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Abstract 3

Abstract

This thesis presents an in-depth study on the problem o€bitgeognition, and in particular the detection
of 3-D objects in 2-D intensity images which may be viewedrfra variety of angles. A solution to this
problem remains elusive to this day, since it involves aepliith variations in geometry, photometry
and viewing angle, noise, occlusions and incomplete daltés Work restricts its scope to a particular
kind of extrinsic variation; variation of the image due taales in the viewpoint from which the object
is seen.

A technique is proposed and developed to address this pnpbihich falls into the category of
view-based approaches, that is, a method in which an olgaepresented as a collection of a small
number of 2-D views, as opposed to a generation of a full 3-DehoThis technique is based on the
theoretical observation that the geometry of the set ofiptesenages of an object undergoing 3-D rigid
transformations and scaling may, under most imaging ciomdit be represented by a linear combination
of a small number of 2-D views of that object. It is therefoosgible to synthesise a novel image of an
object given at least two existing and dissimilar views @& tibject, and a set of linear coefficients that
determine how these views are to be combined in order to sgish the new image.

The method works in conjunction with a powerful optimizatelgorithm, to search and recover the
optimal linear combination coefficients that will syntheesa novel image, which is as similar as possible
to the target, scene view. If the similarity between the Bgaized and the target images is above some
threshold, then an object is determined to be present inctrgesand its location and pose are defined,
in part, by the coefficients. The key benefits of using thihbégque is that because it works directly
with pixel values, it avoids the need for problematic, l@veél feature extraction and solution of the
correspondence problem. As a result, a linear combinafiaieavs (LCV) model is easy to construct
and use, since it only requires a small number of stored, 2el¥ssof the object in question, and the
selection of a few landmark points on the object, the proedssh is easily carried out during the off-
line, model building stage. In addition, this method is gahenough to be applied across a variety of
recognition problems and different types of objects.

The development and application of this method is initi&kplored looking at two-dimensional
problems, and then extending the same principles to 3-Ditidddlly, the method is evaluated across
synthetic and real-image datasets, containing variatiotie objects’ identity and pose. Future work on
possible extensions to incorporate a foreground/backgronodel and lighting variations of the pixels

are examined.
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Chapter 1

Introduction

Object recognition is one of the most important and basibleras in computer vision. It may broadly
be defined as the task of recognizing and locating objects fn@ real world in a representation (image)
of the world, using object models that are known a priori.hiis scenario, the system is given image data
that contain foreground (areas of interest) and backgraimelcts, and a set of labels that correspond
to a set of models known to the system. The object recogn#fjstem must then assign the correct
labels to the appropriate regions in the image. Object mgitiog has been studied extensively in the
past, resulting in a number of publications and a varietyifféigent approaches [Jain et al. (1998); Rope
(1994); Yang et all (2002); Besl and J&in (1985)] aiming twesdifferent aspects of the problem.

Nevertheless, accurate, robust and efficient solutionaireatusive to this day because of the inher-
ent difficulties when dealing in particular with 3-D objetiisit may be seen from a variety of viewpoints.
Variations in geometry, photometry and viewing angle, epaclusions and incomplete data are some
of the problems with which object recognition systems aoeda In all cases, prior information about
the object is available in the form of a model which is matcteethe object(s) in the input image, in
some kind of optimisation scheme often expressed as andgheinimisation.

This work examines a view based approach in which 2-dimeasisiew-centred representations
of 3-dimensional objects, called aspects, characterigies [Koenderink and van Doorn (1979)] or ba-
sis views [Ullman and Basri (1991)] are used. Such methosgle hecently become quite popular be-
cause, in principle, they are applicable in many areas asylteamplement, since they avoid generating
and storing a full 3-D model. In addition, there is evidenoestiggest that view-based representa-
tions may be used by the human visual system for object rétwogyriB ulthoff and Edelméan (1992);
Tarr and Rillthoff (1998);/ Tarr et al.[(1998)].

1.1 Problem statement

Any 3-D object may be represented as one or more images tatendifferent viewpoints. In most

object recognition scenarios the object of interest is dewing distance that gives a clear view of the
object as a whole with sufficient detail visible to render itishctive. In such a scenario, the depth
variation across the object of interest is usually suffitiesmall in comparison to its distance from the

camera that the perspective projection may be well-appratéd by an affine projection. In a view-
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based object recognition approach, or in other words, tbblem of recognising a flat object from a

single 2-D image may then be formulated as follows:

Suppose we are given a prototype template funclipna “target” scene image function
I and a transformatioril” that transforms the template as?’ = TFy. F, Fy, I are all
discrete functions that may represent feature vectors fieature-based approach or pixel
intensities or colour attributes in aimage-based approach. The goal of object recognition

is to minimise the expression:
p = argmin g(I(z), F(x)), (1.1)
T

with respect to the transformatidh, defined by a set of parametefsg(...) is a matching
metric giving rise either to a dissimilarity or similaritycere (e.g. Euclidean distance or
cross-correlation coefficient), both of which may be castreria to be minimised. If the
minimum at is less than or equal to some threshaeldhen we say we have a match, attach
the appropriate labels to the region of the image functionorresponding to the model
defining the object of interest in the templdfg and say that the object in the image has

been recognised.

The main difficulty that arises in the above formulation is ttetermination of the transformation
parameterg that minimise[(1.11) since solving fgrdepends on the type of transformatidn There is
a closed form solution of (1.1) whehi is an affine transformation acting on point features and agum
squared error metric is used, but this requires solutiorotb the feature extraction and correspondence
problems, both of which are not usually straightforward &sshall see later. If on the other hand we
use pixel values, then there is no closed-form solution hagtoblem becomes one typical of template
matching. In this case, and for complicated transformatiBnminimisation of of [I.1) is a non-linear,
non-invertible process that requires a different apprdadis solution. Determination of the optimal
coefficientst of the transformatiofl” for the image-based case when pixel values are used, is dhe of
main focus areas of this research.

Once this problem has been resolved for a single 2-D viewn#x step is to make use of the
view-based approach. This involves using more than oneseptative view of the object at the same
time. In this approach, 3-dimensional objects are reptesdny methods based on a combination of
2-D images or line drawings!_[Ullman and Basri (1991)] depeld this approach for representing pri-
marily rigid objects by using a linear combination of lineadiings or edge maps, often known as a
linear combination of viewer LCV for short. Following the initial work of [Ullman and Ba (1991)],
others have taken this concept further to the combinatiamafes themselves [Koufakis and Buxton
(1998b); Hansard and Buxion (2000b); Peters and von det@as2001)]. These techniques produce
very good, realistic looking representations of an imagé aloe limited to rigid objects and break down
when used for models that can undergo non-rigid deformstiétecently, Dias [Dias (2004)] has ad-

dressed this problem and extended the LCV technique to vasrkldjects that can change shape. His
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method however, is a feature-based approach that doeskeotn@ consideration pixel intensity or
colour information, but instead relies on the existencerafikn landmark points around prominent fea-
tures both in the model and in the target image.

In summary, determination of the optimal transformationapzeterst and extension of (111) to
utilise LCV representations, in order to build a system ablecognise a rigid 3-D object from its 2-D

views, using pixel intensity information alone, are thenpary areas of research addressed in this work.

1.2 Aim

The main aim of this research has been to carry out a new stndheoarea of object recognition

via model-based, multi-view template matching and its eissed problems and deficiencies. More
specifically, we focused on examination of the linear coratiom of views theory and its extension to
more complicated objects and, in particular, using imagelpialues rather than simplistic line drawings
or point features.

This is in fact the principal hypothesis on which this thesibased, namely that such an extension
is possible and can lead to a successful object recognitidnigcalisation scheme. The intention is
therefore to propose a new strategy for solving a numberaflpms associated with this pixel-based,
LCV approach to object recognition and extraction, suchhasproblem of localisation and matching,
template search and optimisation in a high dimensionalespaed image variation due to changes in
the viewpoint from which the object is seen. Each of thesélpros is addressed in more detail in later

sections.

1.3 Obijectives

In order to meet the main aim of this research of demonstrliat a successful pixel-based, LCV object
recognition scheme can be developed, a system is implethérdewill be characterised by the extent

to which it fulfils the following objectives:

e Automatic detection and classification of the modelled oiff in image data from viewing di-

rections within or close to the set of basis views.
e Characterisation of an object via a small number of basiswie

o Ability to handlesufficiently complicatedeal-world objects without giving preference to a specific

class of shapes (e.g. curved or planar surfaces).

e Ability to function with a certain amount afoisein the data, without an un-due, disproportionate

degradation in performance.

o Ability to handle arbitrary combinations of a relativelgrge numberof objects in a variety of

orientations and locations without being overly sensitivemall amounts of occlusion.

In addition to the above the system should be able to perfoitlirvsome error limits. More

specifically, it should have a low tolerance foiss errors(when an object’s presence is not detected),



1.4. Main hypothesis statement 17

false alarm errors(when the presence of an object is indicated even thoughnbisgresent in the
input target image) antbcalisation errors(when an object’s presence in the target image is correctly
determined but its identified location is incorrect).

It is also to be noted that incorporating the effect of odclns is almost but not entirely straight-
forward because of the need, in principle, for a correcistteal approach to estimate the likelihood
of a particular object’'s presence by using data from ovemthele of the target image. Occluding ob-
jects thus naturally become part of the recognition schdomgawith the image background and they
must be known a-priori or modelled in some manner. For thet pag, we will usually assume that
the background is known a-priori though we note the possilof modelling it statistically as char-
acteristic of say, natural or man-made scenes [Huang andfMdni1999);. Grenander and Srivasiava
(2001); Sullivan et all (1999)]. In principle, of courseetivhole image both foreground and background
could and should be modelled by the same LCV methods. Thisdaaeke us beyond the scope of the
present work, but given that an occluding object is necégsarfront of the foreground object of inter-
est, such an approach would be most appropriate. Other viagedelling of occluding objects can be
problematic. This thesis therefore includes only a smathiber of experiments on synthetic data that
although they may not be rigorously valid, help to demonstthe performance of the method in the
presence of a limited amount of occlusion. There is also #se of self-occlusions when the modelled
object is non-convex, which although are not specificalged in this thesis, could also be taken into
account in the LCV approach by utilising the affine depth afiHiansard and Buxton (2000b)]. Since
[Hansard and Buxton (2000b)] shows that the appearance elf-@ccluding object can be modelled
well in the LCV approach, there is little reason to supposa #m extension of our object recognition

scheme to cover such cases would not work.

1.4 Main hypothesis statement

The main hypothesis underlying this research may be givéollasvs:

A successful pixel-based scheme can be developed and iempézhas a solution to the ob-
ject recognition problem by integration of the linear comdtion of views technique (LCV)
with a view-based object recognition methodology and uedalitld a framework for the

recognition of three-dimensional, rigid objects under aigty of configurations, using a

small number of images taken from different viewpoints.

There are a number of words and phrases in the above thatedgtther clarification. These are

listed below:

e successful The method or 'scheme’ must be shown to work over a set ofdatst to a useful
level of performance in particular for the recognition emates and location accuracy as indicated
in section L.ll. Synthetic data will be used for 'closed-foogntrolled experiments and widely

available image databases used for more realistic tests.

e pixel-based The input data pertaining to the target image (or imagesyhich the presence or
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absence of the object (or objects) of interest is to be détedtrconsist solely of the image pixel-
values or attributes. No online pre-processing of the targage data, in particular for feature
extraction, is assumed and evaluation of recognition Hgs®s is carried out by reference to the

target image pixel-values.

e view-based Objects are to be represented by a finite (usually a smaitf)ben of images or
“views” of themselves. These views basis imagesare to be taken under good conditions, i.e. at
an appropriate resolution from a distance that allows messle detail on the object to be visible
under affine imaging conditions, with the whole object inwjieinder typical illumination that
does not create artefacts and is bright enough to enablemmte surface texture and colour to

be apparent.
e object recognition problem: The object recognition problem as defined in sedfioh 1.1.

o framework: An approach to object recognition based on theory and imeiged in a systematic

manner so that it can be followed and utilised in subsequerit by others.

¢ three-dimensional rigid objects 3-D objects (i.e. ones that are not flat) that do not changie th

form in 3-D, but whose apparent shape in an image may chaniyg dava change of viewpoint.

e variety of configurations: Images taken while the camera or object is rotated abouttatmaay
axis in space. Rotation about axes perpendicular to theofirsigght are of most interest as they
reveal the 3-dimensional nature of an object. However,dhiss not exclude rotations about the
line of sight, also known as image-plane rotations. Suclgeralane rotations may be modelled
by an equation such ds (#.9) as we shall see later on, whicjuigadent to the LCV method using

a single basis view.

e integration: Combination of the view-based object recognition solutidth the LCV method in

order to build a single unified framework.

1.4.1 Hypothesis 1

It is possible to synthesise a novel view of an object andmato a target image of that
object. A good matching score will indicate that the objecpiesent in the scene and,
barring the unlikely or deliberate presence of fakes, thatis been located accurately. The

object’s pose is represented by the LCV coefficients or patars that give the best match.

This sub-hypothesis asserts that, as is known from previouk, realistic-looking images of novel
views of an object can be created from a combination of a smualber of basis views. Below we list

words or phrases in the above, first sub-hypothesis thatreedjarification:

e synthesise Creation of a new image of an object by linearly combiningestimages (usually
two) of that object taken from nearby, but otherwise arbjtndewpoints. First the geometry of

the new image of the object is determined from a number ofrfenld points and by solving the
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LCV equations, and then its appearance (colour, texturesamah) is synthesised using a series of

piecewise affine warps.
e novel view. A view that is not in the modelling or training data set.

e match: A comparison between a scene and a model image that resaltgdod matching score,
using either a similarity or dissimilarity measure. As autethe parameters of the target image

object can be determined from the matched model.

e target image An input image to our system in which a specific object thatdseto be detected
and located may exist in an arbitrary configuration. Usuyalhd for the purpose of this thesis,

such configurations are typically the set of 3-D rigid defations.

e good matching score A matching score obtained from a predefined matching fondbetween
a model and a target image. The score is usually comparedredatermined threshold. A value
sufficiently higher or lower that the threshold (dependingadether we are using a similarity or
dissimilarity matching function respectively) will indite a high probability of a good match of

the correct model to the object.

e pose Model parameters associated with the extrinsic degrelesedom of the object representing
as far as possible from the available image informationdtstipn and orientation in space relative

to the camera (or other frame of reference) respectively.

e LCV coefficients: The coefficients of the linear combination of views equadithat determine

(to the extent possible under affine imaging) the pose of lljecdin question.

1.4.2 Hypothesis 2

The introduction of prior probability distributions in theemplate deformation process,
based on previous knowledge of the underlying image genarptocess and imaging con-
ditions, can improve the accuracy and speed of the recovieityeamodel parameters from

an image of a rigid, 3-D object.

This sub-hypothesis asserts that the imaging process amtltioms can be used to predict the
parameters determining the form of the model template to atemed to the foreground of the target

image. Again, there are a number of words and phrases thatedgrther explanation. These are:

e prior distribution : A parametric probability density function that represeoiir existing knowl-
edge about the data (i.e. the process that generated thewdaieh is typically used in a Bayesian
framework to bias the possible values of the parametersderdo avoid invalid solutions and/or

guide a solution toward a specific range of values.

e template deformation process Since an object may be viewed from a range of orientatidss, i
shape in the target image will vary. The shape of the modeplmien that is to be matched must

also correspondingly vary. This is referred to as 'the terrgptieformation process’.
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e previous knowledge This means that we have some scientific knowledge abouttivegses that
generated the data. Such knowledge can be implied from théhiat object recognition is being
attempted and that the object of interest must thereforeagp the target image at sufficient size
and with sufficient detail visible. Ultimately such infortien constraining the range of possible
parameter values can be expressed via a probabilistic rdeflekd for example by a typical value
or mean and the standard deviation. In practice, univar@aeissian distributions will be used -
i.e. it will be assumed the parameters are normally disteithand correlations between them will

be ignored.

e imaging conditions The various properties of a scene, such as camera parairigfhting con-

figuration, noise and so on.

1.4.3 Hypothesis 3
Recovery of the optimal LCV coefficients usually requirgsrinciple exhaustive search of
the large solution space. By using an appropriate optiniiseéalgorithm we can efficiently

recover the optimal set of coefficients and thus recogniseliject in the scene.

This hypothesis reflects the fact that, as noted in seCiintte optimisation problem defined by equa-
tion (I.1) is, in general, complicated and non-linear and ha expected, unless the scene is very
simple, to have local optima in addition to the desired glaipimum of the correct, best match. Words

or phrases that require further clarification are listediel

e in principle exhaustive: In this case we are referring to a systematic search of ttapseter space
that is able to guarantee that a globally optimum solutibor{e exists) is found. We cannot rule
out the possibility that for simple scenes (and thereforeetg) the optimisation problem may be
convex and therefore sometimes soluble without an exhausgiarch, but in general this will not
be the case in typical object recognition scenarios. Weisgyrinciple’ because such a procedure

in general is infeasible.

e large: The parameter space can span up to 10 dimensions dependihg ase of multi-view

constraints. Obviously searching such a large space etwelyss not practical.

o efficiently: The desirable property of the algorithm used to solve th@gation so that recovery
of a near-optimal solution within feasible time and compiota (determined as the number of

function evaluations) budgets is possible.

e optimal: Optimal in terms of a predetermined threshold which allowgo be confident that the
solution found within a given time and computation budgeti@se enough to a possible global

optimum.

1.5 The approach

The approach presented in this thesis for solving the obgectgnition problem as defined in section 1.1

falls within the framework of deformable template matchalgorithms where we are looking for the
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transformation that maps a model to an image. In this setsirfignction often from physical analogies
referred to as an energy function associates a cost withpetehtial transformation of the model. It is

desirable to find the transformation with the lowest cosblwed suitable threshold.

Typically, this energy or cost function has a twofold purpoBirst it attracts the deforming template
toward salient image regions. Second it biases againgt @argtherwise undesirable deformations of
the template. Since the number of possible transformatitmsbe very large (recall the remarks above
about a large, possibly 10-dimensional parameter space)gessential to be able to search the space
efficiently and guide the process toward promising regiohern& good solutions may lie. This is best
achieved by exploiting all available prior information aibthe object, the scene and the imaging process.
The use of a Bayesian framework combined with a powerfulnaigtition algorithm can achieve this

purpose.

We based our approach for solving the aforementioned pmgbiiest for a single view and later
for multiple images, on the work by [Jain et al. (1996) and Bl al. (2002)]. These works combine a
simple model of an object, a set of parametric transformatibat act upon the model, each of which
has an associated penalising probability distributiod, @moptimisation algorithm that will recover the
appropriate transformation parameters that will mostetjoenable the model to match with the object

in the scene.

In our work, the first component, the object model, is a regidar bitmap image (or images in
the multi-view case ) that contains grey-scale (or coloixglpnformation of the object’s contour and
intensity without any additional background data. In thregke view scenario (2-D objects) this bitmap
may be the result of training on a number of images of the ¢lgiedhat it represents the most likely
image appearance. For the multiple view case (3-D objdotsitages are chosen so that they represent
the object from different viewpoints, each containing asminformation about the object as possible,
since this will aid in the synthesis of the novel view and mriisie any regions of missing or incomplete
data on the object. Care must also be taken not to choose avidgyangle between the views, so that
they do not belong to different aspects of the object, ascuislead to self-occlusions and missing data

during synthesis.

The next component is the set of probabilistic transforomsti These are typically learnt from
appropriate training examples or empirically chosen. Témybine a set of parametric transformations
that deform the model with probability distributions definen those transformations that restrict the
choices of possible deformed models. The transformatienare currently considering include the 3-D
rigid transformations in the multi-view case as defined &ylt®V equations[(3.14) and a 2-D subset in
the single view case which are equivalent to a global 2-D etiiansform on all the pixels in the image.
Furthermore, and only for the single view case, we experiatewith the addition of a local quadratic
deformation designed to deal with any small non-linearctffeggenerated during the image formation

process.

The probability distributions associated with the transfations serve as a means of restricting

these transformations. This can help to avoid large defoomsathat produce similarly substantial devi-
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ations from the initial template since it is logical to as®&uthat the model exemplifies a likelyeneric
view of the object. Furthermore, they help to avoid trivialligions for the transformation parameters -
parameter values that may minimise the energy function mdyre an uninteresting result (e.g. col-
lapse the model into a single point or line). Finally, we mkspaise the distributions deliberately to steer
the solution away from what is previously known and guidesthi@ition to regions of the energy surface
to which it may be difficult otherwise to converge, or evert jinsorder to investigate a wider range
of possible solutions. These distributions are usuallyodad as the prior distributions in a Bayesian
formulation.

Our method differs from that of [Jain etlal. (1996) and Belbiale(2002)] first as we are using pixel
intensity information without the need to extract featuresn the target image or solve the correspon-
dence problem. Also, we use different distributions botthmsingle view and multiple view cases and
do not assume that all transformations are equally likelydifionally, the likelihood function we used
that expresses the probability of observing the input ingigen a deformed model with specific trans-
formation parameters is based on different error metrits which we have extensively experimented.
Finally, for the recovery of the optimal transformation gaeters we are using a hybrid optimisation ap-
proach that combines a recent evolutionary algorithm withcal deterministic method. This algorithm
is able to produce very good results within a pre-allocafgthdsation budget and without the need for
strict initialisation close to the location of the desirddtgal minimum.

A Bayesian formulation which combines this prior knowledggether with information from the
input image expressed as the likelihood is therefore usextdar to find a match between the image
and the model. This combination of the prior and likelihoedéalised in the posterior probability,
a maximum of which (or equivalently a minimum of its negatlegarithm) may indicate a possible

match.

1.5.1 Why a Bayesian approach?

We have decided to use a Bayesian approach because taskassoigject localisation and recognition
offer themselves as ideal situations for statistical iefice. Such tasks are often faced with situations
where only very limited and noisy data is available and, iditah, we may not be able to define an exact
model to apply to this data, especially in the presence ofplicated information in the background. If
the data alone is unable to provide a unique solution to thblem it follows that reliable declarations
about the parameters of the model (i.e. pose, locationg soad so on) cannot be made and that, in a
purely data-drivel approach, the image may be well expthinea set of parameters that are, in practice,
completely unrealistic.

Instead, by utilising Bayes priors we can ensure we get @aseigh to the correct solution with a
reasonable set of model parameter values by making assamagtbout these parameters based on logi-
cal reasoning from our expectation (prior knowledge) corabtiwith observation evidence (likelihood)
from the data. In our object recognition framework, Bayes#e may be written as as:

PUIE)P(E)

P(¢[I) = P) 1.2)
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General information about the model parametgssencoded in the prior probability distributioX¢)

of the transformation parametefs These distributions represent our certainty about atsituaefore
the data is observed. The likelihood of observing the imag®&en a set of parametefsis encoded in
P(1|¢). This usually reflects noise processes that would causatpetimage to deviate in detail from
the model, but in our approach we must also allow for the jpiigiof gross errors when the model is
incorrectly located or the wrong model has been selectedmRhe product of the likelihood and the
prior probabilities we can calculate the posterior proligbP (£|I) which represents our certainty that
we have explained the observed, target imageé/e usually require a single model configuration to be
presented as the most probable explanation. A typical ehisithat for which the posterior probability
is maximal (known as the maximum a-posteriori or MAP solalfio

This is the main reason why probability theory and in patcBayes’ rule are appropriate tools
for these kind of tasks. There are of course alternativertbedhat can provide similar probabilistic
inference mechanisms such as the maximum likelihood (Mlutem (seel[Sebe and Lew (2001, 2002);
Olson (2002)]). ML tries to find a match using only the likeldd information of an event. According
to [Jaynes|(2003)], a model defined solely on the likelih@ith¢complete, but defines only a parametric
space, the maximum of which indicates a good match betweeieinaod data. By introducing the prior
probability, we can incorporate information about thelljkealues of the model parameters that can help
guide the result toward a preferred solution. Since the MélBton differs from the ML solution only
in the existence and use of the prior, it means that choosirgpropriate prior is one of the most critical
aspects for the effectiveness of the MAP approach.

Itis useful to note here that there are two interpretationge prior in Bayesian theory. In the first,
the “objective view”, the prior represents knowledge acegliin a previous experiment. In other words,
it might be (and usually is) the posterior probability of fhrevious experiment. In such cases, we start
our inference by using an uninformative prior (such as ttitorm distribution) and we iteratively update
our knowledge (i.eP,,, (&) = Pr—1(&|1n—1) wherem is the iteration number ang},,_; the information
available aftern — 1 iterations) as the new data is made available. In the setb@dsubjective view”,
there is no data from previous experiments, but instead ditee id made available simultaneously and
not sequentially as in the previous case. If we have somegnérmation about the parametegrsve
can chose an appropriate prior distributiB(Y) that reflects this knowledge in order to restgco that
the posterior provides additional information to that &alie from the likelihood alone.

In our case, we use the latter interpretation where we docuptiee our data in sequence but have
a good idea about the general location and range of the madaineters. This information comes from
the analysis of the problem and of the likely parameter \sal\ée shall examine this more closely in the

following chapters.

1.6 The contributions made in this thesis

The main contribution made in this thesis is that encapsdlat the main hypothesis - namely the
extension of the linear combination of views theory with qmpiate probabilistic constraints and the

combination with the resulting MAP estimation with an opBation algorithm so that it may be used
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for solving the recognition problem for 3-dimensional atgeusing only pixel information and models
derived from a small number of nearby 2-dimensional intgrisiages of the objects of interest.

By initially examining the 2-dimensional image-based cbjeecognition problem in detail, we
soon realised that efficient and accurate recovery of thiemaptransformation parameters that would
bring a model and a scene object into agreement requiredstefuprobabilistic constraints in the
transformations. Additionally, we discovered that it wasential to consider the transformatidnas
a product of independent, primitive transformations, eastigned a separate prior distribution. Such a
separation of the degrees a freedom revealed that the pertrdnsformations are not equally likely in a
typical object recognition setting and should be biasefédihtly. The use of such priors in a Bayesian
model together with the use of a powerful optimisation athon produced very good recognition results
without the requirement for extensive off-line trainingné consuming search or the need for good
initialisation. The same principle was then extended tatiplel views in 3-D and to the LCV paradigm.

As a result, we developed a system that can recognise 2-diomat intensity projections of 3-D
objects from a variety of poses via a small number of stored/siof each of the objects of interest. The
system may be applied to a variety of elaborate problemsfierdnt recognition scenarios and is very
simple to set-up (generate a database of models) and useéddar good initialisation or complicated
configuration of the optimisation algorithm).

The work carried out for this thesis has also produced a nuoflsecondary novel ideas and results,

the most interesting of which we list here:

e Analysis of the posterior space both graphically and numeially: During the course of our
research we explored the properties of the error space neamptimal solution, collecting both
graphical and numerical information. This gave us valuabdight into the complexity of the
space under various recognition set-ups (e.g. simplistisus more elaborate backgrounds) which
in turn allowed us to adjust our model and solution approseuoeordingly. Information on error

surfaces not previously seen in such detail is introducebdigthesis.

e Comparison of different error metrics: In our attempt to discover a good error metric well suited
to the specific needs of image-based template matching wpareah different solutions, such as
use of: the normalised cross-correlation, the Huber nordhrantual information, each of which
produced different error surfaces and as a result, diffeyptimisation results. This information
can now be exploited in other applications where pixel isiigris used and the solution depends

on the scene complexity, the type of object of interest ardrttaging process.

e Comparison of different optimisation methods For recovery of the optimal model transfor-
mation parameters it is essential to choose an approprmiaisation method. That generally
means an algorithm that enables one to find a good-enougticsoas early as possible in the
computation, without the need for time-consuming paramtetgng or strict initialisation. Fur-
thermore, the algorithm should, in general, improve quiakh discovery of a good solution.
As a consequence, we contrasted several solutions in a mushipeoblems with varying de-

grees of difficulty. In addition, certain algorithms that eplored such as differential evolution
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[Storn and Price (1997)] and SOMA [Zelinka (2004)] have magived adequate attention in com-
puter vision tasks. We believe that the results from thisitheay be relevant in other research

involving optimisation on intensity images, such as medioage registration.

e Extended simplex algorithm As part of our investigation into various optimisation @ighms,
we used the simplex method developed by Nelder and Mead [J[L86% way of improving on
the discovery of good solutions found by use of other algarg. The simplex method is a direct
search, local optimisation method able quickly to minimaseenergy function, but it can easily

get stuck in local minima and not make significant progretar #fie first few iterations.

We thus extended the basic form of the algorithm by inconragaa restart stepthat allows the

simplex to “jump-out” of a local minimum and continue from aamby location. Furthermore,
as the algorithm progresses the jumps get smaller accotdiag 'annealing’ schedule. This
modification allows the simplex to burrow further into theaersurface, dramatically improving
the optimisation results even on functions with multipledbminima. In fact, it may be used as
a way of quickly improving the results already identified bgvser-converging, global stochastic

optimisation algorithms in a hybrid minimisation scheme.

e Foreground - background model In this work we mainly focused our efforts on building robus
geometrical models for the objects in the foreground. Thisked well enough, provided that
the scene contained trivial (simplistic) background dawd gaere was no change of illumination

between the model and the imaged object.

This however, limited the applicability of our method to #yetic or highly-controlled scenes, or
where the background was explicitly provided as a separdty.eNear the end of our research
we experimented with inclusion of a background model, firghie 2-D approach and later in the
LCV 3-D approach, and incorporated a basic affine model tormcgodate illumination changes.
Although developed theoretically, we did not have the tigsamatically to test these new models
in extensive experiments. These models however represégniéicant first step in extending the
LCV equations correctly to deal with background data anadanting for the additional degrees

of freedom from lighting variations.

1.7 The significance of this work

The work we have carried out in this thesis is one of the firstesyatic attempts to use view-based
technigues which allow pose-invariant modelling and redtign of 3-D rigid objects directly from
2-dimensional intensity images using pixel informatioors. Neither feature extraction nor the estab-
lishment of a dense correspondence is necessary at any tirimgy dhe model building or recognition
stages.

We thus anticipate that the probabilistic LCV method owingf$ practicality, ease of initial set-up
and use and its good results across a range of differenttehjétbe useful in a variety of applications

including, but not limited to:
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robotic and autonomous navigation,

medical image registration and data extraction,

object tracking, and

e automated control and access systems.

1.8 Papers resulting from this thesis

In the course of the work described in this thesis, sevenrpameve been produced for publication at
conferences and in journals. They represent various stagbe development of our approach and are

listed below in chronological order:

e V. Zografos and B. F. BuxtorfAffine Invariant, Model-Based Object Recognition UsingoRst
Metrics and Bayesian Statisticsinternational Conference on Image Analysis and Recagniti
(ICIAR) 2005 pp. 407-414.

e B. F. Buxton and V. ZografosFlexible Template and Model Matching Using IntensifyDigital
Image Computing: Techniques and Applications (DICRAPS pp. 438-447.

e V. Zografos and B. F. BuxtorfAn evaluation of common distributional models for a Bayesi

prior of the scale transformation’initial draft prepared for submission to Elsevier ScieR666

e V. Zografos and B. F. BuxtoriPose-invariant 3-D object recognition using linear combtion of
2-D views and evolutionary optimisationlnternational Conference on Computing: Theory and

Applications (ICCTA)2007, pp. 645-649.

e V. Zografos and B. F. BuxtoriEvaluation of linear combination of views for object reaagjon”,
in Advances in Intelligent Information Processing: Toafgl&pplications,2007ed. B. Chanda
and C. A. Murthy, World scientific, pp. 85-106.

e V. Zografos and B. F. BuxtoriA Bayesian approach to 3-D object recognition using lineambi-
nation of 2-D views! 3"¢ International Conference on Computer Vision Theory andlipfions
(VISAPP)2008

e V. Zografos“Comparison of optimisation algorithms for deformable fgate matching’ Sub-
mitted to ISVC2009

1.9 Definitions

In this section we include in order to avoid confusion somi@niens of a number of terms commonly

used in this thesis that may, in publications, have more timenshade of meaning. These are:

e Corresponding landmark points: By corresponding landmark points in two or more images we
mean landmark points in each image which are projectionse$ame 3-D world points, marked

on the imaged object or scene (i.e. a correspondence inestision sense).
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e View/pose We shall not distinguish between a view of an object anddtsepsince variations in

either cause the same affects in a captured image.

e Basin of attraction: This is a region in the solution space of an algorithm in Vatadi starting

points converge to the same solution, or possibly cycle bftiems.

1.10 Abbreviations

e LCV: Linear Combination of Views

o DE: Differential Evolution

e SOMA: Self-Organising Migrating Algorithm
e CATT: Centred Affine Trifocal Tensor

e ISPM: Integrated Shape and Pose Model
e PCA: Principal Components Analysis

e ASM: Active Shape Model

e MAP: Maximum A-Posteriori

e ML : Maximum Likelihood

e NFEs: Number of Function Evaluations

e MCMC : Markov-Chain Monte-Carlo

e d.o.f. Degrees of Freedom

e pdf: Probability Density Function

e cdf: Cumulative Distribution Function

e SSD Sum of Squared Differenecs

e SAD: Sum of Absolute Differences

e CC: Cross-correlation

BP: Back-projection

1.11 Structure of this dissertation

The rest of this dissertation is organized as follows. Céaptontains a review of the relevant literature
which is intended to locate our work within the context of\poeis research. Chapter 3 introduces
the theoretical background upon which this thesis is basddéfers a summary of what are the most
important and recent topics in model-based object reciognitn chapters 4,5 and 6 we present the main

contribution of this thesis, starting from 2-D object reniign and expanding into 3-D, followed by our
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work with optimisation algorithms. Chapter 7 presents thalgical experiments of the probabilistic
LCV method on synthetic and real datasets and an explorafidifferent error measures for intensity-
based, template matching. We make use of chapter 8 to prouidthesis conclusions and offer some

possible avenues for future research work in this area. THiegraphy follows at the end.
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Chapter 2

Related work

Object recognition in its general form has been widely stddind a plethora of different approaches
exist that attempt to solve different aspects of this pnwbtiepending on the application area. These
approaches vary according to the type of knowledge they@mible restrictions placed upon the objects
recognised (for example objects may be 2-dimensional an&asional, simple or complex, rigid or

flexible), the object representation and coordinate sysisad, and the overall strategy employed. In this
chapter, we will closely examine the main ideas behind reressearch methods in object recognition. In
particular, we will consider model-based methods, in whidbr knowledge of the object’s appearance

is provided by an explicit model as these are most relevaotitaesearch.

2.1 Choice of coordinate system

The first step in an object recognition system is to define pnogiate coordinate system. There are two
ways to define this coordinate system for a three-dimenks#tiagoe, theiewer-centred approacind the
object-centred approactince images represent a scene from a camera’s perspéadsvenly natural

to represent objects in a viewer-centred coordinate systéavertheless, it is easy to transform from
one coordinate system to the other and use an object-capdach instead. The main reason behind
choosing one system over the other is efficiency in reprasientfor feature detection and subsequent
low-level processing. A representation allows certainrapens to be more efficient at the expense of

others, so obviously a choice has to be made based on theaeguits of the application at hand.

2.1.1 Viewer-centred approach

If objects usually appear in a relatively few stable posiiavith respect to the camera then they can
be represented efficiently in a viewer-centred, viewinglamgpendent, coordinate system, which de-
scribes the 3-D object using a set of 2-dimensional chaiiatiteviews or aspects. Each characteristic
view describes how the object appears from a single viewipdypical examples of object recognition
using viewer-centred representations are the aspectglgpiKoenderink! (1990); Poggio and Edelman
(1990); Bilthoff and Edelman (1992); Ullman and Basri (1991)].

Matching in such approaches is straightforward becaugsgadties comparing descriptions that are
both 2-dimensional. There is no need for model projectionndumatching and the continuous space

of viewpoints has been reduced to a discrete space of chasdict views. If the camera is far away
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from the object(s) of interest then, under sadfine imaging conditiontheir three-dimensionality can
be ignored and objects may be represented sufficiently wedllbmited set of views.

The disadvantage of using a viewer-centred representatibat for moderately complex objects, in
principle because of the large number of different aspéetg inay present, a large number of different
views need to be stored thereby increasing the storage spgu@ements relative to object-centred
approaches. This also means that, in the object matchigg,steany more models need to be considered,
since each characteristic view is a separate model. Eveéesiimg each model is far less computationally
expensive than in the object-centred approach, since waealing with a 2-D instead of a 3-D match.
Furthermore, in practice, many of the aspects of an objéfetrainly in small details and occupy only a
small portion of the view-sphere and may, for many objecbgadtion purposes, be ignored.

