber norm is smooth at±τ where it switches between

the two norms it is onlyC1 continuous (see Fig. 4.5(c)). One can go further by introducing a metric

that smoothly interpolates between the two norms. One such metric is the smooth Huber norm [Buxton

(2004)] defined as:

gτ (x) =

√

1 +
x2

τ2
− 1, (4.16)

and whose function and first derivative are illustrated on Fig. 4.5(a) and (b) respectively. If we use

equations (1.1), (4.9) and (4.16) we obtain the combined objective function which needs to be minimised:

p̂ = argmin
T

∑

(
√

1 +
[IT (x, y) − TIm(x, y)]2

τ2
− 1

)

, (4.17)

where the thresholdτ may be chosen atτ = max |X|
100 , or set at the98th percentile of the observed data

X (see [Guitton and Symes (2003); Guitton and Verschuur (2004)]).
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Figure 4.5: Comparison of the Huber and smooth Huber norms.

Since we are using a Bayesian approach we need to reformulate(4.17) as a pdf. The likelihood of

observing the input image given the deformations on the prototype template is therefore:

P (IT |ξ) = C1 exp

{

−
∑

(
√

1 +
[IT (x, y) − TIm(x, y)]2

τ2
− 1

)}

, (4.18)

where, as usualξ stands for the parameters of the transformationT , C1 is a normalising constant

equal to1/2(eK1(1)τ), e is the exponential andK1 a modified Bessel function (using (4) from

[Gradshteyn and Ryzhik (1980)], p. 358 and changing variables). C1 simply ensures that (4.18) in-

tegrates to 1.

Finally, we may ignore not only these constant terms (since they do not make much difference from

an optimisation point of view) but also use the fact that the probability P (IT ) is constant,P (ξ|IT ) ∝
P (IT |ξ)P (ξ) to combine equations (4.12), (4.13), (4.14) and (4.18) to obtain the posterior pdf of the

parametersξ given an imageIT . The parameters may be recovered by minimising the corresponding

negative log-likelihood:

minξ {− logP (ξ|IT )} = log(
√

s3xs
3
y) − log(e−

φ
b
−e−

φ
b + e

φ
b
−e

φ
b ) +

k2

x+k2

y

w2

+σs(
1
sx

+ sx + 1
sy

+ sy − 4) + α2+β2

σ2

αβ

+
∑

x,y

(

√

1 + [IT (x,y)−TIm(x,y)]2

τ2 − 1

) . (4.19)

Note that the distribution shape parametersb, w, σs, σαβ and the thresholdτ are treated as fixed.

4.4.1 The scale transformation

We mention the scale transformation here separately because it has some interesting properties that we

would like to explore and also because it poses some difficultproblems for object recognition systems.
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Figure 4.6: A model of the spherical imaged object under a perspective camera model.

In this section we will examine various distribution modelsto determine which one better describes the

process of an imaged object undergoing uniform scaling. This may subsequently be used as a prior in a

Bayesian formulation to capture knowledge about the scaling process.

The first step is to define a theoretical model of how the scale of an object changes in relation to

the viewing distance. This model is a theoretical analogue of the actual deformation process and can

be used to generate prior distributions for the scale parameter, for example, by appropriately sampling

the viewing distance parameter. In addition it can help us tounderstand the distribution of the viewing

distance parameter when there is only explicit knowledge ofthe scaling of object appearance for example

after a practical imaging experiment as we will see later on.This in turn can help to verify the correctness

of, and any inherent statistical bias in, our experiments. Once the scaling model is defined we are able

to fit parametric models of the distribution of scale and determine which one has the best properties

to describe our prior knowledge about an object that undergoes a scale transformation. The chosen

parametric model may then be used as a prior for the scale parameter in our Bayesian inference paradigm.

Thus, we assume a perspective camera model such as the one illustrated in plan view in Fig. 4.6

and imaging a spherical object defined by the equation(X − X0)
2 + (Y − Y0)

2 + (Z − Z0)
2 = R2.

(X,Y,Z) is a point on the boundary of the sphere,(X0, YO, ZO) is the sphere’s centre andR its radius.

The camera is defined by the centre of projectionO, the imaging plane isΠ, the focal lengthf and the

viewing axisz. We denote the distance between the image plane and the object by Z0. It can be shown

that for a perspective camera model the imaged boundary(x, y) of such a spherical object of radiusR

(the reason for choosing a sphere is for simplicity and will become apparent later on) has the equation of

an ellipse:

(

X2
0 + Y 2

0 + Z2
0 −R2

X2
0 + Y 2

0

)

(xX0yY0)
2 +

(

Z2
0 −R2

X2
0 + Y 2

0

)[

xX0 + yY0 + fZ0

(

X2
0 + Y 2

0

Z2
0 −R2

)]2

=
f2R2(X2

0 + Y 2
0 + Z2

0 −R2)

Z2
0 −R2

, (4.20)

with centre:

x =
X0fZ0

Z2
0 −R2

, y = − Y0fZ0

Z2
0 −R2

(4.21)
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and semi-major and semi-minor axes:

a2 =
f2R2(X2

0 + Y 2
0 + Z2

0 −R2

(Z2
0 +R2)2

, b2 =
f2R2

Z2
0 −R2

(4.22)

respectively.

We may now define the scales of the imaged, elliptical boundary as:

s2 = ab

⇒ s =
fR

√

Z2
0 −R2

(

X2
0 + Y 2

0 + Z2
0 −R2

Z2
0 −R2

)1/4

. (4.23)

If we now assume that the object is approximately centred in the image, soX0 = Y0 = 0 and that

its radius is much smaller than the viewing distanceZ2
0 ≫ R2 then, without loss of generality, (4.23)

simplifies to:

s =
fR

Z0
. (4.24)

From (4.24) we can see that the scale depends only onZ0 which makes intuitive sense - we expect the

scale of the image of an object to be approximately proportional to the reciprocal of the viewing distance

with small distances from the camera producing larger imaged objects and vice versa. A similar relation

between scale and distance applies to more general objects.An illustration of this relationship with

additive Gaussian noise is shown in Fig. 4.7.

In order to randomly sample the scale distribution we conducted a simple experiment in which we

try to simulate a typical computer vision scenario. In this experiment a rotation-invariant object (e.g. a

ball) is placed inside a room and pictures of it are taken froma variety of distances and positions in the

upper-half of the viewing sphere. We have chosen to use a ballas a test object because its shape does

not change as the angle of the camera changes and thus we can focus on the effects of scaling alone. In

addition, because perspective distortions do not have a strong influence on the ball’s shape we can view

the scene from nearby and so obtain a much more complete rangeof samples. A separate image of the

ball is also taken that serves as a prototype template (see Fig. 4.8(b)). This prototype template is assumed
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(a) (b)

Figure 4.8: Typical captured image sample (a) and the prototype template (b).
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Figure 4.9: Sampled histograms of the scale from the first (a)and second (b) experiments.

to have scale parameters = 1 and is used as a reference for the sampling process. We carried out two

separate experiments in which two different people were instructed to take pictures of the object placed

inside a room (different rooms for each experiment) from a variety of distances and angles. We did not

specify how many photos from each location each person should take or what distance from the object

to favour. The only instruction was to take photos of the object approximately centred in the image.

The resulting distributions should reflect the sampling of each particular individual and the properties of

the room (rectangular, square, clutter and so on). For the first experiment, we captured 82 and for the

second 200, 400x300 grey-scale images of the ball. In each case this should provide enough samples to

determine the scale distribution. These images are then used as input to a basic template matching system

that uses the prototype template (Fig. 4.8(b)) in an energy minimisation scheme to locate instances of

the ball in the image. A match is located where, as an expedient to avoid the pathologies associated with

the trivial solutions ats = 0, the normalised sum of squared errors between the prototypetemplate and

the image is minimum. The template is allowed to translate and scale.

The resulting histograms for the two experiments are illustrated in Fig. 4.9 (a) and (b) respectively

together with overlaid non-parametric estimates of their pdfs calculated using a smoothing function with

a Gaussian kernel. As may be seen the scale distribution is skewed to the right, constrained to be zero

at s = 0 and has a peak arounds = 0.2 ∼ 0.3. The peak position depends of course on the choice of

the prototype template and the distance from the object to the camera we originally chose for capturing

the template image. A shorter distance would create a largertemplate and thus would move the peak of
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the histogram closer to zero, whereas a longer distance would generate a smaller template and spread

out the peak of the pdf. The underlying distribution appearsto be the same in both cases and all that

changes is the shape and location of the parameters (e.g. mean and standard deviation). The peak is at

s < 1 because we chose to take the template image from quite close-up so as to ensure sufficient detail

was visible and to avoid having to scale-up the template too much.

If very many images were collected, it would be possible to build a fine-grained non-parametric

model of the distribution of scale. We didn’t collect enoughimages for this and instead sought to as-

certain which parametric model distribution would explainthe data. Parametric models in general have

greater efficiency at the cost of more specific assumptions about the data but it is important to verify

whether the assumed distribution is indeed valid.

Our goal therefore is to find a good distribution model that best describes the scaling of objects.

There is a large number distributions that might be good models for our data. However, we will restrict

ourselves to consideration of the following models owing totheir tractability and simplicity:

• Normal distribution with pdf:

N(s) =
1

σ
√

2π
exp

[

−1

2

(

s− α

σ

)2
]

(4.25)

• Weibull distribution with pdf:

W (s) = bσ−bsb−1 exp

[

−
( s

σ

)b
]

(4.26)

• Exponential distribution with pdf:

E(s) =
1

σ
exp

(

α− s

σ

)

(4.27)

• The Wald distribution (inverse Gaussian), with pdf:

G(s) =

√

σ

2πs3
exp

[

− σ

2s

(

s− b

b

)2
]

(4.28)

• The lognormal distribution, with pdf:

L(s) =
1

sb
√

2π
exp

[

−1

2

(

log(s) − σ

b

)2
]

(4.29)

In the above,a, b, σ are the parameters of the distributions that determine their location, shape and width

respectively.s is the variate that represents the scale of an object. Distributions (4.26), (4.28) and (4.29)

are constrained to be zero ats = 0. Some of the distributions are positively skewed (for a specific range

of parametric values) and give us the option of adjusting thelocation and width of the peak of their pdf.

To determine how well a specific distribution model fits our data (goodness-of-fit) we used a com-
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bination of graphical techniques used in exploratory data analysis [Leinhardt and Leinhardt (1980)] and

quantitative techniques from classical statistics. Details of these methods are described in detail in Ap-

pendix B.

For economy of space we only show here the results from the tests on the lognormal distribution

model and on the first dataset. This does not affect the generality of our assumptions since the test results

are similar for both datasets. The full results on all modelsare included in a paper being prepared for

publication [Zografos and Buxton (2005b)]. We begin by generating the lognormal probability plot (Fig.

4.10(a)) to assess whether or not our data follows the lognormal distribution. We see that the lognormal

quantiles and our observations are on the same diagonal without any large deviations. If we additionally

fit a line to the25th and 75th percentiles we see that it is almost coincidental with the plot. This is

a further indication that the data is lognormal. We can also see that the estimated pdf (via maximum

likelihood) closely resembles the data histogram (Fig. 4.10(b)) and that the empirical cdf and the fitted

cdf are almost identical (Fig. 4.10(c)). In the same figure wealso show the residual errors from the line

fitting to the lognormal probability plot: the sum of squarederrors (SSE) and root mean squared error

(RMSE). The closer they are to zero the better the fit. The values given are amongst the smallest values

obtained from all the models we tested. In the same table we have included theR2 metric adjusted for

the residual degrees of freedom. It is defined as:

adjusted-R2 = 1 − SSE(N − 1)

SST(u)
(4.30)

where SSE is the sum of squared errors, SST is the sum of squared errors about the mean, andu = N−m
the degrees of freedom withN being the number of samples andm being the number of fitted coefficients

estimated. The adjusted-R2 explains the total variation in the data about the mean with avalue closer to

the maximum of 1 indicating a better fit. In this example we seethat the line fitted explains about99%

of the data variation which indicates that the data in the probability plot is almost perfectly linear.

Our quantitative analysis results together with the maximum likelihood estimates are shown in Ta-

ble 4.1. We can see that both the K-S and A-D tests accept the null hypothesisH0 that the sample

has come from a lognormal distribution. The high p-value additionally indicates that the results are

not statistically significant at the5% significance level. Note also that the K-S and A-D statisticsare

considerably lower than their respective critical values at the same level. All these results demonstrate

that both tests were very much inside the acceptance region defined by the critical values. We may

therefore conclude we have sufficient evidence to acceptH0 in this case. From the above and the re-

sults in [Zografos and Buxton (2005b)] we may claim that the lognormal distribution is appropriate for

describing the scaling of objects in computer vision applications.

In addition to the two experiments described above we carried out a third experiment whereby

we used a similar setting (spherical object placed inside a room) but in this case we generated a video

sequence that simulates a person walking inside the room andlooking at the object. In this way we tried

to generate samples from a more realistic, natural object recognition situation. Our aim was to determine

if the lognormal distribution is still a good model to describe the scale sampling process under this video
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Figure 4.10: Lognormal probability plot (a), estimated pdf(b) and cdf (c) plots from sample data.

scenario. The experiment involved a person holding a video camera entering the room and looking at

the sphere. The sphere remained approximately in the centreof the camera view while the person was

randomly walking around the room. In total, we generated approximately 90 seconds of video (2175

frames at 378×288 pixels) and then sampled one frame in every 15 to generatea total of 145 input

images. The scale parameter was then determined in the same way as in the previous two experiments.

By carrying out a similar analysis to that described above for the image snap-shots, we obtained the

results shown in Fig. 4.11. Here we can see that as in the earlier examples the lognormal distribution

provides a good fit to our data set and further reinforces our assumption that the scale parameter (under

a typical viewing environment) is drawn from a lognormal distribution. There is however one important

point we should mention for this dataset. Because of the way the data samples are generated (using

a video camera and walking around the room as opposed to “jumping” to random places and taking

photographs) there is a strong dependence between one videoframe and the next (i.e. it is possible

approximately to predict the position and scale of the sphere in the next frame) even between every 15th

frame which is our sampling frequency. See Fig. 4.11(d) for the high sample autocorrelation levels. This

means that we cannot generate samples drawn randomly from the scale distribution by randomly moving

around in the room. Some of our statistical tests that dependon this randomness criterion will thus in

principle not be valid.

4.5 Experimental results

In this section we present some basic experiments carried out on our 2-D object recognition method using

the objective function in (4.19). We carried out a limited number of tests on grey-scale, real images (such

as the ones in Fig. 4.12 (a) and (d)) as a proof-of-concept study rather than an exhaustive evaluation of

our method. As we mentioned earlier, the 2-D solution is but an initial investigative step on the way

to developing the 3-D object recognition method and so extensive tests are not required. For the 3-D

case, however, which is the main focus of this thesis we have carried out a number of more detailed

experiments and analysis.

In both the illustrated cases, the template (Fig. 4.12(b) and superimposed rectangle in Fig. 4.12(d))
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Maximum Likelihood
Shape (b) 0.86307 std. error 0.06781
Log-Scale (σ) −1.1757 std. error 0.09531
95% confidence interval for shape 0.74819 1.01996
95% confidence interval for log-scale −1.3654 −0.9861

Kolmogorov-Smirnov
p-value 0.5355
K-S statistic 0.0877
Cutoff value 0.1478
Hypothesis at 5% interval Accept

Anderson-Darling
A-D statistic 0.3394 adjusted 0.3547
Critical value at 95% 0.754
Hypothesis at 5% interval Accept

Table 4.1: Quantitative results for the lognormal distribution.
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Figure 4.11: Video sequence results. (a) prob. plot, (b) pdfplot, (c) cdf plot and (d) lag plot.
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is taken directly from the image (which implies the same lighting conditions) and is subjected to a

random affine, geometric transformation. During matching we aim to recover (or get as close as possible

to recovering) the parameters of this transformation. The first example (Fig. 4.12(a)) compares the

effects of using the SSD metric without any prior information to the use of the smooth Huber metric

with the combined prior distributions we have seen previously In both cases we have run 10 tests with

the same optimisation algorithm (differential evolution [Storn and Price (1997)] and to be discussed in

Chapter 6) and under similar settings. For the first case where there is no prior we have manually to

restrict the optimisation algorithm away from the trivial solutions ats = 0. We do so by assigning an

infinitely large error value to any solution ofs < 0.5 (see Fig. 4.13(a)). To illustrate just how much better

an approach based on a Huber metric combined with a probabilistic prior is we present in Fig. 4.13(b)

the Euclidean distances of the recovered coefficient valuesfrom the known, ground truth solution for

all the 10 test runs and for both cases. It is immediately obvious that the Huber & prior combination

outperforms the SSD-only approach in recovering solutionscloser to the ground truth in every test case.

This is also illustrated in the second set of tests in the images in Fig. 4.12(d) where the average of

10 tests runs using the Huber & prior combination are displayed in Table 4.2 Here we see just how close

the optimisation algorithm has managed to get to the actual solution. A typical good, identified result for

both images can be seen in Fig. 4.12 (d) and (e).

Furthermore, we show the effects of using both the lognormaland Gaussian priors on the log-

posterior probability. In this example we have isolated thescale space by choosing a rectangular template

(e.g. the female face in Fig. 4.12(b)) and varying the scale parameterswhile keeping all other parameters

constant at their optimal values. The result is the log-likelihood plot in Fig. 4.14(a). The non-trivial

value ofs that minimises the residual error is correctlys = 1 and we note that fors > 1 the error grows

parabolically. However, we also note that fors < 0.5 the error becomes very small and eventually drops

to zero fors = 0. This clearly does not constitute a meaningful answer but is acase of a trivial solution

we mentioned previously. If we initialise an optimisation algorithm close tos = 0.5 it might converge to

the trivial solutions = 0 which in the presence of noise will be lower than the desired solution ats = 1

and might thus cause global optimisation algorithms to produce the wrong results. Unfortunately, we

cannot know beforehand which values to use as constraints inour optimisation algorithm (i.e.s <> 0.5)

since the critical value is not fixed but varies in relation tothe true optimal values as determined by the

size of the template used. We also note as discussed in [Buxton and Zografos (2005)] that the problem

should not occur if the background is included in the modelling process. In that case when the template

shrinks to zero the foreground object of interest will not then match the assumed background.

If we now use a lognormal prior (Fig.4.14(b)) that is fairly platykurtic we get the resulting log-

posterior distribution (Fig.4.14(c)). The problem with the trivial solution has been rectified by assigning

a very low probability (or a very large inverse log-probability) for scale parameter values close to zero

and the objective function has been regularised so that it has one global minimum that is the correct

solution. This can easily be located with common deterministic, local optimisation algorithms.

In the same example we show the use of a Gaussian prior (Fig.4.14(c), dashed line) with parameters
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Figure 4.12: Experiments on real images with randomly transformed templates.

σ = 2 andµ = 1.25 chosen in order for the pdf approximately to have high probability around the same

range of values as for the lognormal prior. The resulting posterior distribution (Fig. 4.14(c), dashed line)

shows that the regularisation effects for valuess < 1 are not as strong as in the case of the lognormal

prior and it creates a flat objective function with the desired minimum ats = 1 more difficult to find.

If we decrease the standard deviationσ the situation somewhat improves with the objective function for

s < 1 becoming steeper but this overly biases the posterior and may not be desirable in most cases. If

on the other hand we increaseσ the posterior fors < 1 becomes flatter untilσ is increased so much that

the Gaussian prior tends to become a uniform distribution which as we know does not have any effect on

the likelihood. Perhaps the only advantage in using a Gaussian prior is that the tuning of its parameters

corresponds to more intuitive changes in the shape of the pdfthan for the lognormal prior.

The effects of a lognormal prior in two dimensions are also shown in Fig. 4.14(d), (e) and (f). As we

can see in this case, the above problems are exacerbated witha very narrow basin of attraction (4.14(d))

and the existence of an infinite number of trivial solutions for whensx andsy are close to zero. Using a

lognormal prior (Fig. 4.14(d)) can dramatically improve the situation by creating a convex error surface

with a single global minimum (Fig. 4.14(e)).

Since the sum of squares likelihood for any image will exhibit this typical behaviour5 we may say

that in general the lognormal produces more desirable regularisation results than other commonly used

priors without unnecessarily biasing the posterior.

5Unless of course we normalise by the size of the template. Although this will solve the problem of trivial solutions it will
introduce unwanted noise and thus many local minima in the objective function fors close to zero.
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Figure 4.13: (a) Manually adjusted scale space and (b) comparison between Euclidean distances.
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Figure 4.14: The effects of the lognormal prior on the scale parameter surface.

Transformation Actual Estimated Absolute deviation
Rotation(ϑ) 30.47o 29.7046o 0.7654o

Translation(dx, dy) 211, 37 213, 38 2, 1
Scale(sx, sy) 1.3077, 1.1923 1.3125, 1.2719 0.0048, 0.0796
Shear(ϕ) 27o 24.6776o 2.3224o

Table 4.2: Comparison between actual and estimated transformation values from Fig. 4.12(d),(e).
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4.6 Basic foreground/background modelling

One typical problem with template matching (seen for example in Fig. 4.1) is the fact that we may be

faced with a very narrow basin of attraction in the error landscape surrounding the desired solution and

also when similarity or affine geometric transformations are used with spurious, trivial solutions. We

have also noted in passing that, from a probabilistic point of view, it is not correct to match the template

only to the region of the target image covered by the templateas this amounts to changing the data to

be explained according to the hypothesised location, size and shape of the model. The data should be

fixed independent of the hypothesis and it is the whole image that should be explained. It is therefore

necessary, as noted earlier, to model both the object of interest and the image background and to match

both to the whole image. A correctly chosen model correctly located over a foreground object in the

target or scene images will thus generate only small residuals throughout the image. An incorrectly

chosen template model and/or one incorrectly located will however generate large residuals both from

the area under the template and from the region of the foreground object in the target image which, will

not match the background model.

Furthermore, we expect such problems to be exacerbated whenthe transformationT of the tem-

plate includes photometric transformations in addition togeometric transformations as they can allow

an incorrectly located template model to adapt to some extent to the background of the target image and

the background model to adapt to adapt the foreground objectof interest. Similar deleterious effects will

occur for an incorrectly chosen template model.

To illustrate such problems we consider the simple scenarioof matching a templateI ′m(x′, y′) to a

target or scene imageIT (x, y) under affine photometric (grey-level) and affine geometric transformations

of the kind:

Im(x′, y′) = aI ′m(x′, y′) + b, (4.31)

x = a0 + a1x
′ + a2y

′

y = b0 + b1x
′ + b2y

′
. (4.32)

In (4.31)I ′m(x′, y′) andIm(x′, y′) stand respectively for the template intensities at pixel(x′, y′) before

and after the photometric transformation whilst in (4.32) the pixel coordinatesx′, y′ before the geometric

transformation are mapped into image coordinates(x, y). The net effect of the two transformations is to

mapI ′m(x′, y′) into Im(x, y). In this example our matching criterion is a SSD error measure:

min

{

∑

x,y

(IT (x, y) − aI ′m(x, y) − b)2

}

. (4.33)

Minimisation over the parameters(a, b) of the photometric transformation may be carried out analyti-

cally and the result written in the following form:

min
{〈

∆IT
2
〉

(1 − c2)
}

, (4.34)
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where〈. . .〉 stands for an average over the pixels(x, y) in the summation,∆I = I − 〈I〉, andc is the

correlation coefficient defined as:

c =
〈∆I∆Im〉

√

〈∆I2〉 〈∆I2
m〉
. (4.35)

Except for the term in< ∆IT
2 >, (4.34) is one of the many familiar image matching criteria whose

performance in template matching have been evaluated several times [Tsai et al. (2003); Brown (1992)].

Other familiar forms in which the deviations from the mean intensity are used, or the intensities nor-

malised for the image brightness or level of illumination may similarly be derived by using the photo-

metric transformations which respectively include only the biasb or contrast or gaina.

The result (4.34), in particular the presence of the term
〈

∆I2
〉

deserves closer scrutiny. First we

note that the SSD is usually computed by summing over the pixels lying within the image areaAm,

say, covered by the transformed templateIm(x, y). If the geometric transformation (4.32) is restricted

to translation of the template and if the variance
〈

∆I2
〉

were independent of the position of the tem-

plate (4.34) would then reduce simply to maximisation of themagnitude of the correlation coefficientc.

However, this will generally not be so and
〈

∆I2
〉

cannot be removed from (4.34) without changing the

matching criterion. A number of difficulties then become apparent:

1. Bland regions of the image where there is little or no variation produce good matches with little

error toanyobject by virtue of settinga = 0 andb = IT . In particular dark regions of the target

image withIT ∼ 0 will match to any template with little error.

2. If we retain the affine geometric transformation (4.32) the areaAm covered by the transformed

template may under scaling or shearing shrink to zero resulting in a zero variance
〈

∆I2
〉

and

spurious matches.

One way to remove such spurious matches is, as noted earlier,to normalise by the areaAm but this

means that the matching score becomes very noisy wheneverAm is small. Furthermore, there seems

no straightforward way of arriving at such a measure within aprobabilistic approach. Another way

which is straightforwardly within the probabilistic approach, is to introduce suitable priors which will

add regularising terms to criterion(4.33) and bias against spurious solutions in which the template is

shrunk to cover only a very small area.

Adopting the probabilistic viewpoint is very satisfying, but exposes a more fundamental failing of

the approach outlined above. As we have already indicated several times, by using only the area under the

transformed template in the match criterion (4.33), the observations we are using to test our hypothesis

as to where the object is in the image (which may include the null hypothesis that the object of interest

is not present) become dependent on the parameters of our model, i.e. on the hypothesis. As pointed out

by [Sullivan et al. (1999)], this is not correct in a Bayesianapproach. Simply put, our observation is the

whole of the image and we should have a model of the backgroundas well as of the foreground object

or objects of interest. Thus, we should utilise not only positive evidence of where we are hypothesizing

the object or objects may be, but also negative evidence fromelsewhere in the image where the observed

image intensity does not accord with our expectations for the background.
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We should therefore includeall pixels in the image in the sum in our SSD score (4.33). The variance
〈

∆I2
〉

is then evaluated over thewhole of the image areaA, say. One nice outcome of this view is that

we do not have to worry about the possibility of the variance
〈

∆I2
〉

vanishing unless there are trivial,

totally bland images in the data which can easily be detectedand removed.

One downside of constructing a foreground/background model is that the combined model will

necessarily be more complicated than the foreground model alone and, most probably, less applicable

and therefore more fragile than a model which only includes the foreground. We thus either have to know

what the background is, build a very simple model, or have a statistical model of what it is expected to

be like. In fact, it is surprisingly often the case that we know the background or may learn it. Examples

include: medical applications, many monitoring and some inspection systems. Indeed, in the latter, it is

often an essential requirement that the background is knownor has to be modelled [Zhou and Aggarwal

(2001)]. In some cases, as in the CMU PIE database [Sim et al. (2002)], the background has been

recorded with no objects present (in this case human faces) for the convenience of researchers.

To illustrate several of the above points we construct a verysimple foreground/background mod-

elling example. Our basic assumption is that there is an object of areaAO of constant intensityIO in

the foreground of an imageIT (x, y) of areaA which otherwise is of constant intensityIB . The model

correspondingly has a foreground object of intensityIm of areaAm centred at(xm, ym) and a back-

ground intensityIb. The model and object may have an overlap areaAOm as sketched in Fig. 4.15(a).

For simplicity, given that the model contains foreground and background intensitiesIm andIb that we

may vary we shall ignore the photometric transformation (4.31) and, since we have not specified the size

or shape of the model of areaAm, we will similarly ignore the geometric transformations (4.32).

For our simple model calculation of the match score such as the SSD is a matter of counting the

number of pixels in, or the areas of, four contributions where: the model template overlaps the image ob-

ject, the model template overlaps the image background and vice-versa, and where the two backgrounds

overlap. This leads to:

min











(Am −AOm)(IB − Im)2 +AOm(IO − Im)2+

(AO −AOm)(IO − Ib)
2 + (A−Am −AO +AOm)(IB − Ib)

2











. (4.36)

In (4.36) the area of the overlapAOm is a function of the co-ordinates(xm, ym). Even for simple objects

such as rectangles and circlesAOm is complicated and non-analytic. Optimisation over(xm, ym) (and

in general any other model parameters determining the orientation, size, and shape of the model object,

i.e. affectingAm andAOm) thus has to be carried out numerically. However, we may choose in the

above whether to treat the photometric values in the model,Im andIb, as constants or as variables and

in the latter case carry out optimisation with respect to them analytically. Thus, for a traditional rigid,

windowed template,Im would be constant and, since we only need the first two contributions in (4.36)
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from under the template,Ib is irrelevant. It follows that in this case (4.36) becomes simply:

min
{[

(Am −AOm)(IB − Im)2 +AOm(IO − Im)2
]}

, (4.37)

in which, if we choose the foreground and background intensities correctly to match the image,(IB −
Im)2 may be replaced by(IB − IO)2 and(IO − Im)2 by zero. However, if the object model intensity

Im is not fixed and we optimise (4.37) with respect to it we find that (4.37) is replaced by:

min
{[

(Am −AOm)(IO − IB)2AOm/Am
]}

. (4.38)

Whilst (4.37) has, as expected, a single basin of attraction of area∼ 4AO containing at its unique

minimum the correct location of the object (see Fig.4.15(b)), (4.38) does not behave in such a nice way.

There is a much smaller basin of attraction and it is surrounded by a rim beyond which there is no overlap

and the matching score becomes zero asIm adapts to the image background level (Fig.4.15(c)). This

simple behaviour is symptomatic of what can happen if adaptive or flexible models are not used carefully.

Somewhat surprisingly simply taking into account all the evidence from the whole of the image largely

alleviates the problem. In this case, we need to optimise (4.37) with respect to bothIm andIB which, if

Am = AO, leads to:

min







(IO − IB)2(Am −AOm)

[AOm/Am + ((A−Am) − (Am −AOm))/(A−Am)]







. (4.39)

This has a single basin of attraction, slightly smaller thanthat in the examples above with a small rim

and, when there is no overlap, a plateau slightly less high than that obtained when a rigid, windowed

template was used (Fig. 4.15(c)).

In the above the basin of attraction has an area of approximately 4AO and the landscape outside

the basin is flat (see Figure 4.15 (b)). Structure within the object and in the background will lead to

considerable variation of the SSD outside the basin of attraction. Also, the area of the basin of attraction

is larger in our simple model (probably considerably much larger) than we should expect in general

because:

1. Perfect correlation of the pixel intensities with each other will not persist right across the object.

The object may be patterned or have systematic variation across it that will reduce the strength of

the correlation and may change its sign, with the result thatthe range of the correlations is unlikely

to extend fully across the object.

2. Structure in the foreground and background will tend to decrease the size of the basin of attraction

and make the rim irregular. Noise will have a similar, but unless the images are very noisy, less

pronounced effect.

Smoothing the image and model will tend to increase the rangeof the correlations and also, prob-

ably, their strength. However, neither effect is necessarily guaranteed in the sense that we can expect
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Figure 4.15: Simple matching examples and error surfaces.

such increases to occur monotonically as the smoothing is increased. In general, increased smoothing

will eventually tend to wash-out distinctive features on the object and structure in the background lead-

ing to a decrease in the depth of the basin of attraction and, with enough smoothing, the merging and

disappearance of some, hopefully spurious, basins of attraction.

In conclusion we may say that in template matching both foreground and background should be

modelled. Doing so is necessary in order to be able to make a valid probabilistic interpretation of the

matching process. In addition we can avoid at least some spurious, trivial solutions and there seems to

be an improvement in the form of the error surface and localisation close to the basin of attraction. It is

the case nevertheless that because of the characteristics of the matching problem the error surface will in

general be rugged and of a form that renders many of the commonoptimisation algorithms ineffective

and unreliable. This is the main reason why as we will see later we have carried out further research into

evolutionary optimisation algorithms that may be able to overcome such problems.

4.7 Summary

In this chapter we have presented a robust treatment of the 2-dimensional, pixel-based, template match-

ing approach to object recognition for intensity images using a Bayesian formulation. We distinguished

between the different transformations of the template and their respective degrees of freedom and intro-

duced individual prior distributions to restrict the deforming template to viable solutions. In addition,

we examined the difficulties caused by there being differentdistributions of the residual errors in the

matching when the template is placed in foreground and background image regions. Initially we tried to
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address this problem using the Huber metric that deals with small and large error residuals, as expected

respectively with the template placed in the foreground andbackground, in a different way. In order to

gain greater insight into these and other problems, in particular concerning the probabilistic interpreta-

tion of the approach that might otherwise be overlooked in template matching, we developed a simple

geometric and photometric model. This was used to explore asfar as possible analytically effects caused

by adaptation of the template and to explore the form of the matching objective function. Some pre-

liminary, exploratory results for the matching of 2-D templates to real images were obtained using our

method and were also presented.
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Chapter 5

3-D object recognition

This chapter presents our research on 3-D object recognition and is a natural progression from the 2-

dimensional case we have just examined. Since we are still working with 2-D images the same kind

of theoretical framework applies here and, as a consequence, we will encounter similar problems. We

present a method for model-based recognition of 3-D objectsfrom a small number of 2-D intensity

images. Our method works by using the linear combination of views (LCV) theory to combine images

from two (or more) viewpoints of a 3-D object to synthesise images of novel views of the object. The

object in question is recognised in a target, scene image by matching to such a synthesised novel view.