Viewer-centred representations have become quite pgmdahere is some interesting evidence
that the human visual system uses a similar representatiabject recognitior [Blthoff and Edelman
(1992);| Tarr et al.[(1998); Tarr andiBthoffi (1998)]. Experiments have shown that humans ate @b
recognise objects accurately and rapidly from particuleawpoints, which implies that those views of
the object are readily available (stored in memory) whikeeos are computed as needed. In addition, the
availability of large amounts of RAM in modern computers/égal GByte at the time of writing) makes
such an approach more attractive as it suggests tradingutatigm for memory.

A viewer-centred representation, however, only providesjgproximation to the object’s shape
and appearance. Each characteristic view represents @ odrgewpoints over which the object varies
in shape and appearance. The more characteristic viewsey¢hessmaller the range each view covers
and the more accurately the object is depicted over thatraivg therefore have a trade-off between the
size of the description and its accuracy. One way to dealthithproblem is to take advantage of certain
invariant features that exist among a range of viewpoints.example, certain relations between lines
(co-termination, parallelism, co-linearity), anglesweén lines and ratios of line lengths are invariant
with respect to view point. Use of such techniques can exteadange of viewpoints covered by a
characteristic view and thus improve the trade-off betwassuracy and number of views. Another way
is to interpolate between characteristic views. As we veidl kater on, this can be achieved via the Linear
Combination of Views method, where a new view can be con&dutom 3 or more stored views and a

linear operator.

2.1.2 Object-centred approach

The alternative to the viewer-centred approach is the dlgjeatred approach, which describes objects
usually as a three-dimensional entity within a coordingttesn attached to the object. [Mairr (1982)]

for example, specified the object’s parts relatively to th@got's main axis. Object-centred represen-
tations are independent of the camera parameters anddocatd yield the most concise and usually
most accurate shape descriptions. However, in order to ritedta useful for object recognition, the

representations should have enough information to prodbjeet images or object features for a given
camera parameterisation and viewpoint. This suggestathabject-centred representation should ex-

plicitly capture aspects of an object's geometry. Some comsuch representations am@onstructive
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solid geometrywhere simple geometric primitives are used together witbl8an operators to represent
an object andpatial occupancywhere an object in 3-D space is represented by using norapypéng
sub-regions of the 3-dimensional space occupied by an ®lsjgch as a voxel representation, octree or
tetrahedral decomposition.

When object-centred coordinate systems are used for modetfipion in object recognition we
must do one of the following: either i) derive a similar olijeentred description from the image and try
to match that description with various models, or ii) derv@-D description from the image, and use
a matching procedure combined with a projection of the 3-[eattio the same 2-D image description.
[Lowe (1985)] does exactly that by projecting each 3-D matieted in memory to a hypothetical view-
point and matching the resulting projected locations ofaHe features to the input image. A similar

idea is presented by [Ullman (1989)] in his recognition bgrmamnent approach.

2.2 Choice of strategy: features vs templates

There are also two main choices for the object recognitioateqy: thefeature-basedstrategy,
which is based on shape information [Huttenlocher and WHI#090); Lamdan et all (1988); Jacobs
(1997)] and theimage-basedstrategy, which is based on direct representation of imagensity
[Murase and S.Nayar (1995); Turk and Pentland (1991); Bolwtig et al.|(2000)] or on a filtered ver-

sion of the image [Sullivan et al. (2001); Srivastava et2002)].

2.2.1 Feature-based approach

This computational strategy for object recognition is lohea the idea that much of the information
about an object is encapsulated by its geometrical pragsertt usually relies on a geometrical model
of an object’s shape characteristics which is often appieedimple data, and is used to explore the
correspondences between the model’s features and theetbteatures in the scene during recognition.

Given an unknown scene and an object model, both represientetns of their features, in this
approach the objective is to find a partial match betweenviioeand estimate the object’s location and
pose in the image. A match solution must satisfy the viewpodmsistency constraint [Lowe (1987)]
which stipulates that the locations of the object’s featimeghe image must be consistent with some pose
of the object. We are essentially looking for the transfdiame?” that will bring the two corresponding
sets into alignment. These sets of features are usuallgdstom-dimensional vectors, and matching is
carried out by minimising some dissimilarity metric, or raeee of quality, over the parameters of the
transformatiori’. Such measures of matching quality are often based on eodelsithat describe how
image features differ from model features. Two common emodels are: i) @ounded error model
which requires that each image feature is positioned wibime fixed range of its predicted location.
The related match quality measure is usually just the cobimaiching feature; and ii) &aussian
error modelwhich assumes that image features are distributed norraatlyindependently about their
predicted locations. The related match quality usuallysaers both the number of matching features
and the sum of squares of their normalised errors.

Since usually there is no a-priori information as to whichdeldfeatures (or parts) correspond to
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which scene features (or parts) it is necessary to solvedirespondence problem. If we consider, for
example two setX andY’, each containingV points, we need to ensure that each peinn the image
corresponds to the same physical pajnbn the object or projected from the object. Only then are the
two sets in correspondence. This requirement makes febas®d recognition computationally expen-
sive even for a moderate number of features, especiallgifife detection in the image is imperfect and
there are false positives (false alarms due to clutter @raihjects) and false negatives (features missing
dies to lack of sensitivity). Traditional object recogaitisystems thus often lack scalability especially
when faced with a large number of models, when image featimesot reliably be grouped object by
object, or extensive variations in object appearance atewstered|[Binford and Levitl (1996)]. To
limit the possible number of matches, methods have beeropeapbased on geometric constraints such
as the interpretation tree by [Grimson and Lozano-Pere&€e(19or minimum number of feature corre-
spondences [Huttenlocher and Ullman (1990)] and earlylisstéon [Faugeras and Hebert (1983)]. The
method of indexing [Califano and Mohan (1994)] is an altéuseapproach that uses a-priori informa-

tion quickly to eliminate inappropriate matches duringogaaition.

Some common paradigms of feature-based object recogtiitztmieal with changing object geom-
etry due to pose variations include the use of invariantsifigeet al. [(1998); Maybahk (1998)], explicit
3-D models|[Blanz et all (1996); L ee and Ranganath (2003)]ranltiple views [Lamdan et al. (1988);
Binford and Levitt (1996)]. The first paradigm makes use myirecognition of special invariant proper-
ties of geometric features (i.e. properties that varyelittt not at all as viewing conditions change). The
most serious problem with this method is that quite oftes itery difficult, if not impossible, to find
general geometric invariants. For example, no such invtriexist for single images of 3-dimensional
objects under a 3-D perspective projection [Clemens anoh$sd 991)]. The second paradigm employs
a full, explicit 3-D model to which the image formation preseds applied during recognition. This is
in fact a projection operation that generates new imagdseobbject that can be compared with a given
scene. This idea works well if we have a 3-D model of the objedhich is not always practical - and
provided that we know the specifics of the image formatiorcess - which may not always be the case.
In the last paradigm, an object is modelled by a set of 2-Dregfee views that describe how the shape
of the object varies across different views on the viewingesp. Such methods perform recognition by
matching the novel view with one of the reference views, deast a part of it. This strategy is quite
inefficient since a large number of views must be stored foheaodel, unless we utilise some of the
techniques we have seen in Secfion 2.1.1. Range and coleerralen been employed in applications
such as face detection [Kim et al. (1998)]. In this work difigamaps are computed and objects are
segmented from the background by means of a disparity matagTlhey use a Gaussian distribution in
normalised RGB colour space that classifies segmentedhegiith skin-like colour as faces. A similar

approach has been proposed|by [Darell et al. (2000)] fordatection and tracking.

In addition, one can classify the various feature matchiethwds according to whether they search
for a solution in correspondence space, transformatiocespiaa mixture of both. Correspondence space

is the space where sets of image and model features are pagretther. Transformation space is the
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space of possible transformations between the object andafmera. Under the viewpoint consistency
constraint and with an appropriate error model the two spaoeclosely related, with each match being
consistent with a set of transformations and each transftbom with a set of matches. Typical exem-
plars of correspondence space search are the interpreta@®|[Grimson and Lozano-Perez (1986)] we
have mentioned above, and graph matching methods [Siddidli €£999); Caelli and Kosinov (2004);
Marcini et al. (2002); Wiskott et al. (1999); Bergevin and/lres (1993)] where one tries to find a partial
match (sub-graph isomorphism) between a graph that ragiseiee model’s features and a graph that
represents the detected image features. The biggest prebth correspondence space methods is their
computational cost which is generally exponential in thenbar of model features. Some techniques
such as relaxation (see [Grimson (1990)] for the heurigtizeh termination method) whereby we settle
for a near-optimal match can help alleviate the computatiproblem. When it comes to transforma-
tion space search methods, the generalised Hough tranfBathard (1981)| Grimson and Huttenlocher
(1988)] is one such representative example. Methods tlatisehe transformation space generally
avoid the costly exponential search. Alternatively, weld@lso use a mixture of the two methods, and
carry out a portion of the search in each space. For exani@elignment method of [Ullman (1989)]
begins the search in correspondence space until it matcioegle reference features to determine the

viewpoint transformation.

There are of course many questions that need to be addrebhsedssing a feature-based approach.
For example, what kind of features should we detect and howveadetect them reliably and efficiently?
Most features can be computed in 2-D images, but they argedela 3-D characteristics of the objects.
Owing to the nature of the image formation process some fiesiare relatively easy to compute while
others can be very difficult. We also need to establish hotufea in images can be matched to models
stored in a database. In most object recognition tasks,arthere are many features and numerous ob-
jects, methods such as exhaustive searching may solvedhkepr but are probably too computationally
costly to be useful. Effectiveness of features and effigiesi@ matching technique must be considered

when choosing an object recognition strategy.

2.2.2 Image-based approach

A desirable characteristic of image-based recognitiohas ¢bject models can be compared directly or
fairly directly with input data, as both are of the same typg( intensity images). Feature-based meth-
ods instead require that features be detected and desbefe@ data and model can be compared. This
means that in distinction to the procedure in feature-bappdoaches, an image-based approach does not
need to recover the geometry of the objects but can learndppearance characteristics from training
imagery. A model of the object is built off-line from a coltéan of different images depicting a variety

of object appearances taken under changing viewpointsgimihlg conditions. In this way, each model
view is stored as a vector of image intensities in some lawedtisional space that captures the significant
characteristics of the object, such as the eigenspace Bduanad S.Nayar (1995); Lamdan et al. (1988)].
A hyper-surface in this space represents a particular bbjgecognition is carried out by projecting

the image of an object to a point in the low-dimensional spdte object is recognised by calculating
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the shortest distance from a given hyper-surface. Theitotaf the point determines the pose of the
object. Other image intensity methods include use of cdhgtogramsl|[Vinod and Murase (1996)] and
photometric invariants [Schmid and Mohr (1997)]. More r&ge [Gross et al.[(2004)] have used the
light-field of an object as a set of features projected intovedimensional eigenspace. This way they
have captured radiance values from arbitrary illuminationditions and with the use of a classification

algorithm have applied this theory to face recognition asm@range of poses.

There are of course simpler ways for fitting intensity mod#itectly to photometric data. We
can divide such methods int@id model fittingandflexible model fitting In rigid methods, the shape
or photometry of the target object is known beforehand inftlien of a template. The template may
represent an object as a rigid curve or an image and is matohbd image data by means of a metric
that may represent either a similarity or dissimilarity m@®. Where that metric is (say) maximal,
we have the optimum template location and therefore a matieh.simplest such metric is normalised
cross-correlation, which has been applied successfultyréy-scale and colour imagery with the use
of an exhaustive search technique [Tsai etlal. (2003); Tehlén (2003)]. Rigid model techniques
are ideal when the object shape or photometry are precipelyified because of their restricted search
space. In addition, they are relatively insensitive to eoidevertheless, when the exact object shape or
photometry is not known, or when we have to deal with many rmgges at the same time, or even in
the case when they have to be applied over foreground andjimastd without an explicit background
model, such methods should generally be avoided. It is blesdiowever, to consider variants of the
technique , such as geometric hashing [Lamdan and Wolf€@88}i.Grimson and Huttenlocher (1990)],

in order to deal with fitting a large database of models siamdbusly.

In the case where the above application of a rigid templateigossible, flexible model fitting
techniques may be more useful. These methods support tloé neelels that are governed by a number
of generic constraints on object characteristics (e.g.othmess, curvature, compactness, symmetry and
homogeneity) and rely on an optimisation procedure thasfiheé best fit between the model and the
image data. The fit of the model to the image is measured by pmttole function and matching is
performed by (say) minimising this measure. Like templagating, flexible model fitting operates at
the pixel level but because of the additional degrees ofifseethat the flexibility allows, the search may
become computationally expensive. Therefore, flexiblehwad normally require a good initialisation
close to the basin of attraction of the correct match or theeafsheuristics to control the search and
reduce the computation at the possible risk of a non-optsoaltion. As noted in the introductory
chapter, the basin of attraction is the region of the sotusipace within which an iterative optimisation

method will converge to an optimal solution, or solutions.

The most severe limitation of the intensity-based apprasthmat it requires isolating the object of
interest from the background. This approach has been deératets successfully on isolated objects or
pre-segmented images, but has been difficult to extend terdd and partially occluded scenes. There
have been a number of attempts to improve robustness tosime)isuch as using small eigen-windows

[Ohba and Ikeuchl (1997)] and parts from objects [Huang €tl@97)] but such methods have extensive
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search requirements or rely on explicit 3-D models.

Image based methods can thus be successful in handlingnfitgireed effects of shape, pose, reflection
and illumination, but have serious difficulties in segmegtthe object(s) from the scene and dealing
with occlusions. Since matching is performed directly ia tlnage domain, rather than in the geometric
feature domain, performance is not affected by increasganptric complexity. A great advantage of
image-based methods is that any shape can be representeatteo Inow complex as long as we can
take images of it. Relevant work by [Brunelli and Poggio (3J®%n comparing the two approaches in
their simplest form, has shown that template matching iesapin object recognition performance and
simpler in use. The feature-based strategy, however, nhay al higher recognition speed and smaller

memory requirements.

2.3 Choice of model representation

Object recognition techniques can also be categoriseddiogao their choice of model representation.

These categories have traditionally befgature points, curve®rthogonal basiandimage templates

2.3.1 Feature points

Perhaps the most simple model representation is based droflaadmark points. These points are
chosen in specific locations so as to convey the charadtesisape of an object. For example, along
edges and corners of the object boundary, or around imgdegatures, such as the eyes, the nose and
the mouth in a facial image. Object matching and recognitéxuire that we detect and label similar
feature points in the image and match them with our modelgusime kind of metric such as the sum
of squared differences or their coordinates. Feature tietelowever is very problematic since there
is no easy way effectively to detect all the correct featurBsature detection algorithms will often
either detect more features than exist in an image, or wilidetect all the correct features. Therefore
techniques based on sub-graph matching [Caelli and Kog#@#4)], methods such as the interpretation
tree [Grimson and L ozano-Perez (1986)], are necessaryetecome the feature detection problem.
Some of the existing challenges for object recognition (asshall see in detail in later chapters)
is missing or corrupt data possibly due to occlusion, digjtiaining and testing sets and the existence
of noise. Recent feature based methods such as the recogijtiparts approaches, originating from
the early attempt by [Biederman (1993)] to model patterogedion in terms of how a human observer
learns to discern patterns from their constituent partge Ihacently been re-visited by the research com-
munity [Stommel and Kuhnert (2009); Vasanthanayaki andasiumzi (2005); Amit and Trouve (2007)]
in order to overcome these problems. In part-based modsisad number of features and their rela-
tions (for example relative distance [Fergus etlal. (200&)% used in order to determine if an object is

present in the scene and therefore they can deal, to sonmd,exith incomplete data.

2.3.2 Curves

One of the first and most popular curve-based represengaisom labelled set of points with connec-
tivity information. This representation is similar to a tex and edge representation (e.g. a polygon

or a linear spline). Numerous authors have used this potntepeesentation, such &s [Burr (1981);
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Jolly et al. (1996)]. Another popular representation isgires, which uses continuous curves to model
the geometry of an object. Compared to the point set reptatsem B-splines have the advantage of a
lower dimensional parameter space since a B-spline cantaéel via a few control points. In addi-
tion, B-splines have the additional, advantageous prgérinherent smoothness. [Cipolla and Blake
(1990)] andl[Menet et al. (1990)] were the first to developdeiable models using B-splines after which
they have been used in a number of different studies [Blakdsard (1998); Isard and Bleke (1998);
Klein et al. (1997)]. Finally, another representation that received much attention in the literature
is the use of level sets [Sethian (1999)]. Compared to othethaods, level sets have the advantage of
allowing automatic merging and splitting of the initial ¢onr. Research on level sets for object recog-
nition that may be regarded as characteristic of the fielthas of [Paragios and Deriche (2000)] and

[Leventon et al. (2000)].

2.3.3 Orthogonal basis

Orthogonal basis representations usually apply a reduciedrated parameter space in which only the
most important characteristics and descriptors are usethaPBs the most widely used such represen-
tation is the Point Distribution Model, proposed hy [Coateal. (1995)]. According to their method
an object is represented by the mean shape of a training det hnear combination of the most im-
portant eigenmodes of the shape variation from this meare Figint Distribution Model has played
an important role in the popular Active Shape Model [Cooteslg1995)] and has been extended with
texture in the Active Appearance Model [Cootes etlal. (2pOdumerous other models such as that of
[Duta and Sonke (1998); Dias and Buxton (2002)] have beeadbas this representation. Other repre-
sentations are Fourier descriptars [Staib and Dunican (198fich use trigonometric functions as the
orthogonal basis and Wavelet descriptors [Yoshidalet 827)] that are defined as dilated and translated
versions of a basis wavelet. A comparison of shape modebdbas the above mentioned orthogonal

basis representations can be found in [Neumann and Lar&8s)iL

2.3.4 Image templates

The last representation we will examine here is that of appype image template. Such a representation
is used in object recognition, and may be deformed under idesity or affine group of transformations
to match a new object in an image. Most of these models canassified as registration methods.
Typically, the template is the same type as the image (i#ngity data) but edge templates have also
been used [Jain etlal. (1996)]. There is a rich collectionxafples of this representation and some of
the best known are [Amit et al. (1991)], [Christensen etE)96)] and|[Sclaroff and Isidaro (1998)].
Even though it is difficult to answer the question as to whittihe considered representations is the
best, there are a number of properties which, though frormargépoint of view they are desirable, by
no means make a certain representation superior. Thegemeeality the representation should be able
to model an arbitrary objecSpecificity: the representation should enable particular objectshjact
classes, to be distinguished from othetsw dimensionality a low dimensional representation with
little redundancy improves the computational efficiencgl arakes optimisation easier and more robust.

And finally, linear parameterisationa restriction to linear parameterisation has certain ahges in
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simplifying fitting algorithms and avoiding problems withcdal minima[[Blake and Isard (1998)].

2.4 Deformable template models

We have chosen to present deformable template models hameagaly since they not only constitute
the main focus of this work but also comprise a substantiap@ition of recent research into object
recognition. Perhaps the most thorough review on deforentdshplate models is that by [Jain et al.
(1998)] from which we have adopted the classification ofedédht deformable template methods.

If we were to start with a definition, we could say that defobfeatemplate models are models
which under an implicit or explicit optimisation criteriateform to match a known type of object in a
given image. Alternatively, we could recall that deformeabiodels were designed to overcome one of
the most important obstacles to object recognition; thahis integration and interpretation of different
local image cues (intensity, gradient, texture etc). Initial of course, they also overcome the fact
that exact geometrical models of objects may not always béadle because of the variability in the
imaging process and inherent within-class object vaiitsbiDn the one hand, traditional approaches like
those we have seen in this chapter cannot cope with adveeggrignand viewing conditions, occlusion
and noise. On the other hand, model-free representatidiis tnverge to reasonable solutions owing
to the highly unconstrained nature of the problem. Deforlmabodel matching, is a more powerful
technique because of its capability to deal with shape apdapnce variations, or as [Jain €tlal. (1998)]

put it:

“...deformable models, which have been receiving incrdaagtention lately, provide a
promising and powerful approach for solving computer visgyoblems, because of their

versatility and flexibility in object modelling and repregation.”

A deformable model is able to adapt to fit the given data antianh $ense it can be considerattive

It is a useful representation, because of its ability botimijoose constraints (geometric or photometric)
on the model but also to integrate local image evidence emifft deformable template approaches that
have appeared in recent literature can generally be jpaid into two main classefee-formmodels
which can represent any arbitrary shape as long as someafjenastraints are satisfied, apdramet-

ric deformablemodels that are able to encode a specific characteristiesvag its variations. This
shape can be characterised by a parametric formula or by aginototype shape and some deformation

scheme. Fid. 211 illustrates this classification.

2.4.1 Free-form models

Free-form models have no global template structure and &@en some general regularisation con-
straints, such as continuity and/or smoothness, they cdefoemed to match any salient image feature,
using, for example, potential energy fields produced byetieatures. One of the most widely known

free-form models is the active contour (snake) popularisefKass et al.[(1988)]. In this approach, an
energy minimisation contour is controlled by a combinatidphysics-inspired forces or energies that
impose constraints on how its shape may very over spaceraed Tihis physical interpretation consid-

ers models as elastic bodies that respond naturally torettg@applied forces and elasticity constraints.
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Figure 2.1: The classification of deformable template medetecent research.)

More specifically an active contour is governed byirgernal contourenergyE;,; which may enforce
smoothness, amage potentiaknergyk;,,, that attracts the snake to significant image features, and an
external potentiaknergyE..; which deforms the model. Each force creates its own potdidld and

the contour actively adjusts its position and shape untdathes a minimum of the total snake energy:
1
Eonare = / (Bt (0(5)) + Birmg (0(5)) + Bont (v(s))} ds @.1)
0

where s is the parameterisation of the contour an@) is a point on that contour. Given an appro-
priate initialisation the snake can quickly converge to arhg energy minimum. However, the active
snake model is essentially a “myopic” approach since it osd#g local information and it is very vul-
nerable to image noise and sensitive to choice of its stagosition. To overcome these limitations,
researchers have experimented with different energy $oech as attractors and tangent constraints
[Fua and Brechbuhler (1996)], gradient vector flow [Xu anish€r (1993)] or different optimisation al-
gorithms [Cox et al. (1996)].

A similar approach to snakes is that of spline-based defolemaodels|[Figueiredo et al. (1997)],
which though they do not encode specific shape informatiame hmore structure than snakes since
they are expressed as a linear combination of a set of basitidns. Their shape is defined by the
coefficients of these basis functions. However, becausetiah of coefficients can be arbitrary spline-
based deformable models cannot represent a “default” skbpa prior information is presented. For
that reason, spline-based methods under-perform compamadre appropriate strategies such as the

parametric deformable models we will discuss below.

2.4.2 Parametric deformable models

Parametric deformable models are commonly used when pfannation about the shape or appearance
of the object is available. A characteristic model derivemihf a set of training images and its variations
is encoded using a small number of parameters, achievirggattompact representation of the object’s
shape and photometry. There are two general ways to cartheyarameterisation, amalyticalor a

prototype-basegarameterisation.
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Analytical

With an analytical parameterisation, one can represengeloenetric shape of an object using a set of
analytical curves (e.g. ellipses) and a number of param#tat uniquely describe the chosen set. The
shape of the template can be changed by using differentsvéduthe parameters and variations in shape
are determined by the distribution of the admissible patamelues. Common techniques based on
analytical models are the example by [Yuille et al. (1998)jihich they designed parametric models
for eye and mouth templates using circles and parabolicesuirvorder to extract facial features. Also
[Lakshmanan et all (1995)] have used a parametric tempidtecate the airport runway boundary in
radar images. Based on prior knowledge, they derived a béblage of the runway parameterised by the
slopes and intercepts between the edges of two parallal IFR@ally in [Jolly et al.|(1996)], polygonal
templates are used to characterise a general model for eleeimd to segment vehicles from outdoor
traffic scenes.

All these techniques require a good initialisation of thedeldn order to obtain correct solutions
and in addition the approximate pose of the object to be mised is assumed known. Analytical
deformable models have limited applicability because thjeais under investigation must have a well-

defined shape that it is possible to represent by a set of san@ with a few parameters.

Prototype based

Prototype deformable models on the other hand are more lgesiifice they are derived from a set of ex-
ample images. Grenander with his pattern thelory [GrengA@8&3)] was the first to present a systematic
framework for representing a general pattern from a clashapes. A shape is represented by a set of
parameters, different values of which give rise to différg@mpes. A probability distribution on the pa-
rameters is also specified that allows for a flexible bias tdwagarticular shape. [Grenander and Keenan
(1993)] formulated a global, pattern-theoretic model @fshwhich provides a structured method to gen-
erate pattern from a class of shapes. This model can be ezpeesby: i) a prototype template which
describes the overall appearance of the shape and ii) a pararstatistical mapping that controls the
random variations in the shape class. The prototype temjdaisually chosen based on prior knowl-
edge of the objects of interest and the parametric statlsti@pping is chosen to reflect the allowed
deformations on the prototype template.

The success of these models depends on how well the paranaetgrthe probability distribu-
tions can be defined accurately to represent the shape amdrisbility. Indeed, many researchers
have used a variety of choices for the prototype templateitanubssible deformations. For example,
[Grenander et all (1991)] have used polygons to approxithateontours of human hands while varia-
tions were described using a Markov process on the edges.gtlal. (1996)] used a grey-scale bitmap
of the mean object shape with edge information as a way tesept the prototype template. They
used parametric transformations with normally distribuparameters to deform this prototype bitmap
to match the image.| [Zografos and Buxton (2005a)] have edgdmon this by working directly with
pixel values, introducing more suitable prior distribmtsoand treating the residuals with a robust error

norm. [Cootes et al. (1995, 2000, 2001)] have proposed ttmeashape and appearance models where
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the object’s shape and appearance is learnt from a set ofpdgamages. Once the images are aligned
and properly annotated, principal components analysisés to generate an average shape (prototype)
along with modes of variation._[Dias and Buxton (2002); X{2804)] went a step further and proposed
the Integrated Shape and Pose Model (ISPM). The ISPM is agarnased-model that is capable of rep-
resenting images of 3-dimensional, non-rigid objects atrconfounding the intrinsic shape variations
of the object with the extrinsic pose variations. The ISPM baen shown to outperform Cootes et al.’s
Flexible Shape Models and to be a more viable approach tteodimpled-view Flexible Shape Model
[Cootes et al.|(2000)]. Recently, [Felzenswalb (2005)]pmsed a deformable model that represents
shapes as unique triangulated polygons using constraieéliBay triangulation. He uses an energy
function conditioned on each triangle that has a data tefmgwattracts the template to the image, and
a penalty term that penalises large deformations. The nistohated at the point where the transforma-
tion has the lowest cost and is found by using a non-seriaughyo programming method that obviates
the need for a good initialisation. His technique is not gfmdbjects that may have approximately the
same global shape, but have differences in their interigr faces where their boundary is pretty much
the same, but internally they have different features).hSuoricacies cannot be captured efficiently by

Felzenswalb’s method.

2.5 Support vector machines

Recently, methods such as Support Vector Machines (SVM®) Ibecome quite popular in object recog-
nition and thus we mention them here for completeness. S\Vdvishe considered as a new paradigm
to train polynomial function, neural networks or radial isafsinction (RBF) classifiers. While most
methods for training a classifier are based on minimisingrdiaing error (i.e. empirical risk), SVMs
operate on another induction principle, called structtisld minimisation, which aims to minimise an
upper bound on the expected generalisation error. An SVkiflar is a linear classifier where the sep-
arating hyperplane is chosen to minimise the expectedifitat®on error of unseen test patterns. This
optimal hyperplane is defined by a weighted combination @halksubset of the training vectors, called
the support vectors. Estimating the optimal hyperplangjisvalent to solving a linearly constrained
guadratic programming problem. However, the computatidooth time and memory can be intensive.
Typical examples are by [Osuna et al. (11997)] where theyldpeel an efficient method to train an SVM
for large scale problems and applied it to face detectiorso/Papageorgiou and Podgio (2000)] have
used an SVM system to detect faces of pedestrians in the etal@inain. [[Li et al.|(2000, 2004)] have
used a support vector for determining the pose of an imagesimg it to choose among face detectors
arranged on the viewing-sphere. Face detection is cartiedyoa combination of Eigenfaces and SVM
methods.|[Ng and Gohg (1999)] achieved real-time, mubtiavéletection and pose estimation of human
faces that undergo non-linear change across the view-splfeontil and Verri|(1998)] used SVMs for
3-D object recognition without the need for feature exiacbr pose estimation. An efficient algorithm

for training SVMs has been proposed by [Dong etlal. (2005)].
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2.6 Optimisation

In this section we examine in more detail the use of optirasaalgorithms in deformable template
matching/registration problems. This will enable us toad®the appropriate solution from amongst a
selection of different optimisation strategies to use waitin linear combination of views object recog-
nition method. We start with the examination of simple, dirgearch methods and move on to more

complicated evolutionary algorithms.

2.6.1 Local methods

The tasks of computer vision such as object recognitioreiBeR000)], template matching [Jain et al.
(1998)], registration [Brown (1992); Hill et al. (2001)facking [Yilmaz et al.|(2006)] and classification
[Zzhou and Aggarwal (2001); Hasegawa and Kahade (2005)]llysngolve a very important optimisa-
tion stage where we seek to optimise some objective functoresponding to matching between model
and image features or bringing two images into agreemens dptimisation stage requires a good al-
gorithm that is able to find the optimum value within some tiimét (often in real-time) and sufficiently
close to the global optimum.

Traditionally, such tasks have been tackled using locardghistic algorithn@ such as the sim-
plex method/[Nelder and Mead (1965)], Gauss-Newton [Nocaad Wright (1999)] or its extension by
[Levenbergl(1944); Marquardt (1963)] and other derivabesed methods [Nocedal and Wright (1999)]
(see Fig[2Z.R). Such algorithms although they usually cayeveslatively fast need to be initialised near
the proximity of the global optimum otherwise they may geic&tinside local optima and converge far
away from the correct solution. One way to overcome this jgimobis to use multi-resolution search
techniques/[Maes et al. (1999)]. Such techniques, howeftem introduce additional challenges like
the tracking of optimal points between different resolntievels that slow the overall process and make
it prone to errors. In this work we only examine the simplex éme pattern search methods owing to

their simplicity, ubiquity and tractability.

Downhill simplex
The simplex methaﬁjis a self-contained strategy for optimising an objectivection in N-dimensional
space and, unlike many other methods it does not make edxpdieiof a one-dimensional optimisation
algorithm as part of its computational strategy. The simphethod requires only function evaluations
but not their derivatives and although it might not be the thedficient method available in terms of the
number of function evaluations necessary, it is a very gadation when we need something working
quickly for a problem with a small computational cost.

A simplex s a polytope oiV + 1 vertices inN dimensions, so in 1-D itis aline, in 2-D a triangle, in
3-D a tetrahedron and so on. The simplex is allowed to takeiessef steps (see Fif._2.3) most notably

thereflectionR, where the vertex with the worst function value is projedtedugh the opposite face of

LAlgorithms that when given a particular input will always grwe the same output for a problem that is fully specified and
dependent on known quantities.

2Also known as the downhill simplex method or the Nelder and Maigdrithm. It is not to be confused with the simplex
algorithm [Dantzig|(19€3)] for the solution of the linealogramming problem.
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Figure 2.2: Common optimisation methods traditionallydusecomputer vision.

the simplex to a hopefully better point. The simplex can alsange its shapeXpandFE andcontract
C~ andC™) to take larger steps when inside a valley or a flat region nesge through narrow regions.
It can also change direction (rotate) by discarding the iypogt W when no more improvements can
be made and considering the next-worst point amongst thaeiwertices. The simplex must be started
not with a single point but withV 4 1 points so in terms of computational cost, starts and resfast
we shall see later on) can be expensive. This method is notm@ended for problems with objective
functions that are costly to evaluate.

We introduced two small yet significant modifications to thesib algorithm|[Nelder and Mead
(1965)] in order to deal with local optima. The first was thdigbfor the simplex torestartwhenever
its progress stalled (most likely inside a local optimumheTestart is quite simple. After a number of
function evaluations where there has been no change in the gathe tracked optimum we keep the

best vertexP, and generaté&V new verticesP; using the formula:
Pi:PQ—‘y-)\Ui, (22)

wherev; are N randorH unit vectors;i = 1,..., N and\ is a constant which represents the step size.
The idea is that by restarting the simplex close to the bdst (i&g we can jump out of a local optimum
but without jumping so far away from the last good solutionhvege found.

We also introduced an additional modification which is a witun of the step size\ from (Z.2)
based on the number of function evaluations. The rationethénid this is that by reducing the overall
area of the new simplex is also reduced as the optimisatiogresses and it can “burrow” further into

smaller areas of the objective surface. This is illustraneBig. [2.4. Here we can see all the simplex

3This random component will undoubtedly change this paricsimplex implementation from a deterministic to a stochastic
approach but despite that it still remains a local method.
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Figure 2.3: Possible simplex moves after the worst point @Wéntified and rejected.

function evaluations (not only the best ones) as it searthe®bjective surface. In Fig_2.4(a) we
see the simplex using a fixed step size. After a certain peigt =200 function evaluations or FEs
for short) it stalls and initiates theestart procedure. However, the fixed step at that location is too
large and the simplex keeps jumping in and out of the dis@a/good optimum without making any
significant improvement for the remaining 800 FEs. Obsepxe the same experiment with a reducing-
step simplex (Fig_214(b)). When this algorithm first stallgérforms big jumps to become unstuck and
while it progresses the jumps get smaller as it tries to patetieeper into the landscape. If we compare
the two methods we can see that in the latter case the algostifi introduces small improvements
driven by the reducing step whereas the fixed step versiosthisd many FEs earlier.

We experimented with two reduction schedules, typicallgoemtered in Simulated Annealing
[Betke and Makris (1995); Press et al. (1993)]. These are:

A= \gR*D (2.3)

and
A= Mok L, (2.4)

which are illustrated in Fid._215, with being the current function evaluation aRdthe “cooling rate”.
After some initial tests we decided to use schedulel (2.3)esinis more adjustable and changes less
abruptly in proportion to any modifications of its paramstelt also does not drop as sharply as](2.4)
which means that there is still some significant step lengéilable for later function evaluations. A
pseudo-code algorithm of the reducing step restartinglsxip presented in Algorithiial 1 in the appen-

dices.

Pattern search

Pattern search algorithms _[Audet and Jr. (2003)] are a sulisdirect search methods used for solv-
ing nonlinear, unconstrained optimisation problems. Birlyi to the simplex algorithm, pattern search
approaches are considered direct since they neither cempuapproximate the derivatives of the objec-
tive function. Direct search methods, as opposed to modéitvaal approaches that rely on information
about the gradient and higher order derivatives to searcdmfoptimal solution, examine the neighbour-

hood around the current point, looking for a solution whée\alue of the objective function is lower
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Figure 2.5: The two examined step reduction schedules.
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than the current one. As a result, direct methods may be aseqtimise objective functions that are
non-differentiable or even non-continuous.

A pattern search method proceeds by conducting a serieptidfratory moves around the current
point x, sampling the objective functiofiin search of a new pointr{al point) xx+1 = ) + s, With
a lower function valuef (zx+1) < f(zx) (or higher if we are using a similarity metric), whekds the
iteration number andy, is a vector called &ial step. The set of neighbourhood points sampled at every
iteration is called anesh which is formed by adding the current point to a scalar rplétiof a fixed
set of vectors called theattern P, and which itself is independent of the objective functifinif the
algorithm finds a new point,, ; in the mesh that has a lower function value than the curreint pg,
then the new point becomes the current point at the next $tiye @lgorithm.

Individual pattern search methods are distinguished biy specific exploratory moves algorithm

and they must all satisfy the following two requirements:

e The directionBC}, of any accepted stef, is defined by the patterR;, and its length is determined
by the step length parametdy,, wheres, = A, BCy. B is known as dasis matrixandCj, as

thegenerating matrix

¢ If a simple decrease on the function value is found amongsbéathe trial steps of the current
iteration, then the exploratory moves algorithm must poeda steps; that also gives simple

decrease on the function value at the current iteration.

Every different pattern search method needs to have ths basrix B, the generating matrig’;;, the
exploratory moves algorithm to be used to produce the stepnd a method for updating, and the
length parameted;, specified. Even so, we can outline a general pattern seagohitaim (Algorithm

[2), presented in the appendix section, that all individuathuds should adhere to.

2.6.2 Global methods

In recent years a wide selection of global, stochastic dpétion algorithms has been introduced, such as
the genetic algorithms (GA) [Goldberg (1989)], mainly foigineering problems. Stochastic algorithms
are intended for optimising systems where the functioniatimship between the independent input
variablesz and outputy of the system is not known. The effectiveness of these dlgus in global
optimisation has ensured their use in computer vision eggins. Their main advantage is that they are
able to find the optimum value without the need for good ifig&ion. On the other hand they require
considerable parameter adjustment which in some casesas mutuitive or straightforward process. In
addition they tend to be somewhat slower than local, detestic algorithms since it is necessary to use
a higher number of function evaluations.

In this section we will introduce certain global optimisatimethods, specifically differential evo-
lution (DE) [Storn and Price (1997)] and SOMA [Zelinka (2QDthat appear to be new to computer
vision applications and compare them with a traditionalrapph, that is a generic Genetic Algorithm
[Holland (1992)], to determine if these new methods areebeitited for solution of typical computer

vision problems. We hope to demonstrate how much more deitaleh stochastic, global algorithms
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are in overcoming typical problems, usually associateth wie local methods already mentioned, so

that their use in computer vision can become more widespread

Genetic algorithm

A genetic algorithm (GA)/[Holland (1992)] belongs to a pewlar class of algorithms based on the
principles of evolutionary biology such asheritance mutation selectionand crossoverin order to
find the optimum of an objective function. A GA maintains aleotion of possible solutions each of
which is generated not only by some random perturbationdtimurt) but also by a combination of two
random solutions from the collection. Suitable candidédethese mutation and combination are chosen
by probabilistic criteria. Almost all GAs, no matter howfeifent they might appear, follow these basic
stages:initialisation, selection reproductionandtermination What distinguishes one algorithm from
another is the variety of ways we can carry out the requirésneineach of these stages. In more detail

we have:

1. Initialisation: Every GA starts with a randomly selectagpulation of candidate solutions to our
optimisation problem (usually calleddividualg which may be represented in a variety of ways
(binary strings, number strings, characters, number vecttsually, there is no prior knowledge
about the location of the global minimum apart from the agpnate boundaries of the system
variables (e.g. in the case of template matching: size afesteage, angle of object rotation, mag-
nitude of object scaling and so on), and thus the initial pagmn is generated in order to cover as
much of the search space as possible. One factor that isimptatant during the initialisation
stage because it determines the performance of a GA iditkesity of the initial population. If
the average distance between individuals is large thenitieesity is high whereas if the average
distance is small then the diversity is low. A very low diigrsvill most probably cause the ge-
netic algorithm to stall or converge inside a local optimuvhjle a very large diversity will slow
the progress of the algorithm because of the increasedrsspace. It is quite possible for a GA
to find the correct solution even if the latter was not instielhoundaries of the initial population
provided the following populations have sufficient diversAdditionally, we can adjust the diver-
sity of the population after initialisation by increasingdecreasing the amount of mutation. An
increase in mutation brings about an increase in diversitizvdéce versa. Getting the right amount

of diversity is usually a process of trial-and-error.

2. Selection: In every generation, a number of the populatidividuals are selected to reproduce
and create a new generation of solutions. Individuals frbendurrent generation are selected
through a probabilistic process using fithess-based iexiterthis way, fitter solutions are typically
more likely to be selected but a small proportion of less fitisons will also be included in the
next step of reproduction so as to help maintain a high diyes§the population while preventing

premature convergence to sub-optimal solutions.

3. Reproduction: The aim of reproduction is to create a newegaion of a population of solutions

from the current generation using the operationsrofsovermandmutation Once a pair of “par-
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Parents:
Children: % /%.
Elite child Crossover child Mutated child

Figure 2.6: Reproduction children in a typical genetic aipon.

ent” solutions from the current population has been saledteey are genetically combined to
produce a “child” solution that retains some of the charésties of its parents. This process con-
tinues until a new population of solutions is generated. Asymew generations are produced the
individuals in later generations will differ consideralfipm those of the initial generation but as
a result the average fitness should have increased. Thisasige only the best individuals from
the first generation would have propagated or have beenesélfsr breeding. A “child” solution
can be any of the three following types: alite childwhich is the individual (or indfividuals) of
the current generation with the best fithess value and igraattoally propagated to the next gen-
eration; acrossover-childvhich is created by a combination of a pair of “parent” saus; and a
mutation-childwhich is created by randomly changing (mutating) a curreniegation individual.
This is illustrated in Figure216.

4. Termination: The steps of selection and reproductiomegreated until a termination condition has
been satisfied. Usually, such conditions occur when an aetirsolution has been found, when
the number of maximum generations has been exceeded, whalidbated time or computation
budget has been reached, if there is no significant improreiethe fithess of a number of

subsequent populations (stall), or because of manualenéon, or any combination of the above.

The pseudocode of a typical GA is given in Algoritfiin 3 in theapdices. GAs have been ap-
plied to the solution of a variety of problems in computeriafissuch as feature selectidn [Kim et al.
(2006)], face detection [Bebhis etlal. (1999); Xu et al. (2)@hd object recognition [Hill et all (1992);
Bebis et al.|(2002)]. GAs have been shown [Goldberg (1988)aHd (1992)] to perform well in prob-
lems involving large search spaces. This is because a GAocatelgood-enough solutions very early in
the optimisation process while spending the remaindersadllibcated time/computation budget trying
to improve on those solutions. Quite often the improvemantsvery small in comparison to the time
spent optimising. This is not unusual for other evolutignarethods, some of which we will examine
later. That is why we believe that evolutionary optimisatio general may benefit from the inclusion of

a local search function after the most productive part offlobal search has been carried out.
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Differential evolution

Differential evolution (DE) [[Storn and Price (1997)] is amotutionary population-based optimisation
algorithm that works on real-valued coded individuals. BEapable of handling non-differentiable,
non-linear and multi-modal objective functions. As with @volutionary methods, DE maintains a
population of candidate solution called thmelividuals In DE the individuals are represented simply
as vector-valued entities. This allows for easier reprizgiem of the system variables and handling of

objective functions that contain a mixture of discreteeger and continuous parameters.

The basic way that DE works is that it adds the weighted difiee between two randomly chosen
population vectors to a third vector and the fitness resglvispared with an individual from the current
population. In this way, no separate probability distribois required for the perturbation step and DE is
completely self-organising. For example, DE can deducedntirbation information from the distances
between the vectors that comprise the population. At théinbayy (exploratory stage) we get a large
vector perturbation in order to explore as broad an area ssilgje. Later on when we are approaching
the optimum the distance between the vectors automatigetfysmaller and so the perturbations become

smaller. This way, DE can carry out a fine grained search mogtimum.

The algorithm behind DE is very simple and works as followisstfwe generate an initial popula-
tion of V individual candidate solution vectors. If there is no plapwledge about the location of the
global optimum we initialise the first population with ramdwalues from the known or expected limits
of the system variables (boundary constraints). Then foh éadividual z’; ¢ in the current generation
G DE generates a new vectﬁ;ﬂ by adding the weighted difference between two randomlycsede
individuals @ .1 ¢ and 'z 2 ¢ to a third randomly selected vectaf,; . The new vectofz’; , is then
crossed-over with the original individual'; ¢ to produce drial vector '; 1. The fitness ofu’; g1
is then compared with that of the original individuﬁlw. If the fithess ofﬁmﬂis greater than the
fitness of 7'; ¢ then @', ¢ is replaced byw'; 1, otherwiseZ’; ¢ survives in the new population as
Z'i.c+1- A more concise pseudocode for a single generation loop easebn in Algorithni4 in the

appendices, wherE is the weighting factor.

In differential evolution, just as in every other evolutiog strategy there are two separate mecha-
nisms that play a central role in the way that the overall fen evolves and determine the characteris-
tic behaviour of the optimisation algorithm. The first megisan is the population’s tendency to expand
and explore the optimisation landscape. In DE, becauseeofity new trial vectors are generated, there
is a high probability that perturbations yielding accefgatew points will enlarge the search region
that is covered by the population and thus prevent premammeergence. The second mechanism is
the selection process and is important because of the waynibwes vectors in unproductive regions
thereby counteracting the continuous expansion of therfiesthanism. If left unchecked, the expansion
mechanism would cause the population to continue to expaddrerefore increase the diversity of the
population and diverge to regions which are not of inteBgtincluding the selection process we avoid
this problem while ensuring there is enough diversity tolesgnew territory and make sure that the

population is still evolving, thus avoiding a populatioagnation.
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SOMA
Finally, we examine the Self-Organizing Migrating Algdiit (SOMA). SOMA is a stochastic optimi-

sation algorithm that is modelled on the social behaviowosbperating intelligent individuals and was
chosen because it has been proven that the algorithm hakilityeta converge towards the global opti-
mum [Zelinka (2004)]. SOMA was successfully tested on wagiexamples like real-time plasma reactor
control [Nolle et al.|(2005); Zelinka and Ndlle (2004)], demninistic chaos contral [Zelinka (2006)] and
genetic programming on artificial ant trajectory synth¢®iglatkova and Zelinke. (2006)].

SOMA maintains a population of candidate solutions in ewemation, the latter calledmigration
loop. The initial population is generated randomly inside ptedained boundaries of the solution space
at the beginning of the search. In every subsequent migridap the whole population is evaluated and
the individual with the highest fitness (or lower error valieedesignated as the leader(Fig. [2.7(a)).
The remaining individuals will “migrate” towards the leadthat is, travel in the solution space at the
direction of the fittest individual (Fid._2.7(b)). The norlisad distance travelled by each individual is
called thepath lengthwhich is of defined size and is randomly perturbed.

Mutation, as he have seen already in the GA, is the randomrpatton of individuals in a pop-
ulation and plays the important role of maintaining the déity amongst the individuals. Mutation is
somewhat different in SOMA than in other evolutionary sigi¢s. SOMA uses a parameter calldT
to perturb the individuals and is defined in the raf@e]. This parameter is then used to construct a

perturbation vectorRRTVectoy as follows:
i f rand; < PRT then PRTVectojy =1 else 0, j=1,...,N,

whererand is a random value fror/ (0, 1) andN is the number of dimensions. The PRTVector deter-
mines the final position of a non-leading individual and esisdly controls the dimensionality of each
individual’'s movement in the search space. For example) glament of the perturbation vector is set
to 0, the individual is not allowed to change its positionhe torresponding dimension.

In most evolutionary methods therossoveroperation usually creates new individuals based on
the information from the existing and previous generatidnsSOMA a series of new individuals are
obtained with a special crossover operator which in turemeines the movement of an individual in

the solution space and thus the overall behaviour of SOMA&. drbssover operator is defined as:

T = x4 + m t PRTVector (2.5)

where is a new candidate solutiomg, is the original individualyn is the difference between the leader
and the starting position of the individuale [0, PathLength] and PRT Vector is the perturbation control
vector. We can observe frofn (2.5) that the PRTVector caus@siavidual to move toward the leader in

N —k dimensions. This is because tieelements of the PRTVector are randomly set to either 0 or 1 and
therefore the parameters of an individual will not changdédimension where PRTVectos 0. If we
denote byk the number of unchanging parameters, that is the numben@rdiions that are not taking

partin the actual search process, we can see that the ogtionisakes place itV — k£ dimensional space,
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Figure 2.7: 2-D examples of the SOMA algorithm.

with at most/V dimensions. Such a property can reduce significantly the 8@MA spends searching

for a solution. The SOMA algorithm is shown in pseudocode ligotithm[3 in the appendices.

2.7 Active Appearance Models

Active Appearance Models (AAM) originally proposed by [Ges et al.|(2001)], belong to the general
class of linear shape and appearance models and are aimeldiatjsamong other things, the pose-
invariant object recognition problem. AAMs are a very watiokvn and established method that has
been used extensively in the past [Edwards lef al. (1998)chdit et al. [(2001); Beichel et al. (2005);
Cho and Kim|(2007)].

An AAM is a matching technique that combines a parametrisatistical model of the shape and
grey—levelg of the object and an estimate of the statistical relatignskeitween model parameter errors
and resulting image residuals. The AAM is defined by a set mdif@arked images that compose the
off-line training set. Landmarks are chosen on each trgiimmage at key points, such as discontinuity
boundaries and feature points, in a similar manner to thatsed to landmark the basis views in the LCV
training step. In fact, for the AAM tests we have used prdgifee same landmark positions to build
the appearance models, as we did for the LCV approach. Thisefufacilitates the direct comparison
between the two methods, since we are dealing with modelseeafame shape. Where AAMs and LCV
differ, is how the grey-level information is modelled and tombined appearance variation is expressed.

Given thus a set of such landmark points, an AAM is able to gerea statistical model of the
shape variation. This is achieved by alignment of all thepshsets from all the training images, into
a common coordinate frame (e.g. by using Procrustes aligh{f@odall (1991); Gower (1975)] and
carrying out principal component analysis (PCA) [Jaoli1®86)] on the data. Any example of a trained

object may therefore be approximated by:

x =T+ Pb,, (2.6)

“We would like to make the distinction between shape appearagray-level appearance and combined shape + gray-level
object appearance. In this thesis we shall be using the tdrapesgray-levels and appearance to refer each of the ‘shjextal
properties respectively.



2.7. Active Appearance Models 51

where,Z is the mean aligned shapB, a set of orthogonal modes of variation ands a set of shape
parameters.

For the grey-levelg, in a manner similar to that used in the LCV, a triangulatiefirted on the
landmark points is used. In this case however, each traiexagnple is warped to the mean shape
and the pixel informatiory;,,, is sampled over the region covered by the mean shape. In Hrnsen,
the object is segmented from the background and only theyfouad pixels are used for modelling.
The effects of global lighting variation may subsequenttyrbinimised by normalising the resulting
samples using a simple affine transformation, and atteiggtinmatch each sample to the mean of
the normalised datg, which in itself is an iterative process. It is now possiteapply PCA to the

normalised appearance data and obtain:
g =g+ Pybgy, (2.7

whereP, is a set of orthogonal modes of intensity variation &pa set of grey-level parameters.
The combined shape and grey-level appearance of any mddaddject may be reached using the
vectorsb, andb,. Since there may be some correlations between the shapeantbgel variations, an

additional PCA is carried out on the appearance data:

Wibs
b= ) (2.8)
bQ

wherelV, is a matrix of weighgused to cater for the differences in units between the shapmtensity

models. The end result is the combined model, which is giyen b

b= Qc, (2.9)

where( are the appearance eigenvectors (or orthogonal modes e&egre variation) anethe eigen-
values (or appearance parameters), that control both #ygesiind grey-levels of the object. As such
given a set of parameters an example image of a modelled object may be generated bygréating

theshape-fregrey-level imagey using:
g =19+ PyQqc, (2.10)
and warping it by means of the landmark points defined by:
r =7+ P;WsQsc, (2.11)

whereQ = (87)

The final component of the AAM is the active search, wherergize appearance model, a novel

5The choice of weights is determined by using a displacemenhtearor-test methodologl [Cootes et al. (2001)], similario o
approach in sectidn 6.3.2.
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image and good initialisation, the parameterare iteratively adjusted in such a way, that in the end,
the model matches the novel image as closely as possiblem@itehing is achieved by minimising the
differenceA = |I; — I,,|? of the grey-scale values in the imageand those in the moddl,,. This
matching step is decoupled from the AAM and indeed any kindezfrch method may be employed
here. [Cootes et al. (2001)] initially proposed a local seanethod, which is in fact the one we used
to evaluate the AAMSs on the three datasets. This local opétitin approach makes the search fast and
accurate provideda very good initialisation is available close to the globahimum. [Cootes et al.
(2001)] do not attempt to solve the general optimisatiomceaver a high dimensional space every time
the model is required to fit to the image. Instead they expiatfact that the optimisation problem is
similar each time and that the similarities can be learnétin, as long as the required object and scene
properties have been sufficiently sampled by the trainihg se

[Cootes et al.|(2001)] assume a simplistic linear relatigmas an approximatiHnbetween the
change of the model parameters and the efypin order to aid optimisation efficiency. The learning
process, during offline training, involves randomly pdring the model and calculating the erevbifrom
ground truth images. Once enough such perturbations harefgmformed, multi-variate regression is
used to obtain the parameters of the linear motiel

The pseudocode behind the active search method for a sirgdelrsearch-update iteration, and
assuming that the current estimate of the model parametegs is given in the appendix section in
algorithm[®.

The above steps are repeated until the error minimisatiataited or after some predetermined
number of iterations where convergence is assumed. [Cebt#s(2001)] also use a multi-resolution
pyramid search method to achieve convergence at each lef@kbmoving on to higher, finer resolu-
tions. This is more efficient than single resolution seart¢tenvlocal optimisation methods are used.
Tests we carried out using the pyramid approach on globaflaiidh optimisation methods for the LCV,
did not indicate any better accuracy performance thaneirggolution alternatives. The only potential
advantage of using the pyramid search with a global methocbanser levels is that the latter can be

much faster since the image is smaller.

81t is only linear over a limited range of values and thus pétions must be kept low (e.g= 2 pixels translation and 10%
scale variation). [Matthews and Baker (2004)] show that #ssumption is not correct.
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Chapter 3

Background theory

In this chapter we will look into the background theory of truiew geometry, leading to the formu-
lation of the linear combination of views approach whichrisegsential part of this thesis. This theory
will explain why it is possible to synthesise novel viewsngsR-D information alone and without the

need to recover the 3-D structure of the object.

3.1 Single view geometry
We begin with the simple case of a general projective, pmlbamera model with focal lengghand the
projection centre placed at the origin of the world framey(BE.1).

A 3-D world point P = (X,Y, Z) is projected onto the image plahkthrough a line that passes
from the optical centr€’, and is mapped to the 2-D image paintvith coordinates given by:

X 1Y
T="F,y="F.

~ ~ (3.1)

Equation[(3.11) is non-linear. However, if the world and iragpints are represented using homogeneous

Y-axis I

Figure 3.1: Pinhole camera geometry showing the projecti@point P to the image plarié.
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coordinates, then the projection can be expressed linganhatrix form as:

X
T X 0
Y
y|=|Y |[=1]0 0 0 (3.2)
Z
Z 00 1 0 ,

The~ sign implies that the left and right hand sides are equal @mton-zero scale multiplicatior. (3.2)
can be simply rewritten as:

Zp = KP, (3.3)

which is known as thgeneral projective equatiowith P = [X,Y, Z,1]7 andp = [fX/Z, fY/Z,1]*.
The matrixK in (3.2) represents a very simplistic case since it contaiihg information about the focal
length f. More generallyK is a 3x4 matrix with 11 d.o.f. defined up to a scale factog 0, since K’

and\K describe the same camera that may be decomposed as follows:

K = CTG. (3.4)

Risx3) t3x

Taken in turn, the 44 matrixG = represents the positianand orientation

Op1x3] 1
R of the camera with respect to the world coordinate systeras&lé parameters are called éxternal

1 0 0 0
camera parameters. Matrix= | 0 1 0 0 | performs the projection from homogeneous world
0 010
f/sz f/sycotl o,
space to homogeneous image space. Finally, métrix 0 I/sy o, | is thecamera

0 0 1
calibration matrixwhich performs a 2-D affine transformation of the image pland depends on the

intrinsic camera parameters: focal lengthprincipal point (or image centre) coordinates, o, ), pixel
width s, and heights, and angled between the axes (usualty'2). The ratios, /s, ~ 1 is the aspect

ratio. If these are parameters are known, the camera iscshiel ¢alibrated.

The projective camera equatidn (3.3) is a non-linear tansdtion from world to image coordinates
which complicates further analysis. To avoid this, we canarge of the available approximations to the

projective/perspective camera (Hig.13.2). The most basie ¢s the orthographic camera:

1 0 00
Kotho=C | 0 1 0 0 |G, (3.5)

0 0 01

which reduces to a mere parallel projection onto the imageel However, the orthographic camera is

overly simplistic since it does not model the effectsliftance(i.e. the image of an object will change
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Figure 3.2: Common approximations to the perspective camer

size as the object’s distance from the camera is varied)pasdion (i.e. the image of an object will
change as its position in relation to the optical axis ise@yi We can approximate the former effect

using the average dep#hof the scene points in equatidn (B3.1), yielding:

X1y

=7 3.6
T=o Y= (3.6)
In matrix form we have:
1 0 0 O R
t
Kuweak=C | 0 1 0 0 ] Al 3.7)
Op1x3] Z
0 0 0 1

This is called the weak perspective camera and it is sim@yp#rspective camera with individual point
depthsZ replaced by an average constant deftfsee Fig[3.2). The matriKeaxincludes two stages:
parallel projection onto the average depth plane and umifecaling of the resulting projection. The
weak perspective model is valid when the average variafitimneodepth of the objech Z along the line
of sight is small compared to th& and the field of view. As such{eax does not model position effects
leading to a poor approximation when the object is far fromdptical axis.

We thus consider an alternative approximation, the parspeetive camer# a2 Where the pro-
jection is performed on an arbitrary direction, usually thg linking the optic centre to the 3-D centroid

of the object, which is consistent for all the poinisyaracan be written as:

1 0 —cotgp coto
Ri3x3)  t3x1

Kpara=C' | 0 1 —cotf cotf _ . (3.8)
O[1><3] zZ
0 0 0 1

All three approximations: Kortho, Kweak Kpard Can be considered as special cases ofaffiae
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camera model which is obtained by constrainiiguch that:

K1 Ko Kiz3 Ky
Kn=| Koy Ko Koz Ko |, (3.9)
0 0 0 Ksy

thereby reducing the degrees of freedom from 11 to 8. In texhishage and world coordinates, the
mapping takes the form:
r=AX +t, (3.10)

whereA is a general 23 matrix with elementsl;; = K;; /K34 andt is a general 2-vector representing
the image centre. AlthougR 4 is not specified in terms of a decomposition like that giveeduation
@:4) it can account for the following: a 3-D affine transfation between world and camera coordi-
nate frames, a parallel projection onto the image plane a?Daaffine transformation of the world
coordinates. We should note here that a collection of homegies image points obtained B§, will
have the same projective depths (which by extension alslieagp Kortho, Kweak aNd Kpars) Which are

independent of the scene structure [Zisserman (1992)].

3.2 Multi-view geometry

We can now move to the geometry of multiple points in multigws. For this we assume a 3-D scene
comprised of a multiple-point vectoP,, P, . . ., Pn]T. A particular 2-D view of the scene, associated

with one camera matrix (e.d<) may be defined as:
S=[KP,KPy,...,KP,]ig = K [P1,P2,...,PN]y . (3.11)

According to [Tomasi and Kanade (1992)], S can in principtefdctored into two components repre-
senting ’joint projection’ and 'shape’, and its rank is atshd, which happens to be the least dimension

of the factors.

On the assumption that we take a series of imdgex the scene each associated with a camera

matrix [K, K, ..., Ky] we get:
K\P, KiP, ... K|P,
KQPl K2P2 K2Pn
Sy =
KyP, KyP, ... KyP,
3V xn (3_12)
Ky
K, . L
= . P P ... P, L = Joint projectionx shape
. Xn
14

3V x4
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Each3 x n row vector in theSy matrix contains all the;, y coordinates and the projective depths

We may now consider the transpose%f written using the inhomogeneous image coordinates

p=I(% %) as

P1T P1T P r
/T //T ///T
p2 p2 p2 .
Sy =1"" , (3.13)
/T //T ///T
Pn Pn Pn nx2V
wherep' ,p",p", ... represent the first, second and third views of a ppinif we use the terminology

from [Shashual (1997)] each column & is part of the Joint Point Space (JPS). Furthermore, each
“semi-view” (collection of allz andy coordinates from all points) is inside the column spacgfthe
latter being a subspace of the JPS. As a result it should kep@s$o represent all the views inside the
column space provided we construct the appropriate lipéadiependent basis for it. By definition, the
dimension of the column space §{ is equal to the rank af?;, which as we have mentioned previously

under affine imaging is at most 4.

3.3 Linear combination of views

[Ullman and Basril(1991)] were the first to point out that wéyarequire three semi-views to span the
column space of;, although as shown in [Buxton et/2l. (1998)] four semi-vides. 2 views) might
be preferable from a practical viewpoint as it results in ms\etric manipulation of the subspace and
improved numerical properties in the basis views (e.g.Herdolution of the linear system and recovery
of the coefficients). More specifically, [Ullman and Bas®@1.)] showed that under the assumption of
orthographic projection and 3-D rigid transformationsp twews are sufficient to represent any novel
view of a polygonal object from the same aspect. The proof eaayly be extended to any affine imaging
condition. Thus, to a good approximation, given two imagesnoobject from different (basis) views
and” with corresponding image coordinates, ') and(z”,y"), we can represent any poifit, y) in

a novel, target view; according to, for example:

T =ag+ a1z’ + asy’ + asx” + agy” . (3.14)

y = bo + b1z’ + boy' + bsx” + byy”
The target view is reconstructed from the above two equatiiven a set of valid coefficients,;, b, ).
Provided we have at least 5 corresponding landmark poirgl three images/r,1’,I”) we can es-
timate the coefficient$a;,b;) by using a standard least squares approagh, b;) are functions of
the camera parameters but without any dependence on 3-d wookdinates. Based on a method for
weighting the combination of the intensities (or colour§)corresponding points in the basis views
I’ andI” several others have taken this concept further from itgalrdtpplication to line images and
edge maps, to the representation of real imagefBebis et al. [(2002); Koufakis and Buxfon (1998b);
Hansard and Buxton (2000h); Peters and von der Malsburdlj28@&vaud et all (2007)].

Such results suggest a straightforward yet powerful frapnkvior object recognition: novel views
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of an object can be recognised by simply matching them to amatibn of a small number of stored
views (basis views) of the object. The main problem with tbea is the choice of parameters for the
combination scheme. As suggested by Uliman and Basri thepsters can be recovered either by: i)
identifying a set of features from the novel view that apjme¢ely match a set of features from the
known views or ii) searching the space of parameters eXlylidn i) one has to compute the transfor-
mation that aligns the model with the scene by solving a sysitlinear equations similar t§ (3.114).
The problem here is the correspondence problem becauseegienthe unrealistic assumption that the
correct features have been detected, the number of moelet$eature matches grows exponentially as
the number of scene features increases. Techniques th&b amive this problem, such as the interpre-
tation tree|[Grimson and Lozano-Perez (1986)], will be eteslmed by the sheer number of possible
correspondence matches. Strategy ii) avoids this feahatehing step and the correspondence problem
but may be very time consuming owing to the high dimensiopats that needs to be explored.

In this thesis, we will attempt to use the LCV method diredly intensity images, without ex-
tracting any features, establishing correspondencedvingdor the LCV coefficients. Instead, we will
have to search the high-dimensional parameter space teartt® coefficients with the help of a good
and efficient optimisation algorithm. In this context, emyhg LCV for object recognition has several
advantages over existing methods. First, it is more praictiman methods which require explicit 3-D
models. In fact, a sparse set of 2-D views may be all that isired to represent a 3-D object, and the
scheme is as powerful as using 3-D models. Second, it is nfficept since it stores and manipulates
2-D views only. In contrast to multi-view approaches, novielws in LCV are compared tpredicted
views (i.e. combination of reference views) rather thanddmparison being the reference views them-
selves. Since the predicted views can be different fromefegence views, recognition does not depend

on close similarity between novel and reference views asdrcase with multi-view approaches.
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Chapter 4

2-D object recognition

In this chapter, we introduce the work carried out during ioitral research on the object recognition
problem for 2-dimensional objects. The solution we proposesists of gorototype model template
which describes the representative appearance of a cleestspfparametric transformationthat deform
the template and a set obnstraintsthat bias the choices of possible deformations. We begim masic
deformations and continue with their extension and th@thtction of probabilistic constraints to build a
Bayesian framework. This led us, in addition, to exploretiasics of foreground/background modelling

and its effect on the template matching process.

4.1 Model representation

The starting point of our investigation into 2-D object rgadion is a simple representation for a flat,
planar object. We will introduce parametric transformasi@f such an object later on, but as we wish
to avoid additional parameterisation in the model [Cootes Eaylor (2004); Cootes etlal. (2001, 1995)]
these will only represent global information on the objetthaut explicitly defining a parametric form
for each class of objects.

Instead, to aid simplicity, we are going to use a “prototygmplate”, 7,,,, which is essentially the
exemplary appearance or ‘'model’ of an object (or class oéab) and is based on our prior knowl-
edge about the characteristics of the object of interest. t@uplate thus contains only grey-level and
boundary information in the form of a bitmap and is therefaperopriate for general object recognition
tasks since, in order to apply the same approach to a diffetass of objects, we only need to generate
a new prototype image of this class. The prototype is uswatgined from training samples, using
a training procedure that could be based on Principal CoemtsrAnalysis (PCA)_[Cootes and Tavlor
(2004)], shape alignment [Viola and Wells (1995); Larsed Biriksson [(2002); Liang et al. (2006)], or
the prototype template could simply be the mean appeardribe olass.

If we now revisit the problem statement in secfiod 1.1, we nedgrmulate[(1.11) using the prototype
intensity template. We assume a scene or 'target’ infage, y) where(z, y)* are pixel coordinates. If
we allow for a transformatiofi’ of the template, our aim is to minimise the difference betwibe pixel
values in the templaté,, (z,y) and those in the imagg,(z, y) using, for example, a sum of squares

error criteriony . [I7(z,y) — Tl (z, y)]?. The most simple choice for the transformatibris the 2-
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dimensional translation of the co-ordinatesy) that positions the centre of the template, sayuat).
If we also restrict the comparison of target image and tetaptathe area covered by the template, we

may thus reformulaté (1.1) as:

Zh(m—u,y—v)[IT(x,y) — I (z —u,y — )%, 4.1)
mﬁy
where the window functioh(x — u,y — v) restricts the sum to be over all the pixéls y) under the

template located g, v). We can now expand (4.1) and obtain:

Z h(LE —u,y— v)[ITQ(:Ev y) - QIT(xa y)‘[m(m —u,y— 'U) + Imz(x —Uuy— U)] (42)
z,y
In @2) the term_ I,,,?(z — u,y — v) is constant and if we assume that/*(z, y) does not fluctuate
very much over different regions of interéstx — u,y — v) of the target image, we may replace min-
imisation of the sum of squared differencesin14.2) by masation of thecross-correlatioror overlap

term:
O(um) = ZIT(aj??DIm(m —wYy - ’U>7 (43)

z,y
which is a similarity measure between the target image aeddimplate. However, strictly speaking,
S h(x — u,y — v)I72(z,y) is not approximately constant across the image, espeaidiln there is
clutter in the background, but varies with the position & tiindowh(z — u,y — v). Itis thus possible
for matching usindg(413) to fail to give consistent resultsparticular, this can happen when the correct
position where the object is located returns a lower coticeiavalue than, say a bright region in the
image where there is a high intensityfip(z, y).

We can avoid this particular problem by normalising thernstges of both the target image and the

template to unit energy or 'length’ by replacing (4.3) with:

_ Zw,y h('r —uYy - v)[IT(xay) - TTHIT”(I —uYy— ’U) - ITrJ
Vb —u,y —v)[Ir(e,y) — Trl S h(z — wy — o)lLn(x —u,y — ) — T2

c(u,v) , (4.4)

which is called thenormalised cross-correlatioandI,, andI are the means of the template and the
portion of the image under the windowz — u, y — v) respectively.

It is immediately obvious thaf(4.1) does not have a closeah feolution and that it must be min-
imised numerically, using one of the various numerical mjgation algorithms available. Likewise,
since it is a similarity measurg_(4.4) must be maximised migakly. As we can see from Fid._4.1(a)
however, this is not so straightforward since even an eléamgransformation, such as translation of
the template, can generate very noisy surfaces repletdagigth minima and is as a result very difficult
to optimise without a complete global search. Such a compktbal search is usually carried out in
template matching by scanning the template over all passagiations in the target image but this pro-

cedure, does not extend well to cases where the transfammifiiis more complicated and the search is
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Figure 4.1: surfaces and curves composing the affine tranatmn.

higher-dimensional. For this reason, we need to simplié/ghoblem by regularising the error surface
and/or starting the optimisation process much closer tb#s of attractizﬂ\ We shall revisit this idea

later in this chapter.

4.2 Parametric transformations

Although we assume that the prototype template exhibitsrisimnce of the object that is most likely
a-priori, we still need the ability to deform it to match tmeage. The 2-D translation previously used is
very restrictive for most object recognition applicati@mswe would like to extend it to a more powerful
transformation, the global affine transformation with 6 @eg of freedom (d.o.f.) which, for example,
can be used approximately to account for changes in the apipsttape of a 2-D object with viewpoint.

The affine transformation is represented herelas: M + d, where

M= (4.5)

is a2 x 2 linear transformation matrix with 4 d.o.f. amsd= (d., d,) a translation vector with 2 d.o.f..
These transformations may be the result of variations indt&tion and shape of the object itself or, as
noted above, variations in the camera viewpoint (distavieeying angle and so on).

If we now try to minimise the dissimilarity between the tewtel and scene image with respect to

1in the context of the optimisations we have to carry out, wé laiisely define the basin of attraction as the region of space
(i.e. set of points) such that initialisation within thiggien will guarantee convergence of the optimisation algarmito the global
optimum. In this sense, the basin of attraction is algorithipedelent.
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the 6 parameters of the affine transfditywe will soon discover that for the majority of cases (exahgd
very simplistic objects over constant backgrounds andifgat differences between scene and template)
this is indeed a difficult task that can defeat, for examplgamid-based matching procedures and
even more sophisticated optimisation algorithms. Thisisabise, as noted above, pixel-based template
matching usually involves dealing with very complicatetbesurfaces.

A possible solution to this problem would be somehow to &#iséssearch algorithm. This usually
either means initialising the optimisation close to wheeebglieve the solution might be or by incorpo-
rating prior information into the optimisation processtthdl, we hope, constrain the solution towards
the desired global optimum. The latter might take the forma oéstriction of the search to possible
good areas in the parameter space that should be explorddaegularisation of the error surface by
addition of a term or terms which are convex and sufficierttigrgy to dominate the pixel-based match-
ing term everywhere except near the desired global optintsince good initialisation without explicit
knowledge of the solution set might not always be possibéegecided to introduce prior information by
associating probability distributions with the parametefrthe affine transform and building a Bayesian
model. To achieve this we need to choose a suitable parasatien of the affine transformation. Ide-
ally, the chosen representation would isolate the indeldiegrees of freedom into separate independent
transformations and assign a probability distributionaoteone. The reason for this is that dealing with
statistically independent parameters is both more prlctiod more intuitive than dealing with mul-
tivariate distributions. In particular, we are able to ekanindependent univariate transformations in
isolation and assign to them pdfs chosen specifically fdr thdividual characteristics

It is therefore necessary tecomposeahe linear matrixM as far as possible into individual
meaningful transformations (primitive matrices). One wayproceed is via polar decomposition
[K.Shoemake and Duff (1992)] and to decompose the (in g&naoa-singular matrix\/ asM = Q5,
where( is an orthogonal matrix with 1 d.o.f. that, depending on tiga f its determinant, may be a
pure rotation and' is a symmetric and (in general) positive defirsteestchmatrix (i.e. a non-uniform
scale along orthogonal axes that may be turned at an anghe twobrdinate axes) with 3 d.o.f.. Polar
decomposition will produce unique matric@sandS. Unfortunately in general this is as far as we can
go and we cannot uniqugydecomposé any further into scale or shear matrices. In addition theord
in which the constituent matrices are multiplied mattemgoducing further ambiguity.

Given these difficulties, another way to proceed isamposehe linear matrix)/ as a product of

primitive matrices. For example, if we adopt a canonicakofdr the transformations we can say:

M = SRU,, (4.6)

S = is an anisotropic scale matrix with 2 d.o.f. ,

2We could try a further polar decomposition éhto obtain a shear matrix but this will not work because of theriction
effects of the shear transformation. See [K.Shoemake and(D28)].
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cos —sinf | . . L.
R = is a rotation matrix with 1 d.o.f. and

sinf  cos6

1 —tang . L
U, = a shear matrix on the x axis with 1 d.o.f. .
0 1

As we can see, we have accounted for all the degrees of freefithra linear matrix\/. Of course,
this composition is not unique, and indeed any such combimahat has 4 d.o.f. will be valid. Since
we are only interested in the transformations from an og@tion point of view, the order in which the
transformations take place (e.g. shear followed by ratadied then anisotropic scale) should not matter
as long as we use the same representation throughout.