The key element in our approach is the recovery of the linear combination of views parameters.

Since we are working directly with pixel intensities we suggest searching the parameter space using a

powerful optimisation algorithm in order efficiently to recover the optimal parameter configuration and

recognise the object in the scene.

As in the 2-D case previously discussed searching a large parameter space especially one that is very

noisy and with a large number of local optima can be an arduoustask even for sophisticated, modern

optimisation algorithms. For this reason and continuing the theme from our earlier work, we decided

to condition the error surface by incorporating probability distributions for the individual transformation

parameters and build a Bayesian framework. This will allow us to create a more favourable surface with

a wider basin of attraction and convex-like properties and with a well-defined global optimum; properties

that should significantly aid the optimisation process.

5.1 The recognition system: Rigid objects

The recognition system we are going to present here is fairlystraightforward and makes use of a number

of concepts we have seen previously. It essentially has three distinct parts. First, amodellingpart which

in the work carried out for this thesis is the task that requires the most input from the user, but since it

is performed off-line it does not affect the execution speedof the recognition. Second, asynthesispart

in which a novel image is synthesised using the LCV theory (section 3.3) to calculate its geometry and

intensity. Third, thematchingpart in which, with the assistance of an optimisation algorithm, we try to

find the best match and determine if the object is in the scene and if it is, recover its configuration. The

outline of the system is illustrated in Fig. 5.
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Figure 5.1: An outline of the proposed recognition system.
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5.1.1 Modelling

The first stage of our approach involves the creation of a linear combination of views model for a 3-

dimensional object which can be used to synthesize the novelview for matching. This requires the

selection of a number of appropriate 2-D images (the basis views) that represent the object of interest as

seen from different, but nearby viewpoints. As we have seen earlier in Section 3.3, we can synthesise

the geometry of an affine image from a suitable selection of basis views and a set of linear coefficients.

This synthesis requires the existence of a number of corresponding points (landmarks) in all the basis

views and the view to be synthesized. Given such landmarks, aset of optimal LCV coefficients may be

obtained by solution of a linear system of equations.

Ideally, we would like the basis views to include all the geometric and photometric detail that can

be seen on the object in the scene image, without any missing or occluded regions, and with as little

difference from the scene view as possible (e.g. viewed fromthe same or nearby aspects). If we know

or can predict what the scene image will look like, or preferably the range of extrinsic variation that an

object might exhibit in a given experimental setup, then manual selection of the basis views should be a

straightforward task.

It is often the case however that we are only given a large set of training images of a 3-D object,

captured from a variety of viewpoints across the view-sphere, without any explicit information about

the scene properties. Under such conditions, manually choosing the best images to represent the basis

views might be a difficult task, given the large number of possible candidates and that we do not have

a quantitative measure of what might constitute a “good” setof basis images, but only the qualitative

requirements stated above.

Although automatic choice of the basis views and of the model-building element is outside the

scope of this thesis, we will briefly nevertheless attempt todefine a numerical criterion with which to

quantify the representative power of a given set of basis views. Ideally such a measure would quantify

their ability to best synthesise novel views for which we take as a proxy their ability to reproduce a given

set of (training) images on average. A good choice for such a measure is the root mean square error

between the images synthesised from a particular pair of basis views to reproduce every other image in

the training set. This in a sense measures how well a given selection of basis views can represent via the

LCV synthesis a set of 2-D images. Thus, if we assume a set ofn training images with landmark points

X = {X1,X2, . . . ,Xn} and a pair of basis views with land mark points{Xi,Xj} ∈ X for i, j = 1 . . . n

with i 6= j, we can compute the r.m.s. error:

εRMSi,j
=

√

√

√

√

1

n

n
∑

k=1

ε2i,j(k), (5.1)

whereε2i,j(k) is the squared error between an imageXk and its synthesised match produced by basis

view pair{Xi,Xj}. This error is defined as:

ε2i,j(k) = ‖Xk − Ci,j(k)Bi,j‖2
, (5.2)
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and can be thought of as the geometric difference (Euclideandistance) between the landmark point

coordinates inXk and those in their synthesised counterpart, produced by{Xi,Xj}. Ci,j(k) is a 2×5

matrix of the LCV coefficients (see eq. 3.14) andBi,j =
[

1,XT
i ,X

T
j

]T
. The pair of images(i, j) that

produce the lowestεRMS error is to be chosen as the basis pair. This selection step, although likely to

be computationally and experimentally time consuming, would only be carried out once during off-line

training. Although errors in the synthesis of the landmark points will obviously affect the appearance of

the computed images they do not measure directly the accuracy with which the target images are to be

reproduced. If we require a more direct measure of this than using the geometric difference between the

landmark points, we can replace (5.2) with:

ε2i,j(k) = ‖I(Xk) − Ii,j(Xk)‖2
, (5.3)

where both the imagesI(Xk) and the synthesisedIi,j(Xk) are represented as intensity bitmaps and not

as a collection of landmark points. In this way we incorporate the additional representative power of all

the image pixels to improve on the selection of the most appropriate basis views.

However, as assumed in the above and as implied by (3.14), in order to recover the optimal LCV

coefficients and synthesise the target, scene imageIT it is necessary to have corresponding landmark

points already inIT , meaning that we can only synthesise a known, given view. This has been shown to

be very successful in particular by [Hansard and Buxton (2000b)] and suggests that the LCV approach

could be useful for object recognition though in an object recognition task such landmark points will

not be available a priori. Whilst, in principle, one could imagine using feature detectors to extract

the required landmark points we have argued that this is unlikely to be successful and that one should

proceed without any prior landmarks in or any knowledge of the geometry of the objects in thetarget

image view, and instead directly search the LCV coefficient space. We do however require a sparse set

of corresponding landmark points in all thebasisviews. These points are manually chosen, once, during

off-line model building, to correspond with each other. Even though it might at first seem that the location

of the landmark points is not very important, in practice when a modest number of landmark points is

used the synthesis of the image appearance is greatly improved if landmarks are chosen to fall on to image

features. This is especially the case if, as we shall see later on, the edges of the triangles defined with the

landmark points as vertices should coincide with depth discontinuity boundaries [Hansard and Buxton

(2000b)]. Such edges are often where strong features are located. An illustration of such landmark points

can be seen in Fig. 5.2. If the landmarks are chosen as illustrated to coincide with salient points in the

images only a sparse set is needed to describe objects with moderately complex geometry. Note also that

we need a larger number of landmarks in areas of high curvature such as along the boundaries of smooth

objects. Finally, we observe that the geometry of the objectis preserved in the triangular mesh.

Manual choice of the landmark points can be a tedious and time-consuming process, especially

for inexperienced users. Nevertheless, it has the distinctadvantage that no outliers will arise from the

selection process and that there will be no correspondence errors in the chosen landmark sets. It is

expected that we will introduce some positional errors during selection of the points but because they
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Figure 5.2: Modelling steps: (a) basis view (b) landmark points and (c) triangulation

will be small and consistently distributed errors they can easily be taken into account.

A final part of the modelling stage is the generation of consistent and corresponding triangular

meshes in all the basis views. This is achieved using Delaunay triangulation [Delaunay (1934)]. It is

performed in order to facilitate the computation of intensities via the representation of image regions

by means of the existing landmark points, without the need for additional, dense correspondences. A

triangulation is carried out only once during modelling with the same mesh topology used for all basis

views. Since the landmark points are in correspondence witheach other this ensures that the meshes

are themselves correspondingly consistent. Furthermore,in order to preserve in the generated mesh

identified strong edge structure on the object, we compute the constrained Delaunay [Shewchuk (2002)]

mesh by forcing triangle edges to coincide with the locations of such boundaries. This allows us to

represent the structure of non-convex objects (unlike the standard triangulation) and to separate object

regions from background areas.

In conclusion, an LCV model is composed of a number of basis views representing the object of

interest, a set of landmark points selected across salient points and discontinuity boundaries on these

views, and a consistent triangular mesh that follows the structure of the object. All these steps may be

carried out during the off-line training stage and thus do not incur any additional computational cost in

the recognition process.

5.1.2 Image synthesis

To synthesise a single, target image using the LCV theory andthe basis views (two in this case) we first

need to determine its geometry from the landmark points. In principle, we can do so by using (3.14) and

n corresponding landmark points (wheren ≥ 5) and solving the resulting system of linear equations

in a least squares sense. This is straightforward if we know,can detect, or predict the landmark points

in the target imageIT . Such methods may therefore be useful for image coding and for synthesis of

target views of a known object [Koufakis and Buxton (1998b);Hansard and Buxton (2000b)]. For pixel-

based object recognition in which we wish to avoid feature detection a direct solution is not possible

but we instead use a powerful optimisation algorithm to search and recover the LCV coefficients for

the synthesis. Given therefore the geometry of the target imageIT in a pixel-based approach we need

to synthesise (render) its appearance (colour, texture andso on) in terms of the basis imagesIm
′ and

Im
′′. If we assume a set of landmark points have been chosen in the modelling stage we can, to a

good approximation, synthesise a target imageIT as described in [Buxton et al. (1998)] from a weighted
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combination:

IT (x, y) = w′Im
′(x′, y′) + w′′Im

′′(x′′, y′′) + ε(x, y) = IS(x, y) + ε(x, y), (5.4)

in which the weightsw′ andw′′ may be calculated from the LCV coefficients to form the synthesised

imageIS as we shall discuss below. Essentially, this relies on the fact that, in addition to the multi-view

image geometry being to a good approximation affine, the photometry is to a good approximation affine

or linear [Shashua (1992)]. (5.4) warps and blends imagesIm
′ andIm

′′ to produceIS . It is important

to note therefore that (5.4) applies to all points (pixels)(x, y), (x′, y′) and(x′′, y′′) in imagesIS , Im
′

andIm
′′ and that all such triples of points are assumed to be in correspondence. Without such a dense

correspondence it is not possible to use the LCV equations tomap the basis views into the target image.

Furthermore, in synthesizingIS we do not require a mapping from the basis views to the co-ordinates

(x, y), but the inverse mapping from(x, y) to (x′, y′) and(x′′, y′′). Since the forward LCV mapping

from (x′, y′) and (x′′, y′′) to (x, y) is many-to-one this inverse is ill-posed and not defined except at

the landmark points. To make the inverse well defined at all points we use the triangular mesh that

was generated during the modelling stage to define a local affine transform from each triangle in the

target, scene image to the corresponding triangles in each of the basis views. In other words, the image

transformations from each basis to target (and vice versa) is piecewise affine and piecewise invertible.

The parameters of each affine transformation can be used to map the interior (intensity) of each triangle

together with its vertices (geometry) and define a dense correspondence of all the pixels between the

two basis views and the target image without additional selection of landmarks. This series of piecewise

linear mappings are implemented using the method of [Goshtasby (1986)]. In this way, the mapping is

exact at the positions of each control-point and if the landmarks span flat (colour constant) regions of the

object then the mapping is also consistent with the affine camera-model inside each triangle.

In [Koufakis and Buxton (1998b)] the weightsw′ andw′′ were defined according to the following

arguments. If in (5.4) the targetIT should coincide with eitherIm
′ or Im

′′ then the other basis view

should not contribute at all to the synthesis ofIS . We therefore have the additional implicit requirements

on (5.4):

if IT = Im
′ then w′ = 1, w′′ = 0

if IT = Im
′′ then w′ = 0, w′′ = 1

. (5.5)

According to [Koufakis and Buxton (1998b)) and Buxton et al.(1998)] we can compute weightsw′, w′′

consistent with the constraints in (5.5) as follows. First,we calculate the distances of the target image

from each of the basis views:
d′2 = a2

3 + a2
4 + b23 + b24

d′′2 = a2
1 + a2

2 + b21 + b22

, (5.6)

by summing and squaring the appropriate LCV coefficients. Wethen calculate the weights as:

w′ =
d′′2

d′2 + d′′2
, w′′ =

d′2

d′2 + d′′2
. (5.7)
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We can now substitute (5.7) into (5.4) and compute the geometry and intensity of the target image. The

same idea may be extended to colour images by treating each spectral band as a luminance component

(e.g.IR, IG, IB).

5.1.3 Matching

Once a new image is synthesised from a set of linear coefficients (ai, bj) we need to determine how well

it matches with the target, scene view. As in the 2-D case previously we employ a template matching

approach using a similarity or dissimilarity metric between IS andIT . The comparison is carried out

directly on the pixel values without any assumptions about the geometry of the scene viewIT since we

do not extract features fromIT at any time during the training or matching stages.

If the match (or mismatch) score is above (or respectively below) a given threshold then the ob-

ject is said to be present in the scene and its parameters are encoded in the coefficients(ai, bj). If

desired, we may go some way to interpreting these coefficients in terms of more familiar model pose

parameters, something which we will discuss later on. If thematch or mismatch score does not meet

the pre-determined threshold, we can generate new sets of LCV parameters, synthesise new images (i.e.

object in new configurations in the scene) and check to see if we can find a better match. A suitable

optimisation algorithm is used efficiently and effectivelyto search the large parameter space. If at the

end of the optimisation the match or mismatch score still fails to meet the required threshold, then we

can assume that either there exists no such object in the scene (or at least as seen from a viewpoint where

it can be modelled by the LCV technique) or that the optimisation algorithm has failed to converged to

a non-optimal solution. We can try to prevent the latter fromoccurring, at least to some extent, by using

a Bayesian approach to bias the solution away from local optima, something that we will explain in the

next section.

Before turning to the Bayesian approach, we recall that in order to make a valid probabilistic in-

terpretation of the match one must compare the pixels in boththe foreground and background, such as

in [Sullivan et al. (2001)]. As discussed previously, the background must therefore be known (e.g. as

in the CMU PIE database [Sim et al. (2002)]), or very simple (e.g. a uniform, black background as in

the COIL-20 database [Nene et al. (1996)]) or itself calculated from an appropriate model. Making the

comparison over all pixels in this way means that either a similarity or dissimilarity metric may be used

without generating spurious solutions, for example, when the area of the foreground region covered by

the object shrinks to zero [Buxton and Zografos (2005)]. We saw the problems caused by such trivial

solutions in our preliminary on 2-D object recognition in the previous chapter. Within the context of the

recognition of 3-D objects via our LCV approach, the possibility of such spurious solutions could, given

a high dimensional parameter space, be even more damaging.

Optimisation

The recovery of the LCV coefficients requires the search of a high-dimensional space for all the possible

transformations between the model and the scene. Our objective is to find the optimal model configura-

tion that will bring the synthesised and scene images into agreement. Such a search of the 10-dimensional

LCV space is computationally expensive and so we need to use an efficient method for the recovery of
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the optimal coefficient set.

For this purpose we have considered the use of various global, numerical optimisation algorithms

as the final stage of our object recognition system. The aim isfind an algorithm that is efficient and use

of which is therefore computationally feasible yet will converge to the optimum solution from a remote

position in the transformation space. The examination of such methods and their combination with local

optimisation techniques for improving the efficiency of thesearch in its final stages is the main focus of

the next chapter.

5.1.4 Coefficient variation

Before we describe the Bayesian model, we would like to remark that since the pose information is

implicitly encoded in the 10 coefficients(ai, bj), it is useful to investigate their variation as the object’s

pose changes in relation to the viewing direction. We are particularly interested in what we refer to as

a ”horizontal rotation” of the viewpoint around the portionof the view sphere defined between the two

basis views. This nomenclature reflects the set-up for the simple experiment we have devised to try and

recover some information about the range, the distributionand the variation of the LCV coefficients as

an object is allowed to rotate between views that generate imagesIm
′ andIm

′′.

In brief the experiment is as follows. We have used a synthetic 3-D model of a human head over

a black background (Fig. 5.3 (a)) and selected a number of landmarks on prominent features of the

face and along main discontinuity boundaries. To avoid introducing any manual error the landmarks

were chosen from amongst the set of model vertices. The 3-D model was then allowed to rotate about a

vertical axis between±20o from the frontal position, and 2-D snapshots of the scene were taken under

orthographic projection at1o intervals. The two images at±20o of rotation where chosen as the basis

views so all the synthesized images would be interpolated between the basis views. Since we worked

directly with a 3-D model the positions of the vertices and thus the landmarks were always known within

a high degree of precision.

We proceeded to evaluate the coefficients(ai, bj) by solving the linear system in (3.14) at each

interval of rotation and thus obtained a set of coefficients for the pure, isolated, horizontal rotation

between the two basis views dependent only on the rotation angleϑ. This information enables us to draw

certain conclusions about the properties of the coefficients (ai, bj). First we plot the graphs illustrating

the variation of the 10 coefficients according to the angleϑ. Recall that theai coefficients describe the

horizontal x-coordinates of the target image whilebj describe the vertical y-coordinates and thata0, b0

are the constant terms that represent the translation between the target and basis views. For that reason, a

priori we would expect a large range of possible values for the coefficientsa0, b0. However, specifically

for the rotation described, we expect only the translation along the x-axis (represented bya0) to vary

over a significantly large range while that on the y-axis should be small and show little variation (b0 ∼
zero). As we can see from the graphs (Fig. 5.3) the variation of the coefficienta0 follows a quadratic

curve, coefficientsa1 anda3 a linear curve and the remaining coefficients are constant. We note also that

a1 anda3 have a range of[0, 1] with a1, a3 = 0.5 for ϑ = 0o (frontal view). Likewise, for the frontal

view, a0 is at a minimum. Finally, we observe that,a2, a4, b0, b1, b3 = 0 andb2, b4 = 0.5 .
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Figure 5.3: The variation of the 10 coefficients for horizontal rotation.
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This information on the range of values taken by each of the coefficients can be used as “hard

boundaries” or even to provide approximately regions within which we can initialise the optimisation

search. Additionally, since we can determine the coefficients as a function ofϑ, we can predict the

approximate solution set (always accounting for some degree of error) at eachϑ betweenIm
′ andIm

′′.

This approximate information combined with knowledge on the range of poses we are likely to encounter

in a specific experiment can be used to set the means, which usually are in regions of high probability, and

the widths of the Bayesian priors so as to facilitate the optimisation process. This is described in more

detail in the next section. One last piece of information that may be inferred from the above experiment

which, although is not employed in this work could be used during optimisation, is the distribution of

each of the coefficients(ai, bj). For example, we can fit analytical models to describe how each of the

coefficients vary as functions ofϑ. In the case ofa0, this might be a quadratic modely = ax2 + bx+ c

with the parametersa,b andc fit to the above experimental data. Now, given these models and if we

assume a distribution for the angleϑ for which reasonable choices might be that it is uniform or locally

Gaussian, we can fully determine analytical distribution models for the coefficients by carrying out a

simple transformation. Thus if, for example,ϑ ∼ U(0, 1) then y ∼ Beta(0.5, 1) and so on. Such

descriptions of the probability distributions of the LCV coefficients could then be built into the chosen

optimisation algorithm and used as sampling distributions, in order more efficiently to draw possible

solutions from regions of high probability and spending little computational effort and time exploring

regions of the vast, high-dimensional solution space that are unlikely to be relevant.

Finally, we point out that the form of the coefficients is to a large extent independent of the actual

object and indeed the results presented here generalise1 to any type of object (symmetric, asymmetric,

convex or concave) under similar imaging conditions that isallowed to rotate about the chosen vertical

axis between the basis views. It is possible to carry out similar experiments to characterise the effects of

other 3-D rigid transformations on the LCV parameters. Although not examined here, under perspective

projection the y-coordinates of the images of the landmark points will vary as the object is rotated as

described above owing to the changing depth of points on the object. Hence, we expect the coefficients

b0, b2 andb4 to vary slightly as a function ofϑ. b0 will have a similar quadratic form to that ofa0 and

b2, b4 will linearly decrease and increase respectively.

Our treatment of the LCV coefficients (and their associated prior distributions) relies on their iden-

tified properties resulting from the isolation of individual transformations. These transformations span

a high dimensional non-linear space (manifold) and isolating them in the way we did, amounts to only

considering a single slice of this manifold at a time. Perhaps a more robust approach would be to use

a low-dimensional embedding method that will allow us to learn the local properties of this manifold.

Widely used examples are the Kernel PCA introduced by [Scholkopf et al. (1998)], which utilises an

SVM to construct a non-linear mapping from the input space toa high-dimensional linear space. It has

been used by [Gong et al. (2002)] to model the dynamic, non-linear changes in appearance (shape and

texture) of an image accross a large pose angle variation. The Isomap by [Tenenbaum et al. (2000)] is

1Provided the objects are reasonably compact and are not seen from viewpoints improbably close to them.
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another method designed to discover any non-linear degreesof freedom in high-dimensional data by

using the geodesic distance induced by a neighbourhood graph to incorporate manifold structure in the

resulting low-dimensional embedding. One example where ithas been used successfully for classifica-

tion is the work by [Yang (2002)]. Finally, Local Linear Embedding (LLE) [Roweis and Saul (2000)]

is another option which attempts to discover non-linear structure in high-dimensional data by exploiting

local symmetry of linear reconstructions and has been exploited to learn the appearance variation across

face images [Mekuz et al. (2005)] and expression for face recognition [Liang et al. (2005)].

5.2 Bayesian model

In this section we extend the basic LCV equations (3.14) and (5.4) by incorporating prior information on

the coefficients(ai, bj) and building a Bayesian model. We start with the Bayesian paradigmP (x|d) ∝
P (d|x)P (x) extended to n-dimensions:

P ({x1, x2, . . . , xn}|d) ∝ P (d|{x1, x2, . . . , xn})P ({x1, x2, ..., xn}) (5.8)

expressed abstractly withxi with i ∈ {1, . . . , n} as the unknown variables andd as the observed data

vector. Now, if we assume that thexi are statistically independent (5.8) becomes:

P ({x1, x2, . . . , xn}|d) ∝ P (d|{x1, x2, . . . , xn})P (x1)P (x2)...P (xn). (5.9)

To apply this approach to the LCV method used as in equation (5.4) for the synthesis of an imageIS

that we hypothesize should approximately represent or explain the target imageIT , we treatIT as the

observed data, the LCV coefficients(ai, bj) as the unknown parameters, the basis views, for which in this

work there are just two:Im
′ andIm

′′ as known a priori, and finallyǫ(x, y) as a vector of i.i.d. random

noise2 andw′ = d′′2

d′2+d′′2 ,w′′ = d′2

d′2+d′′2 are the synthesis weights withd′′2 = a2
3 +a2

4 +b23 +b24 +a2
0 +b20

andd′2 = a2
1 +a2

2 + b21 + b22 +a2
0 + b20. The posterior probability of the LCV coefficients given thetarget

imageIT ) thus becomes according to (5.9):

P ((ai, bj)|IT , Im′, Im
′′) ∝ P (IT |(ai, bj); Im′, Im

′′)P (ai, bj), (5.10)

whereP (IT |(ai, bj); Im′, Im
′′) is the likelihood, that is the probability of observing the target image

IT given the coefficients(ai, bj) and also the basis view imagesIm
′ andIm

′′. P (ai, bj) is the prior

probability of the LCV coefficients.

Since we are dealing with a high, n=10-dimensional space andalthough the posterior (5.10) is

not normalised it will most likely numerically be very smallwhen we are far away from the mode(s)

in the tails of the distribution. This can cause approximation problems where the exponential is very

close to zero because of the limited numerical precision of computers. It is therefore preferable to use

2As discussed previously, when the landmark points in the target imageIT are not correctly located, this last assumption cannot
be completely correct. There will also be errors in the image synthesis caused by inaccuracies in the manual selection of landmarks
and assignments of correspondences in the basis views duringthe off-line, model building stage that, although likely to be smaller
than those just mentioned, nevertheless also mean this last assumption will not be completely correct.
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the negative logarithm of the probability which alleviatesthis problem and, since the logarithm is a

monotonic function, still maintains the global optimum at the same position. Hence, instead of (5.10)

we use:

− log[P ((ai, bj)|IT , Im′, Im
′′)] = − log[P (IT |(ai, bj); Im′, Im

′′)]−log[P (ai, bj)+‘‘constants’’.

(5.11)

where the ‘‘constants’’ are independent of the LCV coefficients(ai, bj) and unimportant in

finding the optimal values of the these coefficients. That suffices for our purposes but we note these

terms would become important if we were also to optimise withrespect to the variance and covariance

parameters.

5.2.1 Likelihood

The likelihood in (5.11) is specified by the assumed probability density function (p.d.f.) of the fluctu-

ations in the measurements about their predicted values and, strictly speaking the likelihood function

should be based on the statistical properties of the noise. However, we may use the general assumption

that the deviationsǫ of the synthesised imageIS from the target imageIT , are drawn from a multivariate

iid normal distribution of covarianceσ2
ǫ . The log-likelihood is thus:

− log[P (IT |(ai, bj); Im′, Im
′′)] =

1

2σ2
ǫ

∑

x,y

[IT (x, y) − IS(x, y)]2, (5.12)

which is quadratic in the residuals and the summation is carried out over all image pixels. The other term

in (5.11) comes from the prior p.d.f..

We should note here that the independence assumption on the LCV coefficients is used to derive a

tractable formulation for the posterior distribution and is not strictly accurate since we are dealing with

an overdetermined linear system with more coefficients thandegrees of freedom. In addition there is the

implied independence on the pixel values which might not hold for highly correlated foreground regions.

One way to achieve a form of pixel independence would be to filter the image similar to the work by

[Sullivan et al. (1999)] so that the filter responses will be independent.

5.2.2 Prior

Recall the Bayesian interpretations discussed in section 1.5.1. Here, we use the latter, ”subjective” inter-

pretation where prior information comes from the analysis of the LCV parameters carried out previously.

We can therefore use a Gaussian prior for the coefficientsai andbj centred at the positions already iden-

tified in section 5.1.4. Under the assumption of statisticalindependence between the coefficients, with

each having its own mean and variance we obtain:

P ({ai, bj})

=

4
∏

i=0

P (ai)

4
∏

i=0

P (bi)
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=

4
∏

i=0

1√
2πσi

exp

[

−0.5

(

ai − m̄a

σi

)2
]

4
∏

j=0

1√
2πσj

exp

[

−0.5

(

bj − m̄b

σj

)2
]

=
1

(2π)5/2
∏

σi
exp

[

−0.5
4
∑

i=0

(

ai − m̄a

σi

)2
]

1

(2π)5/2
∏

σj
exp



−0.5
4
∑

j=0

(

bj − m̄b

σj

)2




=
1

(2π)5
∏

σiσj
exp



−0.5

4
∑

i,j=0

[

(

ai − m̄a

σi

)2

+

(

bj − m̄b

σj

)2
]



 . (5.13)

If we again ignore terms independent of the LCV coefficients which do not affect the optimal solution

for these parameters, the negative logarithm of (5.13) may thus be written as:

− log(P ({ai, bj})) =

4
∑

i,j=0

[

(ai − m̄ai
)2

σ2
i

+
(bj − m̄bj

)2

σ2
j

]

, (5.14)

wherem̄ai
,m̄bj

are the mean coefficient vectors andσi,σj the r.m.s. deviations of the prior probability

for coefficientsai andbj respectively.

5.2.3 Posterior

The negative log of the posterior probability from (5.11),(5.12) and (5.14) becomes:

− log[P ((ai, bj)|IT , Im′, Im
′′)] =

∑

x,y[IT (x, y) − IS(x, y)]2

σ2
ǫ

+
4
∑

i,j=0

[

(ai − m̄ai
)2

σ2
i

+
(bj − m̄bj

)2

σ2
j

]

.

(5.15)

We usually require a single synthesised image obtained froma well-defined set of optimal LCV

coefficients(ai, bj) to be presented as the result. A typical choice for that single image is the one which

maximises the a-posteriori probability (MAP) or equivalently which minimises the negative log-posterior

(5.15) with respect to the parametersai andbj :

min
ai,bj

(− log[P ((ai, bj)|IT , Im′, Im
′′)]). (5.16)

The above can be minimised using standard optimisation techniques.

As we can see from (5.15) the prior is used to bias the MAP solution towards the means̄ma and

m̄b away from the maximum likelihood (ML) solution which is where
∑

x,y[IT (x, y) − IS(x, y)]2 is at

a minimum (i.e. there is little difference betweenIT andIS). How much the prior affects the solution in

relation to that which would be obtained from the likelihoodalone may be characterised by the quantity:

k =
σ2
ǫ

∑

i,j(σ
2
i + σ2

j )
. (5.17)

As the influence of the prior vanishes (i.e.σi, σj become very large and the Gaussian prior resembles a

uniform distribution) the MAP solution approaches the ML solution. Careful selection of the variances

σ2
ǫ , σ

2
i , σ

2
j is therefore important.

The results of using such Gaussian priors to bias the posterior can be seen in Fig. 5.4. Here we
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Figure 5.4: Negative log-posterior plots for 3 of the coefficients.

show three one-dimensional plots of the negative log probability of the likelihood, prior and posterior

for the coefficientsa0, a1 anda2. These graphs were generated by isolating and varying each of the

coefficients in turn while having conditioned the remainingcoefficients to the optimal values identified

previously. The imageIS was synthesised and compared to the target imageIT with the log probabilities

recorded at every iteration. We used image examples from theCOIL-20 database [Nene et al. (1996)].

The means required in each of the three priors were also selected at the identified optimal values for the

coefficientsa0, a1 anda2 and the standard deviations were chosen asσa0
= 0.5 andσa1

= σa2
= 0.125

respectively. The standard deviation of the noise in the likelihood was set atσǫ = 1. We examine only

these three coefficients here since the curves are quite similar for the remaining seven.

What we should note in particular from these examples are the effects of the prior on the likelihood,

especially near the tails of the p.d.f. (where we have largererror residuals). The prior widens the basin of

attraction of the likelihood curve resulting in an almost convex posterior that is much easier to minimise

even if we initialise our optimisation algorithm far away from the optimal solution. On the other hand,

where we have the maximum probability near the global optimum we wish the prior to have as little

impact as possible in order for the detailed information to come entirely from the likelihood. This is so

that we can allow for some small deviations from the most likely values for the coefficients as encoded

in the prior means since every synthesis and recognition experiment will differ slightly, owing to noise,

perspective camera effects and so on3.

The extent to which the priors will affect the posterior distribution can be determined by choosing

appropriate magnitudes for the ratioski = σ2
ǫ /σ

2
i andkj = σ2

ǫ /σ
2
j . Thus, for example for coefficienta0

for which the likelihood is already convex we can use a fairlywide Gaussian prior without need to take

much care as to where it is centred. In distinction, for the coefficientsa1 anda2 the basins of attraction in

the likelihood are quite narrow and much stronger priors arerequired. We note again how a good choice

for these ratios can ensure that exact position of the globaloptimum at the bottom of the overall basin

of attraction is determined by the likelihood alone. For example, in Fig. 5.4(b) the prior mean is set to

m̄a1
= 0.5 but the posterior minimum is ata1 ≃ 0.48 because this is also the location of the minimum

in the likelihood term. This is the exact location we wish to preserve when we calculate the posterior

distribution.

3We have seen in a number of experimental cases where we allowed such deviations that the synthesis similarity betweenIT

andIS was much higher (and thus much lower error) than when we used a much stronger prior to bias the solution closer to the
prior mean values.
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(a) Scene view (b) Basis image 1 (c) Basis image 2

Figure 5.5: Synthetic data used for the testing of the LCV object recognition approach

Essentially, we are proposing a flexible template matching system in which the template is allowed

to deform in the LCV space but restricted by the Bayesian priors to regions where there is a high proba-

bility of obtaining meaningful solutions.

5.3 Experimental results

In a similar fashion to that adopted in the previous chapter,we present the results from a small number of

tests designed to examine the validity of our 3-D object recognition method and particularly the Bayesian

inference part. These tests will serve as a precursor to the more detailed experiments which follow in

later chapters.

For these preliminary experiments we envisage the following object recognition problem which we

will attempt to solve via the LCV approach. Consider the scene image of an artificial human head model

(Fig. 5.5(a)) in a frontal-facing position in relation to the camera. We wish to identify this pose, here

assigned an angle of00, using a multi-view template model comprised of two given basis views. For the

known basis views we chose two images (Fig. 5.5(b), (c)) thatare±150 apart from the frontal, scene

or target view. We then built our LCV model by choosing 52 landmarks on prominent features of the

object and carried out a constrained Delaunay triangulation that was kept consistent between the two

basis views. With the help of a global optimisation algorithm (the details of which are not important

at this point) we then examined three different examples: first, a search for the LCV coefficients by

starting close to the optimum solution (i.e. a good initialisation); second, a similar search but starting

from a remote location (i.e. a poor initialisation) and finally, the same case as used for the second, ’poor

initialisation’ experiment but with a Bayesian model available to regularise and localise the optimisation

search. These tests were designed to give us some idea about the difficulty of the problem and form of

the objective function and error surfaces, and also to illustrate, in practice, any beneficial effects of using

the Bayesian approach.

We carried out 100 test runs for each example and every run wasallowed to execute for 20000

evaluations of the relevant objective function. In total wethus performed 300 LCV object recognition

tests for the recovery of the frontal view. The success of each run was determined from evaluation of two

quantities. The first was the back-projection errorEB =
∑N
i=1 d

2
i . This is a purely geometric measure

defined as the SSD between the landmark points in the scene or target image and the corresponding

landmark points in the synthesised image as calculated fromthe LCV equations. The total number of
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(a) (b)

Figure 5.6: Two synthesised examples at the chosen thresholds. (a) c.c=0.966 and (b)EB=108

landmark points in any one image wasN = 52. We refer to it below as the ”back-projection” error. The

second quantity was the cross-correlation between the target and synthesised images which combines

information as to how well both the geometry of the landmark points and the pixel intensities were syn-

thesized. The ground truth solution (allowing for a small amount of error inherent in the approximations

in the LCV equations and in the way we computed the pixel intensities) is given by the LCV coefficient

set: [a0 = −3.3405, a1 = 0.5115, a2 = 0.0005, a3 = 0.5212, a4 = 0.0005, b0 = 0, b1 = 0, b2 = 0.5,

b3 = 0, b4 = 0.5] with a cross-correlation of0.988106 and back-projection error of13.5502.

Following the above experiments we chose the convergence thresholds for cross-correlation andEB

asτc = 0.966 andτEB
= 108 respectively which were chosen from qualitative inspection of the image

synthesis results. Thus, if for example we visually comparetwo synthesised instances, one of which has

a cross-correlation≈ 0.966 (Fig. 5.6(a)) and a second withEB ≈ 108 (Fig. 5.6(b)), to the target image

(Fig. 5.5(a)) we can see that the two models appear to providea sufficiently close match. We thus regard

a successfully synthesized image as one that has both a cross-correlation≥ τc andEB ≤ τEB
. We

deliberately avoided placing individual distance thresholds on the 10 coefficients since, in more practical

scenarios, they are not statistically independent as we discovered for the parameters in the 2-D example

in chapter 4. Furthermore, owing to the over-determined linear system (3.14) it might be possible to

reach a good solution that is outside the boundary limits seton the variation of the LCV coefficient

as determined in section 5.1.4. In fact, we have seen a particular occurrence of this in some of our

experiments. Study of the diversity plot (Fig. 5.7) revealsthat coefficientsa2 anda4 are lying outside

the identified boundaries with higher diversity than other coefficients. In spite of this, all the models

produced by these values are still very good representations of the target image and thus admissible as

correct solutions to the optimisation problem. Thus it is not the case that solutions outside the predefined

limits are not useful. However, the opposite is always true in the sense that a solution found well inside

these boundaries will produce a good visual representationand will be admissible under with respect to

the thresholdsτc andτEB
. Because of this choosing the Bayesian priors to exclude coefficient values

outside these boundaries is possible.

The test runs with a good initialisation were started insidethe boundaries with: [{−5 . . . 5},

{0 . . . 1}, {0 . . . 0}, {0 . . . 1}, {0 . . . 0}, {0 . . . 0}, {0 . . . 0}, {0.5 . . . 0.5}, {0 . . . 0}, {0.5 . . . 0.5}]. Note

the very restricted ranges for the coefficients that remain constant during the rotation of the viewpoint

(or object) about the vertical axis. For the examples that were started from a poor initialisation, we
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Figure 5.7: The diversity of the coefficients from the 100 tests with good-initialisation.

No init Init Bayes
Total success % 0 100 96
EB success % 0 100 96
c.c. success % 0 100 98

Table 5.1: Object recognition results for the 3 different cases.

defined the boundaries as: [{−5 . . . 5}, {−1 . . . 1}, {−1 . . . 1}, {−1 . . . 1}, {−1 . . . 1}, {−1 . . . 1},

{−1 . . . 1}, {−1 . . . 1}, {−1 . . . 1}, {−1 . . . 1}]. For the tests in which we used a Bayesian approach

we kept the same boundaries as in the second set of experiments and used Gaussian priors with

means and standard deviations:{ma0
=-2, ma1

=ma3
=mb2=mb4=0.5, ma2

=ma4
=mb0=mb1=mb3=0},

{σa0
=σa1

=σa3
=1,σa2

=σa4
=σb0=σb1=σb2=σb3=σb4=0.01} for the 10 coefficients respectively.

The main results that show convergence of the optimisation for the three cases are assembled in

Table 5.1. Here, we can not only examine each error measure separately but also see the combined

results. It is obvious (column 3) that all the runs which wereinitialised close to the desired optimal or

ground-truth solution not only converged successfully butalso within a low number of function evalua-

tions (see Fig. 5.8(a)). This most likely indicates a favourable region near and around the location of the

global optimum location that lies within its basin of attraction. Provided that the optimisation algorithm

manages to find its way into this favourable region we may thenbe able to achieve convergence to the

globally optimal solution by using a simple, local optimisation approach.

On the other hand, the error surface far from the globally optimal solution is very difficult even
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Figure 5.8: The average optimisation behaviour of the 3 examples.
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for a powerful, ’global’ optimisation algorithm successfully to traverse to the desired solution. We can

see this in column 2 of Table 5.1. None of the 100 test runs in this column succeeded in finding the

desired globally optimal solution and most did not get closeto the optimum model configuration (see

Fig. 5.8(b)). They either exhausted the allowed number of objective function evaluations or converged to

spurious local optima. We may thus deduce that a way of successfully traversing these difficult and noisy

regions of the parameter space is needed so that we can reach the correct solution efficiently, quickly and,

most importantly, without getting stuck in local optima. This is exactly what the Bayesian approach aims

to achieve by means of its regularisation and localisation effects. We can therefore use Gaussian priors

to limit likely parameters values within the expected solution boundaries and simultaneously ensure

they are not so strong that they overly bias the posterior. With such priors (See section 5.1.4.) we

can achieve a similar effect to a good initialisation but with the diversity available for the optimisation

algorithm to examine other promising areas of the solution space. In addition, the inherent smoothness

of the Gaussian priors is incorporated into smoothing the posterior, especially in noisy areas as when the

template is positioned over the image background, or in other words, in the tails of the distribution (see

Fig. 5.4).

This behaviour of the priors is apparent from the runs of 100 trials in each of our experimental

scenarios. The convergence results obtained from these runs are given in column 4 of Table 5.1. Here we

see that the results of the Bayesian tests are almost as good as if we were to initialise close to the correct

solution. In the tests of the Bayes approach, the algorithm was started at similar locations and with the

same settings as in the poorly initialised cases just described but, because now the noisy background

areas have been effectively smoothened out it managed effortlessly to converge to similarly (but not

equally) low-error solutions as with the set of runs in the first case where a good initialisation was used

(see Fig. 5.8(c) and comparison of the two error measures in Fig. 5.9). What should also be noted from

Table 5.1 is that there is approximate agreement between thematching results as characterised by the

two measures of cross correlation and back-projection error. This indicates that we appear not to have

(or at least not to have discovered) any trivial solutions aswere found in the 2-D affine example studied

in the previous chapter. If we had such trivial solutions in which our model gives rise to an erroneous

object representation, we would expect to see results with ahigh back-projection error but which, as in

the 2-D case, had a low SSD error (or high cross-correlation). For such occurrences we would expect to

see a big discrepancy between the 3rd and 4th rows of Table 5.1.

These preliminary tests have shown that the proposed objectrecognition paradigm using LCV is

correct in principle and can be considered as an optimisation problem in the joint image space, similar

to that for the 2-dimensional case examined previously. However, owing to the increased dimensionality

we need to solve a more challenging optimisation problem andit has been demonstrated that a Bayesian

approach which exploits our prior knowledge about the variation of the LCV coefficients is necessary

when good bounds on the coefficient values to be used in the initialisation of the optimisation are not

available.

A very desirable property of the LCV recognition method, that we identified from our initial tests
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Figure 5.9: Comparison between the two measures for the good-initialisation and Bayesian tests.

but have not yet adequately proven, is that this approach does not seem to suffer from problems with

trivial solutions. In order to make a more precise claim however it would be necessary to experiment

much more extensively with additional transformations in 3-D that represent changes of viewpoint other

than rotation about a vertical axis. We aim to do so in later chapters when we will carry out more

detailed and structured experiments. With these preliminary results however we are confident of the

validity and practicality of our method since it is obvious that a single, global minimum exists within

a locally favourable area (that may be extended by the use of the Bayesian priors). We are thus simply

faced with the (non-trivial) problem of efficiently and effectively reaching that minimum.

5.3.1 Markov-Chain Monte-Carlo

In the previous sections we have gone some way into providinggeneral information about the overall

shape and properties of the Bayesian posterior by specifying, up to constants and other irrelevant terms,

a mathematical formula for the (log) posterior p.d.f. in (5.15) and by generating and visualising 2-

dimensional slices of the objective function near the optimal solution. Helpful though the previous

work has been, it is very desirable if we can obtain a better idea about characteristics of the posterior

distribution more specifically relevant to the optimisation. We have therefore used Markov-Chain Monte-

Carlo (MCMC) [Gelman et al. (1995)] sampling in order to generate a representative sample of the

posterior p.d.f. from the regions of high probability and have carried out further numerical analysis on

the distribution, since graphical analysis in 10 dimensions is not very feasible.
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Figure 5.10: The identified clusters before (b) and after (a)thinning-out the sample.

Markov-Chain Monte-Carlo (MCMC) is a general method for sampling from an unknown distri-

bution that requires only that its density can be calculatedat a sample pointx, say. MCMC works

by drawing values from a known distribution, thetransition distributionand then gradually adjusting

these draws to converge to the approximate posterior distribution (orstationary distribution). The sam-

ples are drawn sequentially with the draws forming a Markov Chain - that is - the distribution of the

sampled draws depends only on the last value drawn. The method is driven by the transition distri-

bution and some acceptance/rejection rule for the new samples In our implementation we have used

the Metropolis-Hastings rule [Metropolis et al. (1953); Hastings (1970)] and a 10-dimensional Gaussian

initial distribution in order to accept or reject new draws and begin the process of approximate the pos-

terior distribution. In addition, in order to reduce any residual correlation between the drawn samples,

it is commonplace to “thin-out” the samples by removing a subset (for example the first N samples) and

keeping the remainder. This will also ensure that any bias from the initial transition distribution is greatly

reduced.

We should emphasise here that MCMC is primarily intended to generate a sample from a distribu-

tion and is not an optimisation method. There is no guaranteethat the MCMC can produce good point

estimates. Although conventional importance sampling methods can be quite inefficient in high dimen-

sional spaces MCMC is capable of reaching the areas of high probability, that is the main modes of a

p.d.f., and drawing samples near or at such modes. Given the characteristics of our posterior distribution

seen so far, it was decided to explore the MCMC both as a minimisation tool and as a mechanism for

characterising the posterior p.d.f..

We chose the same object recognition experiment used in the previous section and generated a

set of 10000 samples of the posterior (5.15) from areas of high probability using 5 Markov chains (2000

samples per chain) and with the following settings: standard deviation of the initial Gaussian distribution

σ = 10−5, initial acceptance probabilityp = 0.95 (that is when we start the algorithm, the initial

Metropolis-Hastings criterion must evaluate to a probability of ≥ 0.95 for a sample to be accepted),

acceptance ratior = 0.15 (the percentage of samples that should be accepted in every N=10 samples

drawn. The value ofp is thus adjusted accordingly). As a starting point for the Markov chains we
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cluster 1: -2.1893 0.7089 -0.0140 0.4685 -0.0005
(c.c. = 0.5792) 0.0779 0.1054 0.5297 0.0205 0.6061

cluster 2: 0.9493 0.5881 0.0544 -0.0306 0.0265
(c.c. = 0.1753) 0.1095 0.0994 0.5619 0.0621 0.5716

cluster 3: -0.0765 0.4810 -0.0132 0.5455 0.0068
(c.c. = 0.7088) 0.0581 0.0458 0.5268 0.0431 0.5732

cluster 4: -0.9653 0.3956 -0.0057 0.5776 0.0165
(c.c. = 0.7687) 0.0560 0.0524 0.4961 0.0219 0.5568

cluster 5: -2.8922 0.6551 0.0125 0.5066 -0.0235
(c.c. = 0.6329) 0.0824 0.0684 0.5163 0.0478 0.5753

Table 5.2: The centres of the five identified clusters with their associated c.corr. values.

used similar bounds as examples from the previous section that were well-initialised. For analysis of

the posterior we discarded the first half of the drawn samples(i.e. 1000 samples from each chain) while

for the function minimisation we considered all the samplessince the more samples available the better

chance of one of them being near or at the global optimum. In fact, the MCMC method recovered a

point very close to the global optimum with a cross-correlation of 0.97495 (the ground truth has cross-

correlation of 0.9881 and the best solution recovered previously in the well-initialised tests was 0.9887).

For the analysis of the posterior based on the recovered, “thinned-out” sample, the first step is to

determine any other major modes of the p.d.f. near and aroundthe global optimum. That can tell us a

lot about the shape of the p.d.f., especially where other locally optimal solutions may be situated. For

that purpose, we used various runs of a k-means clustering algorithm [Bishop (1995)], the best of which

recovered five main clusters (Fig. 5.10(a)) each associatedwith one of the Markov chains. The centres

of these clusters can be seen in Table 5.2. It is obvious from the close proximity of the clusters and

the fact that they are all near the global optimum, that the function has a single, main mode (i.e. peak)

though with some noise which gives rise to other smaller peaks nearby, and that there is no significant

local optimum elsewhere in the nearby posterior space. The fact that the centre of cluster 2 is far away

in the value ofa3 coefficient merely indicates that the Markov chain failed toget very close to the

global optimum and not that another significant mode is present. The presence of another significant

mode would also have been identified by the Bayesian tests we carried out earlier. Note also that there

is a greater diversity in thea0 coefficient than in the others (see Fig. 5.11). This is to be expected

sincea0 represents translation of the model along the x-axis and hasdifferent units (or as physicists say,

dimensionality) from the other coefficients.

If, on the other hand, we do not thin-out the samples but consider all the 10000 points, including

even those from regions of low probability, we also recover 5principal clusters but in this case the

clusters are not well separated (especially those with negative values, 1,2 and 3,4 Fig. 5.10(b)) most

probably indicating a single, wide mode. From looking at thecluster centres and at the graph in Fig.

5.10 we did not discover any significant local optima which weexpect, usually to be identified as clusters

with high value (0.8,. . .,1) but with very thin footprint. Based on these clustering results we may say

that the p.d.f. near the global optimum (which is of most interest to us) is a unimodal function, devoid of

any significant local optima and affrected by only a small amount of noise as is to be expected since we
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Figure 5.11: The diversity of the 10 coefficients before (a) and after (b) the thinning-out.

Dispersion measures:
range 3.9392 0.4639 0.2480 0.6645 0.1798

0.3701 0.3994 0.2119 0.2591 0.3503
std. dev. 1.3890 0.1171 0.0407 0.2258 0.0302

0.1031 0.1024 0.0455 0.0579 0.0973
min. -2.9253 0.3131 -0.0704 -0.0532 -0.0800

-0.0062 -0.0085 0.4697 -0.0229 0.4959
max. 1.0139 0.7770 0.1776 0.6112 0.0998

0.3638 0.3909 0.6816 0.2362 0.8462
Location measures:

mean -1.0348 0.5657 0.0068 0.4135 0.0052
0.0768 0.0743 0.5262 0.0391 0.5766

median -0.9717 0.6004 -0.0003 0.5158 0.0000
0.0026 0.0039 0.5013 0.0026 0.5067

mode -0.9826 0.4262 0.0000 0.5800 -0.0009
0.0020 0.0000 0.5003 0.0000 0.5014

Distributional measures:
skewness 0.0558 -0.2909 2.0017 -1.3876 0.4002

1.0680 1.2762 1.7307 1.3652 0.9414
kurtosis (-3) -1.3851 -1.0746 5.1036 0.1009 1.4513

-0.2280 0.5369 2.3347 0.7000 -0.4407

Table 5.3: The results from the numerical tests on the drawn sample.

are dealing with discrete data.

One additional graphical tool that may be used to aid our analysis is the boxplot which illustrates the

diversity of the coefficients in the samples from the MCMC. Wehave included two such plots, one prior

to the thinning-out with all the points included (Fig. 5.11(a)) and the other after the thinning-out with

only half of the sampled points (Fig. 5.11(b)). It is obviousthat in the latter the samples are much more

tightly compact with fewer outliers than when the data is notthinned-out. This is also as expected and

is an indication that the algorithm has converged to an optimum location. Furthermore, this reinforces

the notion that the posterior p.d.f. is unimodal leading to anarrow,and perhaps somewhat kurtotic, basin

of attraction in the optimisation. In the first boxplot the existence of a large number of outliers simply

illustrates that the algorithm has spent its initial time “randomly walking” through the high-dimensional
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space of the LCV coefficients until it reaches an area of high posterior probability. The fact that there

is lower overall diversity in the second boxplot shows that the removal of the first half of the drawn

samples is a good way of reducing the dependence on the starting distribution while also limiting the

presence of samples from regions of low probability in the tail of the p.d.f.. Note once again, as in Fig.

5.7) the increased diversity in coefficientsa2 anda4 that represent correct solutions outside the identified

boundaries.

We proceed with the calculation of the moments from the thinned-out sample as they may give us

additional, numerical information about the properties ofthe posterior distribution. These are compiled

in Table 5.3. Our first observation is that the mean, mode and median are in close proximity to each

other, further reinforcing the evidence that we are dealingwith an approximately symmetric, unimodal

distribution (near and inside the basin of attraction). This is to be expected in particular owing to the

effects of the prior which itself is a symmetric and unimodaldistribution. By further examination of

the range, minimum and maximum values, combined with the sample diversity box plot (Fig. 5.11), we

can see once more how the coefficients are tightly concentrated within the general limits identified by

the 3-D experiment described in section 5.1.4. This indicates a region of the error surface around the

global minimum which is narrow and thin until it peaks out (orrather bottoms out) into a few close-by

points. This limited spread, is further affirmed by the identified low standard deviation values in all 10

dimensions except for the coefficienta0.

The last two numerical measures are the skewness and the kurtosis. These provide information

about the asymmetry of the p.d.f. and the shape around its peak. As we mentioned above, the small nu-

merical differences between the mean, mode and median may indicate an almost symmetric distribution.

However, the skewness values in Table 5.3 demonstrate some positive skewness in certain dimensions,

while there is negative skewness in others. This is mostly due to the shape of the likelihood function (i.e.

the observed data) since the prior is symmetric. An example of the shape and skewness of the likelihood

near the global minimum for some coefficients can be seen in Fig. 5.4. Finally we have the kurtosis of

the peak which result from interplay of both the shape of the likelihood and the strength of the prior.

For example, some dimensions have an almost Gaussian-like kurtosis of zero where there is little bias

from the prior. Other dimensions however are highly kurtotic (leptokurtic) where the prior has greater

influence that the likelihood and produces a narrower looking basin of attraction.

Even though we cannot visualise the 10-dimensional posterior p.d.f. we can say that as a product

of the likelihood and prior distributions the posterior to some extent inherits characteristics of their

shapes. Thus, it is unimodal and in some dimensions moderately positively skewed due to the shape of

the likelihood and, depending on the strength of the prior wemay have different levels of dispersion of

samples drawn from the posterior. A highly biasing prior will produce a long, narrow p.d.f. while a weak

prior will generate a shorter, wider peak in the posterior.

5.4 Summary
In this chapter we have seen how the linear combination of views (LCV) method may be used in view-

based object recognition. Our approach involves synthesising intensity images using LCV and compar-
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ing them to the target scene image. In addition we incorporated prior probabilistic information on the

synthesis parameters by extending the LCV equations into a Bayesian model. For the priors, we chose

Gaussian distributions centred around the identified locations of where the optimal synthesis parameters

were expected to be. These locations were identified by isolating a specific transformation (in this case

rotation about a vertical axis in 3-D) and interpreting the parameters as a function of the transformation.

We experimented with synthetic data and the use of an optimisation algorithm to recover the optimal

set of parameters that would match the synthesised and target images. These initial experiments carried

out in order to test the principle of our method while evaluating the advantages of using a Bayesian

approach have shown that our method works well in recoveringa view that lies between the basis views.

Furthermore, we have seen the positive regularisation and biasing effects of carefully chosen priors on

the matching objective error function and consequently on the optimisation results themselves. Finally,

we used a MCMC to draw a sample from the posterior distribution and carried out additional tests in

order to recover more information about the shape of the distribution near the optimal MAP solution

and to probe where other interesting solutions may lie. The use of MCMC as an optimisation approach

was also briefly explored with, because of the form of the posterior, satisfactory results. Nevertheless to

revaluate the approach additional, more robust experimentation is required with a variety of datasets and

across a range of different poses and objects. These are presented in the following chapters.
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Chapter 6

Optimisation strategy

We have already seen a number of traditional and, for computer vision applications, novel optimisa-

tion strategies in Chapter 2. Our intention now is to test these different strategies against a set of 2-

dimensional, analytic functions and real-image, realistic template-matching datasets. The aim behind

these tests is to determine the general properties of each ofthe optimisation algorithms (using the 2-D

functions) and understand some details about their parameter settings. We can then use this information

and apply the same algorithms in a template-matching problem and see how they compare in more re-

alistic circumstances and using real image data. This will give us further insight into the workings and

parameter tuning of each method and determine which of theseoptimisation approaches best suits our

kind of computer vision problem and data.

6.1 2-D test functions
The functions we will present here are designed to test the general properties of optimisation algorithms

and give us an overall understanding of each method’s strengths and weaknesses and possible param-

eter choices before we move on to datasets and experimentation specific to template matching. These

functions were inspired by the work of [DeJong (1975)] and have been extensively used by optimisation

researchers ever since to test the performance of various algorithms. The original set, comprised of 5

functions known collectively as DeJong’s functions, include:

• the sphere model, f(x) =
∑N
i=1 x

2
i , a smooth, unimodal, symmetric, convex function used to

measure the general efficiency of an optimisation algorithm. Since this function is very well

behaved (from an optimisation point of view) the majority ofstandard, unsophisticated algorithms

is expected to converge and we can use the number of function evaluations it takes an algorithm to

reach the minimum as a measure of the algorithm’s efficiency.

• Rosenbrock’sfunction,f(x) =
∑N
i=1[(1 − xi)

2 + 100(xi+1 − x2
i )

2], which has a single global

minimum inside a long, parabolic-shaped flat valley. To find the valley is quite trivial, however

convergence to the minimum can be difficult. Algorithms thatare not able to discover good direc-

tions for optimisation under-perform on this problem by oscillating around the minimum.

• stepfunction,f(x) =
∑N
i=1 round(xi), which effectively highlights the problem of flat surfaces.

Such surfaces pose particular difficulties for optimisation algorithms since they do not provide any
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information as to which direction to favour. Unless an algorithm is equipped to handle variable

step sizes then it can get stuck in one of the flat regions. Instead of the original step function,

we decided to experiment with an alternative, thesix-hump camel-backfunction,f(x, y) = (4 −
2.1x2+ x4

3 )x2+xy+(−4+4y2)y2 which has a wide and approximately flat plateau and a number

of local minima. In addition, it has two, equally important global minima.

The camel-back function is more difficult than the original step function, since the flat region in the

former does not offer enough information for a fixed-step algorithm to steer away from any local

minima. Therefore, whereas in the case of the original step function an unsophisticated algorithm

might search the error surface for a long time and eventually, purely due to luck converge at the

global minimum, in the case of the camel-back function the flat surface near and around the local

minima do not provide the necessary external energy for the algorithm to jump out and drift away

to other promising regions. In other words, a combination ofa flat surface surrounding local

minima is more difficult to optimise than a flat surface alone.

• Quartic, f(x) =
∑N
i=1 x

4 + Gauss(0, 1) is a unimodal function with the addition of random,

Gaussian noise. This is used to test whether or not an optimisation algorithm can cope with noisy

data. The problem with this function however is that the addition of a random part might shift

the global minimum away from its known and expected location. This makes verification of the

numerical convergence accuracy of an algorithm quite impossible. For this reason, we decided to

use two alternative functions,Rastrigin’sfunctionf(x) = 10n+
∑N
i=1 (x2

i − 10 cos(2πxi)) and

the slightly more difficultGriewank’sfunction f(x) =
∑N
i=1

x2

i

4000 −∏N
i=1 cos( xi√

i
) + 1. Both

have a cosine modulation part to produce many local minima which although regularly distributed

simulate the effects of noise (multiple modes) and most importantly do not change the position of

the global minimum.

• The final function in the original set by De Jong was thefoxholesfunction which contains many

local minima. It is designed to test whether an algorithm canjump out of a local minimum or

will get stuck in the first basin of attraction it encounters.We decided to use the aforementioned

Rastrigin’s and Griewank’s functions for this test since they essentially serve the same purpose

with the foxholes function.

All the functions we will use for initial testing and evaluation of the optimisation algorithms are shown

in Fig. 6.1.

6.2 Real-image template matching

In this section we propose more detailed experiments relevant to computer vision by examining de-

formable template matching since it is a generic scenario that might be applied to many different areas

of interest in the field. The deformable template matching problem can be expressed as the task of

searching for the parametersξ of a transformationT that will bring the model templateIm into agree-

ment with a target or scene imageIT . The model template may be represented in various differentways
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Figure 6.1: The five 2-dimensional test functions.

such as using pixel intensities, feature points, edges, corners, linear segments and so on. The transfor-

mationT , for 2-dimensional problems, is usually an affine transformation with 6 parameters and may be

mathematically defined in a similar way as in section 4.2 equation (4.6). In this caseg(., .), our match-

ing measure, is the sum of square differences dissimilaritymetric where the sum is defined over all the

features in the template, in this case pixels.

As a result we get the error surfaces for the 2-dimensional translation, anisotropic scaling and 1-

dimensional rotation and shear as seen in Fig. 4.1. Of particular interest to us is the translation surface

(Fig. 4.1(a)) because it contains the majority of problems confronting optimisation algorithms. This

is due to the fact that, in general, a change in translation will move the model away from the object

and on to the background region where unknown detail, background objects and clutter and thus more

noisy peaks in the error surface exist. This is not so common with the other transformations. Thus the

translation surface may vary depending on the type of template modelIm and scene imageIT we use.

If for example we consider a template of the segmented objectof interest and a scene image with the

object present in front of a constant background (see Fig. 6.2(a)) then the translation space (assuming

all other transformation parameters are optimally set) is asimple convex surface (Fig. 6.2(d)). It lacks

any significant noisy areas (and thus local minima) and the global minimum may be easily found with

even the most elementary of optimisation algorithms without the need for good initialisation. Though

we note the changes in the error surface as detailed featuresbegin to match, this is considered to be a

relatively easy scenario of a computer vision optimisationproblem and mostly encountered in controlled

environments (e.g. assembly line visual inspection) and not so much with real images where considerably

more noise and uncertainty may be present.

A second possibility is for the scene imageIT background to be substantially more complex (see

Fig. 6.2(b)) with non-trivial structure and noise present.In this case however our template modelIm may

be more elaborate also, composed of a full foreground and background model, or simply the foreground
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object superimposed over the background. For this to work, we either have to know what the background

is [Sim et al. (2002)], build a very simple model [Buxton and Zografos (2005)], or have a statistical

model of what it is expected to be like [Srivastava et al. (2002, 2003)]. Therefore, for example in the

case where a foreground/background model is available the matching error for when the template is over

image background will certainly be higher than in the previous case (constant background) but will still

produce a somewhat manageable translation error surface (Fig. 6.2(e)) since the background model will

match over most of the background in the image. We consider this to be an example of a moderately hard

optimisation task with most global algorithms and a number of local methods under good initialisation

expected to converge to the correct minimum.

Finally, we have the hardest case where considerable structure and noise exist in the scene image

background, but a model of the background is not available (see Fig. 6.2(c)). The optimisation difficulty

in this scenario is apparent in the complexity of the 2-D translation error surface (Fig. 6.2(f)). We can

see a “rugged” landscape with many local minima due to the noisy structure in the scene background

and the absence of the regularisation effects of a background model. We note also that the global min-

imum is surrounded by a very narrow rim making the optimisation process even more problematic. In

this scenario, all local optimisation methods not initiated in close proximity to the global minimum are

expected to fail and most global methods will converge with great difficulty and after many iterations un-

less initialised appropriately and tuned specifically for this problem (i.e. boundaries, parameter settings,

number of iterations and so on).

The importance of the inherent complexity of the translation error surface in the optimisation pro-

cess has been demonstrated throughout many different test cases. If for example the translation parame-

ters are kept fixed at optimal values, or if we initialise our search close to or inside the basin of attraction

of the translational degrees of freedom, then all the globalalgorithms we have examined usually con-

verge in all dimensions. In addition, unlike other parameters the translation space is usually1 discrete and

this introduces further problems to optimisation algorithms that cannot cope with a mixture of discrete

and continuous parameters or that may require calculation of derivatives from a continuous function.

Such problems may be solved to some extent by relying on interpolation techniques and numerical ap-

proximation of the derivatives.

Regarding the remaining dimensions of the search space we would like to draw attention to the

irregularities of the 2-D scale space previously examined in section 4.4.1. Finally, the rotation and

shear spaces can be easily minimised even though for the rotation space (see Fig. 4.1(c)) there may be a

number of local minima at angular intervals of±π/2 depending on the rotational symmetry properties of

the object. If these local minima are particularly pronounced they may cause local optimisation methods

to get stuck.

It is quite possible (and often the case) that other important local minima exist elsewhere in the vast,

multi-dimensional space formed when all the individual transformations are combined. Such regions are

quite difficult to detect beforehand and may only become apparent when the optimisation algorithm is

1Unless sub-pixel accuracy is used.
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Figure 6.2: Commonly encountered datasets and their corresponding translation error spaces.

running. The reason for this is that it is not feasible to visualise the full 6-dimensional space (for the 2-D

affine transform). In spite of this we believe that isolatingthe surfaces the way we did helps us to get a

general idea about the overall properties of a specific transformation and tune our algorithm appropriately

in advance. Additional adjustments can only be carried out after test runs of the optimisation algorithm

so that problems caused by these local minima are identified and dealt with.

We can therefore see that the typical computer vision task ofdeformable template matching is

fraught with optimisation problems owing to the special characteristics of the objective function and the

resulting error surface. It is thus important that the optimisation strategy we choose is suited for and can

cope with these challenges.

6.3 Experiments: methods and results

In the previous section we have presented the different testcases against which we will evaluate the

different optimisation strategies. In this section we willpresent the experimental method we propose

to use for each dataset, the set-up of each algorithm, and thecomparative results from which we aim to

draw some conclusions about the fitness and efficiency of eachstrategy in relation to the typical computer

vision problem.

6.3.1 Set 1: 2-D test functions

The single quantitative measurement we have used to distinguish between the different optimisation al-

gorithms is the total number of function evaluations (FEs) required before convergence. This is because

we consider NFEs to be a general and algorithm-independent way of judging the efficiency and obtaining

an overall idea about the properties of each method. Convergence was defined as a recovered error mini-

mum no greater thanτ = 10−4 of the known global solution and found within the allocated optimisation

budget (1000 NFEs for local methods and 10000 NFEs for globalmethods). We decided to increase the

NFEs for the global methods since these in general require more time to converge and a direct compar-
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Function FE xm, ym f(xm, ym) XA, YA F (XA, YA) Converged?

Sphere 26 -0.0043,-0.0034 3.098E-5 0,0 0 Y
Rosenbrock 70 1.0037,1.0066 8.089E-5 1,1 0 Y
Griewank’s 1000 -3.14,-4.43 0.00739 0,0 0 N
Rastrigin’s 516 (0.238,-0.241)E-3 2.288E-5 0,0 0 Y
Camel-back 30 0.0903,-0.7151 -1.03157 0.0898,-0.7126 -1.0316 Y

Table 6.1: The test results for the 5 functions using a reducing-step restarting simplex.

ison between local and global algorithms with the same number of FEs would be misleading. Instead

we chose separately to compare each category of strategies.The thresholdτ was kept fixed in all cases.

Additionally, where possible we tried to use similar initialisation criteria for each method in order later

to facilitate intra-category comparison with respect to this aspect of the problem.

We begin with the simplex algorithm which was always initialised from the same triangle with

A = (5, 5), B = (5, 0), andC = (−5,−5). We carried out 5 tests for each 2-D function (since there

is the random restart part of the algorithm which produces different results at each run) and averaged

the results. For each test function therefore we present a result that was most indicative of the average

behaviour of the simplex algorithm. The results are shown inTable 6.1.F.E. represents the number of

function evaluations until convergence or termination,xm, ym are the coordinates of the found minimum

point andf(xm, ym) the function evaluation at that point.XA, YA correspond to the known global

minimum of the given function andf(XA, YA) is the global minimum value. We will use the same

notation throughout these tests.

As we can see most functions have converged to the global minimum with a moderate number of

iterations. We already mentioned that the simplex is not themost efficient amongst the direct search

methods in discovering the best possible optimisation direction, something which is can be seen from

the moderately high NFEs required to solve the sphere function. In the case of the Rosenbrock function

the simplex again needs a significant number of iterations due to oscillations in the valley near the

global minimum. However, these oscillations are not considerable and the simplex converges in the end

without any problems. Furthermore, we see from the camel-back function that the simplex can cope

with the uncertainty created by flat surfaces since it supports variable step sizes due to its expanding

and contracting nature. It does however require some time tojump out of the local minima. Finally,

when it comes to noisy surfaces the simplex is able to cope with some noise (as in the case of Rastrigin’s

function) because it can restart when stalled inside a localminimum. However, this requires a large

number of restarts (jumps) which is reflected by the high NFEsrequired. As for Griewank’s function the

simplex cannot overcome the numerous and narrow local minima and cannot solve this function even if

we considerably increase the available NFEs.

For the pattern search method, we run the same experiments using the following settings: starting

pointX = (4, 5), polling of the mesh points at each iteration using thepositive basis 2N[Audet and Jr.

(2003)] method; that is, we computed the objective functionat the mesh points to see if there is a point
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Function F.E. xm, ym f(xm, ym) XA, YA F (XA, YA) Converged?