Having representing the matri¥ in such a way, we may begin by exploring the characterisfics o
the individual transformations independently from eadteaqtnear and inside their respective basins of
attraction. In Fig[ /411 we show the SSD error response foln eathese transformations. These were
produced by placing a windowed template directly over thaged object and varying each of the 6
transformation parameters in turn while having conditibttee remaining ones at their optimal values.
The results are only 1- and 2-dimensional slices of the divamain of attraction which owing to the high
dimensionality cannot be viewed in its entirety. They aiélsbwever very useful in identifying where
potentially interesting solutions may exist and helpingltoose the appropriate prior distributions.

In addition, though it is not strictly necessary in this afimodel, we have chosen to include a
local, flexible deformatior which is a continuous mapping, y) — (z,y) + [Lz(x,y), Ly(z, y)] in 2
dimensions. We define it as a simple sinusoidal wave function

27TA) (27rA
——), Bcos
Ao Ay

Ly(2,y) = [La(z,y), Ly(z,y)] = |acos( )| (4.7)

wherey = («, 8, Az, Ay, %0, Yo) are the deformation parametets. s are the wave amplitudes,;, A,

the wavelengths, and = /(z — 2)% + (y — yo)? is the Euclidean distance from the wave centre
point (zg,y0). Although we assume an affine or weak perspective cameralntadeimportant to
consider effects due to image distortion via lens abemaditd other non-linear processes during image
formation. Such effects may of course be removed by meansuifable camera calibration [Salvi et al.
(2002);.Hemayed (2003)], however, un-calibrated cameradraquently used in practice and this is
becoming increasingly the case as cheap digital camerasmigewidely available. Thus, the wave
deformationL is used to introduce any necessary curvature into the mggpircess and to take care
of fine detailed adjustments that the affine transformationeacannot explain. Defined in this way the
local deformation represents extrinsic variation, butetie no reason why it could not also be used to
represent intrinsic shape changes of the model espedialpplied before the affine transformatidi.
The deformatiornl is similar to the orthogonal base displacement used by Jdaih Fain et al.[(1996)]
but in our case is simpler and easier to optimise.

The functionL is continuous and smooth for low valuesafg and A, A, approximately the size

of the template window and thus maintains the connectivity smoothness of the template. For higher
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Figure 4.2: The sinusoidal wave (a) and its deformationcg$féc) on a 2-D shape (b).

amplitudes and lower wavelength values we can obtain morplx, coarser deformations if required.
The wave function has simple parameters that are meaniagtutan easily be adjusted to control the
wave propagation over the image, and in addition, it is ghiaforward to attach probabilistic priors to
them. An example of this local deformation function togetiéh its effect on an image can be seenin
Fig.[4.2.

Suppose then that we have a prototype template fundtigix,y) and a transformatiof’ that

transforms the template as follows:

Is(l’, y) = TIm(xvy) = Im([M(mvy)} + L¢(l‘,y) + d) (48)

If we use [4.6) from above we see that:

Is(x,y) = Im(SRUx (2, y) + Ly (2, y) + (do, dy)) (4.9)

which is the parametric transformation that will deform teeplate to produce a synthetic imagg
say, to be matched to the scene or target imhge This transformation is realised by shearing the
template by an anglg, then rotating by an anglg scaling the result by,,, s, along directions: andy

respectively, locally deforming the resulting templateybgnd finally translating by.

We can now use equatiorfs (IL.1) ahd{4.9) and minimise forrétmsfiormation parameteés say,

in order to obtain the optimal solution that will match thetegular template to the image. Since
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this is a non-linear objective function we need an iterathathod in order to minimise it successfully.
Furthermore, because only a limited set of parametevil produce a template that closely resembles
the object we may expect a narrow basin of attraction in a-ligtensional space. Unless we initialise
the optimisation very close to the solution representirggdbrrect match, minimisation is likely to be
difficult. The alternative is to restrict the variability tife transformations known to be likely to represent

correctly matching solutions.

4.3 Probabilistic constraints

By choosing appropriate transformation parameters we@amresent a large set of possible transforma-
tions of the prototype template. However, not all these a®iwill produce a valid template or even a
template that resembles the object(s) in the image. Canistgethe choice of possible parameténmay
thus yield better solutions. We do so by imposing a probgtdénsity function (pdf) on the parameters

of the transformation¥’.

Consider the local deformatiahy, (z, y) first. We have deduced constraints on the range of accept-
able parameter values based on experimentation and irisighthe transformations with which they
are associated. First and foremost, we have chosen a undifistriibution for the wave centre param-
eterszg, yo Since any starting point (within the image range) has an lggnadability of producing a
valid wave. Under the assumption that the amplitudg$ of the two waves (one on the x-axis and the
other on the y-axis) are zero mean, independent and idéyntizaussian distributed, with equal variance

o} = oj = o, then their pdf will be:

a =

R o e ot
(4.10)

Generally, if we choose large values for3 we will obtain large deformations of the template and thus
large deviations from the original prototype. As we haveédatkd above we wish to avoid that and we do
so by adjusting the variane€,. Large values of2, allow for larger deformations and vice-versa smaller
values tend to restrict the parameters to representingesna@formations. The wavelength parameters
Az, Ay require a different pdf with positive or negative non-zeatues (multiples of the image width and
height respectively) being more probable than wavelendthse to zero. Therefore, it is clear that we
need a distribution that is symmetric, with zero probapildr when the wavelength = 0, and which
increases as we move further away from the origin. Since ayoelf is not easily expressed in a familiar
analytic form we have reformulated (#.7) by using wave nungagameters:, = 1/\,,k, = 1/),
each of which is the reciprocal of the wavelenghh, k£, have units of inverse length and represent the

number of waves (or cycles) per unit distance. The new waf@mation will thus be as follows:

Ly(z,y) = [acos(2mk,A), § cos(2mk, A)]. (4.11)
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This reformulation allows us to use the parametersk, instead of\;, A, which is preferred because
the wave number parametéts, k,, have much simpler pdfs. More specifically, the probabifty,, &, )
should have a maximum at 0 where each of the deformation eagtis becomes very small since the
template will then undergo only insignificant deformatiomle probability may be expected to decrease
quickly, for example exponentially, as we move away fronSuch a pdf has the characteristics of the
Laplacian (or double-exponential) probability densitgdtion but since its derivative has a discontinuity
at zero we decided to approximate the pdf using the much smgphussian distribution. If we again
assume that, andk, are independently and identically distributed with meapst, = 0 and shape
parametet;, then their pdfis:

k2 k2
P(k) = P(ky) P(k,) = —L— exp {fﬁ} —1_exp {’E}

1 k2+ED
B S

Note that [[4.IR) represents our empirical, expectatiat waves with smaller wavelengths (thus

(4.12)

smoother deformations) are more probable since in gegenadldo not deal with severe non-linear

lens distortions.

For the rotation and translation, we may assume, for exaewple default, that all rotations and
translations are equally possible and thus we can congidergarameter8, d as being uniformly dis-
tributed. However the scale and shear transformationsrequdifferent approach and special care is
required in choosing their pdfs. The reason for this comas fihe behaviour of the error functidn (4.9)
for certain values or ranges of values for the parametetqs,, s,) and¢. For example, if one or both
of the scale parameters are very smallz, y) will collapse into a single point or to a line respectively.
This of course is not going to be a valid representation fertémplate but the error will undoubtedly
have a minimum for these values of the scale parameters. t8viet solutions should not be allowed.

Similar behaviour occurs with the shear angle

To illustrate this further we have carried out the followaperiment. We took a grey scale template
of an object, created directly from an image, and placedtdraplate above the original scene object.
Then we sampled the sum of squared differences error funidialifferent values of the scale parameter.
We started froms = 1 (original template size) and scaled it up unti= 3 and we also scaled down
the original template untis = 0. The resulting error function plot can be seen in Fig.] 4.3eup
left image. It is important to note how the error function heds as we vary the scale parameter. As
expected, for a specific value ef(in this cases = 1), we have a correct object-template match and the
error function is at a minimum. However, we can also see thiatvéluess < 0.8 the error function
decreases and eventually drops to zerg at0. In this case, where the template was constructed from
part of the image itself, along with the solutionsat= 1 the solution ats = 0 is a global minimum.

An optimisation algorithm might correctly identify this #s minimum but such a solution is not useful
since the template would have collapsed to a point. For thepgrametep, a shear defined in terms of

the shear angle (as opposed to the shear magnitude) will fer+7 /2 collapse the original template
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Figure 4.3: Error function appearance for a match locatadietessively higher scale values.

into a line.

In addition to the behaviour of the error function when thalsgarameters are close to zero,
another problem arises when the global minimum is locatetthén away on the rightmost part of the
scale axis (see Fig._4.3). It is noticeable that there is stegeadation in the quality of the minimum
and that as the value of the scale at which it occurs incraagesinimum becomes less pronounced.
Eventually, for sufficiently large scale values the desitesbonse will completely disappear and thus
will be undetectable by any optimisation technique. Thisawéour is caused by the fact that when we
need to scale-up the template in order to match with the imagkave to use an interpolation method.
The more we have to interpolate, the more details of the tbjappearance may be omitted and the
greater the match degradation. This is a problem inherethietavay the prototype is modelled and the
type of image to which it is applied. If the prototype were ralbeld at one scale but the object in the
image is at a considerably larger scale then we will haveumtiin like that described above. From
this point of view a solution to this problem is very difficidhd care should be taken when building
and applying a prototype template so that the match is |doatthin certain limits of the scale of the
original template. A hierarchy of templates constructednftraining images at different magnifications
and/or different viewing distancgsmight thus be used. We note that it is possible to a greatenext
to use a prototype template that is at a considerably laagde shan the object we are expecting to find
in the image. This will mean that we will have to reduce thdesgaorder to find a match but, because

unlike up-scaling, downscaling does not “invent” new imf@tion for the model but instead reduces the

SNote that in general changes in magnification and change®wing distance are not equivalent because occlusion cekange
may be associated with the latter but not with the former.
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information content to match that of the image, the qualftyhe match will not be so badly affected

(provided of course we carry out the interpolation cor&tl

To avoid the problems with the trivial, invalid solution week to forbid such problematic values for
the scale and shear parameters. For this reason we defira fopthese parameters that will bias them
away from such values. From the examples we have seen focdie garameter it is obvious that we
need to impose a distribution that is applicable to randantiouous variables that are constrained not
to be zero but may take a few large values. We therefore requitistribution that is asymmetrical and
positively skewed, preferably with the possibility of asljing the tail at large scale. A good choice (as
we shall explore later in the next section) for the scalempatarss, ands, is thelognormal distribution
[Evans et al.[(2002)]. If we assume thgtands, are independent and their shape and scale parameters

are equab, = b, = b ando, = o, = o respectively, this choice leads to:

(log(sz) — o) + (log(sy) — 0)?

P(s,58y) = oTE

exp |— (4.13)

Sp8yb22m

The lognormal distribution assigns very low probabilityqeantiles close to zero while it allows us to

determine the probability of large values of the scale patarss,, s, by adjusting the tail of the pdf.

For the shear angle, we would like to introduce a bias in fawdwsmall deformations and that
specific values close to integer and a half multipleg ef 4+ /2 are not admitted. In addition, when the
mean shear anglgis at or near to zero the distribution must be symmetric ave ashigh probability.
If on the other hand, the mean angle is closetto/2 then the probability must fall sharply. It is
obvious then that the shape of the pdf must change from syrimtetpositively or negatively skewed
as we movep along the shear angle axis. We have therefore chosen a mixtadel of two opposite
Gumbel distributiongextreme value Type 1) [Evans el al. (2002)] with the mixtwedght parameters
chosen to ensure the following: First, when the mean shearat either of the two extremes of the
shear parameter axis (the range of the shear parameter/i8 < ¢ < 7/2) only the one of the two
Gumbel distributions with the appropriate skewness wititdbute; Second, whe = 0 both Gumbel
distributions will contribute equally thus enforcing syratry in the mixture. The pdf of this mixture

may be formulated as:

P(¢) = ’ . (4.14)

whereb is the shape parameter add= W. An illustration of the mixture model can be seen in Fig.

[4.4. Since the individual transformation parameters whssimed independent, the total prior pdf is

the product of the individual pdf§ (4.112]), (4113) ahd (4,12)¢) = P (k)P (sz, sy)P(9).

4In this case too, if the template is constructed from too smaiéwing distance, interpolation will not, in general, cartly
represent non-linear occlusion effects.



4.4. Objective function 69

00251

0.015F

0,005

Figure 4.4: The mixture model (bold line) for the distrilmrtiof the shear parameter

4.4 Objective function

Now that we have established the form of the prior pdf we ceteadefinition of the objective function by
means of a Bayesian formulation as described in Chaptemée teturn to the general object recognition
equation[(T.11) this means that, having identified the apjatgptransformatior {419) which will deform
the prototype templaté,,, all we need now is to define a suitable measur&wo widely used such
measures are the sum of squared differences (SSD) arorm, and the sum of absolute differences
(SAD) or L1 norm, which measure the dissimilarity between the imagetla@demplate.

Although the SSD metric has been used in a variety of objectigeition problems it is not without
serious limitations. First and foremost, SSD is sensitivetttliers and not robust to template variations.
Even though it is valid from a maximum likelihood perspeetivhen the template is actually a model
of the object of interest in the target image, a SSD metriarags a normal distribution on the residuals
(i.e. the error) and independence on the variables usedritiedie likelihoods. However, [Tian etlal.
(2004)] have shown that additive noise in real images is igdliyenot independently and identically
normally distributed. Noise models that are normally distied usually assume statistical independence
of adjacent pixels. Since however in practice the majorftyasiation in an intensity image is due to
illumination changes or to intrinsic variation between i&min-class objects and since such variations
are spatially correlated, this assumption is not plausiBlethermore, the residuals are very different and
very differently distributed when the template lies oves tbject and when it lies over the background.
In the former case the residuals may be assumed to be smadllentb noise and/or accumulation of
modelling inaccuracies. In the later case the residualsbeilarge and, for an arbitrary template and
image background, distributed in the same kind of way thatrahimagery is. Since the intensity of

an image depends on both the illumination conditions andecarsettings and properties, it is difficult



4.4. Objective function 70

to model its distribution for images of natural or man-madengs in detail, but the distribution of the
outputs of banks of filters applied to such images has beesrided for example by [Srivastava et al.
(2003 2002); Mumford (1996); Huang and Mumford (1999)] atidition, as we noted in section 4.1 it
has been pointed out by [Sullivan et al. (2001)] that, in &vBhyesian analysis, our data observations
must be regarded as fixed and not as a function of the hypethgsd what the image template represents,
how big and what shape it is, and where it is located in the enaghe SSD metric as commonly
used violates this principle by considering only the portad an image directly under the templdig.
Instead, we should incorporate the background informdtiam the image, for example: by sampling
the background so that it is known a priori, by choosing it éoviery simple, such as a uniform bland

image or dark, or by building a probabilistic model of the gadackground.

Contrary to the SSD metric, the SAD metric is more robustesih@oes not give such high im-
portance to large residuals. The SAD metric may be justifiechfa maximum likelihood perspective
when the noise distribution is Laplacian. Nevertheless filmction is not smooth and is singular when
the error residuals approach zero. Such a singularity magecdifficulties in numerical optimisation
in particular if gradient-based methods are used. Thisime#s the advantage that large residuals are

given only the same importance or “influence” as smalledress.

Thus we require a more robust error measure, one that tesitiuals over foreground areas with
one metric and residuals over background with a differerttimeA first approach is to use one of the

L, — Ly hybrid norms, such as the one proposed by [Huber (1973)]:

(IT_Im)z 0 <
o y US> |IT - Im| <rT
g-UIr, Im) = ) (4.15)
|IT_Im|_% ;TS‘IT_Im|

wherer is the threshold at which the function switches between thand L, norms. Fig[4.b(a) shows
the Huber norm as a function of the residuals and how it trerat| residuals (betweenr andr) with

the L, norm and large residuals with they norm. The marks represent the point where we switch
from L, to L, and vice versa. Even though the Huber norm is smoothratvhere it switches between
the two norms it is only/C'* continuous (see Fid._4.5(c)). One can go further by introdua metric

that smoothly interpolates between the two norms. One swathars the smooth Huber norm [Buxton

(2004)] defined as:
2
gT(x):y/lJr%fl, (4.16)

and whose function and first derivative are illustrated og. [4.5(a) and (b) respectively. If we use
equationd(1]1)[(419) and (4]116) we obtain the combineéativie function which needs to be minimised:

I —TI,, (2,92
p= argminz (\/1 + Iz (z,9) 5 (.9)l” 1) , (4.17)
T T
where the threshold may be chosen at = mi’;LX |, or set at th&)s" percentile of the observed data

X (seel[Guitton and Symes (2008); Guitton and Verschuur (gR04
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Figure 4.5: Comparison of the Huber and smooth Huber norms.

Since we are using a Bayesian approach we need to refornfdlai® as a pdf. The likelihood of

observing the input image given the deformations on theopype template is therefore:

P(Ir[¢) = Cy exp { 3 <\/1 4 r(zy) *Tffm(:”’y)]z - 1) } (4.18)

where, as usuaf stands for the parameters of the transformafignC, is a normalising constant

equal to1/2(eK1(1)7), e is the exponential and{; a modified Bessel function (using (4) from
[Gradshteyn and Ryzhik (1980)], p. 358 and changing vaegblC; simply ensures thaf (4.1L8) in-
tegrates to 1.

Finally, we may ignore not only these constant terms (siheg tlo not make much difference from
an optimisation point of view) but also use the fact that thebpbility P(I7) is constantP({|Ir)
P(I7|€)P(€) to combine equation§ (4.1 2], (4113), (4.14) aind (4.18) tmiakthe posterior pdf of the
parameterg given an imager. The parameters may be recovered by minimising the cornepg

negative log-likelihood:

]
P _9®
-¢- b

2 .2
. k2 +k2

ming {—log P({|I7)} = log(y/s2s3) — log(e -
+os(E Hse+ = sy —4) + “iifz + 20y <\/1 + ey Tlnlzg)lR 1>

k)
+etet) +

(4.19)

x

Note that the distribution shape parameters, o, 0,3 and the threshold are treated as fixed.

441 The scale transformation

We mention the scale transformation here separately bedéalias some interesting properties that we

would like to explore and also because it poses some diffirolblems for object recognition systems.
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Figure 4.6: A model of the spherical imaged object under agmmtive camera model.

In this section we will examine various distribution modilsietermine which one better describes the
process of an imaged object undergoing uniform scalings My subsequently be used as a prior in a

Bayesian formulation to capture knowledge about the sgalincess.

The first step is to define a theoretical model of how the sch#mmbject changes in relation to
the viewing distance. This model is a theoretical analogue actual deformation process and can
be used to generate prior distributions for the scale patenrier example, by appropriately sampling
the viewing distance parameter. In addition it can help usniderstand the distribution of the viewing
distance parameter when there is only explicit knowledghescaling of object appearance for example
after a practical imaging experiment as we will see laterTdmis in turn can help to verify the correctness
of, and any inherent statistical bias in, our experimentsce&Xthe scaling model is defined we are able
to fit parametric models of the distribution of scale and detee which one has the best properties
to describe our prior knowledge about an object that undergoscale transformation. The chosen
parametric model may then be used as a prior for the scalepéeain our Bayesian inference paradigm.

Thus, we assume a perspective camera model such as theusteai#éd in plan view in Fig_4.6
and imaging a spherical object defined by the equatidn- Xo)2 + (Y — Y5)? + (Z — Z)? = R2.
(X,Y, Z) is a point on the boundary of the sphe&,, Yo, Zo) is the sphere’s centre arlits radius.
The camera is defined by the centre of projectinrthe imaging plane i$l, the focal lengthf and the
viewing axisz. We denote the distance between the image plane and the bpj&g. It can be shown
that for a perspective camera model the imaged boundary) of such a spherical object of radius

(the reason for choosing a sphere is for simplicity and vaidme apparent later on) has the equation of

an ellipse:
X+ YR+ 72 - R? , [ Z2—R? xz+v2\1?
< X02 n YE)Q (:Z}XoyYO) + 7)(3 n Y02 Xy + yYO + fZQ 7Z§ e

_ PRG3R+ 2 - RY)
72— R? ’

(4.20)

with centre:
_ XofZo _ YofZ

L . (L 4.21
Z-rR VT TR (4.21)
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Theoretical model of Scale vs Distance
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Figure 4.7: Distance vs Scale theoretical process model.

and semi-major and semi-minor axes:

2 P2 2 2 2 p2 2 p2

(Z§ + R2)? Zg — R?

respectively.
We may now define the scadeof the imaged, elliptical boundary as:
s?=ab
fR ([ XE4+YE+ 73— R\
= 5= 0 -0 o . (4.23)
V22 — R? Z3 — R?

If we now assume that the object is approximately centredhénimage, saX, = Yy, = 0 and that
its radius is much smaller than the viewing distadge> R? then, without loss of generalityl (4123)

simplifies to:
R
s = fZ—o (4.24)
From [4.24) we can see that the scale depends onlfomhich makes intuitive sense - we expect the
scale of the image of an object to be approximately propaaito the reciprocal of the viewing distance
with small distances from the camera producing larger irdamgects and vice versa. A similar relation
between scale and distance applies to more general objaatsllustration of this relationship with

additive Gaussian noise is shown in Hig.]14.7.

In order to randomly sample the scale distribution we cotetlia simple experiment in which we
try to simulate a typical computer vision scenario. In thiperiment a rotation-invariant object (e.g. a
ball) is placed inside a room and pictures of it are taken feomariety of distances and positions in the
upper-half of the viewing sphere. We have chosen to use aballtest object because its shape does
not change as the angle of the camera changes and thus wecaarofothe effects of scaling alone. In
addition, because perspective distortions do not haveoaginfluence on the ball’'s shape we can view
the scene from nearby and so obtain a much more complete ohisgenples. A separate image of the

ball is also taken that serves as a prototype template (geldBi(b)). This prototype template is assumed
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(@) (b)

Figure 4.8: Typical captured image sample (a) and the progotemplate (b).
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Figure 4.9: Sampled histograms of the scale from the firsdifd)second (b) experiments.

to have scale parameter= 1 and is used as a reference for the sampling process. Wedatrigwo
separate experiments in which two different people weriunted to take pictures of the object placed
inside a room (different rooms for each experiment) from ety of distances and angles. We did not
specify how many photos from each location each person dhiiaké or what distance from the object
to favour. The only instruction was to take photos of the cbapproximately centred in the image.
The resulting distributions should reflect the samplingaafteparticular individual and the properties of
the room (rectangular, square, clutter and so on). For thediperiment, we captured 82 and for the
second 200, 400x300 grey-scale images of the ball. In eaghtbés should provide enough samples to
determine the scale distribution. These images are thehassieput to a basic template matching system
that uses the prototype template (Fig.]4.8(b)) in an enerigymisation scheme to locate instances of
the ball in the image. A match is located where, as an expettievoid the pathologies associated with
the trivial solutions at = 0, the normalised sum of squared errors between the protoeypelate and
the image is minimum. The template is allowed to translatbsale.

The resulting histograms for the two experiments are ilatstl in Fig[4.b (a) and (b) respectively
together with overlaid non-parametric estimates of thdfsgalculated using a smoothing function with
a Gaussian kernel. As may be seen the scale distributioreigeskto the right, constrained to be zero
ats = 0 and has a peak around= 0.2 ~ 0.3. The peak position depends of course on the choice of
the prototype template and the distance from the objecta@@imera we originally chose for capturing

the template image. A shorter distance would create a léeggplate and thus would move the peak of
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the histogram closer to zero, whereas a longer distancedvwgmrierate a smaller template and spread
out the peak of the pdf. The underlying distribution appearse the same in both cases and all that
changes is the shape and location of the parameters (e.q andastandard deviation). The peak is at
s < 1 because we chose to take the template image from quite gfose-as to ensure sufficient detail
was visible and to avoid having to scale-up the template toohm

If very many images were collected, it would be possible tidba fine-grained non-parametric
model of the distribution of scale. We didn’t collect enougtages for this and instead sought to as-
certain which parametric model distribution would expltie data. Parametric models in general have
greater efficiency at the cost of more specific assumptiopsitahe data but it is important to verify
whether the assumed distribution is indeed valid.

Our goal therefore is to find a good distribution model thegtlikescribes the scaling of objects.
There is a large number distributions that might be good nsdde our data. However, we will restrict

ourselves to consideration of the following models owinghiir tractability and simplicity:

e Normal distribution with pdf:

1 1/s—a\’
N(s) = - 4.25
(s gzﬂexp[2<a)] (4.25)
e Weibull distribution with pdf:
_ o —b b—1 (5 b
W(s) = bo~bs exp{ (U)} (4.26)
e Exponential distribution with pdf:
1 a—s
E(s):exp( ) (4.27)
g g

e The Wald distribution (inverse Gaussian), with pdf:

G(s) = \/; exp [2"8 (5 - bﬂ (4.28)

The lognormal distribution, with pdf:

1 1 (log(s) — o 2
L(s) = mexp [—2 (b) ] (4.29)

In the aboveq, b, o are the parameters of the distributions that determine livgation, shape and width
respectivelys is the variate that represents the scale of an object. Bisinins [4.26),[(4.28) an@ (4.29)
are constrained to be zerosat 0. Some of the distributions are positively skewed (for a gge@nge

of parametric values) and give us the option of adjustinddbation and width of the peak of their pdf.

To determine how well a specific distribution model fits outad@oodness-of-fit) we used a com-
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bination of graphical techniques used in exploratory datdyesis [Leinhardt and Leinhardt (1980)] and
quantitative techniques from classical statistics. Detafithese methods are described in detail in Ap-
pendixB.

For economy of space we only show here the results from the oesthe lognormal distribution
model and on the first dataset. This does not affect the gétgerbour assumptions since the test results
are similar for both datasets. The full results on all modetsincluded in a paper being prepared for
publication [Zografos and Buxton (2005b)]. We begin by gatiag the lognormal probability plot (Fig.
[4.10(a)) to assess whether or not our data follows the lagabdistribution. We see that the lognormal
guantiles and our observations are on the same diagonawridmy large deviations. If we additionally
fit a line to the25™ and 75" percentiles we see that it is almost coincidental with tha. pIThis is
a further indication that the data is lognormal. We can atmthat the estimated pdf (via maximum
likelihood) closely resembles the data histogram (EigOb)) and that the empirical cdf and the fitted
cdf are almost identical (Fig._4.1.0(c)). In the same figurealge show the residual errors from the line
fitting to the lognormal probability plot: the sum of squarsdors (SSE) and root mean squared error
(RMSE). The closer they are to zero the better the fit. Theegafiiven are amongst the smallest values
obtained from all the models we tested. In the same table we inaluded thek? metric adjusted for

the residual degrees of freedom. It is defined as:

SSHEN — 1)

. 2 _ _
adjustedR” =1 SSTu)

(4.30)
where SSE is the sum of squared errors, SST is the sum of stgraoes about the mean, and= N —m
the degrees of freedom wifki being the number of samples amdbeing the number of fitted coefficients
estimated. The adjusteli? explains the total variation in the data about the mean withlae closer to
the maximum of 1 indicating a better fit. In this example we thee the line fitted explains abo09%

of the data variation which indicates that the data in théability plot is almost perfectly linear.

Our quantitative analysis results together with the maximtikelihood estimates are shown in Ta-
ble[4]. We can see that both the K-S and A-D tests accept théwypothesisH, that the sample
has come from a lognormal distribution. The high p-valueitimithlly indicates that the results are
not statistically significant at the% significance level. Note also that the K-S and A-D statistires
considerably lower than their respective critical valuetha same level. All these results demonstrate
that both tests were very much inside the acceptance regifined by the critical values. We may
therefore conclude we have sufficient evidence to acékpin this case. From the above and the re-
sults in [Zografos and Buxton (2005b)] we may claim that thgnlormal distribution is appropriate for
describing the scaling of objects in computer vision agtians.

In addition to the two experiments described above we achwoigt a third experiment whereby
we used a similar setting (spherical object placed insidmoan) but in this case we generated a video
sequence that simulates a person walking inside the roortoakithg at the object. In this way we tried
to generate samples from a more realistic, natural objeogrgtion situation. Our aim was to determine

if the lognormal distribution is still a good model to degerithe scale sampling process under this video
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Figure 4.10: Lognormal probability plot (a), estimated fa)fand cdf (c) plots from sample data.

scenario. The experiment involved a person holding a videnera entering the room and looking at
the sphere. The sphere remained approximately in the cehthe camera view while the person was
randomly walking around the room. In total, we generated@gmately 90 seconds of video (2175
frames at 378288 pixels) and then sampled one frame in every 15 to genartdéal of 145 input
images. The scale parameter was then determined in the sayrasvin the previous two experiments.
By carrying out a similar analysis to that described abovéte image snap-shots, we obtained the
results shown in Figi_4.11. Here we can see that as in theeealamples the lognormal distribution
provides a good fit to our data set and further reinforces ssuraption that the scale parameter (under
a typical viewing environment) is drawn from a lognormattdisition. There is however one important
point we should mention for this dataset. Because of the Waydata samples are generated (using
a video camera and walking around the room as opposed to ijwhpo random places and taking
photographs) there is a strong dependence between one fragee and the next (i.e. it is possible
approximately to predict the position and scale of the spirethe next frame) even between every 15th
frame which is our sampling frequency. See Fig. %.11(d)Herttigh sample autocorrelation levels. This
means that we cannot generate samples drawn randomly feosadite distribution by randomly moving
around in the room. Some of our statistical tests that depenithis randomness criterion will thus in

principle not be valid.

4.5 Experimental results

In this section we present some basic experiments carriemhaaur 2-D object recognition method using
the objective function if{4.19). We carried out a limitedwher of tests on grey-scale, real images (such
as the ones in Fig._4.112 (a) and (d)) as a proof-of-concegystther than an exhaustive evaluation of
our method. As we mentioned earlier, the 2-D solution is lpuirétial investigative step on the way
to developing the 3-D object recognition method and so eswtertests are not required. For the 3-D
case, however, which is the main focus of this thesis we haméed out a number of more detailed
experiments and analysis.

In both the illustrated cases, the template (Eig. 4.12(H)saperimposed rectangle in Fig. 4.12(d))
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Maximum Likelihood
Shape §) 0.86307  std. error 0.06781
Log-Scale §) —1.1757 std. error 0.09531
95% confidence interval for shape  0.74819 1.01996
95% confidence interval for log-scale —1.3654  —0.9861
Kolmogorov-Smirnov

p-value 0.5355
K-S statistic 0.0877
Cutoff value 0.1478
Hypothesis at 5% interval Accept
Anderson-Darling
A-D statistic 0.3394 adjusted  0.3547
Critical value at 95% 0.754
Hypothesis at 5% interval Accept

Table 4.1: Quantitative results for the lognormal disttit.
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Figure 4.11: Video sequence results. (a) prob. plot, (b)pbuif (c) cdf plot and (d) lag plot.
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is taken directly from the image (which implies the same tiiggh conditions) and is subjected to a
random affine, geometric transformation. During matchimgaim to recover (or get as close as possible
to recovering) the parameters of this transformation. Tre &xample (Fig.[4.12(a)) compares the
effects of using the SSD metric without any prior informatio the use of the smooth Huber metric
with the combined prior distributions we have seen previolsboth cases we have run 10 tests with
the same optimisation algorithm (differential evoluti@tdrn and Price (1997)] and to be discussed in
Chaptei6) and under similar settings. For the first case evtigre is no prior we have manually to
restrict the optimisation algorithm away from the trivialgtions ats = 0. We do so by assigning an
infinitely large error value to any solution sf< 0.5 (see Fig[4.113(a)). To illustrate just how much better
an approach based on a Huber metric combined with a pros@bitirior is we present in Fid._4.113(b)
the Euclidean distances of the recovered coefficient vdhass the known, ground truth solution for
all the 10 test runs and for both cases. It is immediately amwithat the Huber & prior combination

outperforms the SSD-only approach in recovering solut@aser to the ground truth in every test case.

This is also illustrated in the second set of tests in the &sag Fig.[4.1R(d) where the average of
10 tests runs using the Huber & prior combination are disgdap Tablé 4.2 Here we see just how close
the optimisation algorithm has managed to get to the actliafien. A typical good, identified result for

both images can be seen in Hig. 4.12 (d) and (e).

Furthermore, we show the effects of using both the lognoramal Gaussian priors on the log-
posterior probability. In this example we have isolateddtede space by choosing a rectangular template
(e.g. the female face in Fig._4]12(b)) and varying the scatapeter while keeping all other parameters
constant at their optimal values. The result is the loghlied plot in Fig. [4.14(a). The non-trivial
value ofs that minimises the residual error is correctly= 1 and we note that foy > 1 the error grows
parabolically. However, we also note that fox 0.5 the error becomes very small and eventually drops
to zero fors = 0. This clearly does not constitute a meaningful answer but&sa of a trivial solution
we mentioned previously. If we initialise an optimisatidgaithm close tos = 0.5 it might converge to
the trivial solutions = 0 which in the presence of noise will be lower than the desicddt®n ats = 1
and might thus cause global optimisation algorithms to peedthe wrong results. Unfortunately, we
cannot know beforehand which values to use as constraintg ioptimisation algorithm (i.es <> 0.5)
since the critical value is not fixed but varies in relatioritte true optimal value as determined by the
size of the template used. We also note as discussed in [Baxtt Zografos (2005)] that the problem
should not occur if the background is included in the modglfrocess. In that case when the template

shrinks to zero the foreground object of interest will narthmatch the assumed background.

If we now use a lognormal prior (FIg.Z14(b)) that is fairljatykurtic we get the resulting log-
posterior distribution (Fig.4.14(c)). The problem witkettnivial solution has been rectified by assigning
a very low probability (or a very large inverse log-probip)l for scale parameter values close to zero
and the objective function has been regularised so thatsitona global minimum that is the correct

solution. This can easily be located with common deterrtimibcal optimisation algorithms.

In the same example we show the use of a Gaussian pridr (E§c}, dashed line) with parameters
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Figure 4.12: Experiments on real images with randomly fanged templates.

o =2 andu = 1.25 chosen in order for the pdf approximately to have high prdiglaround the same
range of values as for the lognormal prior. The resultingerisr distribution (Fig[4.14(c), dashed line)
shows that the regularisation effects for values 1 are not as strong as in the case of the lognormal
prior and it creates a flat objective function with the dedinginimum ats = 1 more difficult to find.

If we decrease the standard deviatiothe situation somewhat improves with the objective funcfar

s < 1 becoming steeper but this overly biases the posterior arydnmiabe desirable in most cases. If
on the other hand we increaseahe posterior fos < 1 becomes flatter untit is increased so much that
the Gaussian prior tends to become a uniform distributioichvls we know does not have any effect on
the likelihood. Perhaps the only advantage in using a Gangsior is that the tuning of its parameters

corresponds to more intuitive changes in the shape of théhpdffor the lognormal prior.

The effects of a lognormal prior in two dimensions are alsmshin Fig.[4.14(d), () and (f). As we
can see in this case, the above problems are exacerbatea véth narrow basin of attraction (4]114(d))
and the existence of an infinite number of trivial solutiooswhens, ands, are close to zero. Using a
lognormal prior (Fig[4.14(d)) can dramatically improve tituation by creating a convex error surface
with a single global minimum (Fig_4.14(e)).

Since the sum of squares likelihood for any image will extihis typical behavio&we may say
that in general the lognormal produces more desirable aeigation results than other commonly used

priors without unnecessarily biasing the posterior.

SUnless of course we normalise by the size of the template. Agthdhis will solve the problem of trivial solutions it will
introduce unwanted noise and thus many local minima in the tgeftinction fors close to zero.
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Figure 4.13: (a) Manually adjusted scale space and (b) cosgpebetween Euclidean distances.
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Figure 4.14: The effects of the lognormal prior on the scalameter surface.

Transformation Actual Estimated Absolute deviation
Rotation(4) 30.47° 29.7046° 0.7654°
Translation(d,,d,) 211,37 213,38 2,1

Scale(s,, sy) 1.3077,1.1923  1.3125,1.2719  0.0048,0.0796
Shear(y) 27° 24.6776° 2.3224°

Table 4.2: Comparison between actual and estimated tranafion values from Fid._4.12(d),(e).
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4.6 Basic foreground/background modelling

One typical problem with template matching (seen for exaniplFig. [4.1) is the fact that we may be
faced with a very narrow basin of attraction in the error Egape surrounding the desired solution and
also when similarity or affine geometric transformations ased with spurious, trivial solutions. We
have also noted in passing that, from a probabilistic pdiniew, it is not correct to match the template
only to the region of the target image covered by the temgatthis amounts to changing the data to
be explained according to the hypothesised location, sideshape of the model. The data should be
fixed independent of the hypothesis and it is the whole imhgeghould be explained. It is therefore
necessary, as noted earlier, to model both the object aksttand the image background and to match
both to the whole image. A correctly chosen model correatated over a foreground object in the
target or scene images will thus generate only small reEdhaoughout the image. An incorrectly
chosen template model and/or one incorrectly located wilvdver generate large residuals both from
the area under the template and from the region of the fouegrobject in the target image which, will

not match the background model.

Furthermore, we expect such problems to be exacerbated thbdransformatiorf” of the tem-
plate includes photometric transformations in additiogéometric transformations as they can allow
an incorrectly located template model to adapt to some etaethe background of the target image and
the background model to adapt to adapt the foreground obf@tterest. Similar deleterious effects will

occur for an incorrectly chosen template model.

To illustrate such problems we consider the simple scemdnoatching a templaté (z',3’) to a
target or scene imade-(z, y) under affine photometric (grey-level) and affine geometangformations
of the kind:

Loz’ y)) = all (2, y) + b, (4.31)

T =ag+ a1z + axy
0T aE T ay (4.32)

y =bg+ b1z’ + boy’

In @31)1),(«',y') andl,, (2, y’) stand respectively for the template intensities at pixély’) before
and after the photometric transformation whils{in (4.3® pixel coordinates’, 3’ before the geometric
transformation are mapped into image coordingieg). The net effect of the two transformations is to

mapl («',y') into I,,(z,y). In this example our matching criterion is a SSD error measur

min {Z(IT(x, y) —all, (z,y) — b)Q} . (4.33)

z,Y

Minimisation over the paramete(s, b) of the photometric transformation may be carried out anralyt

cally and the result written in the following form:

min {(AI7?) (1 —¢?)}, (4.34)
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where(...) stands for an average over the pixglsy) in the summationAl = I — (I), andc is the
correlation coefficient defined as:
(AIAL,)

c= ool (4.35)
(AI%) (AIZ)

Except for the term inc AIr? >, (&33) is one of the many familiar image matching criteriaose
performance in template matching have been evaluatedadewvees [Tsai et al! (2003); Brown (1992)].
Other familiar forms in which the deviations from the meateirsity are used, or the intensities nor-
malised for the image brightness or level of illuminationynsémilarly be derived by using the photo-
metric transformations which respectively include onlg biasb or contrast or gaim.

The result[(4.34), in particular the presence of the témi2> deserves closer scrutiny. First we
note that the SSD is usually computed by summing over thdplxang within the image areal,,,,
say, covered by the transformed templaigz, y). If the geometric transformatiof (4132) is restricted
to translation of the template and if the variar(a&]2> were independent of the position of the tem-
plate [4.34) would then reduce simply to maximisation ofrtregnitude of the correlation coefficient
However, this will generally not be so aeh/?) cannot be removed frori {4134) without changing the

matching criterion. A number of difficulties then become agmt:

1. Bland regions of the image where there is little or no wemaproduce good matches with little
error toany object by virtue of setting = 0 andb = Ir. In particular dark regions of the target

image withIz ~ 0 will match to any template with little error.

2. If we retain the affine geometric transformatign (4.32 #nead,,, covered by the transformed
template may under scaling or shearing shrink to zero lieguih a zero variancéAI2> and

spurious matches.

One way to remove such spurious matches is, as noted e#oliegrmalise by the ared,, but this
means that the matching score becomes very noisy whengyas small. Furthermore, there seems
no straightforward way of arriving at such a measure withipr@babilistic approach. Another way
which is straightforwardly within the probabilistic ap@ah, is to introduce suitable priors which will
add regularising terms to criteriq@.33) and bias against spurious solutions in which the template is
shrunk to cover only a very small area.

Adopting the probabilistic viewpoint is very satisfyingytltexposes a more fundamental failing of
the approach outlined above. As we have already indicatextadimes, by using only the area under the
transformed template in the match criteribn (4.33), theeolsions we are using to test our hypothesis
as to where the object is in the image (which may include tHehypothesis that the object of interest
is not present) become dependent on the parameters of o@l,medon the hypothesis. As pointed out
by [Sullivan et al.|(1999)], this is not correct in a Bayes#approach. Simply put, our observation is the
whole of the image and we should have a model of the backgraameell as of the foreground object
or objects of interest. Thus, we should utilise not only pesievidence of where we are hypothesizing
the object or objects may be, but also negative evidence éiesawhere in the image where the observed

image intensity does not accord with our expectations fetidckground.
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We should therefore includal pixels in the image in the sum in our SSD scdre (4.33). Thevas
<A12> is then evaluated over thvehole of the image ared, say. One nice outcome of this view is that
we do not have to worry about the possibility of the variarﬁr)d2> vanishing unless there are trivial,

totally bland images in the data which can easily be deteameldemoved.

One downside of constructing a foreground/background misdihat the combined model will
necessarily be more complicated than the foreground maddeé and, most probably, less applicable
and therefore more fragile than a model which only inclutieforeground. We thus either have to know
what the background is, build a very simple model, or havetistical model of what it is expected to
be like. In fact, it is surprisingly often the case that wekrtbe background or may learn it. Examples
include: medical applications, many monitoring and sonspéttion systems. Indeed, in the latter, it is
often an essential requirement that the background is krmsvaas to be modelled [Zhou and Aggarwal
(2001)]. In some cases, as in the CMU PIE database [Sim €2@D2]], the background has been

recorded with no objects present (in this case human faoef)d convenience of researchers.

To illustrate several of the above points we construct a sénple foreground/background mod-
elling example. Our basic assumption is that there is ancbbjeareaA of constant intensity, in
the foreground of an imagg-(z,y) of aread which otherwise is of constant intensify;. The model
correspondingly has a foreground object of intengjtyof area4,, centred at«x,,, y,,) and a back-
ground intensityl,. The model and object may have an overlap atea, as sketched in Fid. 4.115(a).
For simplicity, given that the model contains foreground &ackground intensitieg,, and I, that we
may vary we shall ignore the photometric transformatioBIand, since we have not specified the size

or shape of the model of aref,,, we will similarly ignore the geometric transformations33).

For our simple model calculation of the match score such @$S®D is a matter of counting the
number of pixels in, or the areas of, four contributions vehéhe model template overlaps the image ob-
ject, the model template overlaps the image background @meeversa, and where the two backgrounds

overlap. This leads to:

A — Aom) s — I)% + Aom(Io — In)?+
min ( om)(I5 ) om(lo ) . (4.36)

(Ao — Aom)Io — I)* + (A — Ay, — Ao + Aom) (I — I)?
In (4.38) the area of the overlafy,,,, is a function of the co-ordinat€s,,, v, ). Even for simple objects
such as rectangles and circlds,,, is complicated and non-analytic. Optimisation ovef,, y,,) (and
in general any other model parameters determining thetatien, size, and shape of the model object,
i.e. affectingA,, and Ap,,) thus has to be carried out numerically. However, we may s@ado the
above whether to treat the photometric values in the mdgghnd I, as constants or as variables and
in the latter case carry out optimisation with respect tarttanalytically. Thus, for a traditional rigid,

windowed template],,, would be constant and, since we only need the first two cartaibs in [4.36)
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from under the templatd; is irrelevant. It follows that in this case (4136) becomesy:

min { [(Am — Aom)Ip = In)?* + Aom(Io — In)?] }, (4.37)

in which, if we choose the foreground and background intexsscorrectly to match the imagels —
I,,)* may be replaced bylz — I5)? and(Ip — I,,)? by zero. However, if the object model intensity
I,,, is not fixed and we optimis€_(4.87) with respect to it we find {37) is replaced by:

min { [(An, — Aom)(lo — I8)*Aom/Am] }- (4.38)

Whilst (4.37) has, as expected, a single basin of attracfi@emea~ 4A, containing at its unique
minimum the correct location of the object (see [Eig.4.15(@.38) does not behave in such a nice way.
There is a much smaller basin of attraction and it is surredriy a rim beyond which there is no overlap
and the matching score becomes zerd,asadapts to the image background level (Eig.4.15(c)). This
simple behaviour is symptomatic of what can happen if adeati flexible models are not used carefully.
Somewhat surprisingly simply taking into account all thedence from the whole of the image largely
alleviates the problem. In this case, we need to optirhiSj4vith respect to botl,, andIz which, if

A,, = Ao, leads to:

min (o = 15)*(Am = Aom) . (4.39)
[AOm/Am + ((A - Am) - (Am - AOm))/(A - Am)]

This has a single basin of attraction, slightly smaller tttzat in the examples above with a small rim
and, when there is no overlap, a plateau slightly less high that obtained when a rigid, windowed
template was used (Fig._4115(c)).

In the above the basin of attraction has an area of appro&iynétl, and the landscape outside
the basin is flat (see Figuke 4115 (b)). Structure within tbat and in the background will lead to
considerable variation of the SSD outside the basin ofaitma Also, the area of the basin of attraction
is larger in our simple model (probably considerably muaiyda) than we should expect in general

because:

1. Perfect correlation of the pixel intensities with eachestwill not persist right across the object.
The object may be patterned or have systematic variatiasadt that will reduce the strength of
the correlation and may change its sign, with the resultttieatange of the correlations is unlikely

to extend fully across the object.

2. Structure in the foreground and background will tend tréase the size of the basin of attraction
and make the rim irregular. Noise will have a similar, butassl the images are very noisy, less

pronounced effect.

Smoothing the image and model will tend to increase the rafgfge correlations and also, prob-

ably, their strength. However, neither effect is necelsagriaranteed in the sense that we can expect
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Figure 4.15: Simple matching examples and error surfaces.

such increases to occur monotonically as the smoothingcieased. In general, increased smoothing
will eventually tend to wash-out distinctive features oa tbject and structure in the background lead-
ing to a decrease in the depth of the basin of attraction aitt,emough smoothing, the merging and

disappearance of some, hopefully spurious, basins otttia

In conclusion we may say that in template matching both fanegd and background should be
modelled. Doing so is necessary in order to be able to makéichpr@babilistic interpretation of the
matching process. In addition we can avoid at least someogmrtrivial solutions and there seems to
be an improvement in the form of the error surface and loatitia close to the basin of attraction. Itis
the case nevertheless that because of the characteridfiesroatching problem the error surface will in
general be rugged and of a form that renders many of the conapiimisation algorithms ineffective
and unreliable. This is the main reason why as we will see Vagehave carried out further research into

evolutionary optimisation algorithms that may be able terceme such problems.

4.7 Summary

In this chapter we have presented a robust treatment of thménsional, pixel-based, template match-
ing approach to object recognition for intensity imagesgsi Bayesian formulation. We distinguished
between the different transformations of the template hei tespective degrees of freedom and intro-
duced individual prior distributions to restrict the defang template to viable solutions. In addition,
we examined the difficulties caused by there being diffedistributions of the residual errors in the

matching when the template is placed in foreground and lvackg image regions. Initially we tried to
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address this problem using the Huber metric that deals witilsand large error residuals, as expected
respectively with the template placed in the foregroundlaackground, in a different way. In order to
gain greater insight into these and other problems, inqa4ati concerning the probabilistic interpreta-
tion of the approach that might otherwise be overlooked inplate matching, we developed a simple
geometric and photometric model. This was used to explofaras possible analytically effects caused
by adaptation of the template and to explore the form of th&chiag objective function. Some pre-
liminary, exploratory results for the matching of 2-D temugls to real images were obtained using our

method and were also presented.
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Chapter 5

3-D object recognition

This chapter presents our research on 3-D object recogratial is a natural progression from the 2-
dimensional case we have just examined. Since we are stikimgpwith 2-D images the same kind
of theoretical framework applies here and, as a consequerecwill encounter similar problems. We
present a method for model-based recognition of 3-D objiots a small number of 2-D intensity
images. Our method works by using the linear combination@#fs (LCV) theory to combine images
from two (or more) viewpoints of a 3-D object to synthesisagas of novel views of the object. The
object in question is recognised in a target, scene imagedtghimg to such a synthesised novel view.
The key element in our approach is the recovery of the linearkination of views parameters.
Since we are working directly with pixel intensities we sagfjsearching the parameter space using a
powerful optimisation algorithm in order efficiently to er the optimal parameter configuration and

recognise the object in the scene.

As in the 2-D case previously discussed searching a largerer space especially one that is very
noisy and with a large number of local optima can be an ardteslseven for sophisticated, modern
optimisation algorithms. For this reason and continuirg ttieme from our earlier work, we decided
to condition the error surface by incorporating probapititstributions for the individual transformation
parameters and build a Bayesian framework. This will all@taicreate a more favourable surface with
a wider basin of attraction and convex-like properties aittd awell-defined global optimum; properties

that should significantly aid the optimisation process.

5.1 The recognition system: Rigid objects

The recognition system we are going to present here is fatiryghtforward and makes use of a number
of concepts we have seen previously. It essentially has tistinct parts. First, modellingpart which

in the work carried out for this thesis is the task that reggithe most input from the user, but since it
is performed off-line it does not affect the execution spekthe recognition. Second,synthesigpart

in which a novel image is synthesised using the LCV theorgtige[3.3) to calculate its geometry and
intensity. Third, thematchingpart in which, with the assistance of an optimisation altponi, we try to
find the best match and determine if the object is in the scedéfét is, recover its configuration. The

outline of the system is illustrated in Fig. 5.
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Figure 5.1: An outline of the proposed recognition system.
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5.1.1 Modelling

The first stage of our approach involves the creation of alim®mbination of views model for a 3-
dimensional object which can be used to synthesize the noeel for matching. This requires the
selection of a number of appropriate 2-D images (the baeigs)ithat represent the object of interest as
seen from different, but nearby viewpoints. As we have segliee in Sectio 313, we can synthesise
the geometry of an affine image from a suitable selection sisbdaews and a set of linear coefficients.
This synthesis requires the existence of a number of canepg points (landmarks) in all the basis
views and the view to be synthesized. Given such landmarbst af optimal LCV coefficients may be

obtained by solution of a linear system of equations.

Ideally, we would like the basis views to include all the gedric and photometric detail that can
be seen on the object in the scene image, without any missingatuded regions, and with as little
difference from the scene view as possible (e.g. viewed fisame or nearby aspects). If we know
or can predict what the scene image will look like, or prelifydahe range of extrinsic variation that an
object might exhibit in a given experimental setup, then naselection of the basis views should be a

straightforward task.

It is often the case however that we are only given a large fsgaiming images of a 3-D object,
captured from a variety of viewpoints across the view-sphwithout any explicit information about
the scene properties. Under such conditions, manuallysithgdhe best images to represent the basis
views might be a difficult task, given the large number of jjdsscandidates and that we do not have
a quantitative measure of what might constitute a “good"cddtasis images, but only the qualitative

requirements stated above.

Although automatic choice of the basis views and of the mbdédting element is outside the
scope of this thesis, we will briefly nevertheless attempddéfine a numerical criterion with which to
quantify the representative power of a given set of basisiddeally such a measure would quantify
their ability to best synthesise novel views for which weetak a proxy their ability to reproduce a given
set of (training) images on average. A good choice for sucteasnre is the root mean square error
between the images synthesised from a particular pair @ baswvs to reproduce every other image in
the training set. This in a sense measures how well a givectsah of basis views can represent via the
LCV synthesis a set of 2-D images. Thus, if we assume a setmaifining images with landmark points
X ={X,,X>,...,X,} and a pair of basis views with land mark poififs;, X} € X fori,j =1...n

with ¢ # j, we can compute the r.m.s. error:

ERMS; ; = (5.1)

Whereaf’j(k‘) is the squared error between an imagg and its synthesised match produced by basis

view pair{X;, X, }. This error is defined as:

el (k) = || Xk — Ci(k)Bigl|*, (5.2)

(2%
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and can be thought of as the geometric difference (Euclidiistance) between the landmark point
coordinates inX;, and those in their synthesised counterpart, produce@¥y X;}. C; ;(k) is a 25
matrix of the LCV coefficients (see eg.3114) afg; = [1, X[, XjT]T. The pair of imagesi, 5) that
produce the lowestrys error is to be chosen as the basis pair. This selection stepugh likely to
be computationally and experimentally time consuming, ib@nly be carried out once during off-line
training. Although errors in the synthesis of the landmasints will obviously affect the appearance of
the computed images they do not measure directly the agcurisit which the target images are to be
reproduced. If we require a more direct measure of this tisamguthe geometric difference between the

landmark points, we can replade {5.2) with:
et (k) = IT(Xk) = L (X) (5.3)

where both the imageg X,) and the synthesiselj ;(X}) are represented as intensity bitmaps and not
as a collection of landmark points. In this way we incorpettiie additional representative power of all

the image pixels to improve on the selection of the most gpjate basis views.

However, as assumed in the above and as implied byl(3.14)dar ¢o recover the optimal LCV
coefficients and synthesise the target, scene indagéis necessary to have corresponding landmark
points already i, meaning that we can only synthesise a known, given views fiag been shown to
be very successful in particular by [Hansard and Buxton @2Jj0and suggests that the LCV approach
could be useful for object recognition though in an objecogmition task such landmark points will
not be available a priori. Whilst, in principle, one could i@ using feature detectors to extract
the required landmark points we have argued that this ikeiglito be successful and that one should
proceed without any prior landmarks in or any knowledge efdgkeometry of the objects in tharget
image view, and instead directly search the LCV coefficipaice. We do however require a sparse set
of corresponding landmark points in all thasisviews. These points are manually chosen, once, during
off-line model building, to correspond with each other. Etleough it might at first seem that the location
of the landmark points is not very important, in practice widemodest number of landmark points is
used the synthesis of the image appearance is greatly iegidandmarks are chosen to fall on to image
features. This is especially the case if, as we shall seedatehe edges of the triangles defined with the
landmark points as vertices should coincide with depthafisnuity boundaries [Hansard and Buxton
(2000b)]. Such edges are often where strong features atebhcAn illustration of such landmark points
can be seen in Fig._3.2. If the landmarks are chosen as dtestto coincide with salient points in the
images only a sparse set is needed to describe objects witbrately complex geometry. Note also that
we need a larger number of landmarks in areas of high cuer/atuech as along the boundaries of smooth

objects. Finally, we observe that the geometry of the oliggteserved in the triangular mesh.

Manual choice of the landmark points can be a tedious and-¢onsuming process, especially
for inexperienced users. Nevertheless, it has the distideantage that no outliers will arise from the
selection process and that there will be no correspondemoesén the chosen landmark sets. It is

expected that we will introduce some positional errorsryuselection of the points but because they
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(b)

Figure 5.2: Modelling steps: (a) basis view (b) landmarknpoand (c) triangulation

will be small and consistently distributed errors they casily be taken into account.

A final part of the modelling stage is the generation of cdesisand corresponding triangular
meshes in all the basis views. This is achieved using Delatrismngulation [Delaunay (1934)]. It is
performed in order to facilitate the computation of int¢iesi via the representation of image regions
by means of the existing landmark points, without the needaéiuitional, dense correspondences. A
triangulation is carried out only once during modellinglwihe same mesh topology used for all basis
views. Since the landmark points are in correspondence ewitth other this ensures that the meshes
are themselves correspondingly consistent. Furthernioretder to preserve in the generated mesh
identified strong edge structure on the object, we competednstrained Delaunay [Shewchuk (2002)]
mesh by forcing triangle edges to coincide with the locatioh such boundaries. This allows us to
represent the structure of non-convex objects (unlike thiedard triangulation) and to separate object
regions from background areas.

In conclusion, an LCV model is composed of a number of bagwsirepresenting the object of
interest, a set of landmark points selected across sal@ntspand discontinuity boundaries on these
views, and a consistent triangular mesh that follows thectire of the object. All these steps may be
carried out during the off-line training stage and thus dbinour any additional computational cost in

the recognition process.

5.1.2 Image synthesis

To synthesise a single, target image using the LCV theontlambasis views (two in this case) we first
need to determine its geometry from the landmark pointsritrciple, we can do so by using (3114) and
n corresponding landmark points (whete> 5) and solving the resulting system of linear equations
in a least squares sense. This is straightforward if we koaw,detect, or predict the landmark points
in the target imagdr. Such methods may therefore be useful for image coding angyftthesis of
target views of a known object [Koufakis and Buxton (1998t#ansard and Buxton (2000b)]. For pixel-
based object recognition in which we wish to avoid featurectéon a direct solution is not possible
but we instead use a powerful optimisation algorithm to deand recover the LCV coefficients for
the synthesis. Given therefore the geometry of the targat@fh; in a pixel-based approach we need
to synthesise (render) its appearance (colour, texturesarah) in terms of the basis imagés’ and
I,). 1f we assume a set of landmark points have been chosen in dhellimg stage we can, to a

good approximation, synthesise a target imageas described in [Buxton etlal. (1998)] from a weighted
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combination:
IT(xa y) = w/Iml(xlv y/) + w//—[m//(w/la y//) + 5(1’, y) = IS(.T, y) + E(l‘, y)7 (54)

in which the weightay’ andw’” may be calculated from the LCV coefficients to form the sysibed
imagels as we shall discuss below. Essentially, this relies on tbetifet, in addition to the multi-view
image geometry being to a good approximation affine, theguhetry is to a good approximation affine
or linear [Shashua (1992)](%.4) warps and blends imdgésndI,,,” to producels. It is important

to note therefore thaf(3.4) applies to all points (pixéls)y), (z’,y’) and(z”,y") in imagesIs, I,,’
andI,,” and that all such triples of points are assumed to be in quoretence. Without such a dense
correspondence it is not possible to use the LCV equationsothe basis views into the target image.
Furthermore, in synthesizinfy we do not require a mapping from the basis views to the calatds
(x,y), but the inverse mapping froifx, y) to (z’,3’) and(z”,y"). Since the forward LCV mapping
from (2/,y') and (2”,y"”) to (x,y) is many-to-one this inverse is ill-posed and not defined jgixae
the landmark points. To make the inverse well defined at ahtpave use the triangular mesh that
was generated during the modelling stage to define a locakaffansform from each triangle in the
target, scene image to the corresponding triangles in efttie dasis views. In other words, the image
transformations from each basis to target (and vice vessplecewise affine and piecewise invertible.
The parameters of each affine transformation can be usedpataanterior (intensity) of each triangle
together with its vertices (geometry) and define a denseespondence of all the pixels between the
two basis views and the target image without additionalcsigle of landmarks. This series of piecewise
linear mappings are implemented using the method_of [Gebkité1986)]. In this way, the mapping is
exact at the positions of each control-point and if the laades span flat (colour constant) regions of the

object then the mapping is also consistent with the affineetarmodel inside each triangle.

In [Koufakis and Buxtoni (1998b)] the weighis andw” were defined according to the following
arguments. If in[(54) the targét should coincide with eithef,,,” or I,,,” then the other basis view
should not contribute at all to the synthesiggf We therefore have the additional implicit requirements
on (5.3):

if Ir=1," thenw =1, v’ =0

. (5.5)
if Ir=1," thenw =0, w' =1

According to [Koufakis and Buxton (1998b)) and Buxton et(4B98)] we can compute weights, v’
consistent with the constraints in_(b.5) as follows. Five, calculate the distances of the target image

from each of the basis views:
d? = a% + a3 + b3 + b?

) (5.6)
d" = a? + a3 +b? + b3
by summing and squaring the appropriate LCV coefficientstiva calculate the weights as:
112 12
w’ d " d (5.7)

= d/2+d//2’ wo= d/2+d//2'
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We can now substituté (8.7) into (5.4) and compute the geyraet intensity of the target image. The

same idea may be extended to colour images by treating eactradband as a luminance component

(e.9.1gr, I, IB).

5.1.3 Matching

Once a new image is synthesised from a set of linear coeff&®ien b;) we need to determine how well
it matches with the target, scene view. As in the 2-D caseigusly we employ a template matching
approach using a similarity or dissimilarity metric betwele and Ir. The comparison is carried out
directly on the pixel values without any assumptions abbetgeometry of the scene viely since we
do not extract features frofy- at any time during the training or matching stages.

If the match (or mismatch) score is above (or respectivelgviea given threshold then the ob-
ject is said to be present in the scene and its parameterqeoeled in the coefficients;, b;). If
desired, we may go some way to interpreting these coeffi@nterms of more familiar model pose
parameters, something which we will discuss later on. Ifrtfegch or mismatch score does not meet
the pre-determined threshold, we can generate new sets\opa€ameters, synthesise new images (i.e.
object in new configurations in the scene) and check to see i€an find a better match. A suitable
optimisation algorithm is used efficiently and effectivédysearch the large parameter space. If at the
end of the optimisation the match or mismatch score stil$ i meet the required threshold, then we
can assume that either there exists no such object in the ¢oeat least as seen from a viewpoint where
it can be modelled by the LCV technique) or that the optinidsaalgorithm has failed to converged to
a non-optimal solution. We can try to prevent the latter frmeourring, at least to some extent, by using
a Bayesian approach to bias the solution away from locah@tsomething that we will explain in the
next section.

Before turning to the Bayesian approach, we recall that deioto make a valid probabilistic in-
terpretation of the match one must compare the pixels in thatHoreground and background, such as
in [Sullivan et al. (2001)]. As discussed previously, thekmround must therefore be known (e.g. as
in the CMU PIE databasé [Sim et &l. (2002)]), or very simplg.(ea uniform, black background as in
the COIL-20 database [Nene et al. (1996)]) or itself calimddrom an appropriate model. Making the
comparison over all pixels in this way means that either alarity or dissimilarity metric may be used
without generating spurious solutions, for example, whenarea of the foreground region covered by
the object shrinks to zero [Buxton and Zografos (2005)]. \A& the problems caused by such trivial
solutions in our preliminary on 2-D object recognition irethrevious chapter. Within the context of the
recognition of 3-D objects via our LCV approach, the podisybdf such spurious solutions could, given

a high dimensional parameter space, be even more damaging.

Optimisation

The recovery of the LCV coefficients requires the search afla-dimensional space for all the possible
transformations between the model and the scene. Our dgjésto find the optimal model configura-
tion that will bring the synthesised and scene images inteaagent. Such a search of the 10-dimensional

LCV space is computationally expensive and so we need toruséfiaient method for the recovery of
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the optimal coefficient set.

For this purpose we have considered the use of various globalerical optimisation algorithms
as the final stage of our object recognition system. The aifindsan algorithm that is efficient and use
of which is therefore computationally feasible yet will #enge to the optimum solution from a remote
position in the transformation space. The examination chsuethods and their combination with local
optimisation techniques for improving the efficiency of #earch in its final stages is the main focus of

the next chapter.

5.1.4 Coefficient variation

Before we describe the Bayesian model, we would like to ré&mnifzait since the pose information is
implicitly encoded in the 10 coefficients;, b;), it is useful to investigate their variation as the object’s
pose changes in relation to the viewing direction. We aréqudarly interested in what we refer to as
a "horizontal rotation” of the viewpoint around the portiohthe view sphere defined between the two
basis views. This nomenclature reflects the set-up for thelsiexperiment we have devised to try and
recover some information about the range, the distribudiosh the variation of the LCV coefficients as
an object is allowed to rotate between views that generaagésf,,,’ andl,,”.

In brief the experiment is as follows. We have used a syrat8D model of a human head over
a black background (Figi_8.3 (a)) and selected a number ofirtarks on prominent features of the
face and along main discontinuity boundaries. To avoidihicing any manual error the landmarks
were chosen from amongst the set of model vertices. The 3-@iehveas then allowed to rotate about a
vertical axis betweer-20° from the frontal position, and 2-D snapshots of the scenewaken under
orthographic projection at’ intervals. The two images at20° of rotation where chosen as the basis
views so all the synthesized images would be interpolatéad®n the basis views. Since we worked
directly with a 3-D model the positions of the vertices angstthe landmarks were always known within
a high degree of precision.

We proceeded to evaluate the coefficiefits b;) by solving the linear system i (3]14) at each
interval of rotation and thus obtained a set of coefficientsthe pure, isolated, horizontal rotation
between the two basis views dependent only on the rotatigie &n This information enables us to draw
certain conclusions about the properties of the coeffisient b;). First we plot the graphs illustrating
the variation of the 10 coefficients according to the anyl®ecall that the:; coefficients describe the
horizontal x-coordinates of the target image witijedescribe the vertical y-coordinates and th@tby
are the constant terms that represent the translation bpttlie target and basis views. For that reason, a
priori we would expect a large range of possible values fercbefficients:q, by. However, specifically
for the rotation described, we expect only the translationgthe x-axis (represented lay) to vary
over a significantly large range while that on the y-axis $thdwe small and show little variatio{ ~
zero). As we can see from the graphs (Fig.] 5.3) the variatidhencoefficienta, follows a quadratic
curve, coefficienta; andas a linear curve and the remaining coefficients are constaamnté also that
ay andasz have a range d, 1] with a;,a3 = 0.5 for ¢ = 0° (frontal view). Likewise, for the frontal

view, ag is at a minimum. Finally, we observe that,, a4, bg, b1, b3 = 0 andby, by = 0.5 .
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This information on the range of values taken by each of theffictents can be used as “hard
boundaries” or even to provide approximately regions witlvthich we can initialise the optimisation
search. Additionally, since we can determine the coeffisi@s a function of), we can predict the
approximate solution set (always accounting for some @egferror) at eacl# betweenl,,,” andl,,”.
This approximate information combined with knowledge anridinge of poses we are likely to encounter
in a specific experiment can be used to set the means, whieliyiate in regions of high probability, and
the widths of the Bayesian priors so as to facilitate themisttion process. This is described in more
detail in the next section. One last piece of informatiort thay be inferred from the above experiment
which, although is not employed in this work could be usedriuoptimisation, is the distribution of
each of the coefficient&:;, b;). For example, we can fit analytical models to describe hov efithe
coefficients vary as functions @f In the case ofi, this might be a quadratic modgl= ax? + bx + ¢
with the parameters,b andc fit to the above experimental data. Now, given these modalsifane
assume a distribution for the angldor which reasonable choices might be that it is uniform calty
Gaussian, we can fully determine analytical distributioodels for the coefficients by carrying out a
simple transformation. Thus if, for examplé, ~ U(0,1) theny ~ Betg0.5,1) and so on. Such
descriptions of the probability distributions of the LCVefficients could then be built into the chosen
optimisation algorithm and used as sampling distributioansorder more efficiently to draw possible
solutions from regions of high probability and spendingdicomputational effort and time exploring

regions of the vast, high-dimensional solution space tteatialikely to be relevant.

Finally, we point out that the form of the coefficients is tcagge extent independent of the actual
object and indeed the results presented here genQrtdimy type of object (symmetric, asymmetric,
convex or concave) under similar imaging conditions thatlewed to rotate about the chosen vertical
axis between the basis views. It is possible to carry outlaimrekperiments to characterise the effects of
other 3-D rigid transformations on the LCV parameters. élthh not examined here, under perspective
projection the y-coordinates of the images of the landmaiktp will vary as the object is rotated as
described above owing to the changing depth of points onltfecb Hence, we expect the coefficients
bo, bo andby to vary slightly as a function of. by will have a similar quadratic form to that af, and

ba, by Will linearly decrease and increase respectively.

Our treatment of the LCV coefficients (and their associatéat plistributions) relies on their iden-
tified properties resulting from the isolation of individueansformations. These transformations span
a high dimensional non-linear space (manifold) and isafpthem in the way we did, amounts to only
considering a single slice of this manifold at a time. Peshapnore robust approach would be to use
a low-dimensional embedding method that will allow us taethe local properties of this manifold.
Widely used examples are the Kernel PCA introduced by [$cimdlet al. (1998)], which utilises an
SVM to construct a non-linear mapping from the input space high-dimensional linear space. It has
been used by [Gong etlal. (2002)] to model the dynamic, nogali changes in appearance (shape and

texture) of an image accross a large pose angle variatioa.lSdmap byl[Tenenbaum et al. (2000)] is

1Provided the objects are reasonably compact and are notrsseniewpoints improbably close to them.
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another method designed to discover any non-linear degfeeedom in high-dimensional data by
using the geodesic distance induced by a neighbourhoodh goaipcorporate manifold structure in the
resulting low-dimensional embedding. One example whehastbeen used successfully for classifica-
tion is the work by|[Yang/(2002)]. Finally, Local Linear Endsing (LLE) [Roweis and Saul (2000)]
is another option which attempts to discover non-linearcstire in high-dimensional data by exploiting
local symmetry of linear reconstructions and has been é@gpldo learn the appearance variation across

face images [Mekuz et al. (2005)] and expression for facegeition [Liang et al.|(2005)].

5.2 Bayesian model

In this section we extend the basic LCV equatidns (3.14)Brt) by incorporating prior information on
the coefficientga;, b;) and building a Bayesian model. We start with the Bayesiaagigm P(x|d)

P(d|x)P(x) extended to n-dimensions:
P({x1,x2, ...,z }|d) < P(d{x1,22,...,2n})P({z1,22, ..., 20 }) (5.8)

expressed abstractly withy with ¢ € {1,...,n} as the unknown variables andas the observed data

vector. Now, if we assume that the are statistically independeni (5.8) becomes:
P({x1,x9,...,2n}|d) x P(d|{x1,2a,...,2,})P(x1)P(22)...P(2n). (5.9)

To apply this approach to the LCV method used as in equdii@h) (6r the synthesis of an imagg

that we hypothesize should approximately represent oré@xphe target imagér, we treat/r as the
observed data, the LCV coefficieris, b;) as the unknown parameters, the basis views, for which in this
work there are just twol,,," and1,,” as known a priori, and finally(z, y) as a vector of i.i.d. random
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. 12 . . .
noised andw’ = gz, w” =gt are the synthesis weights with* = a3 + a3 +b3 +b3 +af + b3

andd'’? = a2 + a2 +b? + b3 + a2 + b2. The posterior probability of the LCV coefficients given thaeget

imagelr) thus becomes according fo (b.9):
P((aiabj)‘ITaImlv-[mN) S8 P(IT|(aiabj);Im/aImH)P(aivbj)v (510)

where P(Ir|(ai, b;); I, I,,”") is the likelihood, that is the probability of observing theget image
Ir given the coefficientga;, b;) and also the basis view imagés’ and,,,””. P(a;,b;) is the prior
probability of the LCV coefficients.

Since we are dealing with a high, n=10-dimensional spaceadthdugh the posteriof (5.1L0) is
not normalised it will most likely numerically be very smalhen we are far away from the mode(s)
in the tails of the distribution. This can cause approxiorafproblems where the exponential is very

close to zero because of the limited numerical precisioroaffuters. It is therefore preferable to use

2As discussed previously, when the landmark points in thestamgpgel - are not correctly located, this last assumption cannot
be completely correct. There will also be errors in the imaget®sis caused by inaccuracies in the manual selectionariarks
and assignments of correspondences in the basis views dbemdf-line, model building stage that, although likely & émaller
than those just mentioned, nevertheless also mean this ashpson will not be completely correct.
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the negative logarithm of the probability which alleviatbss problem and, since the logarithm is a
monotonic function, still maintains the global optimum la¢ tsame position. Hence, instead[of (5.10)

we use:

—log[P((as,b;)|Ir, I, I,")] = —log[P(Ir|(a;, b;); I, I," )] —log[P(a;, bj)+' * constants’ .
(5.11)

constants’’ are independent of the LCV coefficients;, b;) and unimportant in

where the
finding the optimal values of the these coefficients. Thafices for our purposes but we note these
terms would become important if we were also to optimise wépect to the variance and covariance

parameters.

5.2.1 Likelihood

The likelihood in [G5.11) is specified by the assumed prolitgtdiensity function (p.d.f.) of the fluctu-
ations in the measurements about their predicted valuessanictly speaking the likelihood function
should be based on the statistical properties of the noiseieler, we may use the general assumption
that the deviations of the synthesised imadg from the target imagé;, are drawn from a multivariate

iid normal distribution of covariance?. The log-likelihood is thus:

—log[P(I7|(ai, bj); L', In"")] = 2; > lr(w,y) = Is(x, )P, (5.12)

i
which is quadratic in the residuals and the summation isezhout over all image pixels. The other term
in (5.11) comes from the prior p.d.f..

We should note here that the independence assumption orCiedefficients is used to derive a
tractable formulation for the posterior distribution aschot strictly accurate since we are dealing with
an overdetermined linear system with more coefficients tlemmees of freedom. In addition there is the
implied independence on the pixel values which might nod tiof highly correlated foreground regions.
One way to achieve a form of pixel independence would be @ fihe image similar to the work by

[Sullivan et al.|(1999)] so that the filter responses will begépendent.