Sphere 81 0,0 0 0,0 0 Y
Rosenbrock 89 1,1 0 1,1 0 Y
Griewank’s 1000 -3.14,-4.43 0.00739 0,0 0 N
Rastrigin’s 81 0,0 0 0,0 0 Y
Camel-back 169 -0.0898,0.7128 -1.03163 -0.0898,0.7126 -1.0316 Y

Table 6.2: The test results for the 5 functions using a pattern search algorithm.

with function value lower than the current point. A mesh expansion factor of2 (i.e. the algorithm

multiplies the mesh by2 after each successful poll) and a mesh contraction factor of0.5 (i.e. the mesh

is multiplied by0.5 after an unsuccessful poll). The results for the same 5 test functions can be seen in

Table 6.2. What we can observe from these results is that on average pattern search requires more FEs

than the simplex indicating that it is not so efficient nor canit discover good directions (there are some

considerable oscillations in the valley of the Rosenbrock function for example). However, it did find the

exact location of the global minimum in most cases and managed to deal with noisy functions much more

efficiently than the simplex, that is - it can jump out of localminima faster. However, even the pattern

search had problems for a significantly noisy function such as Griewank’s. For the flat, camel-back

function the pattern search eventually converged but with considerably more iterations than the simplex

indicating that the fixed mesh expansion and contraction factors were not adequate in cases where there

is no information (improvement or deterioration) about thecurrent function value.

We now come to the global methods with first the genetic algorithm. In this case the NFEs were

increased to 10000 by setting the population and generationnumbers to 100 each. The initial popu-

lation was randomly generated from aU(−5, 5) distribution. Although the algorithm we have used is

quite generic in nature there is a large variety of differentgenetic methods available for testing [Holland

(1992)] especially in theselectionandreproductionstages. It was thus not practically possible to ex-

amine all the known selection and reproduction methods and their permutations. Nevertheless, amongst

those we did test, on preliminary experiments, thestochastic uniformselection and thescattered cross-

over reproduction functions provided the best results and therefore we used them throughout the rest of

this work.

The stochastic uniform selection function arranges each potential parent in a line in which each

parent occupies a length of the line proportional to the parent’s scaled value. The algorithm samples

this line at equal steps and allocates a parent depending on the section of the line it is sampling. For the

scattered cross-over function, a random binary vector is created and where the vector is 1, genes from

the first parent are selected, and where the vector is 0, genesare chosen from the second parent. The

child is formed by combining the two genes.

The results of using the described genetic algorithm to optimise the 5 functions are presented in

Table 6.3. The behaviour of the algorithm apparent from these results is that overall the genetic algorithm

is quite inefficient and can get very close to but cannot go below theτ = 10−4 threshold at least within
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Function F.E. xm, ym f(xm, ym) XA, YA F (XA, YA) Converged?

Sphere 4600 0.002,-0.003 1.623E-5 0,0 0 Y
Rosenbrock 10000 1.0535,1.1009 0.01131 1,1 0 N
Griewank’s 8300 0.0098,0.0005 4.851E-5 0,0 0 Y*
Rastrigin’s 10000 0.0017,0.0001 6.45E-4 0,0 0 N
Camel-back 10000 0.07993,-0.716 -1.03111 -0.0898,0.7126 -1.0316 N

Table 6.3: The test results for the 5 functions using a genetic algorithm.

Function F.E. xm, ym f(xm, ym) XA, YA F (XA, YA) Converged?

Sphere 1600 -0.0063,-0.005 6.449E-5 0,0 0 Y
Rosenbrock 2800 1.0074,1.0152 6.5936E-5 1,1 0 Y
Griewank’s 2100 -0.006,-0.0173 9.248E-5 0,0 0 Y*
Rastrigin’s 2300 (0.653,-0.27)E-3 9.9214E-5 0,0 0 Y
Camel-back 1900 -0.0893,0.7158 -1.0315 -0.0898,0.7126 -1.0316 Y

Table 6.4: The test results for the 5 functions using DE.

the limit of 10000 function evaluations. It will in fact converge in all cases if we increase the FEs limit

since it was still making progress before the optimisation budget was exceeded. What should also be

noted is the fact that GA can cope rather well with noise sinceit has found the minimum location in

Griewank’s function the majority of (but not all) times. It is therefore best to use the genetic algorithm

for difficult problems with, if possible, inexpensive function cost where a high number of FEs would be

justified.

We continue with differential evolution. For this we used similarly a population limit ofNP = 100

and number of maximum iterationsitermax = 100. TheF andCR values [Storn and Price (1997)]

were set to0.8 and0.5 respectively and we chose theBest1Bin strategy because it converged most of

the time. The soft boundaries of[−5, 5] were also selected inside which we randomly initialised thefirst

population. The test results are presented in Table 6.4. Here we see that DE performs much better across

all functions and is more efficient than the GA. Even though DEis an evolutionary algorithm and needs

to maintain a population of solutions (which equates to a high number of NFEs) it managed to recover

the global minimum in all cases with a low NFEs especially in comparison to the maximum allowed

NFEs. Furthermore, it succeeded in solving Griewank’s function (albeit 80% of the times) which as we

have already seen is a particularly difficult function whichcaused a lot of problems in all the optimisation

algorithms discussed so far.

Finally we have SOMA, another example of a promising evolutionary method designed to solve

difficult global problems. SOMA’s parameters were selectedas follows in order approximately to have

a maximum of 10000 FEs:step = 0.11, pathLength = 2, prt = 0.1, migrations = 50 and

popsize = 10. We also found that the best strategy in terms of average rateof convergence for this

particular problem was theSOMA all-to-one-randomlystrategy [Zelinka (2004)]. The initial population

was initialised within the hard boundaries of[−5, 5]. Results of optimising the five 2-dimensional test
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Function F.E. xm, ym f(xm, ym) XA, YA F (XA, YA) Converged?

Sphere 1302 -0.0085,-0.0049 9.54E-5 0,0 0 Y
Rosenbrock 10000 1.1159,1.2453 0.0134 1,1 0 N
Griewank’s 10000 -3.14,-4.4384 0.0074 0,0 0 N
Rastrigin’s 4570 3.29E-6,2.81E-4 1.577E-5 0,0 0 Y
Camel-back 2651 -0.0866,0.7136 -1.0316 -0.0898,0.7126 -1.0316 Y

Table 6.5: The test results for the 5 functions using SOMA.

functions using SOMA are given in Table 6.5. We can see that SOMA performs well on the sphere func-

tion indicating that it is quite efficient when used on simpletest functions (as far as global methods are

concerned). It can deal with a certain amount of noise (for example, it solves Rastrigin’s function) but

not with an overly complicated and very noisy function such as Griewank’s. SOMA is also quite capable

of coping with uncertain, flat regions by appropriately varying its step length when no more improve-

ment is being made. It is not exceptionally good however in determining good search directions since it

could not converge for Rosenbrock’s function although it did come close. In short, we can conclude that

in terms of general efficiency and optimisation performanceSOMA lies between GA and DE, with GA

being the least attractive of the global algorithms we examined.

As a result of these basic tests the best performing local optimisation method when comparing

NFEs and average convergence was the reducing-step restarting simplex and, from the global methods,

differential evolution. Before we can draw any broader conclusions however we need to perform more

rigorous tests on real-image datasets.

6.3.2 Set 2: Real-image template matching

We shall further analyse the fitness of each of the examined optimisation algorithms by performing more

detailed tests with the 3 real-image datasets previously discussed and described as: easy, moderate and

hard, using a template matching objective function with 6 d.o.f.. In all the tests we aim to measure

and investigate a greater range of the quantitative properties of each method so as to determine their

convergence capabilities. We define convergence in this context as the ability to recover a model config-

uration (i.e. the 6 affine transform parameters) within someEuclidean distance threshold from the known

optimum configurations. We could have also used the recommended minimum value to determine con-

vergence, that is after the run to ’characterise or evaluate’ how well the algorithm had converged, but

in this case and especially when using a SSD dissimilarity metric it is quite possible to find an invalid

model configuration with an error value that is lower than theexpected global minimum, as we have

mentioned already [Zografos and Buxton (2005a)].

The Euclidean distance is a much better way of judging how faraway (and thus how much worse)

we are from the optimal configuration since it does not sufferfrom these kind of problems. The only

issue with using the Euclidean distance in a multi-dimensional parameter setting is that there must be

a correspondence between changes in the parameters. For example, a change of one unit in translation

should transform the model in an analogous way as one unit of change in rotation. This is not so
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Figure 6.3: Comparison between parameter displacement anderror response.

important for step-adjusting optimisation strategies that can automatically cater for this inequality but it

is important for strategies that take random steps in different directions , and also for when we wish to

analyse test results using the Euclidean distance of the transformations. How such transformations are

measured or indeed defined is an open subject . One possibility would be to define model transform as

the mean displacement of foreground image pixels such as theone used by [Studholme et al. (1996)].

We may argue that such a definition does not capture the disproportional changes in the calculated error

that occur as the transformation parameters are varied. If for example we consider a change of 2 units

in horizontal translation, this will not generate analogous changes in matching error as a 2 unit increase

of horizontal scale. According to [Studholme et al. (1996)]the relationship between the translation and

scale parameters is in the order of4/Fx whereFx is the overlap between the scene and target images.

However, if we use the error as the comparison basis (Fig. 6.3), we can observe that this relationship

ratio is much higher.

A more practical alternative solution would be to normaliseaccording to the effective range of each

parameter. By effective range we signify the empirical boundaries for each parameter inside which the

solution is expected to lie. Although this might work in practice it does not ensure that the individual

transformation parameters are kept within these boundaries. In other words, it is possible for the 6-D

Euclidean distance to be below an acceptable threshold but one or more of the transformation parameters

not to be sufficiently close to its optimal value. For this reason, we decided to consider the individual

1-D distance for each of the parameters and impose proximitythresholds on each one separately. In this

way, we do not have to be concerned with normalisation or thatany of the parameters might be out of

acceptable range.

The distance threshold boundaries were thus defined as follows, using some prior information about

the expected effect on the error value: translationtx, ty = 5, scalesx, sy = 0.1, rotationθ = 100, and

shearφ = 50. Any configuration within these limits from the known globalminimum will be considered

a valid solution and convergence will be deemed as successful. We used = the same values across all the

3 datasets.
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Now that we have a definition of the convergence criterion we can define a number of different

measures we may use to further analyse the characteristic behaviour of each optimisation strategy. Such

measures are theglobal minimumof a convergedtest run; thetime to convergence, that is how many

iterations before the optimisation reached the convergence thresholds; theconvergence percentage, that

is the number of times the optimisation converged inside theset threshold; and thediversity in the

recovered transformation parameters

Dataset 1 - MRI images

The first test data consists of an MRI scan of a human brain in front of a black background (Fig. 6.2(a)). A

template of the object was generated from this image (i.e. similar lighting properties) and was subjected

to a 2-D affine transform. We seek to recover the reverse of this transform that will bring the image and

deformed template into registration. This transformationis: (tx, ty) = 65, 68; (sx, sy) = 0.925, 1.078;

θ = −25 andφ = −5.5826. The dissimilarity SSD error between the optimal template and the scene is

0.0449 but because of additional interpolation and approximationerrors, it is closer to6.6689.

In all the tests that follow we try to maintain a fixed number offunction evaluations: 2000 for local

methods and 20000 for global methods, exhaustion of which would signify the end of a single test run.

Every algorithm was allowed to perform 100 separate tests. None of the algorithms were initialised close

to the ground truth solution but instead in order to maintainunbiased runs, they were initialised either far

away and from the same starting point (for methods requiringa single initial value) or randomly within

the parameter domains (for population based methods). In more detail, we used the following settings

for each method:

• Simplex: initial restart step sizeS0=[20, 20, 2, 2, 50, 20], cooling rate R=[0.95, 0.95, 0.9, 0.9,0.9,

0.9], initial 7x6 simplex: fixed initialisation within the boundaries [1-50,1-50,0.5-1,0.5-1,1-20,1-

20].

• Pattern search: initial random generated population in therange(tx, ty) = [0 − 100], (sx, sy) =

[0.5 − 1.5], θ = [0 − 50]0 andφ = [0 − 10]0. Poll method = positive Basis 2N, polling order =

consecutive, complete search = no. Initial mesh size = 30, rotate mesh = yes, scale mesh = yes,

expansion factor = 2, contraction factor = 0.5.

• Genetic algorithm: 200 generations, 100 populations. Initial population function: random uniform

in the range(tx, ty) = [0 − 100], (sx, sy) = [0 − 1], θ = [0 − 50]0 andφ = [0 − 10]0.

• Differential evolution: populations=100, maximum iterations = 200. F=0.8, CR=0.5, strat-

egy=Best1Bin. Soft boundaries=[1 − 100, 1 − 100, 0.5 − 2, 0.5 − 2, 0 − 100, 0 − 50].

• SOMA: step=0.5, pathlength=1.5, prt=0.1, migrations=100, popsize=50· · · ≈ 20000NFEs. Hard

boundaries=[1 − 100, 1 − 100, 0.5 − 2, 0.5 − 2,−180 − 180,−50 − 50].

These settings will be kept fixed throughout all the datasets. After 100 experimental runs with each

algorithm we obtained the following results for the MRI image dataset (see Table 6.6). In the second
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Dataset 1 Dataset 2 Dataset 3
DE 100% - 3915 FEs 96% - 889 FEs 61% - 11483 FEs
SOMA 100% - 2551 FEs 61% - 1416 FEs 97% - 4070 FEs
GA 0% - N/A 11% - 446 FEs 63% - 4603 FEs
Simplex 2% - 1060 FEs 2% - 476 FEs 1% - 1194 FEs
PSearch 12% - 476 FEs 3% - 0 FEs * 4% - 862 FEs

Table 6.6: Comparative results from the 3 datasets using allthe algorithms.
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Figure 6.4: The diversity of the rotation angle in the first dataset using GA (a), DE (b) and SOMA (c).

column we see the number of times the test runs converged inside the chosen distance threshold and the

averaged time to convergence.

It is clear that both DE and SOMA have the best performance with all their test runs converging

inside the threshold. DE uses only about20% of the optimisation budget to achieve convergence on

average but SOMA is the clear winner with approximately 1400less FEs required for comparable results.

Next we have the genetic algorithm which very suprizingly did not manage to converge in any of the 100

tests but instead converged inside one of the many pronounced local minima of the rotation parameterθ

while having successfully identified the other parameters.We can see this from the high diversity in the

recovered rotation angles (see Fig. 6.4(a)). This is due to particular symmetry properties of the human

brain scan used as test object. The average recovered angle (horizontal dashed line) is much higher

than the−250 ground truth (diamond shape) and well outside the±50 threshold (up- and down-pointing

arrowheads) fluctuating between≈ −50 and550. DE and SOMA successfully manage to avoid this

problem with a very low diversity in the final populations (see Fig. 6.4(b) and (c) respectively) well

within the upper and lower angle thresholds of−300 and−200.

For the local methods, owing to the absence of good initialisation, we expect much lower conver-

gence rates than the global methods. When the local methods are compared amongst themselves the

pattern search can converge many more times and at around half the NFEs as the simplex requires. We

also present a plot (see Fig. 6.5(a)) of the averaged, converged test runs for each of the above methods

in order visually to compare the recovered minimum error andobserve the representative optimisation

behaviour of each algorithm. As expected, both local methods when they converge, do so much sooner

(albeit on fewer occasions) than the global methods while the global methods find a good solution early

and performance falls off gradually for the remaining allocated NFEs. We can see that in terms of the

recovered minimum, DE and SOMA both have found a much lower solution than all the other meth-

ods which also is considerably lower than the practical ground truth (horizontal dashed line). This is
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Figure 6.5: The average converged test runs for all the 3 datasets.

perfectly possible since the practical ground truth error includes approximation and interpolation effects

which an optimisation method is able to counteract by appropriately adjusting the values of the system

variables and thus reaching a lower error surface.

Dataset 2 - CMU PIE data

The second instalment of tests was carried out in a real imagesample (see Fig. 6.2(b)) from the CMU

PIE database with a complex background but which is given as aseparate segmented image. This is a

more difficult scenario than previously and we expect a lowerconvergence rate across all the methods. In

this occasion, the practical ground truth is at[82, 52, 1.0786, 1.1475, 100,−4.89910] with an SSD error

of 0.1885 but as we mentioned above lower errors that correspond to good model configurations may be

possible. The previously defined Euclidean threshold and algorithm parameter settings also hold in this

case.

After 100 test runs for each optimisation algorithm we obtained the results in column 3 of Table

6.6. As expected we see an overall drop in the recognition results with DE being the dominant method

with the best performance while at the same time displaying initial convergence behaviour reminiscent

of a local method; that is, converging in under 900 NFEs. We can also see this in Fig. 6.5(b). The rest

of the methods perform rather poorly with SOMA at61% and GA at a much lower11%. In the same

graph we can also see that all three global methods exhibit a very similar optimisation pattern (at least in

the test runs that converged successfully). Furthermore, all methods find a good minimum at ¡0.1, which

is lower than the known solution. We also note that in the caseof the pattern search algorithm the only

3 cases that succeeded in converging correctly were the onesthat were randomly initialised inside the

basin of attraction (see Fig. 6.5(b)).

Dataset 3 - Real image data without a background model

Finally we arrive at the hardest case; that of a real image with a complex background, but without

any model of the latter (see Fig. 6.2(c) and (f)). Owing to theincreased difficulty associated with

this particular dataset it is expected that the overall optimisation performance will be further reduced.

The optimal solution in this case is[106, 59, 0.9048, 1.0444, 12.020, 00] = 0.0488. If we use the same

optimisation settings as previously we get the following results after 100 test runs (Table 6.6 column 5).

SOMA performs very well with a97% convergence ratio, with the GA coming second at63% and DE

not particularly efficient with this dataset at61%. We also see that it takes DE many more iterations in
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order to converge whereas SOMA and GA on average reach the global minimum around 2.5 times faster.

Despite that all the global methods reached approximately the same minimum error. This is illustrated

in the plot in Fig. 6.5(c).

In conclusion we may say that both DE and SOMA perform consistently well in all the 3 cases

with an expected performance penalty associated with the increased difficulty of each dataset. Both

these methods exhibit very low diversity of the parameters defining the optimal solution with them

always inside the defined threshold and no outliers in the 6 coefficients across the 100 test runs, two

properties that are very desirable for an optimisation algorithm. Another characteristic of their equivalent

performance is the fact that they both reach approximately the same minimum at the end of their allocated

FE budget. Where they differ however is in the time they require for initial convergence with SOMA

being the clear winner since it manages to approximate the correct solution much earlier than DE (see

Fig. 6.5). This makes SOMA ideal for the hybrid approach to bediscussed later since we are able to

switch to the local method much earlier in the optimisation process than with DE. As far as the GA

is concerned, we have seen that when it converges successfully it can reach an equally good minimum

error as obtained by SOMA and DE. Nevertheless, it has the tendency to get stuck in pronounced local

minima for all but the simplest datasets which consequentlyreduces its effectiveness and thus it does not

constitute a reliable algorithm for template matching-based object recognition. The two local methods,

simplex and pattern search, can converge very fast and nearly to the same minimum whenever they reach

its proximity. We can therefore use either one for the hybridapproach to be described next.

6.3.3 Hybrid approach

The hybrid approach is essentially the combination of a global, stochastic algorithm (in this case SOMA)

designed to get us close to the basin of attraction as early aspossible from a random, distant location on

the error surface, and a local method (the simplex) whose purpose is rapidly to refine the good solution

the global algorithm already recovered, much faster and more efficiently than the global method alone

can. Ideally we wish to bring together the advantages of boththe approaches in a manner that should

neutralise their individual shortcomings. Specifically, those shortcomings are the slow and FE-intensive

progress of the global method and the requirement for good initialisation and sensitivity to minima of

the local approach. If we were to plot the average test runs ofsuch an ideal hybrid algorithm we would

expect to see an initial drop of the discovered minimum caused by the global method followed by a

secondary drop due to the refinements of the local method instead of the gradual fall-off in latter part of

the calculation traditionally associated with global, stochastic optimisation algorithms.

The only additional issue with using a hybrid method is how todetermine when it is best to switch

between methods. One possibility is to use a number of concurrent criteria to decide when we are

close to the switch point. The first such criterion could be a proximity threshold such as the Euclidean

distance previously used to determine convergence. When near that threshold, we many assume that the

global optimiser has reached the global minimum and use the local method for further refinement. This

threshold of course must be known before hand and thus may only be used when we are dealing with

similar datasets of approximately the same convergence complexity or repeatedly running tests on the
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same dataset for evaluation purposes (as in this case).

Another such criterion could be the observed relative gain∆ǫ/ǫ of each successful iteration. When

the gain is below some predetermined value we can assume thatthe global algorithm has almost stalled

and switch to the local method with the expectation that it can burrow further into the error landscape.

A third criterion might be the relative change of each parameter |∆pi/pi| at every iteration. When

the change of the value in the parameters is insignificant at subsequent iterations then we may assume

that the diversity of the population is very low and a change of optimisation approach (i.e. to the local

method) might be necessary for further improvements to be made.

Alternatively, we may opt to use a fixed FE-related thresholdbased on the information we have

about the optimisation behaviour of SOMA for that particular dataset. If for example we revisit Table

6.6 we can see that on average and across all 3 datasets SOMA requires between 1500-4000 FEs to reach

the minimum error threshold. We can therefore use this priorknowledge and set SOMA to run at a fixed

number of 4000 NFEs. Such a number will most. This again assumes some previous knowledge about

the expected solution and is therefore limited in practicalapplicability.

As a result, we will use the following settings for the hybridalgorithm:

• SOMA: step=0.5, pathlength=1.5, prt=0.1, migrations=20,popsize=50≈ 4000NFEs. Hard

boundaries=[1 − 100, 1 − 100, 0.5 − 2, 0.5 − 2,−180 − 180,−50 − 50], method = All-to-one-

randomly.

• Simplex: initial restart step sizeS0=[20, 20, 2, 2, 50, 20], cooling rate R=[0.95, 0.95, 0.9, 0.9,

0.9, 0.9], initial 7x6 simplex that includes the vertexVi,1 of the recovered system variables at the

4000th function evaluation of SOMA and 6 random verticesVi,2−7 generated at distanced =

[5, 5, 0.1, 100, 50] (note this is the Euclidean distance threshold from the previous tests) from the

vertexVi,1.

We carried out 100 test runs of the hybrid method for each of the 3 datasets (see Fig. 6.2) and we

present the results in Table 6.7. The second row shows the convergence rate of the hybrid method. The

percentage difference (±%) in this row are in relation to the original SOMA results (row2 of Table 6.6).

The next two rows show the average SSD error of the 100 hybrid runs and the original 100 SOMA runs

at 6000 FEs. The percentage differences of row three are in relation to the original SOMA results at the

same NFEs. Finally, the last row shows the average SSD error of the original 100 SOMA runs at the

maximum 20000 FEs, with a percentage difference in relationto the original SOMA error at 6000 FEs

(row 4). We see that the convergence ratio is only around 15-30% lower than in the original tests but

the error at 6000 FEs is between 20-65% lower than the error atthe equivalent NFEs of the SOMA-only

approach used previously. In fact, the error values are quite close to the original recovered minima using

the full 20000 FEs. This can also be seen in Fig. 6.6. In these plots we can clearly see the secondary drop

in the discovered minimum value due to the local method as we have mentioned previously and observe

that the simplex algorithm always manages to refine the optimisation further (i.e. there is no stall at

the switch point) indicating that on average we chose good switch points and that the local method can

converge faster that the global method in the same number of iterations.
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Figure 6.6: Plots comparing the hybrid approach and the SOMAmethod for the 3 datasets.

Dataset 1 Dataset 2 Dataset 3
Convergence % (±%) 86% (-14%) 41% (-33%) 81% (-16.5%)
Hybrid SSD @ 6000 FEs (±%) 0.4275 (-65%) 0.0868 (-24%) 0.02661 (-22%)
SOMA SSD @ 6000 FEs 1.215 0.1138 0.03419
SOMA SSD @ 20000 FEs (±%) 0.3265 (−73%) 0.08659 (−24%) 0.02523 (−26%)

Table 6.7: The results of the hybrid and SOMA tests at 6000 and20000 FEs.

We can therefore say that by using a hybrid approach it is possible to obtain solutions that are very

close to those obtained with a global algorithm alone but at aconsiderably reduced FE cost. In that sense

a hybrid optimiser might be useful in situations where we arefaced with a costly objective function but

the good initialisation required for a local method is not available. With the application of the hybrid

method we may in the early stages use a global algorithm to overcome the need for a good initialisation

while avoiding the increased FE overhead due to its inefficiency in later stages of the computation. As

we have already mentioned, switching between global and local methods is very important and so the

effectiveness of the hybrid approach depends on the correctdetermination of this switching point.

6.4 Summary

In this chapter we have examined the task of deformable template matching cast as an optimisation

problem. This is a particular challenge, ubiquitous to computer vision owing to the problem’s generic

nature and well-known difficulties. To address these difficulties, it was necessary to examine various

optimisation methods (both local and global) that have not been adequately tested in this specific scenario

in the past. In our work such traditional methods as the simplex, pattern search and genetic algorithm

have been examined closely and compared to traditional global optimisation methods such as GAs and

to methods apparently new to computer vision such as SOMA anddifferential evolution, the latter two

having been originally applied to engineering problems.

We have tested the various approaches against a series of 2-dimensional, analytic functions designed

to highlight the generic properties of each optimisation method (such as efficiency, discovery of good

directions for the optimisation, sensitivity to noise etc), followed by three realistic datasets of progressive

difficulty commonly encountered in computer vision. Their purpose was to determine how well each

algorithm copes with typical template matching scenarios.

Our results show that the novel methods outperform the traditional global optimisation approaches
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while being easier to set-up initially. The most promising method in terms of convergence, minimum

error recovered and NFEs required was SOMA and therefore is the algorithm we will be using for our

LCV experiments in the next chapter. Finally we argue that for this application a hybrid combination of

a global and local method can produce equally good results ina fraction of the time required by a global

method alone. We demonstrate this with a number of additional experiments.
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Chapter 7

Experiments and evaluation

In this chapter we introduce a detailed evaluation of our LCV3-D object recognition paradigm starting

with the introduction of the various datasets used for testing, followed by the specifics of the experiments

themselves, and concluding with a critical discussion of the test results. In addition, we examine an

alternative, existing approach (Active Appearance models(AAM) by [Cootes et al. (2001)]) that aims to

solve the same problem, and compare it with our method in order to determine just how well the LCV

method fares against a tried-and-tested, well known technique. We end this chapter with the conclusions

we drew from the results generated during the evaluation process.

7.1 Image datasets

In order to carry out our detailed evaluation experiments wehave used three different datasets, consisting

of synthetic and real-image examples. All three databases were generated via different methods and

under various conditions, and are therefore quite different in size and content, but all of them include

examples of objects imaged under varying pose, which is the principal focus of our work. The idea

behind using a number of different datasets is to demonstrate the general validity of our results and the

applicability of our method across a variety of cases. Of course, owing to the diverse levels of data

complexity between the sets, we do not expect to recover the same quality of optimisation results, but as

long as there is a graceful and predictable deterioration inthe convergence outcome (i.e. see chapter 6,

section 6.2), then we can assume that our models and algorithm are generally valid and robust. Because

a model is tied to a particular dataset, to a certain extent, it does reflect some of the characteristics and

complexities of that dataset, but in an obvious and manageable way.

(−250, 00) (00, 00) (250, 00) (00,−100) (00, 100)

Figure 7.1: Typical samples from the synthetic database at various rotation angles (hor.,vert.)



7.1. Image datasets 130

Figure 7.2: Synthetic database sample, showing the landmark points and Delaunay triangulation.

7.1.1 Database 1: Synthetic dataset

The synthetic dataset was generated using a 3-D head model by[Loizides et al. (2001)], which itself

derived from [Parke and Waters (1996)]. The 3-D head model was projected onto a plane (using ortho-

graphic projection) and two dimensional synthetic face images were formed within a view range that

maintained the visibility of all the landmark points in all the images. Namely, images generated by verti-

cal axis rotation of the object between−200 to 200 from the frontal view (denoted here as00), and at50

intervals. Just as before we chose 52 landmarks from the subset of model vertices in order to minimise

the approximation error (see Fig. 7.2). Additionally, we experimented with a few images outside the

visible landmark range, at−250, 250 and also generated 4 images by rotation about the horizontalview

axis at angles±50 and±100 from the frontal view, in order to test the extrapolation capabilities of the

LCV model outside the range of the basis views and when some landmarks are occluded. In total, we

used 15 pose samples, examples of which are shown in Fig. 7.1.

Furthermore, for all the eleven samples on the horizontal axis (−250, . . . , 250), we generated 2 more

distinctive expressions (happy and angry, see Fig. 7.3(a) and (b)) to test how well the LCV model can

recover the optimal pose configuration in the presence of localised and limited deformations that were

not (and cannot be) modelled by the LCV equations. In a more realistic scenario, such deformations

might be the result of a change of expression. In addition, weintroduced two different levels of random

Gaussian additive noise in the pixel values in each of the above 11 samples (see Fig. 7.3(d)) to examine

the robustness of the model and optimisation algorithm, when there is noise in the scene view but not

in the basis views (i.e. it has not been modelled). Finally, we wanted to test against the effects of

unmodelled limited occlusion, and thus randomly placed a circular object in front of the scene object

(see Fig. 7.3(c)). We considered two possibilities; a foreground object with area equal to 20% of the

head model and a foreground object at 40%. As such, this database as a whole contains 301 image

samples. Details of the experiments performed on particular subsets of the synthetic database are given

in later sections.

7.1.2 Database 2: COIL-20

The Columbia Object Image Library (COIL-20) [Nene et al. (1996)] is a database of gray-scale images

of 20 objects. It was generated by placing the objects approximately in the centre of a motorised turntable

and against a black background. The turntable was rotated through3600 about the vertical axis to vary
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(a) Angry (b) Happy (c) 40% occlusion (d)σ = 0.1 noise

Figure 7.3: Synthetic samples with different expression, noise and occlusion levels.

Figure 7.4: Image samples from the COIL-20 database.

the objects’ pose with respect to a fixed camera and under ambient (fluorescent) room lighting, in order to

avoid strong shadows. Images of each objects were taken at50 intervals, corresponding to 72 images per

object, around the horizontal great circle of the view-sphere. The objects have a wide variety of complex

geometric and reflectance characteristics and are shown in Fig. 7.4. In total, the database contains 1440

size-normalised and histogram-stretched images of the 20 objects.

Similarly to the synthetic dataset, we tested against the pose ranges between−200 to 200 from the

frontal view at00. Furthermore, we examined the two views at−250 and250 outside the trained range

of views, and where some landmarks were not visible owing to self-occlusions. In that case, the system

had to cope as best as it could by extrapolating the required pose information. Landmarks where chosen

along the main discontinuity boundaries of each object, andbecause the database contains more than

one object the number of landmarks was different at each case. A typical example of an object with its

landmarks visible, can be seen in Fig. 7.5.

Figure 7.5: A typical sample from the COIL-20 database with chosen landmarks visible.
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Figure 7.6: All the 10 individuals in the Yale face database B.

7.1.3 Database 3: Yale Face Database B

The Yale face database B [Georghiades et al. (2001)], contains 5760 single light source, grey-scale im-

ages of 10 individuals (Fig. 7.6), each seen under 576 viewing conditions (9 poses× 64 illumination

conditions). As we can see in Fig. 7.8, the pose variations occupy a rather small portion of the view-

sphere on the left of the frontal pose (number 0 at00). More specifically, poses 1, 2, 3 and 5 are

approximately120 from the frontal pose and poses 6, 7, and 8 approximately240. From those, poses

7 and 3 are taken in the same level as the frontal pose, while the rest are slightly above or below as

arranged in Fig. 7.8.

For every individual in a particular pose, an image with an ambient (background) illumination was

also captured. Note, this is not the same as a background onlyimage (as in the case of the CMU PIE

database) since the outline of the face is still visible (seeFig. 7.7(a)), but it may still help to regularise

the search over background regions. In addition, the background is not strictly consistent between scene

view and ambient illumination view, with people and objectsappearing and changing position in the

rear of the scene. Furthermore, the appearance of the background objects is somewhat influenced by

the strong strobe lights used to illuminate the foreground object during the imaging process. This is one

further problem with which our recognition system has to cope.

The images were captured using a purpose-built illumination rig, fitted with 64 computer controlled

strobe lights. Images of an individual in a particular pose were acquired at a frame rate of 30 f/sec in

order to minimise any unintentional discrepancy in pose andfacial expression between the 64 images.

The strobe lights were switched off for the capture of the images with the ambient illumination.

For our tests, we used all the available pose samples since the covered angle range is quite small

and so the majority of the landmark points (see Fig. 7.7(b)) were visible in every view and all the images

are from approximately the same aspect. Therefore, it was quite possible adequately to reconstruct all

the images for every individual given an optimal choice of basis views. In other words, it was possible to

reach all the views in the joint-image space. Furthermore, we chose to test a few examples of illumination

variation for the frontal pose of a randomly chosen individual to see how well our system can cope with

localised, non-affine changes in pixel intensity.
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(a) (b)

Figure 7.7: (a) sample background in the Yale database and (b) sample landmark points.