5.2.2 Prior

Recall the Bayesian interpretations discussed in selcimd.JHere, we use the latter, "subjective” inter-
pretation where prior information comes from the analy$the LCV parameters carried out previously.
We can therefore use a Gaussian prior for the coefficierasidb; centred at the positions already iden-
tified in sectiorf 5.1}4. Under the assumption of statisiicdépendence between the coefficients, with

each having its own mean and variance we obtain:
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)2 + (Z’J;mbﬂ . (5.13)

If we again ignore terms independent of the LCV coefficienitsciv do not affect the optimal solution

1

@ o, P T > [(

1,j=0

for these parameters, the negative logarithni_of {5.13) imay be written as:

4 — 2 )2
—log(P({ai,b;})) = > l(“i_’;‘“i) + 2 ) ] (5.14)

1,j=0
wherem,, ,my, are the mean coefficient vectors ango; the r.m.s. deviations of the prior probability
for coefficientsa; andb; respectively.
5.2.3 Posterior
The negative log of the posterior probability from (3.18)12) and[(5.14) becomes:

dowylIr(z,y) — 15(9&3/)]2Jr i (a; — Mq,)? N (bj — 1w, )?
o2 o2 0]2-
€ i,j=0 q

- IOg[P((aza bj)|IT7 Im./; Im//)] =

(5.15)
We usually require a single synthesised image obtained &omell-defined set of optimal LCV
coefficients(a;, b;) to be presented as the result. A typical choice for that simghge is the one which
maximises the a-posteriori probability (MAP) or equivalgmvhich minimises the negative log-posterior

(5.15) with respect to the parametersandb;:

min(— log[P((ai, b;)| I, I,/ , I,")]). (5.16)

ai,b]’

The above can be minimised using standard optimisatiomiguis.

As we can see froni_(5.15) the prior is used to bias the MAP molubwards the means,, and
m, away from the maximum likelihood (ML) solution which is wieey_, | [Ir(z,y) — Is(z, y)]? is at
a minimum (i.e. there is little difference betweénandls). How much the prior affects the solution in

relation to that which would be obtained from the likelihaddne may be characterised by the quantity:

0.2

k= s> (5.17)
PICHE N
As the influence of the prior vanishes (i®., o; become very large and the Gaussian prior resembles a
uniform distribution) the MAP solution approaches the Mllusion. Careful selection of the variances
oo IS therefore important.

€ 17

The results of using such Gaussian priors to bias the posteasin be seen in Fid._5.4. Here we
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show three one-dimensional plots of the negative log pritibabf the likelihood, prior and posterior
for the coefficientsiy, a; andas. These graphs were generated by isolating and varying datte o
coefficients in turn while having conditioned the remaingagfficients to the optimal values identified
previously. The imagés was synthesised and compared to the target iniagéth the log probabilities
recorded at every iteration. We used image examples frorC@i-20 database [Nene et al. (1996)].
The means required in each of the three priors were alsotedlatthe identified optimal values for the
coefficientsag, a; anday and the standard deviations were chosesgs= 0.5 ando,, = o,, = 0.125
respectively. The standard deviation of the noise in theillood was set at. = 1. We examine only
these three coefficients here since the curves are quit@siioi the remaining seven.

What we should note in particular from these examples areftbete of the prior on the likelihood,
especially near the tails of the p.d.f. (where we have laeger residuals). The prior widens the basin of
attraction of the likelihood curve resulting in an almosieex posterior that is much easier to minimise
even if we initialise our optimisation algorithm far awawfin the optimal solution. On the other hand,
where we have the maximum probability near the global optime wish the prior to have as little
impact as possible in order for the detailed informationdme entirely from the likelihood. This is so
that we can allow for some small deviations from the mostyikalues for the coefficients as encoded
in the prior means since every synthesis and recognitioarexent will differ slightly, owing to noise,
perspective camera effects and sg.on

The extent to which the priors will affect the posterior diafition can be determined by choosing
appropriate magnitudes for the raties= 0?/07 andk; = o7 /o73. Thus, for example for coefficient,
for which the likelihood is already convex we can use a faivigle Gaussian prior without need to take
much care as to where it is centred. In distinction, for theffitientsa; anda, the basins of attraction in
the likelihood are quite narrow and much stronger priorgegeired. We note again how a good choice
for these ratios can ensure that exact position of the glopnum at the bottom of the overall basin
of attraction is determined by the likelihood alone. Forrapée, in Fig.[5.4(b) the prior mean is set to
mq, = 0.5 but the posterior minimum is at; ~ 0.48 because this is also the location of the minimum
in the likelihood term. This is the exact location we wish tegerve when we calculate the posterior

distribution.

3We have seen in a number of experimental cases where we allawhdisviations that the synthesis similarity betwéen
and /g was much higher (and thus much lower error) than when we used h sttanger prior to bias the solution closer to the
prior mean values.
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(a) Scene view (b) Basis image 1 (c) Basis image 2

Figure 5.5: Synthetic data used for the testing of the LC\éohjecognition approach

Essentially, we are proposing a flexible template matchystesn in which the template is allowed
to deform in the LCV space but restricted by the Bayesianrptimregions where there is a high proba-

bility of obtaining meaningful solutions.

5.3 Experimental results

In a similar fashion to that adopted in the previous chaptempresent the results from a small number of
tests designed to examine the validity of our 3-D objectged@mn method and particularly the Bayesian
inference part. These tests will serve as a precursor to tre detailed experiments which follow in

later chapters.

For these preliminary experiments we envisage the follgwinject recognition problem which we
will attempt to solve via the LCV approach. Consider the sdemage of an artificial human head model
(Fig. [5.3(a)) in a frontal-facing position in relation toetitamera. We wish to identify this pose, here
assigned an angle 6f, using a multi-view template model comprised of two givesibaiews. For the
known basis views we chose two images (Fig. 5.5(b), (c)) éhat-15° apart from the frontal, scene
or target view. We then built our LCV model by choosing 52 laxadks on prominent features of the
object and carried out a constrained Delaunay trianguidtiat was kept consistent between the two
basis views. With the help of a global optimisation algaritthe details of which are not important
at this point) we then examined three different examplest, fa search for the LCV coefficients by
starting close to the optimum solution (i.e. a good inigiation); second, a similar search but starting
from a remote location (i.e. a poor initialisation) and fipahe same case as used for the second, 'poor
initialisation’ experiment but with a Bayesian model agblk to regularise and localise the optimisation
search. These tests were designed to give us some idea hbdlifficulty of the problem and form of
the objective function and error surfaces, and also totiis, in practice, any beneficial effects of using

the Bayesian approach.

We carried out 100 test runs for each example and every rurali@sed to execute for 20000
evaluations of the relevant objective function. In total tivas performed 300 LCV object recognition
tests for the recovery of the frontal view. The success dfi@as was determined from evaluation of two
quantities. The first was the back-projection erkhy = Zil d?. This is a purely geometric measure
defined as the SSD between the landmark points in the scersegat image and the corresponding

landmark points in the synthesised image as calculated fr@nh.CV equations. The total number of
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(b)
Figure 5.6: Two synthesised examples at the chosen thasshal) ¢.c=0.966 and (=108

landmark points in any one image was= 52. We refer to it below as the "back-projection” error. The
second quantity was the cross-correlation between thettargd synthesised images which combines
information as to how well both the geometry of the landmaskis and the pixel intensities were syn-
thesized. The ground truth solution (allowing for a smalbamt of error inherent in the approximations
in the LCV equations and in the way we computed the pixel it@s) is given by the LCV coefficient
set: fugp = —3.3405, a; = 0.5115, as = 0.0005, az = 0.5212, ag = 0.0005, bg = 0, by = 0, by = 0.5,

bz = 0, by = 0.5] with a cross-correlation di.988106 and back-projection error df3.5502.

Following the above experiments we chose the convergenesitblds for cross-correlation aftk
as7. = 0.966 andtg, = 108 respectively which were chosen from qualitative inspectbthe image
synthesis results. Thus, if for example we visually compaesynthesised instances, one of which has
a cross-correlatior: 0.966 (Fig.[5.6(a)) and a second wifiz ~ 108 (Fig.[5.8(b)), to the target image
(Fig.[5.8(a)) we can see that the two models appear to previeficiently close match. We thus regard
a successfully synthesized image as one that has both aamwstation> 7. and Ep < 75,. We
deliberately avoided placing individual distance thrédb@n the 10 coefficients since, in more practical
scenarios, they are not statistically independent as voedised for the parameters in the 2-D example
in chaptel’#. Furthermore, owing to the over-determineddirsystem[(3.14) it might be possible to
reach a good solution that is outside the boundary limitsosethe variation of the LCV coefficient
as determined in sectidn 5.1..4. In fact, we have seen a plartioccurrence of this in some of our
experiments. Study of the diversity plot (Fig. 5.7) revehbst coefficientsi; anday are lying outside
the identified boundaries with higher diversity than otheeficients. In spite of this, all the models
produced by these values are still very good representatibthe target image and thus admissible as
correct solutions to the optimisation problem. Thus it isthe case that solutions outside the predefined
limits are not useful. However, the opposite is always truthe sense that a solution found well inside
these boundaries will produce a good visual representatidrwill be admissible under with respect to
the thresholds, andrg, . Because of this choosing the Bayesian priors to exclud#icieat values

outside these boundaries is possible.

The test runs with a good initialisation were started indide boundaries with: {~5...5},
{0...1},{0...0},{0...1},{0...0},{0...0},{0...0},{0.5...0.5}, {0...0}, {0.5...0.5}]. Note
the very restricted ranges for the coefficients that remairstant during the rotation of the viewpoint

(or object) about the vertical axis. For the examples thaevetarted from a poor initialisation, we
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Figure 5.7: The diversity of the coefficients from the 10Qdegth good-initialisation.

Noinit | Init | Bayes
Total success % 0 100 | 96
Epsuccess% | 0 100 | 96
c.c. success% | O 100 | 98

Table 5.1: Object recognition results for the 3 differerges

defined the boundaries as{-5...5}, {-1...1}, {-1...1}, {-1...1}, {-1...1}, {-1...1},
{—=1...1}, {-1...1}, {-1...1}, {—1...1}]. For the tests in which we used a Bayesian approach
we kept the same boundaries as in the second set of expesiraadtused Gaussian priors with
means and standard deviationgn,,=-2, ma, =Ma; =mp, =mp, =0.5, mMa,=ma, =mp, =mpy, =msp, =0},
{00=00,=005=1, 00,=04,=0b,=0p, =0p,=0p, =03, =0.01} for the 10 coefficients respectively.

The main results that show convergence of the optimisatiorihfe three cases are assembled in
Table[5.1. Here, we can not only examine each error measpagately but also see the combined
results. It is obvious (column 3) that all the runs which wiergalised close to the desired optimal or
ground-truth solution not only converged successfullyddab within a low number of function evalua-
tions (see Fidg.518(a)). This most likely indicates a faatle region near and around the location of the
global optimum location that lies within its basin of attiiao. Provided that the optimisation algorithm
manages to find its way into this favourable region we may theeable to achieve convergence to the
globally optimal solution by using a simple, local optintisa approach.

On the other hand, the error surface far from the globallynagit solution is very difficult even
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for a powerful, 'global’ optimisation algorithm succesijuo traverse to the desired solution. We can
see this in column 2 of Table5.1. None of the 100 test runsigidblumn succeeded in finding the
desired globally optimal solution and most did not get clasée optimum model configuration (see
Fig.[5.8(b)). They either exhausted the allowed number fEaiilve function evaluations or converged to
spurious local optima. We may thus deduce that a way of seftdbstraversing these difficult and noisy
regions of the parameter space is needed so that we can hesairiect solution efficiently, quickly and,
most importantly, without getting stuck in local optima.igts exactly what the Bayesian approach aims
to achieve by means of its regularisation and localisatftects. We can therefore use Gaussian priors
to limit likely parameters values within the expected siolutboundaries and simultaneously ensure
they are not so strong that they overly bias the posteriorth \&lich priors (See section 51.4.) we
can achieve a similar effect to a good initialisation buthwitie diversity available for the optimisation
algorithm to examine other promising areas of the solutfmacs. In addition, the inherent smoothness
of the Gaussian priors is incorporated into smoothing treteyr, especially in noisy areas as when the
template is positioned over the image background, or inratloeds, in the tails of the distribution (see

Fig.[5.4).

This behaviour of the priors is apparent from the runs of I@stin each of our experimental
scenarios. The convergence results obtained from thesaramiven in column 4 of Table .1. Here we
see that the results of the Bayesian tests are almost as gdfostewere to initialise close to the correct
solution. In the tests of the Bayes approach, the algoritta® started at similar locations and with the
same settings as in the poorly initialised cases just destrbut, because now the noisy background
areas have been effectively smoothened out it managedlesfsly to converge to similarly (but not
equally) low-error solutions as with the set of runs in thstfagase where a good initialisation was used
(see Fig[518(c) and comparison of the two error measurefgifbEd). What should also be noted from
Table[5.1 is that there is approximate agreement betweem#behing results as characterised by the
two measures of cross correlation and back-projectiorr.efiiois indicates that we appear not to have
(or at least not to have discovered) any trivial solutiongvase found in the 2-D affine example studied
in the previous chapter. If we had such trivial solutions inichh our model gives rise to an erroneous
object representation, we would expect to see results whilytaback-projection error but which, as in
the 2-D case, had a low SSD error (or high cross-correlatiéoy) such occurrences we would expect to

see a big discrepancy between the 3rd and 4th rows of [alile 5.1

These preliminary tests have shown that the proposed ofgeognition paradigm using LCV is
correct in principle and can be considered as an optimisgtioblem in the joint image space, similar
to that for the 2-dimensional case examined previously. @@m owing to the increased dimensionality
we need to solve a more challenging optimisation problemitamabs been demonstrated that a Bayesian
approach which exploits our prior knowledge about the vimaof the LCV coefficients is necessary
when good bounds on the coefficient values to be used in thialiséation of the optimisation are not

available.

A very desirable property of the LCV recognition method ttve identified from our initial tests
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Figure 5.9: Comparison between the two measures for the-mpitilisation and Bayesian tests.

but have not yet adequately proven, is that this approachk doeseem to suffer from problems with
trivial solutions. In order to make a more precise claim hesvat would be necessary to experiment
much more extensively with additional transformations4D ghat represent changes of viewpoint other
than rotation about a vertical axis. We aim to do so in lateaptérs when we will carry out more
detailed and structured experiments. With these prelirnginesults however we are confident of the
validity and practicality of our method since it is obviolmat a single, global minimum exists within
a locally favourable area (that may be extended by the udgedBayesian priors). We are thus simply

faced with the (non-trivial) problem of efficiently and efferely reaching that minimum.

5.3.1 Markov-Chain Monte-Carlo

In the previous sections we have gone some way into provigergeral information about the overall

shape and properties of the Bayesian posterior by spegifyinto constants and other irrelevant terms,
a mathematical formula for the (log) posterior p.d.f. [n18. and by generating and visualising 2-
dimensional slices of the objective function near the optisolution. Helpful though the previous

work has been, it is very desirable if we can obtain a bettea idbout characteristics of the posterior
distribution more specifically relevant to the optimisatiéVe have therefore used Markov-Chain Monte-
Carlo (MCMC) [Gelman et al.| (1995)] sampling in order to gexie a representative sample of the
posterior p.d.f. from the regions of high probability and/é&arried out further numerical analysis on

the distribution, since graphical analysis in 10 dimensismot very feasible.
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Figure 5.10: The identified clusters before (b) and aftethimning-out the sample.

Markov-Chain Monte-Carlo (MCMC) is a general method for géing from an unknown distri-
bution that requires only that its density can be calculaed sample point, say. MCMC works
by drawing values from a known distribution, thransition distributionand then gradually adjusting
these draws to converge to the approximate posterior lolision (orstationary distributiof. The sam-
ples are drawn sequentially with the draws forming a Markdai@ - that is - the distribution of the
sampled draws depends only on the last value drawn. The dhéhdriven by the transition distri-
bution and some acceptance/rejection rule for the new smipl our implementation we have used

the Metropolis-Hastings ruIL_[Mejr_Qp_oﬂs_e_tl il. (11)513);3&5915 1970)] and a 10-dimensional Gaussian

initial distribution in order to accept or reject new drawsldegin the process of approximate the pos-

terior distribution. In addition, in order to reduce anyidesl correlation between the drawn samples,
it is commonplace to “thin-out” the samples by removing assilffor example the first N samples) and
keeping the remainder. This will also ensure that any b@s the initial transition distribution is greatly

reduced.

We should emphasise here that MCMC is primarily intendecettegate a sample from a distribu-
tion and is not an optimisation method. There is no guarathiziethe MCMC can produce good point
estimates. Although conventional importance samplindhodst can be quite inefficient in high dimen-
sional spaces MCMC is capable of reaching the areas of higihapility, that is the main modes of a
p.d.f., and drawing samples near or at such modes. Giverh#racteristics of our posterior distribution
seen so far, it was decided to explore the MCMC both as a msaitioin tool and as a mechanism for

characterising the posterior p.d.f..

We chose the same object recognition experiment used inrthéops section and generated a
set of 10000 samples of the posterfor (5.15) from areas &f piigbability using 5 Markov chains (2000
samples per chain) and with the following settings: stathdawiation of the initial Gaussian distribution
o = 1072, initial acceptance probability = 0.95 (that is when we start the algorithm, the initial
Metropolis-Hastings criterion must evaluate to a prohbbdf > 0.95 for a sample to be accepted),
acceptance ratio = 0.15 (the percentage of samples that should be accepted in evelr§ Bamples

drawn. The value op is thus adjusted accordingly). As a starting point for therkéda chains we
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cluster 1: -2.1893| 0.7089| -0.0140| 0.4685 | -0.0005
(c.c. =0.5792)| 0.0779 | 0.1054| 0.5297 | 0.0205 | 0.6061
cluster 2: 0.9493 | 0.5881| 0.0544 | -0.0306| 0.0265
(c.c. =0.1753)| 0.1095 | 0.0994| 0.5619 | 0.0621 | 0.5716
cluster 3: -0.0765| 0.4810| -0.0132| 0.5455 | 0.0068
(c.c. =0.7088)| 0.0581 | 0.0458| 0.5268 | 0.0431 | 0.5732
cluster 4: -0.9653| 0.3956| -0.0057| 0.5776 | 0.0165
(c.c. =0.7687)| 0.0560 | 0.0524| 0.4961 | 0.0219 | 0.5568
cluster 5: -2.8922| 0.6551| 0.0125 | 0.5066 | -0.0235
(c.c. =0.6329)| 0.0824 | 0.0684| 0.5163 | 0.0478 | 0.5753

Table 5.2: The centres of the five identified clusters withrthssociated c.corr. values.

used similar bounds as examples from the previous sectainaére well-initialised. For analysis of
the posterior we discarded the first half of the drawn sam(pkes1000 samples from each chain) while
for the function minimisation we considered all the samgiese the more samples available the better
chance of one of them being near or at the global optimum. df) the MCMC method recovered a
point very close to the global optimum with a cross-corietabf 0.97495 (the ground truth has cross-

correlation of 0.9881 and the best solution recovered ptesly in the well-initialised tests was 0.9887).

For the analysis of the posterior based on the recoveremnl-out” sample, the first step is to
determine any other major modes of the p.d.f. near and arthendlobal optimum. That can tell us a
lot about the shape of the p.d.f., especially where othallipoptimal solutions may be situated. For
that purpose, we used various runs of a k-means clusteggigim [Bishop|(1995)], the best of which
recovered five main clusters (Fig._5l110(a)) each associaitbdone of the Markov chains. The centres
of these clusters can be seen in Tdblg 5.2. It is obvious flwclose proximity of the clusters and
the fact that they are all near the global optimum, that timetion has a single, main mode (i.e. peak)
though with some noise which gives rise to other smaller peedarby, and that there is no significant
local optimum elsewhere in the nearby posterior space. atigthiat the centre of cluster 2 is far away
in the value ofag coefficient merely indicates that the Markov chain failedgt very close to the
global optimum and not that another significant mode is pres&€he presence of another significant
mode would also have been identified by the Bayesian testawied out earlier. Note also that there
is a greater diversity in they coefficient than in the others (see Fig._5.11). This is to hgeeted
sinceag represents translation of the model along the x-axis andliffasent units (or as physicists say,

dimensionality) from the other coefficients.

If, on the other hand, we do not thin-out the samples but densill the 10000 points, including
even those from regions of low probability, we also recovepriticipal clusters but in this case the
clusters are not well separated (especially those withtivegealues, 1,2 and 3,4 Fid._5]10(b)) most
probably indicating a single, wide mode. From looking at thester centres and at the graph in Fig.
[5.10 we did not discover any significant local optima whichexpect, usually to be identified as clusters
with high value (0.8,..,1) but with very thin footprint. Based on these clusterieguits we may say
that the p.d.f. near the global optimum (which is of mostries¢to us) is a unimodal function, devoid of

any significant local optima and affrected by only a small ammf noise as is to be expected since we
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Figure 5.11: The diversity of the 10 coefficients before (& after (b) the thinning-out.

Dispersion measures:

range 3.9392 | 0.4639 | 0.2480 | 0.6645 | 0.1798
0.3701 | 0.3994 | 0.2119 | 0.2591 | 0.3503
std. dev. 1.3890 | 0.1171| 0.0407 | 0.2258 | 0.0302
0.1031 | 0.1024 | 0.0455| 0.0579 | 0.0973

min. -2.9253| 0.3131 | -0.0704| -0.0532| -0.0800
-0.0062| -0.0085| 0.4697 | -0.0229| 0.4959
max. 1.0139 | 0.7770| 0.1776 | 0.6112 | 0.0998

0.3638 | 0.3909 | 0.6816 | 0.2362 | 0.8462

Location measures:

mean -1.0348| 0.5657 | 0.0068 | 0.4135 | 0.0052
0.0768 | 0.0743 | 0.5262 | 0.0391 | 0.5766
median -0.9717| 0.6004 | -0.0003| 0.5158 | 0.0000
0.0026 | 0.0039 | 0.5013 | 0.0026 | 0.5067
mode -0.9826| 0.4262 | 0.0000 | 0.5800 | -0.0009

0.0020 | 0.0000 | 0.5003 | 0.0000 | 0.5014

Distributional measures:

skewness 0.0558 | -0.2909| 2.0017 | -1.3876| 0.4002
1.0680 | 1.2762 | 1.7307 | 1.3652 | 0.9414
kurtosis (-3) | -1.3851| -1.0746| 5.1036 | 0.1009 | 1.4513
-0.2280| 0.5369 | 2.3347 | 0.7000 | -0.4407

Table 5.3: The results from the numerical tests on the drammpte.

are dealing with discrete data.

One additional graphical tool that may be used to aid ounaigais the boxplot which illustrates the
diversity of the coefficients in the samples from the MCMC. Neee included two such plots, one prior
to the thinning-out with all the points included (Fig._5.4)})(and the other after the thinning-out with
only half of the sampled points (Fig._5]11(b)). It is obvidbat in the latter the samples are much more
tightly compact with fewer outliers than when the data isthatned-out. This is also as expected and
is an indication that the algorithm has converged to an aptintocation. Furthermore, this reinforces
the notion that the posterior p.d.f. is unimodal leading t@aow,and perhaps somewhat kurtotic, basin
of attraction in the optimisation. In the first boxplot thastgnce of a large nhumber of outliers simply

illustrates that the algorithm has spent its initial timarfdomly walking” through the high-dimensional
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space of the LCV coefficients until it reaches an area of higgterior probability. The fact that there
is lower overall diversity in the second boxplot shows tleg temoval of the first half of the drawn
samples is a good way of reducing the dependence on thengtdisitribution while also limiting the
presence of samples from regions of low probability in thiedfathe p.d.f.. Note once again, as in Fig.
[5.7) the increased diversity in coefficientsanda, that represent correct solutions outside the identified
boundaries.

We proceed with the calculation of the moments from the thihaut sample as they may give us
additional, numerical information about the propertieshaf posterior distribution. These are compiled
in Table[5.B. Our first observation is that the mean, mode a@dian are in close proximity to each
other, further reinforcing the evidence that we are dealiit an approximately symmetric, unimodal
distribution (near and inside the basin of attraction). sTisito be expected in particular owing to the
effects of the prior which itself is a symmetric and unimodaitribution. By further examination of
the range, minimum and maximum values, combined with thepkadiversity box plot (FigL5.11), we
can see once more how the coefficients are tightly conceudtraithin the general limits identified by
the 3-D experiment described in section 5.1.4. This indiea region of the error surface around the
global minimum which is narrow and thin until it peaks out (ather bottoms out) into a few close-by
points. This limited spread, is further affirmed by the idféed low standard deviation values in all 10
dimensions except for the coefficien.

The last two numerical measures are the skewness and thasikurfThese provide information
about the asymmetry of the p.d.f. and the shape around its pesave mentioned above, the small nu-
merical differences between the mean, mode and median rdiiata an almost symmetric distribution.
However, the skewness values in Tdblg 5.3 demonstrate sositive skewness in certain dimensions,
while there is negative skewness in others. This is mostiytduihe shape of the likelihood function (i.e.
the observed data) since the prior is symmetric. An exanfleesshape and skewness of the likelihood
near the global minimum for some coefficients can be seengri®#. Finally we have the kurtosis of
the peak which result from interplay of both the shape of tkelihood and the strength of the prior.
For example, some dimensions have an almost Gaussiantlikesks of zero where there is little bias
from the prior. Other dimensions however are highly kuad@keptokurtic) where the prior has greater
influence that the likelihood and produces a narrower lapkiasin of attraction.

Even though we cannot visualise the 10-dimensional pastprd.f. we can say that as a product
of the likelihood and prior distributions the posterior tonmge extent inherits characteristics of their
shapes. Thus, it is unimodal and in some dimensions modieaisitively skewed due to the shape of
the likelihood and, depending on the strength of the priomveg have different levels of dispersion of
samples drawn from the posterior. A highly biasing priod wibduce a long, narrow p.d.f. while a weak

prior will generate a shorter, wider peak in the posterior.

5.4 Summary

In this chapter we have seen how the linear combination efvig.CV) method may be used in view-

based object recognition. Our approach involves syntimggsistensity images using LCV and compar-
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ing them to the target scene image. In addition we incorpdratior probabilistic information on the
synthesis parameters by extending the LCV equations intay@8an model. For the priors, we chose
Gaussian distributions centred around the identified ioratof where the optimal synthesis parameters
were expected to be. These locations were identified bytisgla specific transformation (in this case
rotation about a vertical axis in 3-D) and interpreting tlaegmeters as a function of the transformation.
We experimented with synthetic data and the use of an ogtinisalgorithm to recover the optimal
set of parameters that would match the synthesised and targges. These initial experiments carried
out in order to test the principle of our method while evahmtthe advantages of using a Bayesian
approach have shown that our method works well in recovexivigw that lies between the basis views.
Furthermore, we have seen the positive regularisation &sinlg effects of carefully chosen priors on
the matching objective error function and consequentlyhendptimisation results themselves. Finally,
we used a MCMC to draw a sample from the posterior distrilouéind carried out additional tests in
order to recover more information about the shape of theilligion near the optimal MAP solution
and to probe where other interesting solutions may lie. Heai MCMC as an optimisation approach
was also briefly explored with, because of the form of the grimt, satisfactory results. Nevertheless to
revaluate the approach additional, more robust experatientis required with a variety of datasets and

across a range of different poses and objects. These aenpadsn the following chapters.
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Chapter 6

Optimisation strategy

We have already seen a number of traditional and, for compig@n applications, novel optimisa-
tion strategies in Chaptét 2. Our intention now is to tessehdifferent strategies against a set of 2-
dimensional, analytic functions and real-image, realistmplate-matching datasets. The aim behind
these tests is to determine the general properties of eaitte aptimisation algorithms (using the 2-D
functions) and understand some details about their paearsettings. We can then use this information
and apply the same algorithms in a template-matching prolled see how they compare in more re-
alistic circumstances and using real image data. This wié gs further insight into the workings and
parameter tuning of each method and determine which of theSaisation approaches best suits our

kind of computer vision problem and data.

6.1 2-D test functions

The functions we will present here are designed to test thergéproperties of optimisation algorithms
and give us an overall understanding of each method’s strera;d weaknesses and possible param-
eter choices before we move on to datasets and experinmntiecific to template matching. These
functions were inspired by the work of [DeJong (1975)] andehaeen extensively used by optimisation
researchers ever since to test the performance of varigositaims. The original set, comprised of 5

functions known collectively as DeJong'’s functions, irtgu

e the sphere modelf(z) = Zﬁil x?, a smooth, unimodal, symmetric, convex function used to
measure the general efficiency of an optimisation algoritiaince this function is very well
behaved (from an optimisation point of view) the majoritystdndard, unsophisticated algorithms
is expected to converge and we can use the number of funsi@dumadions it takes an algorithm to
reach the minimum as a measure of the algorithm’s efficiency.

e Rosenbrock'sunction, f(z) = I [(1 — ;)2 + 100(z,,1 — «2)?], which has a single global

minimum inside a long, parabolic-shaped flat valley. To find valley is quite trivial, however
convergence to the minimum can be difficult. Algorithms thia not able to discover good direc-

tions for optimisation under-perform on this problem byithating around the minimum.

e stepfunction, f(z) = Zf;l round z;), which effectively highlights the problem of flat surfaces.

Such surfaces pose particular difficulties for optimigatitgorithms since they do not provide any
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information as to which direction to favour. Unless an aifwn is equipped to handle variable
step sizes then it can get stuck in one of the flat regions.edasof the original step function,
we decided to experiment with an alternative, silehump camel-badunction, f(z,y) = (4 —
2122+ %)xQ +axy+ (—4+4y?)y? which has a wide and approximately flat plateau and a number

of local minima. In addition, it has two, equally importatblgal minima.

The camel-back function is more difficult than the origintalsfunction, since the flat region in the
former does not offer enough information for a fixed-stepdtgm to steer away from any local
minima. Therefore, whereas in the case of the original staption an unsophisticated algorithm
might search the error surface for a long time and eventualisely due to luck converge at the
global minimum, in the case of the camel-back function thiesleface near and around the local
minima do not provide the necessary external energy forltg@ithm to jump out and drift away
to other promising regions. In other words, a combinatiora dfat surface surrounding local

minima is more difficult to optimise than a flat surface alone.

e Quartic, f(x) = Zf\il x* + Gaus$0, 1) is a unimodal function with the addition of random,
Gaussian noise. This is used to test whether or not an ojtiimisalgorithm can cope with noisy
data. The problem with this function however is that the tiddiof a random part might shift
the global minimum away from its known and expected locati®his makes verification of the
numerical convergence accuracy of an algorithm quite irsipts For this reason, we decided to

use two alternative functionRastrigin’sfunction f(z) = 10n + Zf.v:l (22 — 10 cos(2mz;)) and

the slightly more difficultGriewank’sfunction f(z) = S | =i — [ cos(%) + 1. Both
have a cosine modulation part to produce many local minimawédthough regularly distributed
simulate the effects of noise (multiple modes) and most ntamdly do not change the position of

the global minimum.

e The final function in the original set by De Jong was thgholesfunction which contains many
local minima. It is designed to test whether an algorithm jecemp out of a local minimum or
will get stuck in the first basin of attraction it encountevde decided to use the aforementioned
Rastrigin’s and Griewank’s functions for this test sinceytlessentially serve the same purpose

with the foxholes function.

All the functions we will use for initial testing and evalimt of the optimisation algorithms are shown
in Fig.[6.1.

6.2 Real-image template matching

In this section we propose more detailed experiments reteieacomputer vision by examining de-
formable template matching since it is a generic scenadbrtfight be applied to many different areas
of interest in the field. The deformable template matchingbfam can be expressed as the task of
searching for the parametefof a transformatiori” that will bring the model templaté&,, into agree-

ment with a target or scene imagge. The model template may be represented in various diffavays
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Figure 6.1: The five 2-dimensional test functions.

such as using pixel intensities, feature points, edgesetsy linear segments and so on. The transfor-
mationT’, for 2-dimensional problems, is usually an affine transfation with 6 parameters and may be
mathematically defined in a similar way as in secfion 4.2 8gnd4.8). In this case(., .), our match-

ing measure, is the sum of square differences dissimilardiric where the sum is defined over all the
features in the template, in this case pixels.

As a result we get the error surfaces for the 2-dimensioaalstation, anisotropic scaling and 1-
dimensional rotation and shear as seen in Eig. 4.1. Of pdatiinterest to us is the translation surface
(Fig. [4(a)) because it contains the majority of problemsfionting optimisation algorithms. This
is due to the fact that, in general, a change in translatidhmave the model away from the object
and on to the background region where unknown detail, backgt objects and clutter and thus more
noisy peaks in the error surface exist. This is not so commitimtive other transformations. Thus the
translation surface may vary depending on the type of teimpheodell,, and scene imagér we use.

If for example we consider a template of the segmented objeictterest and a scene image with the
object present in front of a constant background (see[E@(ap. then the translation space (assuming
all other transformation parameters are optimally set)sgrgple convex surface (Fig._6.2(d)). It lacks
any significant noisy areas (and thus local minima) and tbbajlminimum may be easily found with
even the most elementary of optimisation algorithms witltbe need for good initialisation. Though
we note the changes in the error surface as detailed fediags to match, this is considered to be a
relatively easy scenario of a computer vision optimisafiosblem and mostly encountered in controlled
environments (e.g. assembly line visual inspection) andmmuch with real images where considerably

more noise and uncertainty may be present.
A second possibility is for the scene imagge background to be substantially more complex (see
Fig.[6.2(b)) with non-trivial structure and noise presénthis case however our template modglmay

be more elaborate also, composed of a full foreground ankbbagnd model, or simply the foreground
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object superimposed over the background. For this to wogleither have to know what the background
is [Sim et al. (2002)], build a very simple model [Buxton anglizafos [(2005)], or have a statistical
model of what it is expected to be like [Srivastava etlal. @(#003)]. Therefore, for example in the
case where a foreground/background model is available &telimg error for when the template is over
image background will certainly be higher than in the pragioase (constant background) but will still
produce a somewhat manageable translation error surfagé&(B(e)) since the background model will
match over most of the background in the image. We considetdive an example of a moderately hard
optimisation task with most global algorithms and a numbddocal methods under good initialisation

expected to converge to the correct minimum.

Finally, we have the hardest case where considerable steuahd noise exist in the scene image
background, but a model of the background is not availalgle Fég[6.2(c)). The optimisation difficulty
in this scenario is apparent in the complexity of the 2-D station error surface (Fid._8.2(f)). We can
see a “rugged” landscape with many local minima due to theynsiructure in the scene background
and the absence of the regularisation effects of a backgrmeodel. We note also that the global min-
imum is surrounded by a very narrow rim making the optimiaprocess even more problematic. In
this scenario, all local optimisation methods not initthbe close proximity to the global minimum are
expected to fail and most global methods will converge witragydifficulty and after many iterations un-
less initialised appropriately and tuned specifically fos fproblem (i.e. boundaries, parameter settings,

number of iterations and so on).

The importance of the inherent complexity of the transkatoror surface in the optimisation pro-
cess has been demonstrated throughout many differentisess.clf for example the translation parame-
ters are kept fixed at optimal values, or if we initialise cearsh close to or inside the basin of attraction
of the translational degrees of freedom, then all the glalgbrithms we have examined usually con-
verge in all dimensions. In addition, unlike other parantiee translation space is usuglwscrete and
this introduces further problems to optimisation algariththat cannot cope with a mixture of discrete
and continuous parameters or that may require calculafiaeidvatives from a continuous function.
Such problems may be solved to some extent by relying onpiok&tion techniques and numerical ap-
proximation of the derivatives.

Regarding the remaining dimensions of the search space wlike to draw attention to the
irregularities of the 2-D scale space previously examimeddction 4.411. Finally, the rotation and
shear spaces can be easily minimised even though for th@rogpace (see Fif._4.1(c)) there may be a
number of local minima at angular intervals-bfr /2 depending on the rotational symmetry properties of
the object. If these local minima are particularly pronaeshthey may cause local optimisation methods
to get stuck.