Figure 7.8: All the different pose angles in the Yale face database B.
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7.2 Training

In this section we will discuss the general training method that we have employed in order to fine tune

our models given a specific dataset. As we have mentioned earlier in chapter 5, our proposed recognition

system includes an off-line modelling part, in which information about a 3-dimensional object is encoded

into the system. We accomplish this by means of a small numberof basis views, a set of correspond-

ing landmark points consistently triangulated and previous knowledge about the synthesis coefficients,

their range and distribution and probable configurations ofthe object built into the pdf component of a

Bayesian inference mechanism.

From the above, the selection of appropriate basis views andthe choice of prior distribution param-

eters are the only elements that change during training of a new model given an existing selection of

stored images of an object. For choosing the basis views during the training of each model, we consid-

ered all the possible two-view combinations amongst the images in the training set (which as we shall

explain later does not overlap with the test set) and calculated two separate RMS errors (5.1) for every

combination. We computed both the back-projection error (geometry) in the landmarks (5.2) and the

intensity error in the pixels (5.3), and chose the combination of views that produced the lowest pair of

geometry-based and intensity-based RMS errors. An exampleof this is presented in Fig. 7.9 for the

synthetic dataset. Notice how the worse possible combination of basis views is along the main diagonal,

or in other words when the basis views are coincident. The model generally performs better (improved

synthesis results) as we increase the angular distance between the basis views, up to the point where the

landmarks disappear owing to self-occlusion, and we begin the transition into a different aspect.

Once an appropriate pair of basis views is selected, we then manually synthesise all the images in

the training set using the ground truth landmark positions,and recover the distributions of the 10 LCV

coefficients. Based on this information we may then adjust the Gaussian priors (means and standard

deviations) as we did before in chapters 5 and 6, to match as closely as possible with the recovered

distributions and diversity of the 10 coefficients. So for example, if we are dealing with rotation around

the vertical view-axis, then coefficientsa3, a4 andb1...4 will be constant and as a result their priors will

have a very small standard deviation. On the other hand coefficientsa0, a1 anda3 will have a much

larger standard deviation, with a range determined by the training set and centred around the value with

the highest probability.

We did not wish to restrict the optimisation algorithm by initialising inside narrow boundaries

around the probable values, because this would unnecessarily reduce the diversity of the populations

and stall the progress of the algorithm prematurely. In addition, such an initialisation would most likely

have caused the optimisation to find a value inside the boundaries discovered during training and, con-

sidering that the test data is not inside the training set, this is obviously the wrong choice. Instead, we

allowed for larger boundaries covering the whole domain inside which the 10 coefficients where defined

for increased diversity, while regularising and localising the search using the priors.

Finally, by training the models in such a way, we were able to determine the range of values for

the cross correlation and back-projection errors of the synthesis. This information can subsequently be
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Figure 7.9: Example of basis views training errors for the synthetic dataset.

used during the validation stage in order to chose appropriate thresholds and enable us to be in a better

position to judge numerically whether a particular test-run has converged successfully or not.

7.3 Proposed experiments

In this section we discuss in more detail the experiments we carried out on the three image datasets and

the subsequent analysis of the results. The main theme of this thesis is the study of object recognition

under changes in viewing angle, so we primarily focused our attention on pose variations in the datasets.

We did however, experiment with a limited range of expression and illumination variations and the

existence of occluding foreground objects and noise.

Thus, for each database we evaluated the performance of eachmodel and the optimisation algorithm

by their ability to reconstruct a given scene or target image. In every test we tried to minimise the

dissimilarity between the model and the scene image by usingthe sum of squared differences error

metric and appropriately varying the 10 LCV coefficients. The quality of the synthesis and the match

between model and scene image was evaluated in the end by computing two separate metrics: the cross

correlation coefficient and the back-projection error between the positions of the landmark points in the

scene image and the points reconstructed by the model. In this way, we wanted to capture both the

pure geometric reconstruction quality and the combined geometric and photometric synthesis in order

to avoid admitting trivial solutions with high cross-correlation as correct solutions. A correct solution

was chosen as the one that had higher cross-correlation and lower back-projection error values than the

chosen thresholds, based on the identified error ranges during the training of the models.

In most of our experiments we usedk-fold cross validation [Kohavi (1995)] as a way of partitioning

each dataset and testing the model. In addition, every experiment was executed for 100 separate test runs,

and the median value was returned as the accepted result. This was done in order to minimise any unusual

behaviour of the optimisation algorithm and instead recover the average optimisation trend relative to the

specific model-dataset combination. For the minimisation of the SSD error, in all the tests and datasets,

we used a hybrid approach similar to our findings from chapter6. More specifically, we used SOMA for

a fixed number of 15000 (function evaluations) FEs and then switched over to the variable step restarting
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simplex algorithm for an additional 2000 FEs.

7.3.1 K-fold cross validation

Cross-validation in general, is a method of dividing a dataset into complementary subsets and using a

subset as thetraining set, while retaining the other astesting setfor validation purposes.k-fold validation

divides the data intok, mutually exclusive subsets (the folds). Each time, one of thek subsets is used as

the testing set and the otherk-1 subsets are combined to form the training set. The averageerror across

all thek tests is computed. The advantage of using thek-fold method is that it is not so important how

the data is divided, since every data object gets to be in a test exactly once, and gets to be in a training

setk-1 times. As a result, the variance of the resulting estimateis reduced as the number of folds is

increased.

Since each database is structured differently, the division of data into folds is performed in a differ-

ent way in each case, and is described in the following sections.

7.3.2 Experiments on database 1 (Synthetic database)

Database 1 contains in total 301 data samples of pose, expression, occlusion and noise variation. From

those we used a smaller dataset, which itself was split into secondary subsets (folds) usingk-fold cross

validation as follows:

• Pose variation: 11 folds, each containing the images captured from a particular view at50 intervals

between±250, and in the same natural expression.

• Noise:

– As above, but each scene image now contains, random Gaussiannoise withσ=0.05.

– As in the pose variation experiments, but each scene image now contains, unmodelled, ran-

dom Gaussian noise withσ=0.1.

• Occlusion:

– As in the pose variation, but each scene image now contains anoccluding surface equal to

20% of the object’s area randomly placed in front of the object of interest.

– As in the pose variation, but each scene image now contains anoccluding surface equal to

40% of the object’s area randomly placed in front of the object of interest.

• Expression variation:

– As in the pose variation, but each scene image has a differentunmodelled, expression

(happy).

– As in pose variation, but each scene image has a different unmodelled, expression (angry).

• Horizontal-axis pose variation: 5 folds, each containing the images captured from the frontal view

and at the same natural expression, but at various rotation angles about the horizontal axis (50

intervals between±100).
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We should mention here that unlike the synthetic dataset, the remaining databases contain many

different individuals or objects, and therefore division of the data intok mutual exclusive folds for

training and testing purposes is not possible, unless we aredealing with pose variations one object at a

time. This is because an LCV model that has been trained on a specific object cannot be generalised to a

new object, using the same choice of basis views (i.e. a modelof a duck cannot synthesise a scene image

of a car no matter how much we vary the LCV coefficients). Such afeat would only be possible if we

were to consider the basis views not to be part of the modelling stage and for the purpose of testing the

system we were to assume that all the basis views combinations are always known for every object, and

we simply perform the training on the prior distributions ofthe coefficients for each model. Alternatively,

a more practical way to proceed would be to allow the testing set to be part of the training set,which would

be appropriate if a general description of the object has been seen before and is familiar to the system,

and also if we keep a database of trained models. In this way, we may claim ignorance about the specific

configuration of each object, and still obtain a meaningful optimisation outcome during testing. In more

detail, we can test for false positive and false negative results and ensure that a given model of an object

matches well only with an image of itself and not with images of another, different object. Therefore,

keeping the latter in mind, we carried out the experiments described in the next sections.

7.3.3 Experiments on database 2 (COIL-20 database)

Database 2 (COIL-20) contains 1440 images of 20 different objects in 72 poses. From these, 5 objects

were rotation-invariant owing to their specific shape and texture, and could not be easily modelled by

the LCV system (see Fig. 7.4). For the remaining 15. we used 11poses at50 intervals between±250

around the frontal view of00. The experiments we carried out on those pose samples were:

• Pose variation: For each of the 15 modelled objects, we generated 11 folds each containing the

image of that object captured from a particular view at50 intervals between±250.

• Object identification: We used all of the above 15 trained models, and attempted to identify the

frontal view (00) amongst the 20 objects in the database. This resulted in thegeneration of a

15×20 array of model×object that determines the robustness of each model in termsof true/false

positives and negatives.

7.3.4 Experiments on database 3 (Yale face database B)

Database 3 (Yale face database B) contains 5760 images of 10 individuals across pose and lighting

variations. We carried out the following experiments on thefull set of pose images:

• Pose variation: For each of the 10 individuals, we generated9 folds each containing the image of

that individual at the angles already mentioned in section 7.1.3.

• Object identification: For each of the 10 modelled individuals, we attempted to identify the frontal

view amongst all the faces in the database. This resulted in a10×10 comparison array containing

possible matches between model and object.
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Figure 7.10: COIL-20 sample with superimposed AAM in typical starting position.

• Intensity variation: For one chosen individual (in this case subject B01), we trained a frontal view

model at “neutral” lighting conditions (e.g. elevation 0 and azimuth 0) and tested the recognition

rates, for the same individual, in the same frontal pose and across all 64 illumination samples.

7.3.5 Comparison with AAMs

In addition to the LCV method, we carried out the same experiments using the AAMs, a technique

also aimed at solving, among other things, the pose-invariant object recognition problem. The rationale

behind this is that, by contrasting our test results againsta tried-and-tested technique such as AAMs,

used on the same publicly available datasets, we will be ableto compare our method indirectly, with

many other approaches that have also used AAMs as a measure oftheir effectiveness and robustness. In

order to aid direct comparison with the LCV approach, all thetests carried out were the same across the

two methods, and we constructed AAMs (at least the shape model part) using the same sets of landmark

points as used for the LCV. The only difference was in the optimisation solutions employed by the

two methods. Whereas the LCV method uses a hybrid search step (as explained in section 6.3.3), the

AAM uses essentially is a local search step, which can easilyget stuck in false minima. The pyramid

search may help avoid initial such minima, but cannot compare with the performance of global or local-

restarting methods.

It is therefore necessary to ensure that a good initialisation is always available to the appearance

model to avoid premature convergence. Thus, for all the AAM tests carried out, we used the following

initialisation; The model was placed on a random position inthe image, always overlapping (partially

or totally) the scene object, using the mean trained shape, and within some arbitrary scale and rotation

factors (see Fig. 7.10). In addition, each search was allowed to execute at 4 different resolution levels

and at 50 (function evaluations) FEs per level, yielding a total of 200 FEs. Even though 200 FEs of a

local method combined with good initialisation cannot compare with the 17000 FEs of the global search

for which we allowed the LCV model to run, we would like to emphasise here that the purpose of the

comparison with AAMs was not to evaluate the LCV in terms of its convergence abilities, but instead

to examine how well each method can model shape (and to some extent grey-scale) variations. This is

in fact denoted by the minimum error achieved in our tests, and not how many times that minimum was

reached (even though that information is also reported in our results) since we are dealing with multiple

test runs for each model.
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So, as in the case of LCV we are presenting a complete recognition approach and we are interested

in both the quality of the minimum and (the probability of) its occurrence, in the AAM case we are only

aiming to compare with the minimum reached in the LCV. The focus on this comparison is mainly owing

to the fact that the appearance model may be able to capture combined appearance variations better than

the LCV (although the latter does not make any claims about accurate grey-scale variation, only shape

and pose) and it would be interesting from a theoretical point of view to compare the capabilities of

each model. After all, if consistent performance is required from the AAM (at the expense of fast

convergence) it is quite possible to replace the model search-and-update step (algorithm 6) with another

global method (see Chapter 6). Furthermore, the AAMs are a well-known and widely used technique

for pose, shape and appearance variation that constitute something of a baseline, against which every

equivalent method can be compared. The accuracy and efficiency numbers we are quoting here for both

the LCV and AAMs (in its current implementation) are not intended to determine which of the two

methods is better (since we are not dealing with similar optimisation approaches) but to show how much

more (and if at all) our solution with the addition of a Bayesian model and hybrid optimisation method,

improves over this widely-used standard.

7.4 Results

This section presents the comprehensive results of the aforementioned experiments on the three datasets.

We begin with the pose variation for all the databases, followed by noise, occlusion, expression and

horizontal pose variation for the synthetic database. In addition, we present some limited data on illumi-

nation changes from the Yale B face database. In all our data,we quote the cross-correlation coefficient

and back-projection errors between the target scene and synthesised images, and include the results from

the AAM test runs on he same datasets for ease of comparison. Any overall conclusions on the perfor-

mance of LCV on successively more complex data, as well as howit compares with AAMs, is given in

the summary section of this chapter.

7.4.1 Database 1

The first set of results for the pose variation in the synthetic database are summarised in Fig. 7.11, which

compares the two errors: root mean square error (RMSE) and mean absolute error (MAE). The MAE

is a quantity that is used to measure how close predictions are to eventual outcomes. In other words, it

measures the magnitude of the errors in a set of forecasts without considering their directions. Since the

MAE is a linear score, all the residuals are weighted equallyin the average. The RMSE uses a quadratic

scoring rule and thus the errors are squared before they are averaged. For that reason, the RMSE gives a

relatively high weight to large errors, and is most useful when such residuals are particularly undesirable.

The MAE and RMSE may be used together to diagnose the variation in the errors in a set of

forecasts. The RMSE will always be larger or equal to the MAE and the greater the difference between

them, the greater the variance in the individual errors in the sample. If RMSE is equal to the MAE then

the individual errors in the sample are of the same magnitude. Both the RMSE and MAE range from

[0,∞). In Fig. 7.11 we see that both errors are quite low and of approximately similar magnitude, since
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the difference between the RMSE and MAE is small and ranges between 0.01 and 0.04. Note that both

RMSE and MAE were calculated using the cross-correlation between the observations (test runs) and

the ground truth. In addition, we see that the errors remain quite stable throughout the range of pose

angles (between±250) indicating that we have an equally good chance of reaching the identified ground

truth values, independent of pose. This graph however does not tell us the values of the cross-correlation

reached, just how close we arrived to the ground truth.

To explore the former, we need to look at Fig. 7.12. This figureshows three different pieces of

information. First is the average CC (bold line) calculatedas the mode of the sample for different pose

angles. We chose the mode instead of the mean, because we wereinterested in the solution which had the

highest probability of occurring. This makes more sense from an object recognition point of view, rather

than the mean value, which is affected by outliers and does not really say much about the recognition

accuracy of the algorithm. A good optimisation algorithm isone that recovers an acceptable solution

the majority of times. In addition, the graph shows the average ground truth error (dashed line) and

the empirical threshold error (solid line). The first is the CC error that was identified by solving the

system of linear equations (3.14) given the ground truth scene and the correct landmark positions on

the object. The second, is the minimum CC error that was empirically discovered by looking at each of

the 100 test results, for every pose angle, and deciding based on purely qualitative criteria whether the

synthesised image was a good representation of the shape, pose and intensity of the scene view, similar

to the experiments in section 5.3.

By close observation of the CC error, we see that the most common results are considerably above

the empirical cut-off line (below which would most likely indicate a pose recognition failure) and also

higher than the ground truth error, for pose angles−200, ..., 250. This is perfectly possible and accept-

able, since the ever-improving effect of the optimisation algorithm on the objective function can reduce

any minor inconsistencies in the landmarks or the approximation errors in the pixel values. Only for

−250 do we see that the CC error is lower than the ground truth, but still well above the empirical

threshold. Also, notice the characteristic slight falloffat the farthest angles±200 and±250.

Another graph that supplements the average CC information,is the histogram that incorporates

all the results from the 11×100 test runs (Fig. 7.13). Here we can identify the mode of thesample

and how close it lies to the mean ground truth and empirical errors respectively (horizontal lines). It is

immediately obvious that the histogram is unimodal with a well defined peak at 0.9875 well beyond the

thresholds (ground truth (g.t.)=0.9728, empirical=0.9513), and with few insignificant outliers1 that fall

of sharply as the cross-correlation score gets lower.

All the above graphs were related to the cross-correlation error, which combines both geometric

and photometric information. As we already know, the lattermay overpower the former and yield a high

CC solution that might not be geometrically accurate. This is why we calculated the back-projection

(BP) error in the landmarks, a pure geometrical measure, andgenerated similar graphs. We start with

the average BP graph (again with the mode of the sample) for different pose angles (Fig. 7.14). Here we

1In terms of containing other significant modes that would signify the presence of local minima. Although outliers exist we are
confident that they are the result of the occasional failure of the optimisation algorithm to converge.
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see a similar pattern, with lower BP errors for frontal and near-frontal angles and with the characteristic,

gradual falloff for angles over±200. The mode again is below the empirical threshold (also demon-

strated by the BP histogram in Fig. 7.15). However, this timethe ground truth BP error is much lower

than any solution recovered. This may be explained in part bythe fact that the optimisation algorithm

operates on the combined cross-correlation error and may sometimes sacrifice geometrical accuracy for

an improvement in appearance. Also, it may be argued that between BP error values of different magni-

tudes, there may not necessarily exist a qualitative difference of equal magnitude, on the synthesis of a

novel view. It may for example be possible that a single outlying landmark affects the overall BP error

(since its an averaged value), even though the results are identical to the viewer. We therefore point out

that despite the fact that the mode of the BP error is higher than the ground truth, it still represents a very

good and acceptable solution. This is exactly the reason whywe chose to use the additional empirical,

qualitative threshold and consider both the BP and cross-correlation errors in tandem.

The next figure (Fig. 7.16) shows the diversity of the mean coefficients from all the test runs for

every pose angle. We immediately see a pattern similar to Fig. 5.3, where coefficientsbj are stationary

at their optimal values (since there is no horizontal axis rotation) aided by the narrow Gaussian priors.

From theai coefficients (responsible for vertical axis rotation),a2 anda4 are centred at zero with no

diversity anda1, a3 range from approximately -0.5 to 1.5 for rotation angles±250. Coefficienta0 which

varies with object translation and is of different units than the rest of the coefficients, has a much larger

diversity, as is usually expected (see section 5.1.4). The diversity graph helps to establish how well the

recovered coefficient range captures the underlying transformation (in this case very well), and if there

are any outliers outside this expected range (not any significant outliers here). Such outliers may be the

result of failed optimisation attempts or the existence of an important locally optimum solution.

The final two graphs we present for the pose variation, are thecolour-map plots Fig. 7.17(a) and

(b) for the cross-correlation and BP errors respectively. Their purpose is to illustrate the acceptance

percentage (i.e. how many test runs were below or above the given empirical threshold value) for all the

test runs (not only the mode of the sample) at different threshold levels, in order to get an idea about

the overall efficiency of the optimisation algorithm for this particular dataset. The colour-map plots are

essentially 3-dimensional and depict acceptance percentage (grayscale colour) as a function of threshold

and pose. The empirical threshold lines are also included. We see that in general for the CC (Fig. 7.17(a))

the acceptance ratio above the empirical threshold is in therange of 50-70%, increasing for frontal and

near-frontal angles. Note again that these graphs illustrate the average efficiency of the algorithm and

not the accuracy, since the latter is captured by the mode of the sample we have seen previously. A very

probable, good result that lies on the peak of the histogram makes the optimisation algorithm very accu-

rate, but if at the same time we obtain many outliers (thus reduced acceptance percentage) the algorithm

is ineficient. We see a similar pattern for the BP error thresholds, with the acceptance percentage in

the mid-50s to 70s as we cross the empirical threshold. The same results are also summarised in Table

7.1, for the empirical thresholds for each pose, and the average, overalll acceptance score. The final

column of Table 7.1 only admits solutions that are within both the cross-correlation and BP empirical
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Figure 7.11: RMSE and MAE plots using cross-correlation.
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Figure 7.12: Average cross-correlation plot (mode of sample).

error thresholds. The average row at the bottom represents the portion of the histograms (Fig. 7.13 and

Fig. 7.15) that are on the left or on the right of the empiricalthreshold horizontal lines respectively.

We can now compare the above results with those from the AAM tests on the same dataset. Fig.

7.18 shows that AAMs perform very well between the angles±200, but less so in the more distant angles

at±250. This may be attributed to a possible inability of the AAM to accurately extrapolate data, since

between the angles±200 the missing information is interpolated. Although the AAMsfind solutions

well above the empirical thresholds, they still cannot match the results of the LCV approach, as far as

cross-correlation is concerned. The same graph, but using the landmarks back-projection error (Fig.

7.19), reveals a somewhat different picture, and shows the AAM outperforming the LCV for certain

angles, although not to a great extent. The former does however have a much better degree of accuracy

in the angles±{200, 250}
If we examine the RMSE vs MAE graph (Fig. 7.20), we can see thatboth the RMSE and MAE

errors are larger than in the LCV case (Fig. 7.11), but this isa direct result of the lower CC values

recovered by the AAM. It is also apparent that the magnitude of the errors between the two measures is
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Figure 7.13: Full cross-correlation data histogram for thepose variation.
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Figure 7.14: Average back projection error (mode of sample).

0 500 1000 1500 2000
0

50

100

150

200

250

Back projection error

N
um

be
r 

of
 te

st
 r

un
s

Cummulative BP data
Mean empirical threshold
Mean ground truth

Figure 7.15: Full back projection data histogram for the pose variation.
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Figure 7.17: Acceptance% of test results for different thresholds.

Pose0 Empirical CC Empirical BP Empirical c.c + BP
-25 55% 71% 54%
-20 80% 56% 53%
-15 52% 55% 49%
-10 74% 65% 63%
-5 66% 77% 65%
0 57% 67% 56%
5 70% 67% 67%
10 59% 57% 57%
15 59% 64% 59%
20 61% 57% 53%
25 64% 70% 73%

Average 63% 63% 57%

Table 7.1: Acceptance results for pose variation at different thresholds.
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Figure 7.18: Average cross-correlation plot (mode of sample) using AAMs.

more stable than the LCV case. Such an outcome indicates thatalthough the distance of the residuals

from the mean ground truth is higher than before, there is nowmuch less variance in them between

different pose angles. We can also see this if we examine the data in Table 7.2. As before, the table shows

the recognition results (acceptance percentage) for all the test runs at various CC and BP thresholds. The

difference in this case however, is that there is almost no variance between subsequent threshold values

and between using an intensity or a geometric based threshold. This is due to the local optimisation

algorithm used, which in reality offers two possibilities:either convergence very close to the correct

solution, or convergence very far away and/or collapse to a single point. It may still be possible to

become trapped inside some nearby local optimum if such one exists. This would indicate a likely

problem with the objective function formulation, that should be addressed, and not with the optimisation

algorithm itself. However, we did not encounter any such optima, as demonstrated by the results in Table

7.2.

In conclusion we can say that the LCV method is more accurate for pose recognition, in this partic-

ular dataset, especially at frontal/near-frontal angles and when the CC score is considered. However, on

average the AAMs are more efficient at the empirical thresholds chosen, provided a good initialisation

is available for the optimisation search. Both methods perform well in finding the global minimum at

close proximity to the known ground truth. It remains however to see how well this can scale to more

complicated datasets and the existence of noise, occlusionand localised expression changes.

7.4.2 Database 2

The next set we will consider is the COIL-20 database, which is more demanding than the synthetic

set since it contains real-image data under realistic illumination conditions, but at the same time we are

still searching over a constant background. This should help maintain the optimisation process within

manageable limits.

We first consider the object identification results, in which15 models are compared against the full

20 objects in the frontal view. The goal here is to evaluate the performance of each model in the presence

of unknown classes of objects to the system. Throughout the various, resulting 15×20 model×object
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Figure 7.19: Average back projection error (mode of sample)using AAMs.
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Figure 7.20: RMSE and MAE plots for cross-correlation, using AAMs.

Pose0 τcc1 τcc2 τcc3 τcc4 Emp. CC τBP1
τBP2

τBP3
τBP4

Emp. BP Both
- 0.95 0.96 0.97 0.98 - 200 150 100 50 - -

-25 0 0 0 0 0 80 80 80 0 80 80
-20 72 0 0 0 72 72 72 72 72 72 72
-15 74 74 74 74 74 74 74 74 74 74 74
-10 89 89 89 0 89 89 89 89 89 89 89
-5 70 70 70 0 70 70 70 70 70 70 70
0 68 68 68 0 68 68 68 68 68 68 68
5 76 76 76 0 76 76 76 76 76 76 76
10 82 82 82 0 82 82 82 82 82 82 82
15 77 77 77 77 77 77 77 77 77 77 77
20 62 62 0 0 62 62 62 62 62 62 62
25 0 0 0 0 0 58 58 58 0 58 0

Avg. 60.9 54.3 48.7 13.7 60.9 73.4 73.4 73.4 60.9 73.4 60.9

Table 7.2: Acceptance results for pose variation at different thresholds, using AAMs.
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arrays, we would like to observe a clearly defined error response, located approximately2 in the main

diagonal, with possibly high recognition rates for when model=object, and low or zero false positives

and negatives.

In the same way as before, we first consider the RMS error of each of the 100 test runs from

the average CC ground truth. The results from all the object identification tests are combined into the

greyscale plot array in Fig. 7.21. In general, we see a well defined diagonal (darkest colour) with low

RMSE response ranging from 0.015∼0.045. This response is shown in the bottom sub-figure where the

minimum RMSE values in each row (corresponding to each model) are plotted. We note however that

there are a few inconsistencies for models 7, 8 and 11, in thatthey produce a lower RMSE response

at objects 8, 16 and 16 respectively. This is shown as a deviation from the approximate main diagonal

and is illustrated with the overlaid white line that connects the minimum RMSE values from each row.

Not however that the apparent deviation for models 13 and 19 is quite normal since the models are not

numbered sequentially after model 11 on the ordinate.

The RMS error of course is not used as a measure of the recognition accuracy in this case, since

it reports the average distance from the mean ground truth, whereas we are more interested in the most

likely (probable) CC response in all the 100 test runs. Nevertheless, the RMSE can serve as a good

indicator of the combined accuracy and efficiency performance of each model. We therefore expect

to get good overall accuracy (CC scores) and efficiency (acceptance ratios) for the 15 models, except

perhaps in the case of models 7, 8, and 11 where me might have lower associated acceptance scores.

Furthermore, by close examination of the two objects which cause the false positive responses, 8

and 16, but also the adjacent object 7, we see three vertical areas of high RMS error that cover most of the

models in their respective columns. Such an observation implies the existence of objects are of generic

enough shape and texture that can easily match most models given an appropriate transformation. On

the other hand, objects that match well only to their respective models appear as light-coloured columns,

in this example, objects 3, 6, 18 and 19. We expect to see theseresults mirrored in the cross-correlation

colourmap array.

This is indeed the case for Fig. 7.22. Objects 7, 8 and 16 stillproduce the familiar high correlation

responses, however they are not large enough to cause a mismatch between modelmi and objectoj when

i 6= j. This becomes more apparent if we examine the line that connects the highest CC score in each

row, with fits perfectly to the model=object diagonal and with the absence of any outliers. Furthermore,

the sub-figure shows a comparison plot between the minimum ofeach row above (coinciding with the

diagonal line) and the ground truth error. In there we see that the observation line (mode of test run data)

is above or very near at the g.t. threshold line. These two plots therefore provide a good indication that

when the CC measure is used, we have perfect classification results across different objects for every

model and with very high accuracy. What remains to be seen is the efficiency and the results that we get

when we consider a geometry-only matching score such as the BP error.

The efficiency can be seen in surface plot form in Fig. 7.23. Inthis plot, there is a very high recogni-

2Approximately, since not all the objects are modelled due to the rotation-invariant properties in some.
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Figure 7.21: RMSE model×object array for the frontal pose using LCV.
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Figure 7.23: Acceptance ratio for Model×object at the frontal pose using cc.

tion percentage response for when model=object, ranging from 80% to almost 100%. Conversely, when

model6=object, we obtain a flat surface at 0% recognition. Only one occurence at approximately 10% for

model=14 and object=8 is visible, but that is too small and insignificant to cause any misidentifications.

Such a limited and localised responce could be due to a non-optimal setting of the empirical threshold,

which as we have pointed out is a manual and subjective process and therefore not exact. Alternatively,

it may be due to a difference in CC levels between various model-object (mi, oj) combinations. For

example, for (m1,o1) we might get a score ofc1 andc2 for (m2,o2). If c1 is much lower thanc2 it is

possible that when (m1,o2) to get a scorec3 wherec1 < c3 < c2 that is eroneously interpreted as a

successful match.

If we examine the same graph but this time using the BP error (Fig. 7.24), we note that this small

inconsistency has now disappeared. This is because the geometrical BP error is less likely to produce

such mismatches, which usually occur during optimisation with the CC, a process that is known to be

able to compensate by adjusting the shape of the model (usually a 2-D affine transform) so that the

overall appearance produces a false, positive match.

Finally, for the LCV object identification experiments on the COIL-20 database, we present the

15×15 model×object array using the BP error in the landmarks (Fig. 7.25).It is only 15×15 since

15 object are modelled and thus just 15 out of 20 have associated landmarks we can use to calcu-

late the BP error. Additionally, in order to preserve the detail in the grayscale plot for low BP val-

ues (the portion of the data we are most interested in) we haveset an upper limit at 1000, so any

BP scores above that threshold were capped accordingly and appear as constant, white areas in the

graph. Furthermore, since we are dealing with different objects, with varying geometries and thus num-

ber of allocated landmark points, it is necessary to define a strategy for calculating the BP error at

each model-object combination. We have decided on an approach which attempt to equalise the two

shapes by removing the most remote landmarks from the objectwith the largest number of points. If

the number of landmarks between the model and object is the same, then we can proceed as normal
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Figure 7.24: Acceptance ratio for Model×object at the frontal pose using BP.

and calculate the BP error. If on the other hand it is different, we first determine if the synthesised

view L1 = {p′1, ..., p′n}, or the scene viewL2 = {p1, ..., pk} contain the most landmarks, i.e.n >

or < k and: for each point in the larger dataset calculate the distance from every point in the other

setD =
{

{dp1,p′1 , ..., dp1,p′k}, ..., {dpn,p′1
, ..., dpn,p′k

}
}

. Then only consider the minimum distance for

each landmarkD′ =
{

min{dp1,p′1 , ..., dp1,p′k}, ...,min{dpn,p′1
, ..., dpn,p′k

}
}

and finally discard the land-

mark(s)px whereD′ is maximum i.e.max(D′) = dpx,p′y . Once the number of landmarks is the same,

we can calculate the BP error as before. This way we assume that the discarded landmarks are “outliers”

and try to approximate the two geometries.

Even though such an approach might not be strictly correct since a synthesised object changes

dramatically when a landmark and thus a triangle is removed,from a practical and geometrical point of

view it is sensible and it helps to obtain a BP score for radically different objects that would otherwise

be comparable only by via the combined appearance CC score.

If we keep the above points in mind and return to (Fig. 7.25) wecan identify a distinct main

diagonal of low geometrical error whose value is very close to that for the ground truth as demonstrated

by the sub-plot. There are also two interesting observations in this figure that we would like to analyse

further before we proceed on to the AAM portion of the tests. First, we see that the observed objects of

“generic appearance” that tend to match with most models from Fig. 7.22 have now shifted from 7, 8

and 16 to 2 and 9. Further examination of these objects reveals that object 9 (Fig. 7.4) has a rectangular

shape with very few landmarks and boundaries that can stretch and rotate to fit well with a large number

of models in the database. Object 2 (Fig. 7.4) on the other hand has a more complex, non-generic shape,

that looks like it will be difficult to match with anything other than its own model. It does however have

only 10 landmarks owing to its straight boundaries and its almost constant texture and thus will easily

generate a low BP score when compared to most models even if itdoes not reproduce well details of

their appearance.

The second observation is that for the first time we obtain results for models that can fairly ade-

quately match to the majority of objects in the database. This is depicted as horizontal lines (rows) of



7.4. Results 151

Object

M
od

el

1 2 3 4 5 6 7 8 9 10 11 13 14 15 19

1

2

3

4

5

6

7

8

9

10

11

13

14

15

19

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

50

100

Model

B
P

 e
rr

or

100

200

300

400

500

600

700

800

900

Observation

ground truth

Figure 7.25: BP model×object array for the frontal pose using LCV.

medium-to-low BP error in Fig. 7.25. More specifically, thisoccurs for models 2, 5 and 9. We have

already commented on the properties of objects 2 and 9 above and, as we can see from Fig.7.4, object 5

is geometrically very similar to object 9. In general, we would not expect it to be unusual to encounter

objects that match fairly well to many models. Despite how high these mismatches may be, they do not

cause deviations of the selected best match from correctly lying on the main diagonal.

The same object identification experiments have been carried out using AAMs. In this section the

results are compared with the LCV approach we have analysed previously. We begin with the RMSE

plot (Fig. 7.26) which when compared to Fig. 7.21 this plot reveals a generally increased RMS score

ranging from 0.4 to 0.9 indicating that there is a definite drop in efficiency in this case. Additionally, we

see a higher disagreement between the (white) line that connects the minimum RMS scores in each row

(i.e. for each model) and the model=object approximate diagonal. This disagreement might also point

to a reduction in CC accuracy, especially when it is measuredagainst the ground truth.