Itis quite possible (and often the case) that other impottaal minima exist elsewhere in the vast,
multi-dimensional space formed when all the individuahgf@rmations are combined. Such regions are

quite difficult to detect beforehand and may only become apypavhen the optimisation algorithm is

1Unless sub-pixel accuracy is used.
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Figure 6.2: Commonly encountered datasets and their gameling translation error spaces.

running. The reason for this is that it is not feasible to al&e the full 6-dimensional space (for the 2-D
affine transform). In spite of this we believe that isolatthg surfaces the way we did helps us to get a
general idea about the overall properties of a specificfoamstion and tune our algorithm appropriately
in advance. Additional adjustments can only be carried fiat #est runs of the optimisation algorithm
so that problems caused by these local minima are identifidalaalt with.

We can therefore see that the typical computer vision tasttefdrmable template matching is
fraught with optimisation problems owing to the specialrelateristics of the objective function and the
resulting error surface. It is thus important that the ofgtation strategy we choose is suited for and can

cope with these challenges.

6.3 Experiments: methods and results

In the previous section we have presented the differentciests against which we will evaluate the
different optimisation strategies. In this section we pilesent the experimental method we propose
to use for each dataset, the set-up of each algorithm, anzbthparative results from which we aim to
draw some conclusions about the fithess and efficiency ofsteatiegy in relation to the typical computer

vision problem.

6.3.1 Set 1: 2-D test functions

The single quantitative measurement we have used to dissimdpetween the different optimisation al-
gorithms is the total number of function evaluations (FEsjuired before convergence. This is because
we consider NFEs to be a general and algorithm-independinbfyudging the efficiency and obtaining
an overall idea about the properties of each method. Coemeegwas defined as a recovered error mini-
mum no greater than = 10~ of the known global solution and found within the allocatg@timisation
budget (1000 NFEs for local methods and 10000 NFEs for glotethods). We decided to increase the

NFEs for the global methods since these in general require tirae to converge and a direct compar-
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Function | FE | Tom, Ym | f@m,ym) | Xa,Ya | F(Xa,Ya) | Converged?
Sphere 26 -0.0043,-0.0034 | 3.098E-5 0,0 0 Y
Rosenbrock| 70 1.0037,1.0066 8.089E-5 1,1 0 Y
Griewank’s | 1000 -3.14,-4.43 0.00739 0,0 0 N
Rastrigin’s 516 | (0.238,-0.241)E-3 2.288E-5 0,0 0 Y
Camel-back| 30 0.0903,-0.7151 -1.03157 | 0.0898,-0.7126] -1.0316 Y

Table 6.1: The test results for the 5 functions using a redystep restarting simplex.

ison between local and global algorithms with the same nurabEEs would be misleading. Instead
we chose separately to compare each category of stratdgieshreshold- was kept fixed in all cases.
Additionally, where possible we tried to use similar inligsation criteria for each method in order later
to facilitate intra-category comparison with respect ts tepect of the problem.

We begin with the simplex algorithm which was always inisatl from the same triangle with
A = (5,5), B =(5,0), andC = (—5,—5). We carried out 5 tests for each 2-D function (since there
is the random restart part of the algorithm which producéerdint results at each run) and averaged
the results. For each test function therefore we preserdudt that was most indicative of the average
behaviour of the simplex algorithm. The results are showreinle[6.1.F. E. represents the number of
function evaluations until convergence or terminatiop, v,,, are the coordinates of the found minimum
point and f(x,,, ym) the function evaluation at that pointX 4, Y4 correspond to the known global
minimum of the given function and (X 4,Y4) is the global minimum value. We will use the same

notation throughout these tests.

As we can see most functions have converged to the globalmamiwith a moderate number of
iterations. We already mentioned that the simplex is notntiost efficient amongst the direct search
methods in discovering the best possible optimisationctlive, something which is can be seen from
the moderately high NFEs required to solve the sphere fomctn the case of the Rosenbrock function
the simplex again needs a significant number of iteratiores tduoscillations in the valley near the
global minimum. However, these oscillations are not cagrsitlle and the simplex converges in the end
without any problems. Furthermore, we see from the camelt-lianction that the simplex can cope
with the uncertainty created by flat surfaces since it sugpariable step sizes due to its expanding
and contracting nature. It does however require some tinjentp out of the local minima. Finally,
when it comes to noisy surfaces the simplex is able to cogesweitne noise (as in the case of Rastrigin’s
function) because it can restart when stalled inside a logdalmum. However, this requires a large
number of restarts (jumps) which is reflected by the high Niefgsired. As for Griewank’s function the
simplex cannot overcome the numerous and narrow local naisind cannot solve this function even if
we considerably increase the available NFEs.

For the pattern search method, we run the same experimentsthe following settings: starting
point X = (4,5), polling of the mesh points at each iteration usingbsitive basis 2NAudet and Jr.

(2003)] method; that is, we computed the objective functibthe mesh points to see if there is a point
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Funcion | FE. |  @m,ym | f(@m,ym) | Xa,Ya | F(Xa,Ya) | Converged?
Sphere 81 0,0 0 0,0 0 Y
Rosenbrock| 89 11 0 1,1 0 Y
Griewank’s | 1000 -3.14,-4.43 0.00739 0,0 0 N
Rastrigin's 81 0,0 0 0,0 0 Y
Camel-back| 169 | -0.0898,0.7128 -1.03163 | -0.0898,0.7126/ -1.0316 Y

Table 6.2: The test results for the 5 functions using a patearch algorithm.

with function value lower than the current point. A mesh exgan factor of2 (i.e. the algorithm
multiplies the mesh by after each successful poll) and a mesh contraction factorsofi.e. the mesh

is multiplied by0.5 after an unsuccessful poll). The results for the same 5 tiestibns can be seen in
Table[6.2. What we can observe from these results is that cage@attern search requires more FEs
than the simplex indicating that it is not so efficient nor @agiscover good directions (there are some
considerable oscillations in the valley of the Rosenbraricfion for example). However, it did find the
exact location of the global minimum in most cases and mahtagéeal with noisy functions much more
efficiently than the simplex, that is - it can jump out of locaihima faster. However, even the pattern
search had problems for a significantly noisy function suglGaewank’s. For the flat, camel-back
function the pattern search eventually converged but vaitisiderably more iterations than the simplex
indicating that the fixed mesh expansion and contractiotofaevere not adequate in cases where there

is no information (improvement or deterioration) about therent function value.

We now come to the global methods with first the genetic allgovi In this case the NFEs were
increased to 10000 by setting the population and generatiombers to 100 each. The initial popu-
lation was randomly generated fronld—5, 5) distribution. Although the algorithm we have used is
quite generic in nature there is a large variety of diffeiggetic methods available for testing [Holland
(1992)] especially in theelectionandreproductionstages. It was thus not practically possible to ex-
amine all the known selection and reproduction methods lagid permutations. Nevertheless, amongst
those we did test, on preliminary experiments, stechastic unifornselection and thecattered cross-
overreproduction functions provided the best results and fhe¥eve used them throughout the rest of
this work.

The stochastic uniform selection function arranges eadénpial parent in a line in which each
parent occupies a length of the line proportional to the mizzescaled value. The algorithm samples
this line at equal steps and allocates a parent dependirtieaettion of the line it is sampling. For the
scattered cross-over function, a random binary vectordated and where the vector is 1, genes from
the first parent are selected, and where the vector is 0, gereshosen from the second parent. The
child is formed by combining the two genes.

The results of using the described genetic algorithm tontipé the 5 functions are presented in
Table6.8. The behaviour of the algorithm apparent fromehesults is that overall the genetic algorithm

is quite inefficient and can get very close to but cannot gova¢her = 10~* threshold at least within
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Funcion | FE. |  @m,ym | f@m,ym) |  Xa,Ya | F(Xa,Ya) | Converged?
Sphere 4600 0.002,-0.003 1.623E-5 0,0 0 Y
Rosenbrock| 10000 | 1.0535,1.1009| 0.01131 1,1 0 N
Griewank's | 8300 | 0.0098,0.0005| 4.851E-5 0,0 0 Y*
Rastrigin’'s | 10000 | 0.0017,0.0001| 6.45E-4 0,0 0 N
Camel-back| 10000 | 0.07993,-0.716| -1.03111 | -0.0898,0.7126/ -1.0316 N

Table 6.3: The test results for the 5 functions using a gerddgiorithm.

Funcion [ FE. |  @m,ym | f@m,ym) | Xa,Ya [ F(Xa,Ya) | Converged?
Sphere 1600 | -0.0063,-0.005 | 6.449E-5 0,0 0 Y
Rosenbrock| 2800 | 1.0074,1.0152 | 6.5936E-5 11 0 Y
Griewank’s | 2100 | -0.006,-0.0173 | 9.248E-5 0,0 0 Y*
Rastrigin's | 2300 | (0.653,-0.27)E-3| 9.9214E-5 0,0 0 Y
Camel-back| 1900 | -0.0893,0.7158| -1.0315 | -0.0898,0.7126| -1.0316 Y

Table 6.4: The test results for the 5 functions using DE.

the limit of 10000 function evaluations. It will in fact coexge in all cases if we increase the FEs limit
since it was still making progress before the optimisatiaddet was exceeded. What should also be
noted is the fact that GA can cope rather well with noise sihbas found the minimum location in

Griewank’s function the majority of (but not all) times. # iherefore best to use the genetic algorithm
for difficult problems with, if possible, inexpensive fuiar cost where a high number of FEs would be

justified.

We continue with differential evolution. For this we usexhiarly a population limit of VP = 100
and number of maximum iteratiorisermaz = 100. The F' andC R values [Storn and Price (1997)]
were set td).8 and0.5 respectively and we chose tligest1 Bin strategy because it converged most of
the time. The soft boundaries pf5, 5] were also selected inside which we randomly initialisedfitise
population. The test results are presented in Table 6.4 Wersee that DE performs much better across
all functions and is more efficient than the GA. Even thoughi®&n evolutionary algorithm and needs
to maintain a population of solutions (which equates to & mgmber of NFES) it managed to recover
the global minimum in all cases with a low NFEs especially @amparison to the maximum allowed
NFEs. Furthermore, it succeeded in solving Griewank’s fiono(albeit 80% of the times) which as we
have already seen is a particularly difficult function whiglused a lot of problems in all the optimisation

algorithms discussed so far.

Finally we have SOMA, another example of a promising evohary method designed to solve
difficult global problems. SOMA's parameters were sele@sdollows in order approximately to have
a maximum of 10000 FEsstep = 0.11, pathLength = 2, prt = 0.1, migrations = 50 and
popsize = 10. We also found that the best strategy in terms of averageofatenvergence for this
particular problem was thBOMA all-to-one-randomlgtrategy[Zelinkal (2004)]. The initial population

was initialised within the hard boundaries[ef5, 5]. Results of optimising the five 2-dimensional test
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Function | FE. | Tom, Ym | f@m,ym) | Xa,Ya | F(Xa,Ya) | Converged?
Sphere 1302 | -0.0085,-0.0049| 9.54E-5 0,0 0 Y
Rosenbrock| 10000 | 1.1159,1.2453 0.0134 1,1 0 N
Griewank's | 10000 | -3.14,-4.4384 0.0074 0,0 0 N
Rastrigin’s 4570 | 3.29E-6,2.81E-4| 1.577E-5 0,0 0 Y
Camel-back| 2651 | -0.0866,0.7136 -1.0316 -0.0898,0.7126| -1.0316 Y

Table 6.5: The test results for the 5 functions using SOMA.

functions using SOMA are given in Taljle 5.5. We can see thad&@erforms well on the sphere func-
tion indicating that it is quite efficient when used on simggst functions (as far as global methods are
concerned). It can deal with a certain amount of noise (farmgXe, it solves Rastrigin’s function) but
not with an overly complicated and very noisy function susl@Ggiewank’s. SOMA is also quite capable
of coping with uncertain, flat regions by appropriately vagyits step length when no more improve-
ment is being made. It is not exceptionally good however bemeining good search directions since it
could not converge for Rosenbrock’s function althoughdtadme close. In short, we can conclude that
in terms of general efficiency and optimisation performa8GMA lies between GA and DE, with GA

being the least attractive of the global algorithms we exaahi

As a result of these basic tests the best performing locamggation method when comparing
NFEs and average convergence was the reducing-step irggtsimplex and, from the global methods,
differential evolution. Before we can draw any broader d¢osions however we need to perform more

rigorous tests on real-image datasets.

6.3.2 Set 2: Real-image template matching

We shall further analyse the fitness of each of the examingohigation algorithms by performing more
detailed tests with the 3 real-image datasets previouslyudsed and described as: easy, moderate and
hard, using a template matching objective function with &.fd. In all the tests we aim to measure
and investigate a greater range of the quantitative priggeof each method so as to determine their
convergence capabilities. We define convergence in thigegbas the ability to recover a model config-
uration (i.e. the 6 affine transform parameters) within s&uelidean distance threshold from the known
optimum configurations. We could have also used the recordeteminimum value to determine con-
vergence, that is after the run to 'characterise or evallmte well the algorithm had converged, but
in this case and especially when using a SSD dissimilaritirimi is quite possible to find an invalid
model configuration with an error value that is lower than ¢lxpected global minimum, as we have
mentioned already [Zografos and Buxton (2005a)].

The Euclidean distance is a much better way of judging hovaay (and thus how much worse)
we are from the optimal configuration since it does not suffem these kind of problems. The only
issue with using the Euclidean distance in a multi-dimemeligparameter setting is that there must be
a correspondence between changes in the parameters. gplexa change of one unit in translation

should transform the model in an analogous way as one unihafge in rotation. This is not so
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Figure 6.3: Comparison between parameter displacemergrandresponse.

important for step-adjusting optimisation strategied ttzan automatically cater for this inequality but it
is important for strategies that take random steps in diffedirections , and also for when we wish to
analyse test results using the Euclidean distance of theftranations. How such transformations are
measured or indeed defined is an open subject . One pogsitdlitld be to define model transform as
the mean displacement of foreground image pixels such asribaised by [Studholme et al. (1996)].
We may argue that such a definition does not capture the gisgronal changes in the calculated error
that occur as the transformation parameters are variedr Example we consider a change of 2 units
in horizontal translation, this will not generate analogahanges in matching error as a 2 unit increase
of horizontal scale. According to [Studholme et al. (1996§ relationship between the translation and
scale parameters is in the order&fF, whereF, is the overlap between the scene and target images.
However, if we use the error as the comparison basis (Eig., %€ can observe that this relationship

ratio is much higher.

A more practical alternative solution would be to normadiseording to the effective range of each
parameter. By effective range we signify the empirical ltaries for each parameter inside which the
solution is expected to lie. Although this might work in ptiae it does not ensure that the individual
transformation parameters are kept within these bourglatieother words, it is possible for the 6-D
Euclidean distance to be below an acceptable thresholcheubiomore of the transformation parameters
not to be sufficiently close to its optimal value. For thissea, we decided to consider the individual
1-D distance for each of the parameters and impose proxthmigsholds on each one separately. In this
way, we do not have to be concerned with normalisation ordahgtof the parameters might be out of

acceptable range.

The distance threshold boundaries were thus defined ag/&lising some prior information about
the expected effect on the error value: translatigrt, = 5, scales,, s, = 0.1, rotationd = 10°, and
shearp = 5°. Any configuration within these limits from the known glotwainimum will be considered
a valid solution and convergence will be deemed as sucde¥¢fuused = the same values across all the

3 datasets.
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Now that we have a definition of the convergence criterion ae define a number of different
measures we may use to further analyse the characteristwioeir of each optimisation strategy. Such
measures are thglobal minimumof a convergedest run; theime to convergengehat is how many
iterations before the optimisation reached the convergémesholds; theonvergence percentageat
is the number of times the optimisation converged insidesttethreshold; and thdiversity in the

recovered transformation parameters

Dataset 1 - MRI images

The first test data consists of an MRI scan of a human braiwirt &f a black background (Fig_6.2(a)). A
template of the object was generated from this image (ineilai lighting properties) and was subjected
to a 2-D affine transform. We seek to recover the reverse sfithnsform that will bring the image and
deformed template into registration. This transformat®rit,,t,) = 65,68; (s;,s,) = 0.925,1.078;

0 = —25 and¢ = —5.5826. The dissimilarity SSD error between the optimal templaue the scene is
0.0449 but because of additional interpolation and approximagioors, it is closer t6.6689.

In all the tests that follow we try to maintain a fixed numbefwiction evaluations: 2000 for local
methods and 20000 for global methods, exhaustion of whialldvsignify the end of a single test run.
Every algorithm was allowed to perform 100 separate testsieMdf the algorithms were initialised close
to the ground truth solution but instead in order to maintadbiased runs, they were initialised either far
away and from the same starting point (for methods requaismgle initial value) or randomly within
the parameter domains (for population based methods). he ohetail, we used the following settings

for each method:

e Simplex: initial restart step siz&,=[20, 20, 2, 2, 50, 20], cooling rate R=[0.95, 0.95, 0.9, 0.9,
0.9], initial 7x6 simplex: fixed initialisation within thedundaries [1-50,1-50,0.5-1,0.5-1,1-20,1-
20].

¢ Pattern search: initial random generated population inahge(t,,t,) = [0 — 100], (s4,s,) =
[0.5 —1.5], 8 = [0 — 50]° and¢ = [0 — 10]°. Poll method = positive Basis 2N, polling order =
consecutive, complete search = no. Initial mesh size = 38teanesh = yes, scale mesh = yes,

expansion factor = 2, contraction factor = 0.5.

e Genetic algorithm: 200 generations, 100 populationsialmppulation function: random uniform
in the rang€g(t,, t,) = [0 — 100], (54, s,) = [0 — 1], 8 = [0 — 50]® and¢ = [0 — 10]°.

o Differential evolution: populations=100, maximum itecgis = 200. F=0.8, CR=0.5, strat-
egy-Best1Bin Soft boundariesfl — 100, 1 — 100,0.5 — 2,0.5 — 2,0 — 100, 0 — 50].

e SOMA: step=0.5, pathlength=1.5, prt=0.1, migrations=ifipsize=50 - - ~ 20000NFEs. Hard
boundaries1 — 100,1 — 100, 0.5 — 2,0.5 — 2, —180 — 180, —50 — 50].

These settings will be kept fixed throughout all the dataséfter 100 experimental runs with each

algorithm we obtained the following results for the MRI ineadataset (see Tallle 6.6). In the second
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Dataset 1 Dataset 2 Dataset 3
DE 100% - 3915 FEs 96% - 889 FEs | 61% - 11483 FEs
SOMA | 100% - 2551 FES 61% - 1416 FEs| 97% - 4070 FEs
GA 0% - N/A 11% - 446 FEs | 63% - 4603 FEs

Simplex | 2% - 1060 FEs | 2% - 476 FEs 1% - 1194 FEs
PSearch| 12% - 476 FEs | 3% -0FEs* 4% - 862 FEs

Table 6.6: Comparative results from the 3 datasets usirtheaklgorithms.

Genetic algorithm rotation angle diversity — Dataset 1 DE rotation angle diversity — Dataset 1 SOMA rotation angle diversity — Dataset 1
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Figure 6.4: The diversity of the rotation angle in the firstad@t using GA (a), DE (b) and SOMA (c).

column we see the number of times the test runs convergetkitise chosen distance threshold and the
averaged time to convergence.

It is clear that both DE and SOMA have the best performanck alittheir test runs converging
inside the threshold. DE uses only ab@0t% of the optimisation budget to achieve convergence on
average but SOMA is the clear winner with approximately 1438 FEs required for comparable results.
Next we have the genetic algorithm which very suprizingly kot manage to converge in any of the 100
tests but instead converged inside one of the many pronduacal minima of the rotation parametér
while having successfully identified the other parametéfs.can see this from the high diversity in the
recovered rotation angles (see Hig.]6.4(a)). This is duatbgolar symmetry properties of the human
brain scan used as test object. The average recovered dagieofital dashed line) is much higher
than the—25° ground truth (diamond shape) and well outside4t3é threshold (up- and down-pointing
arrowheads) fluctuating between —5° and55°. DE and SOMA successfully manage to avoid this
problem with a very low diversity in the final populations €sEig. [6.4(b) and (c) respectively) well
within the upper and lower angle thresholds-af0® and—20°.
gence rates than the global methods. When the local methedsoarpared amongst themselves the
pattern search can converge many more times and at arourttidh&lFEs as the simplex requires. We
also present a plot (see Fig. 16.5(a)) of the averaged, ocgestdest runs for each of the above methods
in order visually to compare the recovered minimum error a@bserve the representative optimisation
behaviour of each algorithm. As expected, both local methvalden they converge, do so much sooner
(albeit on fewer occasions) than the global methods whiegtbbal methods find a good solution early
and performance falls off gradually for the remaining aditet] NFEs. We can see that in terms of the
recovered minimum, DE and SOMA both have found a much lowkrtism than all the other meth-

ods which also is considerably lower than the practical gdotruth (horizontal dashed line). This is
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Figure 6.5: The average converged test runs for all the 3desta

perfectly possible since the practical ground truth emchides approximation and interpolation effects
which an optimisation method is able to counteract by apigly adjusting the values of the system

variables and thus reaching a lower error surface.

Dataset 2 - CMU PIE data

The second instalment of tests was carried out in a real imagwle (see Fid._6.2(b)) from the CMU
PIE database with a complex background but which is givenseparate segmented image. This is a
more difficult scenario than previously and we expect a laveerergence rate across all the methods. In
this occasion, the practical ground truth ig&, 52, 1.0786, 1.1475, 10°, —4.8991°] with an SSD error

of 0.1885 but as we mentioned above lower errors that correspond th gaalel configurations may be
possible. The previously defined Euclidean threshold agorithm parameter settings also hold in this
case.

After 100 test runs for each optimisation algorithm we atali the results in column 3 of Table
[6.8. As expected we see an overall drop in the recognitianteewith DE being the dominant method
with the best performance while at the same time displayiitgal convergence behaviour reminiscent
of a local method; that is, converging in under 900 NFEs. Wealao see this in Fid._8.5(b). The rest
of the methods perform rather poorly with SOMA@% and GA at a much lowet1%. In the same
graph we can also see that all three global methods exhilityasimilar optimisation pattern (at least in
the test runs that converged successfully). Furthermdmaetghods find a good minimum at 0.1, which
is lower than the known solution. We also note that in the cdidke pattern search algorithm the only
3 cases that succeeded in converging correctly were thetbaewere randomly initialised inside the

basin of attraction (see Fig_6.5(b)).

Dataset 3 - Real image data without a background model

Finally we arrive at the hardest case; that of a real imagl witomplex background, but without
any model of the latter (see Fidg._5.2(c) and (f)). Owing to ihereased difficulty associated with
this particular dataset it is expected that the overallmojstation performance will be further reduced.
The optimal solution in this case 806,59, 0.9048, 1.0444,12.02°,0°] = 0.0488. If we use the same
optimisation settings as previously we get the followingules after 100 test runs (Taljle 5.6 column 5).
SOMA performs very well with &7% convergence ratio, with the GA coming second and DE

not particularly efficient with this dataset @t%. We also see that it takes DE many more iterations in
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order to converge whereas SOMA and GA on average reach thalgionimum around 2.5 times faster.
Despite that all the global methods reached approximabelysame minimum error. This is illustrated
in the plot in Fig[6.5(c).

In conclusion we may say that both DE and SOMA perform coestit well in all the 3 cases
with an expected performance penalty associated with threased difficulty of each dataset. Both
these methods exhibit very low diversity of the parametefinthg the optimal solution with them
always inside the defined threshold and no outliers in thedificents across the 100 test runs, two
properties that are very desirable for an optimisationréigm. Another characteristic of their equivalent
performance is the fact that they both reach approximatelgame minimum at the end of their allocated
FE budget. Where they differ however is in the time they regtor initial convergence with SOMA
being the clear winner since it manages to approximate threatosolution much earlier than DE (see
Fig. [6.8). This makes SOMA ideal for the hybrid approach tallseussed later since we are able to
switch to the local method much earlier in the optimisatioacess than with DE. As far as the GA
is concerned, we have seen that when it converges sucdgsstan reach an equally good minimum
error as obtained by SOMA and DE. Nevertheless, it has thietesy to get stuck in pronounced local
minima for all but the simplest datasets which consequeatlyces its effectiveness and thus it does not
constitute a reliable algorithm for template matchingdehsbject recognition. The two local methods,
simplex and pattern search, can converge very fast andsiedhe same minimum whenever they reach

its proximity. We can therefore use either one for the hybpgroach to be described next.

6.3.3 Hybrid approach

The hybrid approach is essentially the combination of agjlaiochastic algorithm (in this case SOMA)
designed to get us close to the basin of attraction as eaggssble from a random, distant location on
the error surface, and a local method (the simplex) whoseqgseris rapidly to refine the good solution
the global algorithm already recovered, much faster ancera@iiciently than the global method alone
can. Ideally we wish to bring together the advantages of bwhapproaches in a manner that should
neutralise their individual shortcomings. Specificalhgse shortcomings are the slow and FE-intensive
progress of the global method and the requirement for goitidlisation and sensitivity to minima of
the local approach. If we were to plot the average test russich an ideal hybrid algorithm we would
expect to see an initial drop of the discovered minimum cdwsethe global method followed by a
secondary drop due to the refinements of the local methoeadsif the gradual fall-off in latter part of
the calculation traditionally associated with globalcstastic optimisation algorithms.

The only additional issue with using a hybrid method is howlétermine when it is best to switch
between methods. One possibility is to use a number of coerucriteria to decide when we are
close to the switch point. The first such criterion could beaimity threshold such as the Euclidean
distance previously used to determine convergence. Wherihraahreshold, we many assume that the
global optimiser has reached the global minimum and useotted method for further refinement. This
threshold of course must be known before hand and thus mgybenlised when we are dealing with

similar datasets of approximately the same convergencelesity or repeatedly running tests on the
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same dataset for evaluation purposes (as in this case).

Another such criterion could be the observed relative gedpie of each successful iteration. When
the gain is below some predetermined value we can assumihéhgliobal algorithm has almost stalled
and switch to the local method with the expectation thatiitlmarrow further into the error landscape.

A third criterion might be the relative change of each paramé\p; /p;| at every iteration. When
the change of the value in the parameters is insignificantlzgesjuent iterations then we may assume
that the diversity of the population is very low and a chanfyeptimisation approach (i.e. to the local
method) might be necessary for further improvements to kaema

Alternatively, we may opt to use a fixed FE-related threshizded on the information we have
about the optimisation behaviour of SOMA for that particudataset. If for example we revisit Table
we can see that on average and across all 3 datasets S@mresbetween 1500-4000 FEs to reach
the minimum error threshold. We can therefore use this prorvledge and set SOMA to run at a fixed
number of 4000 NFEs. Such a number will most. This again assisome previous knowledge about
the expected solution and is therefore limited in practggilicability.

As a result, we will use the following settings for the hybaidorithm:

e SOMA: step=0.5, pathlength=1.5, prt=0.1, migrations=p0psize=50~ 4000NFEs. Hard
boundaries<$1 — 100,1 — 100,0.5 — 2,0.5 — 2, —180 — 180, —50 — 50], method = All-to-one-

randomly.

e Simplex: initial restart step siz&,=[20, 20, 2, 2, 50, 20], cooling rate R=[0.95, 0.95, 0.9, 0.9,
0.9, 0.9], initial 7x6 simplex that includes the vertgx; of the recovered system variables at the
4000%" function evaluation of SOMA and 6 random vertices,_- generated at distance =
[5,5,0.1,10°, 5] (note this is the Euclidean distance threshold from theipusvtests) from the

vertexV; ;.

We carried out 100 test runs of the hybrid method for each efahlatasets (see Fi§._b.2) and we
present the results in Takble B.7. The second row shows thegence rate of the hybrid method. The
percentage difference-(%) in this row are in relation to the original SOMA results (r@vof Tabl€ 6.6).
The next two rows show the average SSD error of the 100 hybrid and the original 1700 SOMA runs
at 6000 FEs. The percentage differences of row three ardatiar to the original SOMA results at the
same NFEs. Finally, the last row shows the average SSD efrtbeariginal 100 SOMA runs at the
maximum 20000 FEs, with a percentage difference in relatiche original SOMA error at 6000 FEs
(row 4). We see that the convergence ratio is only around(@s-Bwer than in the original tests but
the error at 6000 FEs is between 20-65% lower than the ertbeaquivalent NFEs of the SOMA-only
approach used previously. In fact, the error values are glise to the original recovered minima using
the full 20000 FEs. This can also be seenin Eigl 6.6. In thiege we can clearly see the secondary drop
in the discovered minimum value due to the local method asave mentioned previously and observe
that the simplex algorithm always manages to refine the agition further (i.e. there is no stall at
the switch point) indicating that on average we chose godttkwoints and that the local method can

converge faster that the global method in the same numbésrations.
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Figure 6.6: Plots comparing the hybrid approach and the S@M#hod for the 3 datasets.

Dataset 1

Dataset 2

Dataset 3

Convergence %4 %)

86% (-14%)

41% (-33%)

81% (-16.5%)

Hybrid SSD @ 6000 FEs#%)

0.4275 (-65%)

0.0868 (-24%)

0.02661 (-22%)

SOMA SSD @ 6000 FEs

1.215

0.1138

0.03419

SOMA SSD @ 20000 FEsH%)

0.3265 73%)

0.08659 (24%)

0.02523 26%)

Table 6.7: The results of the hybrid and SOMA tests at 600022000 FEs.

We can therefore say that by using a hybrid approach it isilples® obtain solutions that are very
close to those obtained with a global algorithm alone butcatreiderably reduced FE cost. In that sense
a hybrid optimiser might be useful in situations where wefaoced with a costly objective function but
the good initialisation required for a local method is natitable. With the application of the hybrid
method we may in the early stages use a global algorithm tccoree the need for a good initialisation
while avoiding the increased FE overhead due to its ineffiyian later stages of the computation. As
we have already mentioned, switching between global aral loethods is very important and so the

effectiveness of the hybrid approach depends on the catetetmination of this switching point.

6.4 Summary

In this chapter we have examined the task of deformable tmphatching cast as an optimisation
problem. This is a particular challenge, ubiquitous to cotapvision owing to the problem’s generic
nature and well-known difficulties. To address these diffies, it was necessary to examine various
optimisation methods (both local and global) that have mettadequately tested in this specific scenario
in the past. In our work such traditional methods as the smpgbattern search and genetic algorithm
have been examined closely and compared to traditionabytmitimisation methods such as GAs and
to methods apparently new to computer vision such as SOMAd#fetential evolution, the latter two
having been originally applied to engineering problems.

We have tested the various approaches against a seriesrmaesgional, analytic functions designed
to highlight the generic properties of each optimisatiortirad (such as efficiency, discovery of good
directions for the optimisation, sensitivity to noise efo)lowed by three realistic datasets of progressive
difficulty commonly encountered in computer vision. Theirpose was to determine how well each
algorithm copes with typical template matching scenarios.

Our results show that the novel methods outperform thettomdil global optimisation approaches
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while being easier to set-up initially. The most promisingthod in terms of convergence, minimum
error recovered and NFEs required was SOMA and therefofeeislgorithm we will be using for our

LCV experiments in the next chapter. Finally we argue thattis application a hybrid combination of
a global and local method can produce equally good resuétdriaction of the time required by a global

method alone. We demonstrate this with a number of additex@meriments.
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Chapter 7

Experiments and evaluation

In this chapter we introduce a detailed evaluation of our LEM object recognition paradigm starting
with the introduction of the various datasets used formgsfiollowed by the specifics of the experiments
themselves, and concluding with a critical discussion ef tést results. In addition, we examine an
alternative, existing approach (Active Appearance mo@®#sV) by [Cootes et al.|(2001)]) that aims to
solve the same problem, and compare it with our method inrdaeddetermine just how well the LCV
method fares against a tried-and-tested, well known tegteniWe end this chapter with the conclusions

we drew from the results generated during the evaluatiocga®

7.1 Image datasets

In order to carry out our detailed evaluation experimenthaxe used three different datasets, consisting
of synthetic and real-image examples. All three databag¥e wenerated via different methods and
under various conditions, and are therefore quite diffeieisize and content, but all of them include
examples of objects imaged under varying pose, which is timeipal focus of our work. The idea
behind using a number of different datasets is to demomestingt general validity of our results and the
applicability of our method across a variety of cases. Ofreeuowing to the diverse levels of data
complexity between the sets, we do not expect to recoveraine gjuality of optimisation results, but as
long as there is a graceful and predictable deterioratigdhdrconvergence outcome (i.e. see chdgter 6,
sectiorf 6.R), then we can assume that our models and algaaith generally valid and robust. Because
a model is tied to a particular dataset, to a certain extedtes reflect some of the characteristics and

complexities of that dataset, but in an obvious and manageady.

(—259,0°) (0°,00) (25%,00) (00, —107) (0°,109)

Figure 7.1: Typical samples from the synthetic databasariws rotation angles (hor.,vert.)



7.1. Image datasets 130

Figure 7.2: Synthetic database sample, showing the lardpaénts and Delaunay triangulation.

7.1.1 Database 1. Synthetic dataset

The synthetic dataset was generated using a 3-D head modebizydes et al. |(2001)], which itself
derived from|[Parke and Waters (1996)]. The 3-D head modslprajected onto a plane (using ortho-
graphic projection) and two dimensional synthetic facegesawere formed within a view range that
maintained the visibility of all the landmark points in dletimages. Namely, images generated by verti-
cal axis rotation of the object betweer20 to 20° from the frontal view (denoted here 8%), and at;°
intervals. Just as before we chose 52 landmarks from theesabmodel vertices in order to minimise
the approximation error (see Fifg._17.2). Additionally, wepesimented with a few images outside the
visible landmark range, at25°, 25° and also generated 4 images by rotation about the horizaietal
axis at anglest5° and+10° from the frontal view, in order to test the extrapolation @hiities of the
LCV model outside the range of the basis views and when sontkrlarks are occluded. In total, we
used 15 pose samples, examples of which are shown i Fig. 7.1.

Furthermore, for all the eleven samples on the horizonial@®5s°, . . . , 25°), we generated 2 more
distinctive expressions (happy and angry, see [Eid. 7.3(@))) to test how well the LCV model can
recover the optimal pose configuration in the presence @lliked and limited deformations that were
not (and cannot be) modelled by the LCV equations. In a mazbiste scenario, such deformations
might be the result of a change of expression. In additionintveduced two different levels of random
Gaussian additive noise in the pixel values in each of thealié samples (see Fig. ¥.3(d)) to examine
the robustness of the model and optimisation algorithm,nathere is noise in the scene view but not
in the basis views (i.e. it has not been modelled). Finallg, wanted to test against the effects of
unmodelled limited occlusion, and thus randomly placedreutar object in front of the scene object
(see Fig.[ZB(c)). We considered two possibilities; a fosagd object with area equal to 20% of the
head model and a foreground object at 40%. As such, this as¢ahs a whole contains 301 image
samples. Details of the experiments performed on particuibsets of the synthetic database are given

in later sections.

7.1.2 Database 2: COIL-20

The Columbia Object Image Library (COIL-20) [Nene et al. 48y is a database of gray-scale images
of 20 objects. It was generated by placing the objects ajymetely in the centre of a motorised turntable

and against a black background. The turntable was rotatedgh360° about the vertical axis to vary
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(a) Angry (b) Happy (c) 40% occlusion ()= 0.1 noise

Figure 7.3: Synthetic samples with different expressiais@and occlusion levels.
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Figure 7.4: Image samples from the COIL-20 database.

the objects’ pose with respect to a fixed camera and undeeatr(fiuorescent) room lighting, in order to

avoid strong shadows. Images of each objects were takénervals, corresponding to 72 images per
object, around the horizontal great circle of the view-sph&he objects have a wide variety of complex
geometric and reflectance characteristics and are showig.ifH. In total, the database contains 1440

size-normalised and histogram-stretched images of théR@ts.

Similarly to the synthetic dataset, we tested against tise panges between20° to 20° from the
frontal view at0®. Furthermore, we examined the two views-a5° and25° outside the trained range
of views, and where some landmarks were not visible owingleaclusions. In that case, the system
had to cope as best as it could by extrapolating the requived mformation. Landmarks where chosen
along the main discontinuity boundaries of each object, lz@rhuse the database contains more than
one object the number of landmarks was different at each daggical example of an object with its

landmarks visible, can be seen in Hig.]7.5.