To obtain a clearer view on this, it is necessary to examine the average cross-correlation response

from each model×object combination in Fig. 7.27. We see that the identification accuracy remains at

high levels similar to what it was when the LCV was used in Fig.7.22. The main diagonal is clearly

defined except for model=object=14 where it has failed to converge to the optimum solution. For all other

models, the response is at or above the g.t. threshold. It is also the case that we have false responses

when model6=object which are more distinct (a darker colour and thus representing lower CC values)

than the correct matches on the main diagonal, much more so than when the LCV approach was used.

This is evidence of a better separation between true positive and false negative responses that in turn

helps to avoid object misidentifications. We believe the above to be a direct result of the limitations of

the rather basic optimisation algorithm built into the approach using AAMs. It is only able to search
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Figure 7.26: RMSE model×object array for the frontal pose using AAMs.

within a limited, local area. Thus, if it is initialised inside the basin of attraction of the correct match,

it will converge to the desired correct match. If not, or if such a basin of attraction does not exist, the

optimisation will get stuck fairly quickly and not attempt to recover a sub-optimal configuration with

a high-enough CC response that may register as a mismatch. The hybrid method applied to the LCV

approach on the other hand gives higher overall CC scores (lighter colours in Fig. 7.22) and exhibits the

familiar vertical columns of high correlation.

We can now proceed to the BP error grey-scale plot (Fig.7.28)which is also limited to a maximum

of 1000 in order to maintain the level of detail at the lower BPvalues. When compared to the results of

the LCV tests the experiments with the AAMs give a lower BP error along the main diagonal (except

for the non-convergence when model 14 was used) and thus havea better geometric accuracy than the

LCV. This is something we have seen previously in the synthetic dataset. In the background area when

model6=object and mismatches occur, we see vertical and horizontallines resulting representing “generic

objects or models” in the same places as when the LCV was used.However the BP score is now lower

and as a result much closer to the optimal response on the maindiagonal. This results in the plot in

general appearing darker than that obtained when the LCV wasused (Fig. 7.25). This improvement is in

the opposite sense to the reduction in cross-correlation inthe experiments we have analysed previously

. We may thus conclude that even though the accuracy is slightly better for the AAM approach than it is

for the LCV approach, the distinction between a correct and possibly incorrect match has been reduced.

The final investigative step into comparison with the use of AAMs for model/object identification

involves examination of the optimisation efficiency, whichis illustrated by the average appearance ac-

ceptance plot in Fig. 7.29. As has been the case so far, in comparison with the LCV approach, the

AAM returns very low acceptance scores for the same empirical thresholds. In this particular set of tests
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Figure 7.27: CC model×object array for the frontal pose using AAMs.
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Figure 7.28: BP model×object array for the frontal pose using AAMs.
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Figure 7.29: Acceptance ratio for Model×object at the frontal pose using AAM.

the recognition efficiency has dropped from 80-100% to 0-40%. This again appears to be based on the

inability of the local optimisation to consistently recover good solutions.

As a conclusion we would like to point out that the LCV models maintain their good performance

in the presence of real-image data with high accuracy and acceptance scores. Although there are fairly

high responses for some generic-looking objects in both theCC and BP measures they are not high

enough to cause any mismatches, and the instance of each object is always correctly identified in each

image. Compared to the AAM the LCV gives results of almost equal accuracy, but when it comes to

efficiency, the local optimisation algorithm used in the AAMs (even if initialised close to the solution)

cannot compare with the consistent performance of the hybrid global optimisation method built into the

LCV.

However this increase in efficiency rate also brings some possibly undesirable, minor side-effects

such as the discovery of sub-optimal solutions with good CC and BP scores when model6=object. Al-

though they did not pose any problems in our tests they might be a potential source of false positive

matches in another scenario when the ground truth CC or BP values of the correct, positive matches

are inherently not so good. If such false positive mismatches commonly occur, it is not because of a

particular problem in the optimisation algorithm (if anything they are amplified by its exceptional ability

to explore a large number of possible solutions) but are a property of both the model/object and of the

match metric used. In other words, they are a property of the form of the objective function. Complete

avoidance of this problem might not be possible and it may thus require a re-evaluation of the modelling

process and of the error metric used.

The final set of tests for the COIL-20 database involve the recovery of the correct pose angle for

each model when we know that the object of interest is presentin the target, scene image but seen

from an unknown viewpoint. We have considered views between±200 at 50 intervals sampled in a
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Figure 7.30: RMSE pose variation plot for the COIL-20 database, using LCV.

similar test/training set fashion as with the synthetic database discussed previously. In addition we tested

against the two extreme, untrained views at±250 to assess the capabilities of the models to extrapolate.

The combined pose variation results are incorporated into the following 15×11 grey-scale graphs of

model=object×pose.

The first graph is the RMSE plot in Fig. 7.30. We see that the scores range from 0.01 to approx-

imately 0.05 which we consider generally very good based on previous test runs with other datasets.

It is further evident from the darker patches in the graphs that pose angles between−200, ...,−50 and

50, ..., 150 have the lowest RMS error values. If we look at specific objects, we can see that objects 4,

6, 7, 8 and 11 (a mixture of both generic and non-generic looking shapes) have the best agreement with

their g.t. values in the majority of poses. Moreover for someobjects there is a slight drop in RMS error

at00 which is the familiar “M” shape we have previously encountered in various 2-D pose angle plots.

Next is the CC grey-scale plot in Fig. 7.31, where we observe that the majority of scores are above

0.9 especially for the angles representing frontal views, except for object 14 for which the CC fluctuates

approximately between 0.85-0.9. We also note that objects 7, 8, 13 and 15 have the highest responses

for angles representing near-frontal views. Amongst this set of objects only objects 7 and 8 also have

a similarly low RMS error in Fig. 7.30. This seems likely to occur either due to a high CC value in

the ground truth thresholds or is due to a lower acceptance ratio for objects 13 and 15. In addition,

objects 13 and 15 (the former has a non-generic shape and the latter almost looks rotation-invariant)

consistently produce high CC values throughout all the poses. This of course does not mean that for all

the other objects we fail to recognise the correct pose, but that for the large angles of±200and ± 250

some models have more difficulty in recovering the optimal object configuration (i.e. viewing angle).

As already mentioned this graph reveals an overall high CC score which should translate to a high

acceptance percentage (at least for the angles which are notlarge) as we shall see later on.

We continue with the BP error plot (Fig. 7.32) which illustrates very good geometric matching for
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Figure 7.31: CC pose variation plot for the COIL-20 database, using LCV.
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Figure 7.32: BP pose variation plot for the COIL-20 database, using LCV.

the frontal poses (the BP error ranges from 10 to 60), well within the ground truth thresholds There is

some falloff for the extreme angles, similar to the lower CC we have seen previously and which probably

will affect the acceptance scores too. Objects 5, 7, 8 and 9 have the lowest scores with 5 being the one

with the consistently lowest error score for all poses. Evenso, between angles of±150 all objects

produce a very low geometric error with the familiar slight drop for an angle of00.

The last plot for the LCV model on this database is the averageacceptance graph shown in Fig.

7.33. This is displayed as a 3-D surface for the 15 modelled objects and covers training angles between

±200. We see a near flat surface at over 80% acceptance score for themajority of the objects with a few,

isolated basins at 70%. There are three spots where the acceptance falls to a low of 10% for objects 9, 14

and 19 at angles of±200 which coincides with our observations from the CC and BP graphs previously.

Only object 1 has a significant drop in acceptance score for the frontal angles±50, ..,±150. This is quite
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Figure 7.33: Acceptance performance surface plot for COIL-20 database, using LCV.

unusual and cannot be explained by looking at the accuracy ofthe CC and BP error results. Therefore, we

are lead to the assumption that it is perhaps due to erroneously chosen, very high empirical thresholds.

Finally, we show the results from the tests using the AAMs on the same data. First is the RMSE plot

in Fig. 7.34 where it is obvious that there is a much higher error than when the LCV was used. This is

something we have seen several times in our experiments so far. We therefore expect a lower efficiency

due to the (now usual) disagreement of the AAM test results and the ground truth. If we look closer

at Fig. 7.34 we see that object 13 still maintains a (relatively) good and consistent performance across

most pose angles. In addition, objects 6, 8 and 10 seem to fareslightly better than 2, 5 and 7 in terms of

discrepancies between test score and g.t. values. One interesting observation is that the high-RMS spikes

for a pose of00 visible in Fig. 7.30 have now reversed into lower-RMS dips. Furthermore, the graph

contains many such spikes and dips, and there is no more a smooth transition of the RMS error between

pose angles. This might occur because of the “binary” natureof the optimisation algorithm associated

with the AAMs. It will either converge at the correct solution or get completely lost, but nothing in

between.

We proceed to the CC and BP plots (Fig. 7.35 and 7.36 respectively) where we see slightly lower

CC scores than obtained in the LCV case but conversely betterBP error values. Objects 7 and 8 have

improved scores for most poses in both graphs whereas objects 14, 15 and 19 have now worse accuracy

results, something that did not occur in the LCV tests. In general for the AAMs the performance seems

to deteriorate more dramatically as we move away from the near-frontal poses. There are a few spikes of

lower accuracy in both graphs in particular for objects 5 and7. Such isolated spikes are most probably

associated with the inability of the optimisation algorithm to converge rather than that of the AAM model

to capture the pose variation of the object or the error measures to provide a unique, well-defined and

low global minimum at these pose angles

We conclude with the acceptance percentage efficiency scores which may be seen in the surface plot
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Figure 7.34: RMSE pose variation plot for the COIL-20 database, using AAMs.
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Figure 7.35: CC pose variation plot for the COIL-20 database, using AAMs.
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Figure 7.36: BP pose variation plot for the COIL-20 database, using AAMs.
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Figure 7.37: Acceptance performance surface plot for COIL-20 database, using AAMs.

in Fig. 7.37. What is immediately obvious from this is that there is a dramatic difference from the LCV

graph in Fig. 7.33 and, in particular that the efficiency scores have dropped to 0-40%. This is a similar

pattern to what we have seen before when considering the performance of the AAMs which becomes

more emphasised at angles representing non-frontal views.Objects 1-4 seem to lead to marginally better

performance than obtained from other objects and 14-19 haveworse overall scores. The rest, 5-13 are

somewhere in between the two extremes.

Based on what we have seen from these tests, we may say with some confidence that the LCV model

has comparable intensity and geometric accuracy to the AAM when object identification is concerned.

When it comes to pose detection and, especially for frontal and near-frontal viewing angles, the LCV

gives a somewhat better CC response than the AAMs while the opposite is true for the BP error. The

LCV performs well at the extreme viewing angles of±200, 250, something that the AAM is unable to

do, possibly owing to a limitation in the model that would otherwise allow it to deal with untrained

pose variation where extrapolation may be required. The efficiency results once again have shown the

LCV model to be superior mainly, it seems, thanks to its powerful hybrid optimisation algorithm which

produces good acceptance scores even in this more demandingdataset. When AAMs’ were used, the

overall efficiency has remained low with an additional 10-20% reduction from the levels we have seen

in the previous dataset (Table 7.2).

7.4.3 Database 3

The final dataset is the Yale B database which is the most challenging set. This is because it contains

real images taken under varying illumination conditions (ambient and spot-light) and also in this case the

background model is not available. Instead, an approximation to it is provided by an image taken with

the spot-lights turned off and only the ambient light illuminating the scene. This is not a perfect solution

since the outline of the object (a person) is still visible and the image portion behind it is obscured but

using it nevertheless helps ensure a properly defined objective function is available when the model is
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Figure 7.38: RMSE model×object array for the frontal pose, using LCV.

placed over the background.

We start with the identification tests in which every model iscompared against each of the 10

objects in turn at the frontal pose (P00) to see if we can find the correct model instance (and its viewing

configuration) amongst many different individuals. 100 test runs were carried out in each case and the

results were captured in various 10×10, model×object arrays. As usual the first measure to be considered

is the RMS error plot (Fig. 7.38) from which we see that there is a well-defined diagonal corresponding

to correct identification of model with each object, except for objects 7, 9 and 10. If we compared this

to the error-plot in Fig. 7.21 we see that the errors in the twographs have approximately the same range,

something which is further affirmed by the sub-plots from each row. Both sub-plots range from 0.007

to 0.05 except for object 10 in the Yale B database where it is an obvious outlier with a RMSE of 0.17.

As we have already seen in Fig. 7.38, models 7 and 9 have also been wrongly identified but their RMS

errors recovered in the sub-plot are within the nominal range of the rest of the correctly identified objects

and are not obvious outliers as object 10 is.

Also unlike what we found with the COIL-20 database there areno objects here that provide a

good match to all the models except perhaps object 7 that matches well with several models. This is a

little surprising given that the database contains only faces, but may perhaps be attributed to the more

distinguishing differences between the appearance (shape, texture and illumination) of the faces in the

Yale B database than we saw for the objects imaged under constant lighting conditions in the COIL-

20 dataset. The opposite holds for object 9 which seems to produce a poor matching result for all the

models, including its own, and is depicted as a vertical column of lighter intensity.

Next is the CC plot (Fig. 7.39) which illustrates the recognition accuracy of each model when

an appearance measure is used. We observe that it has a very similar appearance to the previous

RMSE plot with generally a good response (between 0.9→0.98) and a well-defined diagonal for cor-
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Figure 7.39: CC model×object array for the frontal pose, using LCV.

rect model=object associations, except for object 10 whichgives a score of 0.85. Such a poor cross-

correlation coefficient leads us to suspect that perhaps this particular object has failed throughout all our

tests. However, further work is necessary before we can drawconcrete conclusions. Once again, object

9 is the object with the lowest response for all attempted matches where the model6=object.

We move on to the BP plot in Fig. 7.40 which has been capped to a maximum of 1000 to preserve

detail. Here we see a very good response and a complete main diagonal for model=object without any

miss-identifications. However we note that the BP score for object 10 is quite high (≈ 325) and although

this object has been correctly identified, the image synthesis might nevertheless be poor and one that we

would regard as invalid. The rest of the models give a response of around 50→100 when they match

to their respective objects which, based on our empirical results, are well inside the required acceptance

thresholds. As we can see there are no significant false positives in the background region of the graph

(model6=object) with just a few isolated spikes in the BP error ranging from 400→600.

The performance graph (Fig. 7.41) reveals a high acceptanceratio of 80-100% when model=object

and without any miss-identifications. Only objects 5 and 10 have low performance scores of≈50% and,

if we look back at the CC and BP graphs we can see that those two objects have the poorest overall

response even though the matching to object 5 has on occasionbeen over the convergence thresholdIn

general the accuracy and efficiency results we have seen for the identification tests on the Yale B database

using the LCV approach are very encouraging except in the case of object 10 which, as already noted,

needs to be investigated further.

We can now proceed to the AAM portion of the identification tests and consider the RMSE plot in

Fig. 7.42. It is immediately obvious that there are fewer discrepancies in the main diagonal compared to

the LCV case (only models 3 and 6 are wrongly identified) but atthe same time the RMS error is higher

in this case than it was when the LCV was used. This is best seenin the sub-plot where the maximum
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Figure 7.40: BP model×object array for the frontal pose, using LCV.

Figure 7.41: Acceptance performance surface plot for Yale Bdatabase, using LCV.
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Figure 7.42: RMSE model×object array for the frontal pose, using AAMs.

centres range from 0.2→0.6 whereas in the LCV case they vary from 0.07→0.17. Other remarks we can

make from this figure are that object 1 seems to have a good RMS response for most models whereas

objects 2 and 9 do not match well with most models in the list. We have already seen this behaviour for

object 9 in the previous tests with the LCV.

The next figure is the CC plot (Fig. 7.43). We can see that we have a perfect main diagonal of correct

model-object identifications with good, consistent CC scores mostly around 0.9→0.95. Nevertheless the

CC scores for objects 5 and 10 still remain low at around 0.85 and 0.8 respectively despite the fact

that they have been correctly identified. In addition, the low CC values obtained with the LCV when

model6=object for objects 2 and 9 now seem to be somewhat “diluted” and more consistent with the

background of the plot in comparison to the very distinct responses that we obtained in the LCV CC

plot.

The BP error plot (Fig.7.44) shows a much improved, lower error along the main diagonal including

that for objects 5 and 10 and, surprisingly, these two objects have now the lowest BP scores Furthermore

the BP errors at the maximum centres range from 25 to 40 which are better than when the LCV was used

and also under the empirically derived thresholds. In fact,in our tests so far we have seen a number of

different times that the AAMs have slightly better geometrical accuracies than those obtained with the

LCV model. The LCV on the other hand gives a marginally higherCC appearance score. We would

like to point out that such differences are very small numerically and they do not produce any practical

or observable difference in the image synthesis. Nevertheless, this may be of interest from a purely

theoretical point of view.

Finally we come to the performance plot (Fig. 7.45) where we see that the acceptance performance

score obtained with the AAMs suffers once again with a considerable drop to 10→50% along the main

diagonal and with many objects (2, 4, 5, 8 and 10) giving a score of near 0%. The score is 0% elsewhere
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Figure 7.43: CC model×object array for the frontal pose, using AAMs.
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Figure 7.44: BP model×object array for the frontal pose, using AAMs.
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Figure 7.45: Acceptance performance surface plot for Yale Bdatabase, using AAMs.

in the plot when model6=object as there are no false identifications (false-positives). The decline is

manifested therefore only in the number of times the correctobject has been identified rather than in the

(true positive)/(false positive) ratio. This is a typical result arising from a poor optimisation algorithm

and is not due to some problem with the model itself since the latter would give rise to spikes outside

the main diagonal of Fig. 7.45. We also note how the performance of the AAMs seem to decline as the

datasets become more complex while at the same time the performance of the LCV approach remains

relatively stable.

The rest of the results in this section involve the pose recognition tests, with each model compared

against a scene image which contains just one instance of oneof the objects that has been modelled. The

pose angles here are described in terms of spherical coordinates and are different than in the synthetic

and COIL-20 datasets. They also combine pose variations involving rotations about both vertical and

horizontal axes (see Fig. 7.8). The pose labelled 0 is the frontal pose along the camera axis. Poses 1,

2, 3, 4, and 5 are approximately120 from the axis and poses 6, 7, and 8 were about240 from the axis.

With 9 poses in total (P00→P08) we generated various 10×9 arrays of model=object×pose with each

cell being the average value of the chosen measure over 100 test runs. All the objects were tested for all

the poses except object 5 for poses P04 and P05 in which where aconsiderable portion of the face was

missing. The model thus could not be accurately built for these two poses selected as basis views owing

to landmark points that were missing. Although as we will show in the next few chapters our model

(once built) can still be successfully applied to occluded objects, one cannot easily build an LCV model

from images in which an object is partially obscured. We therefore decided not to test use of these two

poses as basis views for this particular object and to leave the cells blank in the arrays that follow.

Also, if we recall the problems described previously object10 in the database we can explain now

that this was because pose P00 has additional data (i.e. the neck) which is not present in any of the

images taken in the remaining 8 poses. This is the opposite problem to that encountered with object 5

and in this case we do not have any missing landmarks. Therefore we can go ahead and build the model

for all poses while considering the target images obtained in pose P00 to have additional data that cannot
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Figure 7.46: RMSE object=model×pose array, using LCV.

be modelled. This would explain the poor CC scores we have seen already which were caused by the

additional data whereas the BP error remained good since it only considers the landmark positions and

ignores any background data. For this reason we expect a lower CC score for pose P00 for object 10.

We begin with the RMSE plot in Fig. 7.46. Note the missing portion for object 5. The scores are

mainly low ranging from 0.01 to 0.1. It is obvious that objects 3, 9 and 10 have the highest error across

all the pose angles while the performance for objects 1, 6 and7 seems to be better irrespective of pose.

The results in this graph do not indicate any specific pose angles that consistently produce a very high

or low error score but we may remark that for some cases poses P05→P08 seem to give the lowest RMS

error. We also note the high error for object 10, pose P00.

The next graph is the CC plot in Fig. 7.47. Most objects give a good response with CC over 0.9

with again no particular pose angles standing out. Objects 3, 9 and 10 are the usual under-performers

with the latter having the lowest overall score especially for poses P00 and P05→P08. Object 5 generally

does well except for poses P00 and P01. What we have seen so far is a mixed picture with most models

recovering the correct pose to within a reasonable accuracy. However, certain models still fail in a

number of different poses much more frequently than we have seen for the two previous datasets. This

is partly due to the fact that we are dealing with a complex dataset but, we suspect, more importantly

because the full background model is not given which is causing difficulty in the optimisation search.

We expect this loss of accuracy therefore also to affect the efficiency scores especially for objects 5 and

10.

We proceed to the BP error plot (Fig. 7.48) where we see a similar picture of mixed results. The

BP error ranges from 50→150. The geometrical error for objects 5 and 10 seems from these results

and those in Fig. 7.47to be a more promising measure for identification purposes than the combined

appearance measure. This is because, as we have already mentioned, any additional object features

that were not captured by the model (in the image-based template) do not affect the calculation of the
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Figure 7.47: CC object=model×pose array, using LCV.

BP error which is only based on the landmark positions. Beyond that remark we do not see anything

else that is worth mentioning, except perhaps that objects 5, 6 and 7 have medium BP error responses

for poses P00→P01 and that there seems to be a marginally better BP score forposes P02→P04 than

P05→P08. It is because of the nature of this dataset with its varying illumination conditions and lack of

a proper background image that we have not observed any distinctly high or low responses that span all

poses or all objects in the graphs. Observation of such distinctly high or low responses across all poses

or viewing angles was a common occurrence when either of the first two databases was used.

The final diagram for the LCV pose recognition tests is the average efficiency graph in Fig. 7.49.

Here the acceptance surface is different than the nearly-flat equivalent from the COIL-20 database (Fig.

7.33). We see some low-performance spikes (e.g. with objects 5, 7, 8 and 10) caused by a similar drop in

accuracy scores due to the particular characteristics of the Yale B dataset. Despite those few recognition

failures at specific poses, overall the acceptance percentage is within acceptable limits ranging from

70→100 for most objects in the set.

Finally, we come to the last stage of our tests on the Yale B dataset which is the question of pose

recognition when using the AAMs. First is the RMSE plot (Fig.7.50) in which we see a moderate RMS

error for most objects that is considerably higher than thatobtained in the LCV approach. This outcome

has been the case so far. Objects 1 and 7 have the lowest scoresespecially in poses P00, P03→P05.

Modelling of objects 2 and 3 remains problematic with a high RMS error indicating that there is a

deviation from the ground truth (g.t.) values. We also see that object 10 has a relatively improved good

RMS error except for pose P00. Compared with the RMSE plot from the LCV tests (Fig. 7.46) when

AAMs are used there are fewer objects that have good RMS values and the difference between objects

that produce (relatively) high and low scores has been diminished. We therefore expect to see a definite

and considerable drop in efficiency scores for most of the objects in the test set.

Next we look at the combined appearance accuracy in the CC plot (Fig. 7.51). It seems that in
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Figure 7.48: BP object=model×pose array, using LCV.
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Figure 7.49: Acceptance performance surface plot for Yale Bdatabase, using LCV.
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Figure 7.50: RMSE object=model×pose array, using AAMs.
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Figure 7.51: CC object=model×pose array, using AAMs.

general and compared to Fig. 7.47 the CC scores have moved into the darker/lower score regions with

many objects now having a CC between 0.75→0.8 (e.g. objects 7, 2 and 3) whereas in the LCV case they

ranged on average from 0.9 to 0.95. We can also see that results are mixed for most poses and perhaps

P03 is the only one that gives a moderately good outcome for all objects with a CC of≈ 0.9. Also,

no object has an invariably low CC value for all poses unlike in the LCV approach where, for example,

objects 6, 7 and 8 did.

We move on to the geometrical accuracy scores with the BP plot(Fig. 7.52). At first glance it

appears very similar to the previous CC graph with diverse responses. There is no pose with universally

good results for all objects, except perhaps once again P03.Compared to the LCV case in Fig. 7.48

we see that for the AAMs object 10 performs much better and objects 4, 5 and 7 do worse for poses

P00→P02 but better for P03. In addition, objects 1 and 3 have an improved score for poses P00→P02

but considerably worse scores for the rest of the views. Finally for most objects in the set there seems to

be a clearer distinction between the poses P00→P03 that have a low BP error and those with a high error

namely P04→P08. In the LCV case this partition is less apparent since there are fewer objects that give

such high BP errors.

We end this section with discussion of the efficiency resultsin Fig. 7.53. When considered in

comparison to the LCV results in (Fig. 7.49) it becomes apparent that when AAMs are used many more

objects have failed to recover the correct pose with a low associated acceptance ratio of 0-5%. A few

of the objects seem to do slightly better such as 1 and 6 ranging from 30-60% for poses P00→P05 and

P02→P08 respectively. Overall poses P02 and P03 are the ones withthe highest scores at approximately

30-40% unlike the LCV case where all poses gave very good performance results except for a few lower

spikes.
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Figure 7.52: BP object=model×pose array, using AAMs.

Figure 7.53: Acceptance performance surface plot for Yale Bdatabase, using AAMs.
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7.4.4 Noise

The synthetic database we have used previously for the evaluation of pose-invariant object recognition is

composed of error-free data and so it represents a rather ideal but unrealistic scenario. A more pragmatic

approach would be to add a certain amount of random, Gaussiannoise that, for example, has not been

modelled in the basis views and repeat all the previous experiments in order to assess the extent to which

the optimisation results are affected by the existence of noise.

We therefore considered two possibilities: first addition of a moderate amount of noise (σ = 0.05,

see Fig. 7.54(a)) and secondly addition of a large amount of noise (σ = 0.1, see Fig. 7.54(b)) to the

target image pixel values, for both foreground and background pixels. The basis views and pose angle

samples are identical to the ones used in section 7.4.1. In addition, we have used similar graphical plots

for ease of direct comparison with the noise-free case.

Moderate noise

First we examine the RMSE vs MAE graph (Fig. 7.55). As expected in this case the two error measures

are higher than in the noise-free experiments implying on average some deviation from the ground truth

solutions purely due to the effects of noise. It is interesting to note that the error is bigger for angles

±15, 20, 25 than it is for smaller angles - something that we did not encounter in the noise-free case

considered previously. Also we see that despite the fact that the lowest errors occur at near-frontal poses

these are also the angles where there is the largest discrepancy between the RMSE and MAE measures.

This means that there is a much higher variation between residuals of the 100 test runs at these angles

than for other viewing angles in our test set and that we may subsequently expect to find high accuracy

but moderate efficiency scores for these small angles.

Next we examine the average CC graph (Fig. 7.56) for the mode of the sample. Once again it is

clearly demonstrated how the addition of pixel noise affects the CC score and yields a significant differ-

ence between the observed and empirically derived ground truth values. What is of particular interest

however is that all the observations are above the empiricalthreshold plot3. Although the difference

between observation and empirical threshold is much lower in this occasion, it is still a very encouraging

result, which shows that the optimisation accuracy is not overly affected by the presence of a moderate

amount of noise.

Following the above we move on to discussion of the average back-projection error plot (Fig. 7.57).

We see that this is very similar to the noise-free plot in Fig.7.14, except for poses at00 and50 which is

where we obtain only quite a low level of accuracy. However, such a close resemblance of the two graphs

coupled with Fig. 7.56 itself leads us to the conclusion thatthese results are geometrically accurate even

in the presence of noise.

Finally for the moderate noise scenario we have included twographs (Fig. 7.58(a) and (b)) that show

the overall acceptance percentage for the empirical CC and BP thresholds respectively. At the same time

we compare these results with the equivalent acceptance rates from the noise-free case. We note the

aforementioned drop in recognition rates of between 5% to 20% at different pose angles for both the
3Note that these empirically derived thresholds are different from the ones in the noise-free case and are always related to the

current experiments and observations and hence the lower CC values.
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(a)σ = 0.05 (b) σ = 0.1

Figure 7.54: Synthetic database samples with different amount of random noise.
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Figure 7.55: RMSE and MAE plots for moderate noise case.

types of threshold used. Of particular interest is the fact that for the frontal poses, the noisy case seems

slightly to outperform the noise-free examples. However webelieve that this may be attributed purely to

the probabilistic nature of the optimisation algorithm andnot to some underlying special characteristic

of the data.

Before we proceed to the examples with a large amount of noiseit should be noted that we have

carried out similar experiments with the AAMs on this moderately noisy dataset in order to compare

how the active appearance model can cope with such effects. We found that both the RMSE and MAE

(Fig. 7.59) have increased considerably compared to the LCVapproach (Fig. 7.55) and there seems to

be a large discrepancy between the two measures for the AAMs indicating large variations in the error

residuals and consequently a drop in the efficiency rate (i.e. reduced acceptance percentage). The latter

is most probably due to the inability of the local optimisation algorithm to successfully traverse a noisy

error surface. As far as the accuracy is concerned, we see from (Fig. 7.60 and 7.61) that it remains at

very good levels relative to those obtained with the LCV approach. As in Fig. 7.18 and 7.19 the graphs

obtainmd when AAMs are used exhibit the familiar deterioration at the large viewing angles of±250

and higher accuracy, in particular of the geometrical error, for the frontal angles.

We end this sub-section with a graphical comparison betweenthe overall efficiency scores of the

LCV and AAM for the two empirical thresholds (CC and BP scores) in Fig. 7.62. It is clear that the LCV

approach outperforms the AAM approach especially at the angles furthest away from the frontal pose
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Figure 7.56: Average cross-correlation plot (mode of sample) for moderate noisy case.
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Figure 7.57: Average BP plot (mode of sample) for moderate noisy case.
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Figure 7.58: Recognition rates comparison using CC and BP score thresholds.
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Figure 7.59: RMSE and MAE plots for moderately noisy case using AAMs.
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Figure 7.60: Average cross-correlation plot (mode of sample) for moderately noisy case.

for both types of empirically derived thresholds. This is quite the opposite from what we have seen in

the noise-free case where AAMs had better recognition scores than the LCV. The accuracy relationship

between the two methods seems largely unaffected. We may thus say that the LCV is more robust

to noise than the AAM and since only the efficiency differential between the two methods is affected

(both the accuracy results degrade by analogous amounts) this robustness is probably due to the superior

optimisation solution employed in the former. However, it is necessary to examine the results in the next

sub-section when a large amount of noise was added before we draw any additional, general conclusions

about the two methods.

Extensive noise

When a large amount of noise was added to the target image as canbe seen from Fig. 7.63 the RMSE and

MAE errors are higher than they were with moderate amounts ofnoise and we see that both quantities

are almost identical. These observations allow us to make the prediction that there will be an analogous

decrease in both the efficiency and accuracy of the optimisation results closely associated with the in-

creased amount of noise. If we had an unexpected, unilateraldrop in either the accuracy or the efficiency

scores we would expect to see a reduction in the RMSE and MAE errors or an increased disparity be-
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Figure 7.61: Average BP plot (mode of sample) for moderatelynoisy case.

−25 −20 −15 −10 −5 0 5 10 15 20 25
0

10

20

30

40

50

60

70

80

Pose angle

A
cc

ep
ta

nc
e 

pe
rc

en
ta

ge

Noise σ=0.05 LCV

Noise σ=0.05 AAM

−25 −20 −15 −10 −5 0 5 10 15 20 25
25

30

35

40

45

50

55

60

65

70

75

Pose angle

A
cc

ep
ta

nc
e 

pe
rc

en
ta

ge

Noise σ=0.05 LCV
Noise σ=0.05 BP

(a) CC threshold (b) BP threshold

Figure 7.62: Recognition rates comparison between LCV and AAM methods.
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Figure 7.63: RMSE and MAE plots for extensively noisy case.

tween the two but not both. The fact that both of these events have occurred to a limited degree is a

good sign that points to a graceful degradation of the objectrecognition system in the presence of large

amounts of noise.

Fig. 7.64 shows the average CC response values and the superimposed empirically derived thresh-

old. In this example we see a lower overall CC score than previously and also that the two plots are much

closer together. In fact for some angles (especially pose=00) the CC values drop below the threshold for

the first time in our tests. Indeed it may be the case that this amount of noise is at the limits of what the

LCV model can handle with these optimisation settings. The accuracy scores are somewhat better when

the geometrical error is examined (see Fig. 7.65) with all pose angles yielding an average result above

the empirical threshold. We should note again that such thresholds are chosen experimentally and on an

ad-hoc basis in order to aid the evaluation of optimisation accuracy. They are not definitive or absolute

pass or fail rules so we could decide to admit some CC test cases that only narrowly fail provided they

have a very good geometrical reconstruction.

If we take account of the above point and use the established empirical thresholds we can generate

overall recognition performance comparison graphs (Fig. 7.66(a) and (b)). For both of these graphs we

see a considerable drop in the acceptance rates (optimisation algorithm efficiency) in the range of 5-30%

for the two types of thresholds. By close comparison to the moderate noise acceptance graphs (Fig. 7.58)

we can identify an average 10-20% drop in acceptance percentage as the Gaussian variance increases by

0.05. How well this decrease generalises to other variance values and if indeed there exists a simple,

linear relationship between variance and recognition percentage is not apparent and requires more work

to resolve. Nevertheless, from the results obtained in the noise-free, moderately noisy and very noisy

cases we can identify a gradual and predictable deterioration in optimisation results as the noise in the

target image increases. Such a result reinforces our notionthat the performance of the LCV although

not unaffected by noise is quite robust and has a proportionate decline (or at least not a disproportionate

decline) as the amount of noise increases.

We also compare against the AAM search on the same dataset with the large amount of added noise.

The RMSE vs MAE plot (Fig. 7.67) shows that even though the individual pose errors have increased
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Figure 7.64: Average cross-correlation plot (mode of sample) for extensively noisy case.
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Figure 7.65: Average BP plot (mode of sample) for extensively noisy case.
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Figure 7.66: Recognition rate comparison using CC and BP score thresholds.
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due to the effect of noise on the CC score the relative distance between these curves is lower than in the

moderate noise case (Fig. 7.59). In fact we see that there is much less increase in relative RMSE and

MAE errors between the moderate and large noise examples using AAMs than there was when the LCV

approach was used.

Figures 7.68 and 7.68 compare the average CC and BP responsesobtained by use of the LCV

and AAM methods respectively. It is obvious that the AAM is asgood as the LCV method in the

presence of large amounts of noise, except at the large viewing angles of±250 which have presented a

recurring problem for the AAMs. Also when AAMs are used we do not see a drop in the scores near

the frontal angles but have a smoother transition between different poses. For the BP errors the results

seem to favour the AAMs between−250, ..., 100, however for the remainder angles the two methods

have approximately the same level of accuracy.

If we now move on to the average acceptance results for the twomethods (Fig. 7.70) we see that the

AAM method has a slightly lower efficiency approximately 5-15% less than that of the LCV approach.

Note once again the steep drop at the large viewing angles.

In conclusion we may say that the LCV method has an overall good performance in the presence of

noise with a predictable degradation when the amount of noise is increased. More specifically, the av-

erage accuracy of our approach remains largely unaffected and above the empirically derived thresholds

and also quite close to the threshold pertaining to the geometrical ground truth too. In terms of efficiency

we see a gradual and graceful drop in recognition rates as thevariance of the additive Gaussian noise is

increased. Compared to the popular AAM method the LCV performs just as well with comparable ac-

curacy rates especially when the geometrical error of the reconstruction is evaluated. This is because our

LCV approach is aided by the powerful hybrid optimisation algorithm (section 6.3.3). We have also seen

that the LCV can better model the deformation of the object when limited extrapolation of the viewing

angles is required whereas the AAM has some difficulties synthesising the appearance of an object in a

pose that has not been seen before and needs to be extrapolated from those comprising the training set.

Our only criticism of the LCV approach is that for the frontalview the model seems to deliver a

lower accuracy score and that this is exacerbated by the addition of noise to the target, scene image.

As we have said earlier we believe this to occur because the frontal view is where the basis views

are combined in equal amounts so any inherent noise in the latter will be enhanced in the synthesised

image. If we combine this with the effect of the added Gaussian noise in the target image we get the

characteristic, slight drop in cross-correlation for thatpose. Conversely, the BP error for the frontal pose

seems to be largely unaffected. Furthermore we would like tocarry out additional tests in the future to

establish more precisely the relationship between increases in noise level and decrease in optimisation

efficiency.

7.4.5 Occlusion

This section deals with the effects of un-modelled occlusion on the performance of the LCV approach.

These test are designed to represent a replacement occlusion model, whereby an occluding object is

placed between the camera and object of interest, and its shape and appearance completely “replaces”
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Figure 7.67: RMSE and MAE plots for extensively noisy case, using AAMs.
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Figure 7.68: Average cross-correlation plot (mode of sample) for extensively noisy case.
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Figure 7.69: Average BP plot (mode of sample) for extensively noisy case.
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Figure 7.70: Recognition rates comparison using CC and BP error thresholds.

(a) 20% of area (b) 40% of area

Figure 7.71: Synthetic database samples with different amount of random occlusion.

that of the object of interest (over the area of overlap). There are of course alternative models (for

example we could have used a semi-opaque or even an object with black, background pixels) that would

produce alternative error responses and thus recognition results. Nevertheless, we decided to experiment

with the replacement model which is most commonly encountered in real-image scenarios.

Our test data therefore was generated by randomly interposing a white, opaque, circular object

within the bounding box of the synthetic head model. We tested two scenarios: first where there was

limited occlusion with the size of the occluding object set at 20% of the area of the face (Fig. 7.71(a));

and second with increased occlussion where the circular object was fixed at 40% of the size of the face

(Fig. 7.71(b)). The same tests were also carried out with theAAM and compared against our LCV

method.

Limited occlusion

As usual we begin with the RMSE vs MAE graph in Fig. 7.72 which is at similar levels to those obtained

in the occlusion-free case (Fig. 7.11) although the latter displays a more linear transition between pose

angles. There is a large difference between the RMSE and MAE errors in Fig. 7.72 for pose250 but it

is too early to identify the reason for this as further analysis is required. It is quite unlikely but still that

large number of optimisation tests failed to converge or converged poorly for that particular angle. What

is apparent so far is that the 20% occluding object has not drastically affected the performance of the

optimisation.
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Figure 7.72: RMSE and MAE plots with 20% occlusion.

Figures 7.73 and 7.74 show the average cross-correlation and back-projection plots respectively.

By close comparison with the occlusion-free plots (Fig. 7.12 and 7.14) we observe that the occluding

object has resulted in an average 0.02 drop in CC scores. Sucha minimal drop is to be expected since

the image of the superimposed object has quite different pixel intensities than are found in the image

of the synthetic head. Nevertheless the average observation score is between the ground truth and the

empirically derived thresholds for the majority of pose angles. There is however an overall smaller

distance between the observation and empirically derived threshold plots than in Fig. 7.12 indicating a

reduction in recognition accuracy caused by the occluding object. Results are much better for the BP

error plot since it has an almost identical, if not better, response in the present case than that shown in the

plot from the occlusion-free experiment in Fig. 7.14. Sincea localised change in pixel intensities by the

occluding object does not affect the BP error the latter is a good indicator of the geometric consistency

between scene and synthesised views. It is therefore the case that geometric accuracy has remained

virtually unchanged in the presence of limited occlusion.

Finally we compare the average acceptance percentage plotsusing the empirically derived CC (Fig

7.75(a)) and BP (Fig. 7.75(b)) thresholds. We see that except for the two spikes for poses−200 and−150

where the occluded test scores fall considerably we have a close similarity between the occlusion-free

and occluded cases. These spikes indicate low efficiency scores of the optimisation algorithm for these

poses. Although this observation is mirrored by a fall in accuracy for pose−150, as we have seen in the

cross-correlation plot, it does not occur for angle−200 or at all in the BP plot. Results are thus rather

inconclusive for these poses. However it may be that the empirical error thresholds were erroneously

chosen too high for these poses (see empirical threshold plots at these angles in Fig. 7.73 and 7.74).

We now move on to the AAM tests where we see a significant reduction in the optimisation accuracy

which is depicted as an increase in both the RMSE and MAE quantities in Fig. 7.76. The fact that both

these errors are approximately equal for most angles indicates that the error residuals from the 100 test

runs differ significantly from the average ground truth values. The accuracy drop is further pronounced

in the average CC and BP plots (Figures 7.77 and 7.78 respectively), where we can see quite a lot of

oscillation between good and poor matching scores. This is in fact due to the apparent sensitivity of
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Figure 7.73: Average cross-correlation plot (mode of sample) with 20% occlusion.
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Figure 7.74: Average BP plot (mode of sample) with 20% occlusion.
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Figure 7.75: Recognition rates comparison using CC and BP score thresholds.
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Figure 7.76: RMSE and MAE plots with 20% occlusion using AAMs.

the AAMs to missing data (that may be the result of an occluding object) and not some phenomenon

associated with a particular pose angle. In fact, the oscillation at different pose angles is completely

random and is determined by the local optimisation algorithm used with the AAMs.

Note additionally, that in this particular case the data histograms are multi-modal with the primary

mode caused by trivial solutions4 (see CC histogram in Fig. 7.79). Thus, even though there is a secondary

mode above the empirically derived threshold and even though for some poses the primary mode may

indicate a correctly converged solution, when all the testsare examined collectively we can see that the

overwhelming response is toward very small cross-correlation values. This explains the appearance of

the CC and BP plots.

It would also be reasonable to expect a similarly large decline in acceptance scores. This is indeed

the case if we examine the acceptance graphs in Fig. 7.80. TheAAM tests have subsided to very

low acceptance rates (zero in some cases) for both empirically derived thresholds in comparison to

those obtained with the LCV approach for the same, 20% occlusion, dataset. These results are perhaps

indicative of the fact that the AAM may not be very robust to even a small degree of occlusion unlike the

LCV method. However we should analyse the results from the 40% occlusion dataset before we draw

any further conclusions about how the two approaches compare.

Increased occlusion

For the second case where the occluding object is doubled in area we see a small increase in RMSE and

MAE errors (Fig. 7.81) in the magnitude of 0.02-0.03 for the majority of pose angles. The two quantities

are now much closer together indicating an overall agreement between individual error residuals and the

average ground truth. Combined with the low scores it is an indication that the accuracy and efficiency

of the algorithm might have decreased slightly but still remains at good levels. There is some increase in

the RMSE and MAE values as we move away from the frontal pose but this is normal and has already

been observed in the 20% occlusion case (Fig. 7.72).

As far as the average responses are concerned Fig. 7.82(a) and (b) demonstrate that both the CC

4The AAM has collapsed to a single point that gives a CC score close to zero when compared to the scene image.
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Figure 7.77: Average cross-correlation plot (mode of sample) using AAMs.
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Figure 7.78: Average BP plot (mode of sample) using AAMs.
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Figure 7.80: Recognition rates comparison using CC and BP score thresholds.

and BP scores are adequately above the empirically derived thresholds. The geometrical error seems

to be largely unaffected by the increase in size of the occluding object and at similar levels to those

obtained when the occluding object’s size was 20% of the face. This indicates a good reconstruction of

the geometry of the object from the trained model even if a significant portion of the data is missing from

the scene image. The CC has dropped from the values obtained in the previous tests but that is a result

of the occluding object which directly affects the CC calculation. We see that despite this the average

CC scores are obtained from synthesized images that producevisually acceptable reconstructions of the

target, scene image although the CC plot is now closer to the empirical threshold plot than it was when a

20% occluding object was used. We may also look at the two histograms (Fig. 7.83(a) and (b)) and see

that there are no other significant modes with a good proportion of test runs scoring consistently over the

empirical thresholds. As a result we may conclude that the accuracy of the synthesized geometry remains

unchanged whereas the combined appearance accuracy has dropped slightly but still demonstrates a

robust result given the significant increase in the occluding object’s area.

If we now move to the optimisation efficiency determined fromthe test-run empirical acceptance

percentages (Fig. 7.84(a), (b)) we see that they are at similar levels to those obtained when an occluding

object 20% of the face size was used. In more detail we see the CC response in this case of increased

occlusion is higher than most the responses were in the case of the more limited occlusion for non-frontal

poses. For the BP threshold the results obtained with 40% occlusion have a small drop in efficiency which

increases for non-frontal viewing angles but is still closeto that obtained in the experiments with more

limited occlusion. Similarly to the accuracy, the average efficiency rates have not been overly affected

by the increased occlusion of the object of interest.

We have carried out the same experiments with the AAM and found that none of the test runs

managed to converge to score that would meet the empiricallyderived thresholds for any of the viewing

angles. If we look at the two histograms (Fig.7.85(a) and (b)) we can see an overwhelming concentration

at CC≈0 and a shift toward high BP error values. This is a similar to the behaviour in the case of less

severe occlusion we have seen before where the AAM cannot cope very well with occlusion of the target

object of interest. The drop in accuracy and efficiency scores is highly disproportionate to the increased
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Figure 7.81: RMSE and MAE plots with 40% occlusion.
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Figure 7.82: Average CC and BP plots (mode of sample).

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
0 

20

40

60

80

100

120

140

160

180

Cross−correlation

N
um

be
r 

of
 te

st
 r

un
s

Cummulative cc data
Mean empirical threshold

0 500 1000 1500
0 

20

40

60

80

100

120

140

Back projection error

N
um

be
r 

of
 te

st
 r

un
s

Cummulative BP data
Mean empirical threshold

(a) CC histogram (b) BP histogram

Figure 7.83: Average CC and BP plots (mode of sample).
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Figure 7.84: Recognition rates comparison using CC and BP score thresholds.
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Figure 7.85: Average CC and BP plots (mode of sample).

area of the occlusion and as a result we may generalise our conclusion by saying that the AAM in the

current implementation we have used is not robust to missingdata due to occlusion.

On the other hand the LCV approach deals very well with occlusion with very little loss of accuracy

and an acceptable minor loss of efficiency. Furthermore, as the amount of occlusion is increased (to 40%

of the object of interest) the LCV performance remains largely unchanged. We believe this is because of

the fact that the allowed coefficient ranges are learned during training and incorporated into the Bayesian

priors which play an important role in the optimisation search process. In addition, the hybrid algorithm,

assisted by these priors can avoid trivial solutions and concentrate on areas of the objective function

where meaningful solutions are most likely to occur. The AAMwhen confronted with unknown data

(such as that arising from the occluding object) in the vicinity of its search locus is ill-equipped to deal

with uncertainty and randomly searches the objective function until it converges to a trivial solution (as

we have seen in both the occlusion CC histograms Fig.7.79(a)and 7.85(a) ).

7.4.6 Expression

The experiments in this section reflect our attempt to test against the effects of localised, flexible defor-

mations of the object of interest, exemplified in our experiments by changes of facial expression. We

considered views of the synthetic head in two different, un-modelled expressions and carried out the
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usual kind of experiments using our existing LCV model. Comparisons were carried out against the

previous results obtained from use of the LCV approach with target images exhibiting the modelled,

natural facial expression. The AAM portion of the tests havebeen excluded in this case since the AAM

cannot model local deformation that has not been included inthe training set. We therefore focused on

the ability of the LCV method to recover the correct pose alone.

The first point of comparison is between the average CC and BP error plots. We see that due to

the change of expression, the CC plots (Fig.7.86(a) and (b))are lower that those obtained in the neutral

(modelled) expression plot (Fig. 7.12) but still above the empirical threshold. Only pose angles−250

and−200 are marginally below the cut-off point. A similar situationis apparent when we examine

the BP plots (Fig. 7.87(a) and (b)) and compare them with the similar graphs obtained for the the

neutral expression (Fig. 7.14). The plots for both un-modelled expressions are further away from the g.t.

boundary but below the empirical threshold whereas the plotfor the neutral expression is closer to the

former and thus more accurate geometrically. We also note a slightly better overall score obtained for

experiments with the happy expression as opposed to the angry one since the former represents a more

localised deformation and a smaller change (e.g. in the lower lip, the chin and the nose) is required to

transform from a neutral face to a happy one than from a neutral face to an angry one. This may be a fine

point but it is nevertheless clear that the two expressions do not produce exactly the same responses.

For the evaluation of the average efficiency we have includeda comparison of the graphs (Fig. 7.88)

for the three expressions. As we have already seen efficiencyfor experiments on target face images in

the natural expression ranges between 55 to 80%. It appears linear and stable between different poses

without any significant spikes in the curves. The same also applies for the BP threshold acceptance

response. For the two un-modelled expressions, it has a larger variation in the efficiency rates ranging

from 30% for angles250 and−150 to 90% and 100% for poses150 and00 respectively. We see a similar

result in the BP plot. We would like to make clear at this pointthat the empirical thresholds for this

particular scenario, were determined based not on how well the LCV model could synthesise the new

expression as this would simply be impossible, but on how well it would recover the (visually) correct

pose in the presence of localised, un-modelled variation. This should explain why sometimes we observe

higher efficiency rates than in the experiments incorporating only pose variation in section 7.4.1. The

empirically derived thresholds are thus different but at the same time slightly lower response scores may

be obtained because the model cannot match precisely to images of the face with the previously unseen

expressions.

7.4.7 Rotation about a horizontal axis

In this sub-section we present our experimental results on pose variation due to rotation about the hori-

zontal axis. Five samples were used from−100 to 100 at 50 intervals while the pose about the vertical

axis remained fixed at00 (frontal pose). With these tests we intend to examine the ability of the LCV

model to accommodate a second set of view changes. To do so we need to determine the plausible limits

for the 10 coefficients and their optimal combination(s) that would produce valid target image view syn-

theses. We would also like to compare the results with those previously obtained when the pose of the
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Figure 7.86: Average CC comparison for unmodelled expressions.
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Figure 7.87: Average BP comparison for unmodelled expressions.

−25 −20 −15 −10 −5 0 5 10 15 20 25
30

40

50

60

70

80

90

100

Pose angle

A
cc

ep
ta

nc
e 

%

Natural
Angry
Happy

−25 −20 −15 −10 −5 0 5 10 15 20 25
30

40

50

60

70

80

90

100

Pose angle

A
cc

ep
ta

nc
e 

%

Natural
Angry
Happy

(a) CC threshold (b) BP threshold

Figure 7.88: Acceptance comparison for unmodelled expressions.
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Figure 7.89: RMSE and MAE plots for horizontal rotation.
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Figure 7.90: Average CC and BP responses for horizontal rotation.

object or equivalently the viewpoint were rotated about a vertical axis and identify any similarities and

differences between the two. In the interest of completeness we have also included in this scenario the

tests carried out using the AAM.

The first figure we will consider is as usual the RMSE vs MAE plot(Fig. 7.89). We see a very good

low error response for both quantities that rises slightly for angles−100 and−50. If we compare it to the

results obtained for rotation about a vertical axis (Fig. 7.11) we see that rotation about a horizontal axis

produces much lower error values for the frontal pose possibly indicating that basis views selected along

the vertical axis are better suited for synthesis of that particular angle than ones along the horizontal axis.

Next come the average response graphs for the cross-correlation score, CC, and for the back-projection

errors, BP (Fig. 7.90(a) and (b)). The accuracy results hereare very good comfortably meeting the

required thresholds for both measures. In particular for the cross-correlation we note that some responses

are above the ground truth values. A close comparison to the results obtained for rotation about the

vertical axis at the frontal pose (Figures 7.12 and 7.14) reveals considerably higher accuracy scores

when the rotation is about the horizontal axis. The average efficiency plot for the CC and BP thresholds

is shown in Fig. 7.91. The algorithm produces good results and for some angles close to 90% and 100%.

There is only a significant drop for poses100 and−50 for the BP threshold.
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Figure 7.91: Average acceptance comparison for CC and BP score thresholds.
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Figure 7.92: Diversity of mean coefficients.

We now take a look at the coefficient diversity plot in Fig. 7.92. Unlike the case for rotation about

a vertical axis (Fig. 7.16) here thebj coefficients are the ones responsible for the pose variationwhile

theai are static, except fora0 which together withb0 represents translation of the synthesized image.

As the translation on the abscissa (x axis) is minimala0 is much smaller thanb0. Note once again that

these two coefficients have different units (or as physicists say, dimensions) than the rest and so it is

not unusual to see a larger variation in therm than in the other coefficients. For the remainder, onlyb2

andb4 vary while b1 andb3 are fixed at zero.b2 andb4 vary from∼0.3 to∼1.5 and from∼-0.5 to

∼0.7 respectively withb2=b4=0.5 corresponding to the frontal pose00. The diversity spread for these

coefficients is similar to that fora1 anda2 in the case studied for rotation about a vertical axis even if

the range of angles of rotation was larger in the latter case.It might be the case therefore that the scale

of the non-trivial correspondingai andbj in the two experiments are also different. Such differences

will reflect the extents to which the appearance of the face changes as it is rotated about the two axes

In addition, the translation range captured inb0 in the current experiments is much smaller than that

captured bya0 in Fig. 7.16.

Finally for the rotation about a horizontal axis we present the results obtained usiung the AAMs. As
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usual we begin with the RMSE vs MAE plot in Fig. 7.93. Comparedwith the equivalent LCV plot (Fig.

7.89) the AAM results show a larger overall disparity between the two quantities while it is noticeable

that the former performs better for the poses at00, 50, 100. In the average accuracy response (Fig.

7.94(a) and (b)) the AAM has the clear advantage when the back-projection error is measured but it’s

approximately at the same cross-correlation levels as those obtained with the LCV. It is our hypothesis

that when the objection function has an easily traversable error surface, and provided a good initialisation

is available the AAM can recover a more geometrically accurate solution than the LCV either because

of a more capable model or a better local optimisation algorithm. Note that we have only tested a small

range of rotation angles about the horizontal axis so these assumptions might not generalise very well to

other situations.

Lastly, we examine the acceptance graph (Fig. 7.95) which should give us a general idea about the

efficiency of the AAM in comparison to that of the LCV approach. First we observe that the AAM has

the same acceptance results for both the CC and BP thresholds, as we have encountered previously, due

to the local optimisation algorithm and the tight optimisation threshold boundaries. We can also see that

the AAM model has a good acceptance rate between 70-100% in the same region as that obtained with

the LCV model. In addition, results from the AAM do not exhibit the same excessive drop for the BP

score at an angle of−100. On the other hand the LCV seems to outperform the AAM at the frontal pose

on both score.

In conclusion we have built an LCV model for a scenario in which the synthetic face object or

viewpoint is rotated about a horizontal axis and have examined its application across the range of the

poses−100, ..., 100 with all landmarks being visible at all times. We have seen how thebj coefficients

fluctuate and over what ranges they vary in order to account for the pose variation. This is particularly

interesting from a training point of view for the calibration of the Bayesian priors. In terms of accuracy

and efficiency the LCV approach seems to perform better for this rotation about a horizontal axis, espe-

cially for the recognition of the object in the frontal pose where we can carry out a direct comparison

with the similar situation when the pose ort viewpoint is rotated about a vertical axis. We believe that

this increase in accuracy and efficiency rates is partially due to the additional descriptive power of the

model created from the basis views separated by this rotation about a horizontal axis and the fact that

the pose variation is examined over a smaller angular range.In spite of these differences we saw that

the diversities of the LCV coefficients are at similar levelsto those obtained when the viewpoint rotated

about a vertical axis.

The LCV also compares very well with the AAMs in this case withboth producing very high CC

results although the AAMs are superior when the accuracy of the geometric reconstruction is considered.

This may be because the AAM is more capable of capturing the statistical variation of the object’s

geometry during these particular pose changes or it may be due to the ability of the local optimisation

algorithm used in the AAM better to traverse the objective function which may be more convex-like

and thereby recover more accurate solutions. In terms of theefficiency both methods produce equally

pleasing recognition performance results.
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Figure 7.93: RMSE vs MAE plot for horizontal rotation using AAMs.
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Figure 7.94: Average CC and BP responses for rotation about avertical axis using AAMs.
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7.4.8 Illumination variation

In the beginning of this chapter we have briefly mentioned ourintention to carry out a limited number

of experiments with the LCV model on images that exhibit non-linear variation in illumination. By

non-linear we mean variation in pixel intensities that cannot be fully explained by an affine model which

transforms the intensityI to aI + b wherea is the gain andb the bias. Such variations may occur due to

changes in the location and angle of the light source or sources relative to the camera and object positions

- especially if the object of interest has shiny surfaces which can produce specular reflections and can be

manifest as cast shadows especially due to non-convex shapes.

We thus would like to evaluate the performance of an LCV system in the presence of un-modelled,

non-linear changes in illumination. Note that the evaluation presented is by no means complete in scope

or thoroughly examined. However it represents a starting point for study of the effects of illumination

variation on our LCV system and may help to identify some of the most general problems or shortcom-

ings of our model that may need to be addressed in future work.We chose to test only the LCV model

in this case and not to compare with the use of AAMs since the latter specifically models changes in

appearance (which includes implicit illumination changes). If therefore such changes are quite close to

what is modelled by the training set and may be accurately interpolated by the AAM we would expect

the correct object view to be easily recovered and thus that the AAM would have an advantage over the

LCV. The latter does not explicitly model the appearance variation but tries to approximate it from what

is known in the basis views.

For our tests we have considered the Yale B database which contains examples of non-linear illu-

mination variation for all the objects in the set. This is achieved with the use of 64 light sources that

can fire individually and are set-up in a configuration relative to the camera as shown in Fig. 7.96. The

locations of the lights are given in spherical coordinates with azimuth (A) = elevation (E) = 0 being the

camera frontal view. We began with an LCV model of the frontalview (P00) for the first object in the

database (B01) and with the illumination source at A=E=0. Then for all the 64 scene views of that object

in that pose we tried to recover the object configuration and especially the pose angle. The averaged

results from 100 test runs for each scene view are give in bothflat and surface plot form in Figs. 7.97

and 7.98 for the CC and BP errors respectively. Note that Fig 7.98(b) has been restricted to a maximum

BP error of 500 in order to preserve the level of detail at the lower BP values. Also we have used bilinear

interpolation to generated values between the samples computed in order to create a smooth surface to

better aid visualisation. The centres of the light source locations for which we have exact results are

plotted along with the surface data.

Based on these results we can make some interesting observations. First we see that the best re-

sponse for both measures is not at (0,0) as we might have anticipated but at (7.9, -13.4) and (7.9, 32.4)

for the CC and BP plots respectively. This may be explained inpart by our misplaced expectation that

the maximum cross-correlation should be at (0,0) or in otherwords at exactly the same location as the

scene image for which we trained the model. This is because the LCV does not contain an illumination

model but instead tries to approximate the appearance basedon the estimated distance of the object from
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Figure 7.96: Position of illumination sources relative to the camera.
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Figure 7.97: CC response under non-linear illumination variation.
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Figure 7.98: BP error response under non-linear illumination variation.
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the basis views. Therefore if specific illumination data is not present in the basis views then it cannot be

synthesised in the novel view. The fact that the error is maximum (or minimum) for light sources other

than (0,0) simply indicates that the lighting conditions inthe two basis views matched more closely to

the scene at (7.9, -13.4) than (0,0). This is possibly due to small specularities and cast shadows that may

have been present in the basis views because of the disposition of the object of interest, light sources and

camera and the fact that the images were taken under spot lights and not only under ambient lighting.

A further observation is that the location of the minimum is not at the same place in the two graphs

(Figures 7.97 and 7.98). It is hardly surprising from what wehave seen in our results so far that the

CC and BP graphs do not always agree. What is more interesting is that the two basins of attraction

have different shape, size and location. We notice that the BP is much larger and wider but also has a

relatively flat bottom bearing in mind that the ground truth BP thresholds for that pose range are between

50 and 115. This means that quite a large array of lighting configurations will give a low BP error score

or phrased another way, the LCV can detect the correct shape in many different illumination settings.

These range from approximately−30 → 40 in the azimuth to−40 → 55 in the elevation and form the

oval shape in Fig. 7.98(b).

For the CC things are a bit more complicated. The basin of attraction looks smaller and much

narrower but in this case it is not easy visually to determinethe correct convergence. The reason for

this is that a localised change in pixel intensities affectsthe CC match score in a very unobvious and

unpredictable way and as a result it is therefore possible that while the synthesised object is geometrically

accurate to produce a very low CC value. In addition we cannotchose an empirical cut-off threshold

since we are dealing with non-linear changes in appearance and the correct matches cannot be separated

from the incorrect matches by a single line. Nevertheless short of checking each result individually

we can attempt to select a threshold based on a (traditionally) high CC value and assume that all the

examples which meet it represent correct solutions. This approach of course can miss many other valid

solutions with lower CC scores. We can see this for example where the BP error plot is at a minimum

and at the same position the CC plot ranges between0.86 → 0.88 values that under constant illumination

would signify a very poor synthesis of the target image. It isbetter therefore to use the BP error plots as

an aid to judge accuracy rather than the CC.

One final comment that we would like to make is that both surfaces have a convex-like appearance

(more pronounced for the BP error surface) with many good solutions when the light source is close to

the camera view axis which gradually get worse as we move awayto more extreme lighting conditions

both in elevation and azimuth. Moreover there are no significant local minimum spikes anywhere in the

surfaces indicating perhaps that although linear changes in the location of the light sources produce non-

linear illumination effects in the images they also producean error surface with simple characteristics

which could be modelled and predicted. Nevertheless we decided not to make any specific assump-

tions about this relationship since we have employed a smooth interpolation technique for the surface

visualisation that might make any definite observations andhypotheses somewhat inaccurate.

What is important to take away from these results is that the LCV model can recover the correct pose



7.5. Summary 197

not only in the single configuration for which it has been but also when many other similar light sources

are located nearby even though they can produce substantially different scenes in term of appearance.

This is demonstrated by the wide and flat basins. Also, the error seems to deteriorate in a predictable

manner as the light source moves away from the camera view axis and causes heavier cast shadows and

localised reflections on the object.

Much more work is obviously required to determine the exact influence of a varying light source

on the scene appearance and how this affects the behaviour and performance of an LCV model. It would

be ideal if such work could lead to an extension of the LCV approach to include a basic non-linear

illumination component.

7.5 Summary
In this chapter, we have carried out a detailed evaluation onthe performance of our LCV system in the

presence of pose variations, using 3 image datasets of increasing complexity. In addition, we run a large

number of pose detection experiments with added noise, occlusion, illumination and expression changes

in order to determine how well our system can cope with more realistic situations.

We have shown that our LCV object recognition approach achieves its design objectives of accu-

rately and efficiently recovering the correct pose and complete configuration of the object in a scene with

varying characteristics, using both real and synthetic images. Our examination into the accuracy capabil-

ities of the algorithm involved experimentation with different combined appearance and geometry-only

measures (RMSE, MAE, cross-correlation and landmark back-projection error) and detailed comparison

against ground-truth and empirically chosen thresholds. The tests demonstrated a notable performance

with results in close proximity to the thresholds and with little actual accuracy deterioration when pro-

gressing to more demanding datasets.

In terms of efficiency performance, defined here as the numberof times our tests have termi-

nated within the convergence thresholds and expressed as the percentage of the total, we have seen

very promising results in the region of 80-100%, only falling by a small amount for the more difficult

Yale B database. We have also established that the LCV approach is quite robust to the presence of a

considerable amount of unmodelled noise or occlusion with asmall and acceptable drop in efficiency

and accuracy rates that increases gracefully and predictably as the amount of noise is amplified or the

occluding surface area is enlarged. As far as the changes in expression are concerned, we have seen that

although the LCV cannot model these localised variations, it can cope very well and maintain its good

performance against changes in appearance.

Furthermore, our system manages very well both in the detection of the correct pose for a fixed

object but also as an identification approach for different combinations of models-objects given a fixed

pose. In the former we see that the system can approach the correct solution with very few localisation

errors, and in the latter with next to none false positive andnegative matches.

All the above experiments were re-run using the AAM approachand the results compared with our

method. This was done not for determining which of the two systems was better, since our method uses

a much more powerful optimisation algorithm, but in order touse the AAMs for the baseline measure
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that it is and see how much more effective and accurate our method was in comparison to this tried-and-

tested approach, and as a result against other recognition systems that have used the AAMs as a measure

in the past. We showed that the two methods have on average comparatively good accuracy results, with

the LCV being slightly superior in the combined appearance accuracy (i.e. cross-correlation), while the

AAMs performed marginally better when the geometric error was measured. The big difference was in

the efficiency rates, where the optimisation algorithm comes into play. Our experiments demonstrated

that the hybrid approach gives consistently hight convergence rates and can cope with increasingly com-

plex data, unlike the local minimisation scheme that the AAMs employ, which cannot scale very well

when the optimisation problem becomes more demanding.

Certainly this evaluation is by no means complete, and further test are necessary in order to make

more robust and generalised conclusions about the efficacy and appropriateness of our approach in both

theoretical and real-life, practical applications. Nevertheless, these experiments, carried out in a struc-

tured and systematic fashion, tried to cover as much of the test ground ass possible with particular

emphasis to 3-D affine, extrinsic pose variations. For the requirements of this thesis (i.e. initial appraisal

of the accuracy and efficiency in controlled settings and publicly available data) we believe that we have

gone some way into addressing the questions posed in the firstchapter. Further experimentation may

always be carried out in future work using a larger number of test and data sources in order to fully

evaluate a larger domain of different scenarios.
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Chapter 8

Conclusions

In this chapter we provide a brief summary of our work together with a review of the main contributions.

We proceed with a critical evaluation of our method and arguewhether or not it has met our original

objectives and if the main hypothesis of this thesis has beenaddressed. We end this chapter with a

discussion on the most important limitations in our work that may be addressed in the future.

8.1 Research summary

We started this work with the intention of examining an approach to the problem of recognition of 3-D

objects via a small number of 2-dimensional intensity images while at the same time avoiding the tasks

of feature extraction and correspondence during the on-line, model matching stage. In particular, we

wished to examine the possibility of using the linear combination of views theory to build a framework

and solve this specific problem using realistic, real-imagedata.

Our first step was to examine the problems associated with thebasic feature extraction approach,

mainly those of feature extraction and correspondence. Forthe former we looked at various well-known

methods such as edge and corner detectors [Canny (1986); Harris and Stephens (1988)]. For the latter,

we discussed techniques such as the interpretation tree [Grimson (1990)] and the RANSAC algorithm

[Fischler and Bolles. (1981)] designed to alleviate the computationally intensive correspondence match.

It soon became apparent that these are significant problems that cannot be solved to an adequate extent in

a practical computational time-frame or without considerable manual input during runtime. Since such

object-to-model matching greatly relies on precise feature extraction and establishment of the correspon-

dences (and indeed if these two requirements are met beforehand then matching is a fast, straightforward

and relatively accurate process) we decided to avoid any such dependencies and explore a different

approach whereby the feature extraction and matching stages have been combined into a single task

resembling a template matching approach.

In this way the whole model image is considered a single, multi-dimensional feature that deforms

according to some predefined transformation in order to match to the scene view. As a result our search

is performed over the transformation space, which is usually much smaller than the original feature

or correspondence spaces. In addition, the model building stage has now been further simplified We

initially looked at the 2-D object recognition case as a stepping-stone in order to identify and solve some
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particular problems in a more manageable set-up before proceeding to the more complicated 3-D case.

We considered a 6 d.o.f. affine transformation and used a prototype template containing both grey-level

and boundary information. It was later observed that owing to the specific characteristics of the error

surface1 there exist a large number of trivial solutions with very good matching scores and also many

local optima when the model is placed over the background. These two problems make search for the

correct, global solution very difficult even for the most sophisticated of optimisation algorithms.

Solution to both these problems required the introduction of probabilistic constraints to avoid the

trivial solutions when for example, the transformation would cause the template to shrink to zero area,

and also to regularise the error surface over the backgroundregions. In order to develop these con-

straints we separated the affine transform into independentparametric transformations and associated

a prior probability with each parameter, thus building a Bayesian inference model. Additionally, we

explored different matching metrics including the smooth Huber norm that has a continuous second

derivative and can be used with gradient-descent-type optimisation algorithms. Furthermore, it can have

a linear response over the background area and thus produce smaller matching error residuals, which are

easier for an optimisation algorithm to traverse. Our research then delved into the specifics of the scale

transformation as one of the transformations that caused most problems with the occurrence of trivial

solutions and, given the assumption that the prior should have some relationship with the distribution

of the underlying parameter, we attempted to find the best model for the distribution of image object

scale amongst a set of commonly used parametric distributions. In the end, our tests determined that the

lognormal distribution produced the best fit and we used thisas the scale prior. The full Bayesian model

was then tested on various real-image samples and produced very encouraging results even when using

a local optimisation algorithm.

Before we moved onto the 3-D case we explored the use of a simplistic, explicit model as a way

of illustrating the importance of incorporating the statistical variation of the background area and of

regularising the error surface more effectively. We found that incorporating the background is a necessary

step if a valid probabilistic interpretation of the matching process is required and also that by doing so

one can avoid some of the trivial and spurious solutions. It is however difficult to come up with a perfect

model of a complex and cluttered background and unless the target image background is provided the

error surface will be rugged with many local optima. This is why we decided to focus more on the

regularisation effects of the Bayesian model and the use of apowerful optimisation algorithm to avoid

such problems.

Once we were confident with our solution to the 2-dimensionalproblem, we progressed on to 3-D

objects and applied our new knowledge about the specific characteristics of template matching to this

new scenario. We began by building a complete recognition system which combines an image synthesis

step with an optimisation search-and-match approach. The system synthesises new images using the

LCV theory to calculate the correct image object geometry and a piecewise affine interpolation method

to cater for the pixel intensities. For the matching we used similar metrics as in the 2-D case such as

1These are things which we have encountered many times throughout our research and so consider them to be related to the
matching metric and the transformationT used as opposed to a particular data source.
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cross-correlation and SSD and we briefly experimented with the use of a mutual information metric.

Just as in the 2-D example we built a Bayesian model for the 3-Dcase. It was not however possible

to suitably decompose the 3-D LCV extended affine matrix intoindividual, distinct transformations

and so we assumed a generic mixture model and assigned a Gaussian distribution to each the 10 LCV

coefficients. We then isolated certain transformations (e.g. 3-D rotation of the object of interest or

viewpoint since we were interested in pose changes) and recovered the corresponding variation of the

coefficients. Based on this information we chose the means and standard deviations of the 10 prior

distributions to mimic that variation. Thus for example, coefficients that were almost constant were

assigned a very narrow prior with very small standard deviation while others that had larger variation

were given an almost uniform prior with a high standard deviation.

Our next research task was to choose an appropriate optimisation algorithm with particular empha-

sis on the ability to recover a global optimum - usually a minimum - (or at least to get as close to it

as possible) without the requirement of a good initialisation or excessive restriction on the parameter

boundaries since we had designed the Bayesian priors to takecare of any necessary parameter localisa-

tion. Efficiency and overall execution speed was a concern but not of paramount importance at least in

this proof-of-concept stage that our work represents. We looked at various well-known local and global

optimisation algorithms and tested them against syntheticand progressively more complex real-image

datasets.

The result was that a hybrid approach, which combined an evolutionary global method (SOMA

[Zelinka (2004)]) and a local, deterministic algorithm (the restarting simplex [Zografos and Buxton

(n.d.)]) proved to be the best choice to compromise between accuracy and efficiency because it in-

cluded the localisation performance of the global method and the fast refinement capabilities of the local

approach. Based on that outcome we decided to use that optimisation technique in all our subsequent

experiments with the LCV object recognition system.

The final part of our study involved the testing and evaluation of the LCV system on real and

synthetic datasets. We carried out a large number of structured experiments on three different databases

under pose variation but also considering the existence of noise, occlusion and changes in expression (on

a face example to represent un-modelled intrinsic variation of an object) and illumination. In addition,

we used the Active Appearance Model [Cootes et al. (2001)] method as a general benchmark in order to

judge how well our approach was at solving the coupled pose-recognition problem, and in effect how it

compares to other relevant strategies that have used AAMs ina similar fashion. The tests have shown that

the two methods have on average similarly good accuracy results with the LCV being slightly superior in

the combined appearance accuracy (i.e. cross-correlation) while the AAMs performed marginally better

when the geometric error was measured. The significant difference was in the efficiency rates, where

the hybrid approach gives consistently higher convergencerates and can cope with increasingly complex

data, unlike the local minimisation used in the AAMs.
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8.2 Critical evaluation - Remarks

This work has examined the challenging task of image-based,multi-view object recognition and man-

aged to address a number of associated problems by employingthe LCV theory. With the addition of

a regularising Bayesian prior and a powerful optimisation algorithm we managed to build a complete

system for recognition of objects that exhibit extrinsic variations, such as pose changes relative to the

camera. This is the main achievement of our research; a ’proof of principle’ that this approach can work.

More specifically, we have demonstrated that using the LCV system gave us the ability to detect

objects of substantially different shape and intensity characteristics in a variety of poses. We have shown

our approach to be capable of dealing with datasets of varying complexity both in terms of the fore-

ground object, but also more importantly, the background. Many hundreds of experiments were carried

out on publicly available datasets of real and synthetic images, the vast majority of which have high-

lighted a very good system performance in terms of accuracy and efficiency that degrades gracefully and

predictably as the experimental data gradually becomes more complicated.

We also illustrated that our method compares very favourably with the AAM approach which may

be regarded as a baseline when aimed at solving approximately the same problem. In more detail, the

LCV can recover a similarly accurate solution to a correctlyconverged AAM which in actual terms is

very near the globally optimal solution. On the other hand, owing to the more powerful optimisation

algorithm used, the LCV is able to reach the correct solutionmuch more often than the conventional

AAM approach we adopted.

We have seen that our recognition system can deal with a considerable amount of un-modelled

Gaussian noise present in the scene or target view with the accuracy remaining at high levels and the

overall efficiency diminishing in a predictable fashion relative to the noise level. Similar results were

observed when we introduced an occluding surface in front ofthe object of interest covering up to 40% of

the object’s surface. The system was able to find the correct near-optimal solution the majority of times

and with the average efficiency steadily dropping as the occluding object became larger. The accuracy

was mostly unaffected relative to the chosen the empirical thresholds. Additionally, we demonstrated that

the system is largely robust to localised, non-affine (flexible) changes in the object’s shape (e.g. changes

in expression in a face example). Even though the LCV system cannot itself model and synthesise these

intrinsic shape variations the overall recognition performance has proven not to be strongly influenced

by their presence.

Further to the above our tests on the illumination variationexamples in the Yale B database have

indicated that our system, although it does not explicitly include an illumination model2 but synthesises a

new image based on the information present in the basis views, is flexible enough to correctly recognise

the object in a number of similar (but not identical) lighting configurations. In other words, where we

might have expected the solution error surface to have a verynarrow and deep basin of attraction (the

narrowness representing the single or very restricted illumination solution and the depth the considerable

difference in magnitude from incorrect solutions), we haveseen that it is actually the opposite. There

2We have however experimented with a rudimentary affine illumination model for the background and, in addition, note that
the cross-correlation coefficient is invariant to affine changes in pixel intensity.
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appears to be a wide and shallow basin of attraction with a flatbottom that points to a solution space

of adjacent lighting conditions (in terms of light source positions given in spherical coordinates) that

our system in its present form is able to recover sufficientlyaccurately. We believe this to be due to the

notable extrapolation abilities of the LCV system which mean that such solutions do exist and they can

be found with the optimisation algorithm.

Apart from these main findings we have also identified a numberof secondary themes from our

research relating to model-based object recognition in general. First is that a full-background model

can effectively regularise the error surface when an adaptive template is used and especially when the

template model is positioned over regions in the image wherethe object is not present and which can be

traversed only with great difficulty by many optimisation algorithms. We have seen that the existence of a

good background model can simplify the error surface to suchan extent that we may only require a basic,

local optimisation algorithm to effectively reach the global optimum. In the absence of such a compre-

hensive model for the background, the alternative is to use apowerful global optimisation approach. We

have found that evolutionary methods such as SOMA and DE [Storn and Price (1997)] are very good

candidates for handling the complicated error surfaces which are a common problem in template-based

object recognition. In addition they require very little parameter configuration work making them appli-

cable to many different problems and datasets. They are alsoflexible enough to cope with different types

of variables, another characteristic of template matchingapplications. Another observation was that by

allowing the global optimiser to execute for a limited number of function evaluations (or FEs for short)

and switching to a local method when inside or near the basin of attraction of the global optimum, we

can obtain results comparable to or better than those from a full, global optimisation run in a smaller

amount of computation time.

Finally, from our research into Bayesian priors we found that the distribution of the scale parameter

of an object imaged from random locations in an indoors environment seems to follow a lognormal

model. Subsequent use of this model as a Bayesian prior can have better regularisation effects on the error

function than an uninformative Gaussian distribution. More generally, we have discovered that a properly

chosen Bayesian prior can help with the optimisation over the background regions especially when an

explicit model is not available and at the same time assist inavoiding trivial solutions. Furthermore, it

is preferable to restrict the variation of the solution parameters by penalising them according to a prior

distribution than by explicitly setting boundaries in the optimisation algorithm configuration. This way

we can focus the search on the interesting areas of the solution space while still maintaining a sufficiently

high diversity in the search parameters.

8.2.1 Hypothesis 1

“It is possible to synthesise a novel view of an object and match it to a target image of that

object. A good matching score will indicate that the object is present in the scene, and the

object’s pose and shape parameters are given by the LCV coefficients.”

Our initial implementation of the LCV approach (synthesis and matching steps in section 5.1) sup-
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ported3 the claim of our first hypothesis as we were able to use it and synthesise valid and realistic-

looking views of the modelled object(s) taken from between the basis views. In addition, by using a

matching function we managed to compare the synthesised image with the scene view and recover a

matching score for different model configurations. Owing tothe particular way this matching function

was constructed (i.e. using prior distributions) a good score was only associated with a good match

between the model and the object. We could then use this information together with the model’s con-

figuration and identify the location of the object in the scene image. The optimal configuration was also

used in conjunction with the already recovered variation ofthe LCV coefficients partially to identify

the pose of the scene object. In that way, the object’s configuration is provided implicitly by the LCV

coefficients. As a result, it was not possible to refute our first hypothesis, but have instead provided

considerable evident to support it.

8.2.2 Hypothesis 2

“ We can improve the accuracy and speed of the recovery of the model parameters of a rigid,

3-D object with the introduction of prior probability distributions in the template deforma-

tion process, based on previous knowledge of the underlyingimage generation process and

imaging conditions.”

One of our principal speculations was that we could improve on a simple optimisation search over

the solution space with the use of previously-known information about the objective function parameters

by means of prior distributions. This information might be the variation, range or actual distributions

of the individual parameters and result from the imaging conditions (e.g. sampling, camera parameters,

light configurations and so on) that were used to generate thedata.

Throughout our research (first in chapter 4 for 2-D and then inchapter 5 for 3-D) we demonstrated

how it is possible to use such prior distributions to regularise the error surface, restrict the search to

promising regions of the space and most importantly, avoid or remove any trivial solutions. In chapter

7 we had the opportunity to test this hypothesis with numerous experiments on real data using prior

distributions based on the explicit knowledge about the variation of the LCV coefficients for the specific

transformation of 3-D rotation about a vertical axis. We found that in all cases the priors resulted in a

significant improvement in the performance (speed, efficiency and accuracy) of the search over standard

maximum likelihood optimisation (or equally, using uninformative uniform priors) especially when the

template model was positioned over background regions of the target image where, in the absence of a

proper model the resulting objective function surface may be replete with many local minima, causing

the optimisation algorithm to spend an unnecessarily largeamount of time in these areas and possibly to

converge incorrectly.

In the 2-D version studied first our priors were created to mimic the actual distributions of the

transformation parameters (2-D affine) and we have acquiredvery good regularisation results and elim-

ination of trivial solutions. This was illustrated by fast and accurate convergence to the global optimum

(usually a minimum) using an elementary optimisation algorithm on real data and without the help of a

3Strictly speaking in scientific terms we have failed to falsify our hypothesis.
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background model, although only a limited number of experiments were carried out since we required

a simple proof of concept. In the 3-D version we instead used generic Gaussian priors (owing to the

difficulty in decomposing or accurately composing the 3-D affine transformation matrix that implicitly

incorporated the characteristics of the 10 LCV coefficients). We would have preferred to use the explicit

models4 but nevertheless the Gaussian alternatives proved to be very effective in capturing the underlying

coefficient distribution.

Based on these results we have shown numerous times how such carefully chosen priors can assist

the optimisation algorithm in accurately and efficiently recovering promising solutions, something which

would otherwise very likely be difficult and time consuming no matter how elaborate the optimisation

algorithm may be. The fact that we use subjective priors which include information about the LCV

coefficients and also our expectation about the kind of transformation with which we are dealing we

believe is more accurate and useful as far as the optimisation process is concerned rather than using the

more objective, uninformative priors that are based only onthe evidence observed during a run of the

system. It may also be argued that from a Bayesian point of view the former approach (i.e. including

information about the imaging process and conditions in thepriors) is more valid since every available

piece of information should be exploited accordingly. We may therefore claim that instead of refuting

our second hypothesis, we have provided strong evidence supporting our original claims.

8.2.3 Hypothesis 3

“Recovery of the optimal LCV coefficients requires exhaustive search of the large solu-

tion space. By using an appropriate optimisation algorithmwe can efficiently recover the

optimal set of coefficients and thus recognise the object in the scene”.

We have already mentioned that in our work because of the typeof features (intensity template) and

the objective function used it is not possible to produce a closed-form solution to the object recognition

problem. Instead we have to use an iterative optimisation approach to get as close as possible to the actual

solution. Owing to the size and complexity (the presence of local optima, increased ’noisiness’ of the

objective function over background regions) of the solution space, the choice of a suitable optimiser is a

very important factor in the performance of the recognitionsystem. As part of our work into building a

robust recognition system we investigated a number of different optimisation approaches, both traditional

and some new to computer vision applications, global and local, stochastic and direct deterministic

search. It soon became apparent that suitability could onlybe judged by considering the accuracy in

terms of the error value reached and the efficiency in terms ofthe total number of objective function

evaluations (or FEs for short). A local, direct search method is quite fast and efficient but suffers from

a low accuracy (at least in our specific set-up). On the other hand, a global approach is slow but can

recover more accurate results.

The natural progression was to combine the advantages of both methods in order to build a hybrid

optimiser that is relatively efficient while retaining the accuracy associated with the global approach.

This hybrid method was used throughout our 3-D object recognition experiments with very good results

4That may still be possible using the affine tri-focal tensor.
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and detected the modelled objects in the scene in various configurations and under different imaging

conditions. When compared to the other optimisation approaches, this method proved to be the pre-

ferred solution for our multi-view template matching problem. As a result we may assume that these

observations provide adequate support for our third hypothesis.

8.2.4 Main hypothesis statement

“A solution to the view-based object recognition problem and the integration of the linear

combination of views technique can be used to build a theoretical framework for the recog-

nition of three-dimensional, rigid objects under a varietyof configurations, using a small

number of images taken from different viewpoints.”

The recognition system we have built, which combines the LCVtheory for modelling the extrinsic

variations in an object’s appearance due to changes of viewpoint with the Bayesian framework and a

powerful optimiser for recognising an object in an image is arealisation of our main hypothesis state-

ment. The evidence we have provided so far in support for the three individual sub-hypotheses of this

thesis when combined substantiate our main statement givenabove. Therefore we were unable to refute

the main hypothesis and have in fact generated strong evidence in its favour.

Furthermore, by only finding support for our main hypothesiswe have also achieved the main aim

of this thesis which was to examine the suitability of the LCVtheory for recognition of complicated

objects using pixel intensity information. In addition, wemanaged to meet a number of the research

objectives we set in section 1.3. More specifically, our system is capable of automatically detecting

any (single instances of an) object in the scene without any manual intervention during the on-line

search. A 3-D object may be modelled by using two or more basisviews without any restrictions on its

shape appearance and complexity. Furthermore, our tests showed that the system is relatively robust to

noise and occlusion with little degradation in overall performance for moderate amounts of either and a

predictable drop in efficiency when the noise or occluding surface are exaggerated.

We carried out a large array of tests on three public datasetswith a combined number of 26 objects.

Although this is by no means as large a number of objects as we originally hoped to use the system

has nevertheless shown that it can handle the different scene configurations and that, no matter what the

object shape complexity may be, the modelling process remains largely unaffected. Also, the identified

variations of the LCV coefficient and the priors remained stable. In addition, the miss-match and false

alarm errors were kept to a minimum as demonstrated by the well-defined diagonals in the model×object

or model×pose arrays produced from our test experiments. Localisation mistakes were also low, espe-

cially in the absence of added noise or occlusion, with the modes of the test samples comfortably above

the convergence thresholds and with acceptable recognition rates throughout all the datasets. It would

have been desirable to execute additional experiments on other pose-variation datasets in order to get

more general results, but however this has to be addressed infuture work.
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8.3 Limitations and future work

This work is not however without certain limitations which although they do not result in a deviation

from the main scope of our research should at least be acknowledged in order to be addressed in future

work. One of the more interesting topics for further investigation is the inclusion of intrinsic shape

variations such as those that give rise to localised changesassociated with facial expressions. As we

have mentioned numerous times in this thesis, our approach only caters for extrinsic, pose variations

that account only for global, 3-D affine deformations of the object of interest. By including the localised

flexible changes we would be able to model and identify, for example, the expression of an individual

together with the overall face shape and location in the scene.

For this to succeed however we will need to model the two different types of variation separately

so they can be considered individually. The reason for this is so that we can define the object’s implicit

pose and shape configurations from the objective function parameters and possibly direct the search

in each dimension based on each transformation’s perceivedcharacteristics, but most importantly in

order to chose appropriate Bayesian priors for the independent, isolated deformations. Inclusion of

intrinsic variations will allow us to deal with non-rigid 3-dimensional objects increasing thus the scope

and applicability of our method.

To address this limitation, we may look at the work of Dias [Dias and Buxton (2002)] who managed

to combine two flexible shape models (FSMs [Cootes et al. (2001)]) with a reformulation of the LCV

theory and an alignment algorithm (Extended Procrustes Alignment - EPA) to create the integrated shape

and pose model (ISPM). The ISPM does not mix the (intrinsic) shape and (extrinsic) pose variations as

the two different types are modelled independently via the two component models (i.e. the multi-view

FSM and the LCV), and it provides a better solution than the coupled-view FSM. Use of such an ap-

proach will require us however to re-evaluate our Bayesian prior models since in that work the LCV has

been formulated using the central affine tri-focal tensor (CATT) and we would be dealing with additional

variables and different types of transformations that may be difficult to bound and regularise. Further-

more, what we have learned about the characteristics of the error surfaces in template matching and about

the 3-D affine transformations may be less relevant here because of the flexible shape deformations we

will have to include.

We should note here that the ISPM method is a purely shape/feature driven approach that does not

incorporate any texture information in the LCV or FSM models. In order to synthesise realistic-looking

novel views and perform template-matching search on the ISPM it is necessary to include grey-scale

information on this combined shape and pose model. This may be straightforward provided texture

alignment can be achieved in a manner similar to the EPA algorithm. If texture alignment works then

it might be possible to construct two flexible appearance models (FAMs [Cootes et al. (2001)]) and

combine them into a multi-view IPAM (Integrated Pose and Appearance Model). However, it may

be very complicated to build an equivalent alignment algorithm for implicitly transferring the intrinsic

texture from an arbitrary image to the scene views. Despite all this, we believe that if one wishes to

accurately and efficiently model flexible shape changes in anobject, Dias’ ISPM is a viable method to
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consider as a starting point.

Another possible limitation is that both our LCV system and the ISPM model utilise only 2 basis

views for the synthesis of novel images. This means that we can only deal with pose variations ’between’

(or slightly outside) the angular range spanned by the viewpoints of the two basis views. If we wanted

to work over a larger range of pose angles we would have to use additional 2-basis view models to

capture the additional information. However, [Koufakis and Buxton (1998a); Kennedy et al. (1999);

Buxton et al. (1998)] have shown that it is possible to use more than two views if necessary5. The

questions that then need to be answered include: does an increase in the number of basis views and the

pose angles they cover bring about a similar increase in the capacity of our model (i.e. can we synthesise

and detect an object in this new, enlarged pose space); what is the maximum amount of joint-image space

our model can include by adding new basis views, or in other words how many more basis views can we

add to the system before we start to see no discernible increase in the pose angles we can model (law

of diminishing returns); and is the model capacity controlled so that it remains sufficiently specific for

object recognition. If we decide that there is not much practical advantage in using more than 2 basis

views, then we could use several 2-view models and devise a switching scheme or selection process to

work with the model that gives the best synthesis match.

So far we have seen that our LCV system is quite robust to the effects of occlusion. Although

not examined from a strictly accurate statistical viewpoint, our limited tests have shown some initially

positive results. What we have not studied in this thesis is the case of self-occlusions caused by non-

convexities in the 3-D structure of the object. Such occlusions usually occur when we move to different

regions of the view-sphere and cross over to a new scene aspect-view (regions over which small changes

in viewpoint produce large changes of appearance [Koenderink and van Doorn (1979)] for which there

is no equivalent in any of the basis views). In these cases, information necessary for synthesis and recog-

nition are lost in the transition from basis views to scene view. Still however, it is possible to perform

hidden surface removal by using the basis views to compute the affine depths [Koenderink and Doorn

(1991)] at the control points of the basis images, similar tothe work by [Hansard and Buxton (2000b)].

Since affine transformations are order-preserving we can use this information as input to a hidden surface

removal program and resolve any self-occlusion ambiguities.

All our experiments so far have been limited to grey-scale images. This was done mainly for

simplicity and speed since it is straightforward to extend the LCV synthesis step to colour images by

applying the same process to each colour channel separately. Moreover, there are known forms of the

cross-correlation measure applied to RGB images [Tsai et al. (2003)] and we may exploit this additional

descriptive power in the three channels to assist with the optimisation search. The only possible problem

we can anticipate at this stage is any artefacts that might arise due to our texture mapping/synthesis

approach, especially for example at object boundary regions in the image and which can hinder the

performance of the optimisation algorithm.

Throughout this research, we have demonstrated the positive effects of a proper background model.

5Reformulating the ISPM with more than two basis views via multi-view geometry will require higher-order multi-focal tensors.
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We have examined a simplistic background model as an examplein section 4.6 and have briefly noted

the effects of having a known background in datasets like theCMU PIE [Sim et al. (2002)] (although not

presented in this thesis in detail) and the Yale Face B, wherethe background image is wholly or partially

provided. The goal of course would be to build a comprehensive statistical model of the background area

in order to fully benefit in cases where it is not explicitly given with the rest of the data. A good starting

point is perhaps the work by [Grenander and Srivastava (2001); Srivastava et al. (2002, 2003)] on the

statistics of natural images and that of [Sullivan et al. (2001, 2000)] on foreground/ background mixture

modelling. In fact, we have begun working on formalising a version of the LCV formulation with a basic,

affine background intensity model that may be used as a stepping-stone to building more sophisticated

algorithms. If we take the above one step further we may imagine also including an explicit model

of the scene illumination and the non-affine changes in the scene (both foreground and background)

photometry. Although we have observed that the current LCV formulation is able to cope with some

lighting changes inclusion of a basic lighting model may be able to capture variations that the background

model cannot deal with alone. We suggest looking at the models by [Georghiades et al. (2001)] that were

developed with face recognition under varying illumination and pose in mind.

One of our future aims is to decompose the 3-D affine matrix as far as possible into individual,

fundamental transformation not only for more efficient isolation and training of the LCV coefficients

but also for a more statistically correct Bayesian formulation since strictly speaking the prior distri-

bution if expressed as a product of separate distributions should correspond to independent variables.

Furthermore, the LCV equations (3.14) need to be formulatedby including the original constraints by

[Ullman and Basri (1991)] and any constraints associated with the 3-D affine transformations since the

linear system is over-complete with additional degrees of freedom [Buxton et al. (1998)]. The required

decomposition or reformulation may not be possible with theaffine matrix and so it might be neces-

sary to consider the alternative route towards view-synthesis, which is using the affine tri-focal tensor

[Shashua (1997)].

Ultimately, we would like to examine any possibilities intopartially or fully automating the off-line

landmark selection and correspondence establishment steps. At the moment, a relatively experienced

user is required to choose a number of landmarks on prominentparts of the modelled object followed

by establishing a valid correspondence in all the basis views. The long-term aim would be to make the

system such that it can select the landmarks in all the basis images and establish the correspondences

automatically. If such a feat is not possible we should at least allow for a non-expert user to pick

out a set of landmarks independently in each image and perhaps determine an initial correspondence

automatically. In order to ensure that the user has selecteda useful set of landmarks the system might

for example perform a few synthesis examples with ground truth data and calculate the match between

synthesised and ground truth images. For this step, it is notnecessary to have the LCV coefficient values

but they can instead be interpolated based on the known variations (section 5.1.4) which are to a large

extent, for most views, approximately object-independent.

Finally, it is our intention to carry out more experiments onadditional datasets with significantly
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more objects/individuals so as to get a better understanding of how our method performs in larger-scale

classification problems and of the specificity of our models.The first one is the M2VTS multi-modal

face database by [Pigeon and Vandendorpe (1997)] which contains images of 37 individuals across±900

pose variation, with localised face changes (and in specificlip movement) and the existence of facial ac-

cessories such as glasses, scarves etc. The other dataset ispart of the Face Recognition Grand Challenge

(FRGC) [Phillips et al. (2005)] and includes training and validation subsets of frontal images of various

individuals, each images across two facial expressions andin both controlled and varying illumination

settings. Both of these databases have been used extensively for the evaluation of object (face) detection

algorithms, and as a result our experiments can be compared with recent, competing methods.

Furthermore, we would like to research on possible ways of improving the execution speed of

the search, perhaps by reducing the time required for a single synthesis (which equals one FE). One

possibility is to make use of the latest dedicated graphics hardware and map the synthesis straight onto

the GPU or by using the standard graphics APIs [Hansard and Buxton (2000a)].
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Appendix A

Algorithms

In this section we include some more details, in the form of pseudocode, on the various algorithms

presented and used in this thesis.

Algorithm 1 Restarting simplex algorithm pseudocode
while iterations k<N do
Rank simplex vertices //(Best, Worst, nextWorst)
R=Reflect(Worst); //Make a reflection R
if R<Best then
E=Expand(Worst); //Make expansion E
if E<R then
Worst=E //Replace worst point with E

else
Worst=R //Replace worst point with R

end if
else if R<nextWorst then
Worst=R //Replace worst point with R

else if R<Worst then
Cp=posContract(Worst) //Make a positive contraction Cp
Worst=Cp //Replace worst point with Cp

else
Cn=negContract(Worst) //Make a negative contraction Cn
Worst=Cn //Replace worst point with Cn

end if
if Simplex has stalled then
Restart simplex

end if
end while

Algorithm 2 A general pattern search algorithm pseudo-code.
for iterations k = 0, 1, . . . do
Compute function at f(x)
Determine a step sk using exploratory moves algorithm
if f(xk) < f(xk + sk) then then
xk+1 = xk + sk

else
xk+1 = xk

end if
Update Ck and ∆k

end for
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Algorithm 3 Genetic algorithm pseudocode
Set g = 0 //generation counter
Initialise population P (g)
Evaluate population P (g) //compute fitness values
repeat
g = g + 1
Select P (g) from P (g − 1) //perform competitive selection
Crossover population P (g)
Mutate population P (g)
Evaluate population P (g) //compute fitness values

until terminating condition

Algorithm 4 Differential evolution pseudocode

for each target −→x i,G vector in current generation G do
Randomly choose two population members −→x r1,G and −→x r2,G
Build weighted difference vector −→x r1,2,G = F (−→x r1,G,−→x r2,G)
Add a third randomly chosen vector −→x ′

i,G = −→x r1,2,G + −→x r3,G
Crossover with target vector −→u i,G+1 = −→x ′

i,G ⊗−→x i,G
if f(−→u i,G+1) < f(−→x i,G) then
−→x i,G+1 = −→u i,G+1

else
−→x i,G+1 = −→x i,G

end if
end for

Algorithm 5 SOMA pseudocode
Generate new random population within bounds.
Find index of leader L
for each migration do
for each individual in population do
for each step in pathLength do
Generate new PRTVector for the individual
Calculate new position −→x = −→x0 + −→m t PRTVector
if f(−→x ) < f(−→x0)x then
Accept −→x

end if
end for

end for
Find index of leader L

end for

Algorithm 6 AAM search single iteration
Evaluate the difference δg0 = gs0 − gm0

between the model’s graylevels
and the image sample gs.
Evaluate the error E0=|δg0 |2
Compute the predicted displacement δc = A∆.
Set k=1
Let c1=c0-kδc
Sample the image at this new configuration and calculate E1 = |δg1 |2 =
|gs1 − gm1

|2
if E0>E1 then
Accept new configuration at c1

else
Try at k=1.5, 0.5, . . .

end if
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Appendix B

Exploratory data analysis techniques

Quantitative techniques take all of the data and map it into afew numbers describing the modelling

process and the parameter estimates. The advantage of such methods is that these few numbers focus on

important trends (location, variation and so on) of the population while being sensitive to any changes in

that data (for example shift in location). However overly concentrating on these few properties can filter

out other important characteristics such as skewness, taillength, autocorrelation and so on. Graphical

methods on the other hand make use of all the available data and present information in such a way that

combined with our natural pattern-recognition abilities they allow us to gain additional insight into the

data.

We present the following standard graphical methods: a probability plot, a histogram with overlaid

estimated parametric pdf, and an empirical cumulative distribution function (cdf) with overlaid estimated

parametric cdf. A probability plot [Chambers et al. (1983)]is a graphical technique for qualitatively

assessing the fit of data to a theoretical distribution. In this plot the data is drawn against a theoretical

distribution in such a way that the points should lie approximately on a straight line. Departures from

this straight line indicate departures from the distribution. Suppose that we have ordered sample values

Xi = X1,X2, . . . ,XN , calledorder statistics, and the hypothesis thatXi follows a certain distribution

F . The probability plot is formed by plotting:

Xi vs.F−1

(

i

N + 1

)

(B.1)

whereF−1 is the percent point function (inverse of the cdf) of the hypothesised distribution. The pdf

and cdf are obtained by maximum likelihood estimation (MLE). GivenN ordered data pointsXi =

X1,X2, . . . ,XN the empirical cdf is defined as:

EN =
n(i)

N
(B.2)

wheren(i) is the number of points less thanXi. This essentially is a step function that increases by1/N

at the value of each ordered point. The larger the sample sizethe smaller the increase step and thus the

closer the estimated empirical cdf matches the actual cdf.

In addition we introduce the following quantitative methods: the Kolmogorov-Smirnov (K-S) test
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[Chakravarti et al. (1967)] and the Anderson-Darling (A-D)test [Stephens (1974)]. The K-S test is used

to decide if a sample comes from a population with a specific distribution and is based on the empirical

distribution function. It depends on the maximum difference between a hypothesised theoretical distri-

bution and the empirical distribution. More rigorously, the K-S test is defined by two hypothesesH0

andH1, the test statistic, the significance levelα and the critical region. The simple, null hypothesisH0

states that the data follows a specified distribution, and conversely the alternate hypothesisH1 states that

the data does not follow the specified distribution. The teststatistic is defined as:

D = max
1≤i≤N

∣

∣

∣

∣

F (Xi) −
i

N

∣

∣

∣

∣

, (B.3)

whereF is the theoretical cdf of the distribution being tested which must be continuous and fully spec-

ified. The significance level is the probability of rejectingthe null hypothesis when it is in fact true.

Finally, the critical region may be obtained from statistical tables depending on the significance level

and the hypothesisH0 is rejected ifD is greater than a given critical value.

The A-D test is a modification of the K-S test that gives more weight to the tails of the distribution.

Although the K-S test is distribution-free, in the sense that its critical values are not dependent on a

specific distribution, the A-D test makes use of specific distributions in calculating critical values. The

advantage of this is that it allows for a more sensitive test but on the other hand critical values must

be calculated for each distribution and unfortunately we were unable to find critical value tables in the

literature for some of the distributions. The A-D test statistic is defined as:

A2 = −N − S (B.4)

where

S =

N
∑

i=1

2i− 1

N
[lnF (Xi) + ln(1 − F (XN+1−i))] (B.5)

andN , F andXi are as above. For a given distribution the A-D test may be multiplied by a factor

dependent on the sample sizeN . We call this the “adjusted A-D” statistic and this is what should be

compared against the critical values.
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