Figure 7.5: A typical sample from the COIL-20 database witbse=n landmarks visible.
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Figure 7.6: All the 10 individuals in the Yale face database B

7.1.3 Database 3: Yale Face Database B

The Yale face database E_[Q_e_o_@hia_d_e_s_LLa.L_dZOOl)], e 60 single light source, grey-scale im-

ages of 10 individuals (Fig._1.6), each seen under 576 vigwanditions (9 poses 64 illumination

conditions). As we can see in Fi_1.8, the pose variatiogsipe a rather small portion of the view-
sphere on the left of the frontal pose (number @Yt More specifically, poses 1, 2, 3 and 5 are
approximately12° from the frontal pose and poses 6, 7, and 8 approxim&#€ly From those, poses
7 and 3 are taken in the same level as the frontal pose, wteéleett are slightly above or below as

arranged in Fig._7]8.

For every individual in a particular pose, an image with arb@mt (background) illumination was
also captured. Note, this is not the same as a backgroundroabye (as in the case of the CMU PIE
database) since the outline of the face is still visible @ige[7.7(a)), but it may still help to regularise
the search over background regions. In addition, the backgtis not strictly consistent between scene
view and ambient illumination view, with people and objeafspearing and changing position in the
rear of the scene. Furthermore, the appearance of the lmagidjobjects is somewhat influenced by
the strong strobe lights used to illuminate the foregrouméa during the imaging process. This is one

further problem with which our recognition system has toecop

The images were captured using a purpose-built illuminaii, fitted with 64 computer controlled
strobe lights. Images of an individual in a particular posgenacquired at a frame rate of 30 f/sec in
order to minimise any unintentional discrepancy in posefan@l expression between the 64 images.

The strobe lights were switched off for the capture of thegesawith the ambient illumination.

For our tests, we used all the available pose samples sirogoifered angle range is quite small
and so the majority of the landmark points (see Eigl 7.7(leewisible in every view and all the images
are from approximately the same aspect. Therefore, it wde gassible adequately to reconstruct all
the images for every individual given an optimal choice dfibaiews. In other words, it was possible to
reach all the views in the joint-image space. Furthermoes;hose to test a few examples of illumination
variation for the frontal pose of a randomly chosen indialio see how well our system can cope with

localised, non-affine changes in pixel intensity.
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(b)
Figure 7.7: (a) sample background in the Yale database grs(ple landmark points.

Figure 7.8: All the different pose angles in the Yale faceabase B.
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7.2 Training

In this section we will discuss the general training methuat ive have employed in order to fine tune
our models given a specific dataset. As we have mentioneidiarthaptef b, our proposed recognition
system includes an off-line modelling part, in which inf@tion about a 3-dimensional object is encoded
into the system. We accomplish this by means of a small numbkeasis views, a set of correspond-
ing landmark points consistently triangulated and previkomowledge about the synthesis coefficients,
their range and distribution and probable configurationthefobject built into the pdf component of a

Bayesian inference mechanism.

From the above, the selection of appropriate basis viewstandhoice of prior distribution param-
eters are the only elements that change during training @amodel given an existing selection of
stored images of an object. For choosing the basis viewsgltine training of each model, we consid-
ered all the possible two-view combinations amongst theggsan the training set (which as we shall
explain later does not overlap with the test set) and caledltwo separate RMS errofs (b.1) for every
combination. We computed both the back-projection erreofgetry) in the landmark§ (5.2) and the
intensity error in the pixeld(5.3), and chose the combamatif views that produced the lowest pair of
geometry-based and intensity-based RMS errors. An exaaiflas is presented in Fig._4.9 for the
synthetic dataset. Notice how the worse possible comloinati basis views is along the main diagonal,
or in other words when the basis views are coincident. Theaeingeherally performs better (improved
synthesis results) as we increase the angular distanceéetive basis views, up to the point where the

landmarks disappear owing to self-occlusion, and we bégirtransition into a different aspect.

Once an appropriate pair of basis views is selected, we tlamally synthesise all the images in
the training set using the ground truth landmark positiamsl recover the distributions of the 10 LCV
coefficients. Based on this information we may then adjust@aussian priors (means and standard
deviations) as we did before in chaptEts 5 &hd 6, to matchaselgl as possible with the recovered
distributions and diversity of the 10 coefficients. So foaewle, if we are dealing with rotation around
the vertical view-axis, then coefficienis, a4 andb 4 will be constant and as a result their priors will
have a very small standard deviation. On the other hand cieftsag, a; andas will have a much
larger standard deviation, with a range determined by #igitrg set and centred around the value with
the highest probability.

We did not wish to restrict the optimisation algorithm byti@lising inside narrow boundaries
around the probable values, because this would unnedgssatice the diversity of the populations
and stall the progress of the algorithm prematurely. Intattisuch an initialisation would most likely
have caused the optimisation to find a value inside the baiesddiscovered during training and, con-
sidering that the test data is not inside the training s&t,ishobviously the wrong choice. Instead, we
allowed for larger boundaries covering the whole domaiidimsvhich the 10 coefficients where defined

for increased diversity, while regularising and localgsthe search using the priors.

Finally, by training the models in such a way, we were abledterdmine the range of values for

the cross correlation and back-projection errors of thet®gis. This information can subsequently be
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(a) Geometric error (b) Pixel intensity error

Figure 7.9: Example of basis views training errors for thetsgtic dataset.

used during the validation stage in order to chose appriepifimesholds and enable us to be in a better

position to judge numerically whether a particular test-has converged successfully or not.

7.3 Proposed experiments

In this section we discuss in more detail the experimentsameer] out on the three image datasets and
the subsequent analysis of the results. The main themesfttbsis is the study of object recognition
under changes in viewing angle, so we primarily focused tienion on pose variations in the datasets.
We did however, experiment with a limited range of exprassiod illumination variations and the
existence of occluding foreground objects and noise.

Thus, for each database we evaluated the performance ofres# and the optimisation algorithm
by their ability to reconstruct a given scene or target imageevery test we tried to minimise the
dissimilarity between the model and the scene image by usiagsum of squared differences error
metric and appropriately varying the 10 LCV coefficients.eTduality of the synthesis and the match
between model and scene image was evaluated in the end byiiogipwo separate metrics: the cross
correlation coefficient and the back-projection error lBwthe positions of the landmark points in the
scene image and the points reconstructed by the model. dnnidey, we wanted to capture both the
pure geometric reconstruction quality and the combinedrgdac and photometric synthesis in order
to avoid admitting trivial solutions with high cross-cdation as correct solutions. A correct solution
was chosen as the one that had higher cross-correlatioroaed back-projection error values than the
chosen thresholds, based on the identified error rangesgdiiné training of the models.

In most of our experiments we usgefold cross validation [Kohav| (1995)] as a way of partiting
each dataset and testing the model. In addition, every empat was executed for 100 separate test runs,
and the median value was returned as the accepted resdtwakidone in order to minimise any unusual
behaviour of the optimisation algorithm and instead rective average optimisation trend relative to the
specific model-dataset combination. For the minimisatiothe SSD error, in all the tests and datasets,
we used a hybrid approach similar to our findings from chd@tédore specifically, we used SOMA for

a fixed number of 15000 (function evaluations) FEs and thettkad over to the variable step restarting
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simplex algorithm for an additional 2000 FEs.

7.3.1 K-fold cross validation
Cross-validation in general, is a method of dividing a detté@isto complementary subsets and using a
subset as thieaining set while retaining the other a@ssting sefor validation purposesk-fold validation
divides the data inté, mutually exclusive subsets (the folds). Each time, ondektsubsets is used as
the testing set and the othkrl subsets are combined to form the training set. The avenageacross
all the k tests is computed. The advantage of usingitiield method is that it is not so important how
the data is divided, since every data object gets to be int&xestly once, and gets to be in a training
setk-1 times. As a result, the variance of the resulting estinmteduced as the number of folds is
increased.

Since each database is structured differently, the divisfalata into folds is performed in a differ-

ent way in each case, and is described in the following sestio

7.3.2 Experiments on database 1 (Synthetic database)

Database 1 contains in total 301 data samples of pose, siqmescclusion and noise variation. From
those we used a smaller dataset, which itself was split itorsdary subsets (folds) usikefold cross

validation as follows:

e Pose variation: 11 folds, each containing the images caegtiuom a particular view at’ intervals

betweent25Y, and in the same natural expression.
e Noise:

— As above, but each scene image now contains, random Gaunsssewitho=0.05.

— As in the pose variation experiments, but each scene imageaontains, unmodelled, ran-
dom Gaussian noise with=0.1.

e Occlusion:

— As in the pose variation, but each scene image now contailmganding surface equal to
20% of the object’s area randomly placed in front of the abpéénterest.

— As in the pose variation, but each scene image now contaimg@nding surface equal to
40% of the object’s area randomly placed in front of the dbjddinterest.

e Expression variation:

— As in the pose variation, but each scene image has a diffenremiodelled, expression
(happy).

— As in pose variation, but each scene image has a differenbdeled, expression (angry).

e Horizontal-axis pose variation: 5 folds, each containimgitnages captured from the frontal view
and at the same natural expression, but at various rotatigies about the horizontal axis®(

intervals betweer:10°).
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We should mention here that unlike the synthetic datasetrdmaining databases contain many
different individuals or objects, and therefore divisiohtlbe data intok mutual exclusive folds for
training and testing purposes is not possible, unless wdeating with pose variations one object at a
time. This is because an LCV model that has been trained oedifispobject cannot be generalised to a
new object, using the same choice of basis views (i.e. a notd@etiuck cannot synthesise a scene image
of a car no matter how much we vary the LCV coefficients). Sufdaawould only be possible if we
were to consider the basis views not to be part of the modgediiage and for the purpose of testing the
system we were to assume that all the basis views combisadi@nalways known for every object, and
we simply perform the training on the prior distributiongloé coefficients for each model. Alternatively,
a more practical way to proceed would be to allow the testgpsbe part of the training set,which would
be appropriate if a general description of the object has Been before and is familiar to the system,
and also if we keep a database of trained models. In this wayay claim ignorance about the specific
configuration of each object, and still obtain a meaningfiirisation outcome during testing. In more
detail, we can test for false positive and false negativelteand ensure that a given model of an object
matches well only with an image of itself and not with imagésuother, different object. Therefore,

keeping the latter in mind, we carried out the experimenseidieed in the next sections.

7.3.3 Experiments on database 2 (COIL-20 database)

Database 2 (COIL-20) contains 1440 images of 20 differefeatd in 72 poses. From these, 5 objects
were rotation-invariant owing to their specific shape andute, and could not be easily modelled by
the LCV system (see Fid._1.4). For the remaining 15. we usegosgs at’ intervals betweenr-25°

around the frontal view of". The experiments we carried out on those pose samples were:

e Pose variation: For each of the 15 modelled objects, we g&geerll folds each containing the

image of that object captured from a particular vievs@intervals betwees-25°.

e Object identification: We used all of the above 15 trained el@dand attempted to identify the
frontal view (°) amongst the 20 objects in the database. This resulted igeheration of a
15x 20 array of modekobject that determines the robustness of each model in t@frinse/false

positives and negatives.

7.3.4 Experiments on database 3 (Yale face database B)

Database 3 (Yale face database B) contains 5760 images ofdhdduals across pose and lighting

variations. We carried out the following experiments onftikset of pose images:

e Pose variation: For each of the 10 individuals, we generateids each containing the image of

that individual at the angles already mentioned in se¢fidf37

¢ Object identification: For each of the 10 modelled individuave attempted to identify the frontal
view amongst all the faces in the database. This resulted @x40 comparison array containing

possible matches between model and object.
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Figure 7.10: COIL-20 sample with superimposed AAM in typistrting position.

¢ Intensity variation: For one chosen individual (in thiseasibject BO1), we trained a frontal view
model at “neutral” lighting conditions (e.g. elevation Odaazimuth 0) and tested the recognition

rates, for the same individual, in the same frontal pose angka all 64 illumination samples.

7.3.5 Comparison with AAMs

In addition to the LCV method, we carried out the same expemis using the AAMs, a technique
also aimed at solving, among other things, the pose-invaadkject recognition problem. The rationale
behind this is that, by contrasting our test results agairtsied-and-tested technique such as AAMs,
used on the same publicly available datasets, we will be @bé®mmpare our method indirectly, with
many other approaches that have also used AAMs as a meagherdffectiveness and robustness. In
order to aid direct comparison with the LCV approach, alltdsds carried out were the same across the
two methods, and we constructed AAMs (at least the shapelmpad® using the same sets of landmark
points as used for the LCV. The only difference was in therojsttion solutions employed by the
two methods. Whereas the LCV method uses a hybrid searchagegxplained in sectidn 6.3.3), the
AAM uses essentially is a local search step, which can egsilystuck in false minima. The pyramid
search may help avoid initial such minima, but cannot compath the performance of global or local-
restarting methods.

It is therefore necessary to ensure that a good initiatinas always available to the appearance
model to avoid premature convergence. Thus, for all the A&Btg carried out, we used the following
initialisation; The model was placed on a random positiothmimage, always overlapping (partially
or totally) the scene object, using the mean trained shaykwéhin some arbitrary scale and rotation
factors (see Figl_7.10). In addition, each search was atldv@xecute at 4 different resolution levels
and at 50 (function evaluations) FEs per level, yieldingtaltof 200 FEs. Even though 200 FEs of a
local method combined with good initialisation cannot camgowith the 17000 FEs of the global search
for which we allowed the LCV model to run, we would like to enagise here that the purpose of the
comparison with AAMs was not to evaluate the LCV in terms efdbnvergence abilities, but instead
to examine how well each method can model shape (and to soteet gxey-scale) variations. This is
in fact denoted by the minimum error achieved in our testd,raot how many times that minimum was
reached (even though that information is also reported iresults) since we are dealing with multiple

test runs for each model.
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So, as in the case of LCV we are presenting a complete recmgaipproach and we are interested
in both the quality of the minimum and (the probability of dccurrence, in the AAM case we are only
aiming to compare with the minimum reached in the LCV. Thaufoon this comparison is mainly owing
to the fact that the appearance model may be able to captongiimed appearance variations better than
the LCV (although the latter does not make any claims aboutrate grey-scale variation, only shape
and pose) and it would be interesting from a theoretical tpoirview to compare the capabilities of
each model. After all, if consistent performance is reqlifiem the AAM (at the expense of fast
convergence) it is quite possible to replace the model besnd-update step (algoritHmh 6) with another
global method (see Chapiéer 6). Furthermore, the AAMs arelbkwewn and widely used technique
for pose, shape and appearance variation that constitatetbing of a baseline, against which every
equivalent method can be compared. The accuracy and effjcimrmbers we are quoting here for both
the LCV and AAMs (in its current implementation) are not imded to determine which of the two
methods is better (since we are not dealing with similamoisétion approaches) but to show how much
more (and if at all) our solution with the addition of a Bay@simodel and hybrid optimisation method,

improves over this widely-used standard.

7.4 Results

This section presents the comprehensive results of therafartioned experiments on the three datasets.
We begin with the pose variation for all the databases, vigdh by noise, occlusion, expression and
horizontal pose variation for the synthetic database. titach, we present some limited data on illumi-
nation changes from the Yale B face database. In all our det&uote the cross-correlation coefficient
and back-projection errors between the target scene atigesised images, and include the results from
the AAM test runs on he same datasets for ease of comparigognoverall conclusions on the perfor-
mance of LCV on successively more complex data, as well asihcwmpares with AAMs, is given in

the summary section of this chapter.

7.4.1 Database 1

The first set of results for the pose variation in the synthdditabase are summarised in [Eig. ¥.11, which
compares the two errors: root mean square error (RMSE) aradh mlgsolute error (MAE). The MAE
is a quantity that is used to measure how close predictiansoagventual outcomes. In other words, it
measures the magnitude of the errors in a set of forecadiswtitonsidering their directions. Since the
MAE is a linear score, all the residuals are weighted equaltite average. The RMSE uses a quadratic
scoring rule and thus the errors are squared before theywaraged. For that reason, the RMSE gives a
relatively high weight to large errors, and is most usefubwbuch residuals are particularly undesirable.
The MAE and RMSE may be used together to diagnose the variatidghe errors in a set of
forecasts. The RMSE will always be larger or equal to the MAH the greater the difference between
them, the greater the variance in the individual errors éenghimple. If RMSE is equal to the MAE then
the individual errors in the sample are of the same magnitiieh the RMSE and MAE range from

[0,0). In Fig.[Z11 we see that both errors are quite low and of apprately similar magnitude, since
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the difference between the RMSE and MAE is small and rangesees 0.01 and 0.04. Note that both
RMSE and MAE were calculated using the cross-correlatidwéen the observations (test runs) and
the ground truth. In addition, we see that the errors remaite cgtable throughout the range of pose
angles (betweet25°) indicating that we have an equally good chance of reachiegoentified ground
truth values, independent of pose. This graph however datgglhus the values of the cross-correlation
reached, just how close we arrived to the ground truth.

To explore the former, we need to look at Flg._7.12. This figsliews three different pieces of
information. First is the average CC (bold line) calculatésdhe mode of the sample for different pose
angles. We chose the mode instead of the mean, because wiatgegsted in the solution which had the
highest probability of occurring. This makes more sensefanm object recognition point of view, rather
than the mean value, which is affected by outliers and doeseadly say much about the recognition
accuracy of the algorithm. A good optimisation algorithnoige that recovers an acceptable solution
the majority of times. In addition, the graph shows the agerground truth error (dashed line) and
the empirical threshold error (solid line). The first is th€ @rror that was identified by solving the
system of linear equationg_(3114) given the ground trutmea@nd the correct landmark positions on
the object. The second, is the minimum CC error that was écaflir discovered by looking at each of
the 100 test results, for every pose angle, and decidingdbas@urely qualitative criteria whether the
synthesised image was a good representation of the shaggeapd intensity of the scene view, similar
to the experiments in sectibn b.3.

By close observation of the CC error, we see that the most ecomresults are considerably above
the empirical cut-off line (below which would most likelyditate a pose recognition failure) and also
higher than the ground truth error, for pose angl@9®, ..., 25%. This is perfectly possible and accept-
able, since the ever-improving effect of the optimisatitgodathm on the objective function can reduce
any minor inconsistencies in the landmarks or the appratkémaerrors in the pixel values. Only for
—25% do we see that the CC error is lower than the ground truth, tillt®ll above the empirical
threshold. Also, notice the characteristic slight fallatfthe farthest angles20° and+25°.

Another graph that supplements the average CC informai$othe histogram that incorporates
all the results from the 14100 test runs (Fig[_7.13). Here we can identify the mode ofstmaple
and how close it lies to the mean ground truth and empiricgakrerespectively (horizontal lines). It is
immediately obvious that the histogram is unimodal with & defined peak at 0.9875 well beyond the
thresholds (ground truth (g.t.)=0.9728, empirical=035Hhnd with few insignificant outliﬂsthat fall
of sharply as the cross-correlation score gets lower.

All the above graphs were related to the cross-correlatioor,ewhich combines both geometric
and photometric information. As we already know, the lattery overpower the former and yield a high
CC solution that might not be geometrically accurate. Thig/hy we calculated the back-projection
(BP) error in the landmarks, a pure geometrical measuregandrated similar graphs. We start with

the average BP graph (again with the mode of the sample)ffereint pose angles (Fig._7Z]14). Here we

LIn terms of containing other significant modes that would sigihie presence of local minima. Although outliers exist we are
confident that they are the result of the occasional failfith@optimisation algorithm to converge.
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see a similar pattern, with lower BP errors for frontal andrAeontal angles and with the characteristic,
gradual falloff for angles ovet=20°. The mode again is below the empirical threshold (also demon
strated by the BP histogram in Fig._7115). However, this ttheeground truth BP error is much lower
than any solution recovered. This may be explained in pathbyfact that the optimisation algorithm
operates on the combined cross-correlation error and nragtdmes sacrifice geometrical accuracy for
an improvement in appearance. Also, it may be argued thatlest BP error values of different magni-
tudes, there may not necessarily exist a qualitative @iffee of equal magnitude, on the synthesis of a
novel view. It may for example be possible that a single éngyjandmark affects the overall BP error
(since its an averaged value), even though the results enéigdl to the viewer. We therefore point out
that despite the fact that the mode of the BP error is highaar the ground truth, it still represents a very
good and acceptable solution. This is exactly the reasonwehghose to use the additional empirical,

qualitative threshold and consider both the BP and croa®letion errors in tandem.

The next figure (Fig[_7.16) shows the diversity of the mearffiments from all the test runs for
every pose angle. We immediately see a pattern similar td&zy where coefficients; are stationary
at their optimal values (since there is no horizontal axtation) aided by the narrow Gaussian priors.
From thea; coefficients (responsible for vertical axis rotation),and a4 are centred at zero with no
diversity anda, a3 range from approximately -0.5 to 1.5 for rotation angle?$°. Coefficientao which
varies with object translation and is of different unitsrttihe rest of the coefficients, has a much larger
diversity, as is usually expected (see sedfion b.1.4). Nergity graph helps to establish how well the
recovered coefficient range captures the underlying toamsftion (in this case very well), and if there
are any outliers outside this expected range (not any signifioutliers here). Such outliers may be the

result of failed optimisation attempts or the existencerpimaportant locally optimum solution.

The final two graphs we present for the pose variation, aredhmir-map plots Figl_7.17(a) and
(b) for the cross-correlation and BP errors respectivelieii purpose is to illustrate the acceptance
percentage (i.e. how many test runs were below or above tiea gmpirical threshold value) for all the
test runs (not only the mode of the sample) at different tiokslevels, in order to get an idea about
the overall efficiency of the optimisation algorithm forgtparticular dataset. The colour-map plots are
essentially 3-dimensional and depict acceptance pegeiitgayscale colour) as a function of threshold
and pose. The empirical threshold lines are also includess&¥ that in general for the CC (Hig._4.17(a))
the acceptance ratio above the empirical threshold is imathge of 50-70%, increasing for frontal and
near-frontal angles. Note again that these graphs illigsthee average efficiency of the algorithm and
not the accuracy, since the latter is captured by the modeeafample we have seen previously. A very
probable, good result that lies on the peak of the histograkesthe optimisation algorithm very accu-
rate, but if at the same time we obtain many outliers (thuaeed acceptance percentage) the algorithm
is ineficient. We see a similar pattern for the BP error thotdd) with the acceptance percentage in
the mid-50s to 70s as we cross the empirical threshold. Time sasults are also summarised in Table
[7.1, for the empirical thresholds for each pose, and theageeroveralll acceptance score. The final

column of Tabld_7]1 only admits solutions that are withinhbthte cross-correlation and BP empirical



7.4. Results 142
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Figure 7.11: RMSE and MAE plots using cross-correlation.
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error thresholds. The average row at the bottom repredemfsartion of the histograms (Fig._7]13 and
Fig.[Z.I%) that are on the left or on the right of the empirtbaéshold horizontal lines respectively.

We can now compare the above results with those from the A/Adtsten the same dataset. Fig.
[7.18 shows that AAMs perform very well between the angl@g?, but less so in the more distant angles
at+25%. This may be attributed to a possible inability of the AAM wxarately extrapolate data, since
between the angles20° the missing information is interpolated. Although the AANisd solutions
well above the empirical thresholds, they still cannot rhate results of the LCV approach, as far as
cross-correlation is concerned. The same graph, but usmdahdmarks back-projection error (Fig.
[7.19), reveals a somewhat different picture, and shows #h&l Autperforming the LCV for certain
angles, although not to a great extent. The former does revave a much better degree of accuracy
in the anglest-{20°, 25°}

If we examine the RMSE vs MAE graph (Fig._7120), we can see libétt the RMSE and MAE
errors are larger than in the LCV case (F[g._¥.11), but thia direct result of the lower CC values

recovered by the AAM. It is also apparent that the magnitiddbeerrors between the two measures is
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Figure 7.17: Acceptanc of test results for different thresholds.

Posé | Empirical CC| Empirical BP | Empirical c.c + BP
-25 55% 71% 54%
-20 80% 56% 53%
-15 52% 55% 49%
-10 74% 65% 63%
-5 66% 77% 65%
0 57% 67% 56%
5 70% 67% 67%
10 59% 57% 57%
15 59% 64% 59%
20 61% 57% 53%
25 64% 70% 73%

Average 63% 63% 57%

Table 7.1: Acceptance results for pose variation at diffetieresholds.
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Figure 7.18: Average cross-correlation plot (mode of sanpsing AAMSs.

more stable than the LCV case. Such an outcome indicatealthatigh the distance of the residuals
from the mean ground truth is higher than before, there is mawh less variance in them between
different pose angles. We can also see this if we examinediaani Tablé 72. As before, the table shows
the recognition results (acceptance percentage) foratkt$t runs at various CC and BP thresholds. The
difference in this case however, is that there is almost mawee between subsequent threshold values
and between using an intensity or a geometric based thiksAdilis is due to the local optimisation
algorithm used, which in reality offers two possibilitiesither convergence very close to the correct
solution, or convergence very far away and/or collapse tm@les point. It may still be possible to
become trapped inside some nearby local optimum if such gistse This would indicate a likely
problem with the objective function formulation, that sktbbe addressed, and not with the optimisation
algorithm itself. However, we did not encounter any suclirogt as demonstrated by the results in Table
[7.2.

In conclusion we can say that the LCV method is more accuoatedse recognition, in this partic-
ular dataset, especially at frontal/near-frontal angtesw@hen the CC score is considered. However, on
average the AAMs are more efficient at the empirical thredhcohosen, provided a good initialisation
is available for the optimisation search. Both methodsquerfwell in finding the global minimum at
close proximity to the known ground truth. It remains howeteesee how well this can scale to more

complicated datasets and the existence of noise, occlasidiocalised expression changes.

7.4.2 Database 2

The next set we will consider is the COIL-20 database, whiclmore demanding than the synthetic
set since it contains real-image data under realistic ithation conditions, but at the same time we are
still searching over a constant background. This should h&lintain the optimisation process within
manageable limits.

We first consider the object identification results, in whiéhmodels are compared against the full
20 objects in the frontal view. The goal here is to evaluagegerformance of each model in the presence

of unknown classes of objects to the system. Throughoutdhiews, resulting 1520 modek object
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Posé Teeq Tees Tees Teey Emp CcC TBP, | TBP, | TBP; | TBP, Emp BP | Both
- 0.95| 0.96 | 0.97 | 0.98 - 200 150 100 50 - -
-25 0 0 0 0 0 80 80 80 0 80 80
-20 72 0 0 0 72 72 72 72 72 72 72
-15 74 74 74 74 74 74 74 74 74 74 74
-10 89 89 89 0 89 89 89 89 89 89 89
-5 70 70 70 0 70 70 70 70 70 70 70
0 68 68 68 0 68 68 68 68 68 68 68
5 76 76 76 0 76 76 76 76 76 76 76
10 82 82 82 0 82 82 82 82 82 82 82
15 77 77 77 77 77 77 77 77 77 77 77
20 62 62 0 0 62 62 62 62 62 62 62
25 0 0 0 0 0 58 58 58 0 58 0
Avg. | 60.9 | 54.3| 48.7 | 13.7 60.9 734 | 73.4 | 73.4 | 60.9 73.4 60.9

Table 7.2: Acceptance results for pose variation at diffetleresholds, using AAMs.
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arrays, we would like to observe a clearly defined error respplocated approximatly'n the main
diagonal, with possibly high recognition rates for when ededbject, and low or zero false positives
and negatives.

In the same way as before, we first consider the RMS error di eéi¢che 100 test runs from
the average CC ground truth. The results from all the objmtification tests are combined into the
greyscale plot array in Fig._7Z.P1. In general, we see a wdihdé diagonal (darkest colour) with low
RMSE response ranging from 0.016.045. This response is shown in the bottom sub-figure wiere t
minimum RMSE values in each row (corresponding to each madelplotted. We note however that
there are a few inconsistencies for models 7, 8 and 11, intiegt produce a lower RMSE response
at objects 8, 16 and 16 respectively. This is shown as a dewiftom the approximate main diagonal
and is illustrated with the overlaid white line that conrgettte minimum RMSE values from each row.
Not however that the apparent deviation for models 13 and H@iite normal since the models are not
numbered sequentially after model 11 on the ordinate.

The RMS error of course is not used as a measure of the remoygaitcuracy in this case, since
it reports the average distance from the mean ground truiereas we are more interested in the most
likely (probable) CC response in all the 100 test runs. Néebess, the RMSE can serve as a good
indicator of the combined accuracy and efficiency perforreaof each model. We therefore expect
to get good overall accuracy (CC scores) and efficiency (#aoee ratios) for the 15 models, except
perhaps in the case of models 7, 8, and 11 where me might haee éssociated acceptance scores.

Furthermore, by close examination of the two objects whitise the false positive responses, 8
and 16, but also the adjacent object 7, we see three ventezd af high RMS error that cover most of the
models in their respective columns. Such an observatiotiésithe existence of objects are of generic
enough shape and texture that can easily match most models g appropriate transformation. On
the other hand, objects that match well only to their respechodels appear as light-coloured columns,
in this example, objects 3, 6, 18 and 19. We expect to see thealts mirrored in the cross-correlation
colourmap array.

This is indeed the case for Fig. 7122. Objects 7, 8 and 16psttiuce the familiar high correlation
responses, however they are not large enough to cause atefidnewveen modeh; and objecv; when
i # j. This becomes more apparent if we examine the line that aisitiee highest CC score in each
row, with fits perfectly to the model=object diagonal andhittie absence of any outliers. Furthermore,
the sub-figure shows a comparison plot between the minimueaci row above (coinciding with the
diagonal line) and the ground truth error. In there we segtligaobservation line (mode of test run data)
is above or very near at the g.t. threshold line. These twts pieerefore provide a good indication that
when the CC measure is used, we have perfect classificasoitgacross different objects for every
model and with very high accuracy. What remains to be seemisffitiency and the results that we get

when we consider a geometry-only matching score such asRhexBr.

The efficiency can be seen in surface plot form in Eig.]7.23hikplot, there is a very high recogni-

2Approximately, since not all the objects are modelled due éatitation-invariant properties in some.
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Figure 7.23: Acceptance ratio for Modeabbject at the frontal pose using cc.

tion percentage response for when model=object, rangarng 80% to almost 100%. Conversely, when
model£object, we obtain a flat surface at 0% recognition. Only oreigence at approximately 10% for
model=14 and object=8 is visible, but that is too small argignificant to cause any misidentifications.
Such a limited and localised responce could be due to a nbmalpsetting of the empirical threshold,
which as we have pointed out is a manual and subjective pg@sabtherefore not exact. Alternatively,
it may be due to a difference in CC levels between various froloiect (n;, 0;) combinations. For
example, for {n1,01) we might get a score af; andc, for (ms,02). If ¢ is much lower than it is
possible that whenng;,02) to get a scores wherec; < c3 < co that is eroneously interpreted as a

successful match.

If we examine the same graph but this time using the BP eriigr [E24), we note that this small
inconsistency has now disappeared. This is because theeggeahBP error is less likely to produce
such mismatches, which usually occur during optimisatiéth the CC, a process that is known to be
able to compensate by adjusting the shape of the model (ysu@-D affine transform) so that the

overall appearance produces a false, positive match.

Finally, for the LCV object identification experiments oret€@OIL-20 database, we present the
15x15 modekobject array using the BP error in the landmarks (Fig._17.26)s only 15x15 since
15 object are modelled and thus just 15 out of 20 have assdclahdmarks we can use to calcu-
late the BP error. Additionally, in order to preserve theadah the grayscale plot for low BP val-
ues (the portion of the data we are most interested in) we bat@n upper limit at 1000, so any
BP scores above that threshold were capped accordingly gmeha as constant, white areas in the
graph. Furthermore, since we are dealing with differenéctsj, with varying geometries and thus num-
ber of allocated landmark points, it is necessary to defingadegy for calculating the BP error at
each model-object combination. We have decided on an agpnhich attempt to equalise the two
shapes by removing the most remote landmarks from the objéttthe largest number of points. If

the number of landmarks between the model and object is tine,sdoen we can proceed as normal
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Figure 7.24: Acceptance ratio for Modeabbject at the frontal pose using BP.

and calculate the BP error. If on the other hand it is differere first determine if the synthesised
view L; = {p},...,p,,}, or the scene viewL, = {p1,...,px} contain the most landmarks, i.e. >

or < k and: for each point in the larger dataset calculate the riistérom every point in the other
setD = {{dphp/l, syt Yoo Ay, s e dpn,p;}}- Then only consider the minimum distance for
each landmarld’ = {rnin{dphp/1 ooy pr by oo min{dy, s dpmp/k}} and finally discard the land-
mark(s)p, whereD’ is maximum i.e.max(D’) = d,, - Once the number of landmarks is the same,
we can calculate the BP error as before. This way we assurnéhthdiscarded landmarks are “outliers”
and try to approximate the two geometries.

Even though such an approach might not be strictly corrextesa synthesised object changes
dramatically when a landmark and thus a triangle is remdved) a practical and geometrical point of
view it is sensible and it helps to obtain a BP score for rdbjichifferent objects that would otherwise
be comparable only by via the combined appearance CC score.

If we keep the above points in mind and return to (Fig._I7.25)oan identify a distinct main
diagonal of low geometrical error whose value is very clasthat for the ground truth as demonstrated
by the sub-plot. There are also two interesting observationhis figure that we would like to analyse
further before we proceed on to the AAM portion of the tesisstFwe see that the observed objects of
“generic appearance” that tend to match with most models fedy. [7.22 have now shifted from 7, 8
and 16 to 2 and 9. Further examination of these objects reteal object 9 (Fid._714) has a rectangular
shape with very few landmarks and boundaries that can Bteetd rotate to fit well with a large number
of models in the database. Object 2 (ffig.] 7.4) on the othedt ham a more complex, non-generic shape,
that looks like it will be difficult to match with anything o#h than its own model. It does however have
only 10 landmarks owing to its straight boundaries and itsost constant texture and thus will easily
generate a low BP score when compared to most models eveddé#t not reproduce well details of
their appearance.

The second observation is that for the first time we obtainlte$or models that can fairly ade-

quately match to the majority of objects in the databases &hdepicted as horizontal lines (rows) of
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Figure 7.25: BP modelobject array for the frontal pose using LCV.

medium-to-low BP error in Figl_7.25. More specifically, thiscurs for models 2, 5 and 9. We have

already commented on the properties of objects 2 and 9 almalyeaa we can see from Hig.V.4, object 5

is geometrically very similar to object 9. In general, we \boot expect it to be unusual to encounter

objects that match fairly well to many models. Despite hoghtthese mismatches may be, they do not
cause deviations of the selected best match from corrgdtly bn the main diagonal.

The same object identification experiments have been dastieusing AAMs. In this section the
results are compared with the LCV approach we have analyssibpsly. We begin with the RMSE
plot (Fig. [Z.26) which when compared to Fig._4.21 this plate@s a generally increased RMS score
ranging from 0.4 to 0.9 indicating that there is a definitepdroefficiency in this case. Additionally, we
see a higher disagreement between the (white) line thateotmthe minimum RMS scores in each row
(i.e. for each model) and the model=object approximateatialj This disagreement might also point
to a reduction in CC accuracy, especially when it is measagadhst the ground truth.

To obtain a clearer view on this, it is necessary to examireatlerage cross-correlation response
from each modetobject combination in Figl_7.27. We see that the identiftsaticcuracy remains at
high levels similar to what it was when the LCV was used in [F{g22. The main diagonal is clearly
defined except for model=object=14 where it has failed tvegge to the optimum solution. For all other
models, the response is at or above the g.t. threshold. Isdsthe case that we have false responses
when modekobject which are more distinct (a darker colour and thusasgmting lower CC values)
than the correct matches on the main diagonal, much moreasosthen the LCV approach was used.
This is evidence of a better separation between true pesitid false negative responses that in turn
helps to avoid object misidentifications. We believe thevalio be a direct result of the limitations of

the rather basic optimisation algorithm built into the aygmh using AAMs. It is only able to search
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Figure 7.26: RMSE modelobject array for the frontal pose using AAMs.

within a limited, local area. Thus, if it is initialised i@ the basin of attraction of the correct match,
it will converge to the desired correct match. If not, or ithua basin of attraction does not exist, the
optimisation will get stuck fairly quickly and not attempt tecover a sub-optimal configuration with
a high-enough CC response that may register as a mismat@hhykirid method applied to the LCV

approach on the other hand gives higher overall CC scorgg€li colours in Fig_7.22) and exhibits the
familiar vertical columns of high correlation.

We can now proceed to the BP error grey-scale plot[(Eigl Za@#3h is also limited to a maximum
of 1000 in order to maintain the level of detail at the lower&#ues. When compared to the results of
the LCV tests the experiments with the AAMs give a lower BRerlong the main diagonal (except
for the non-convergence when model 14 was used) and thusahlastter geometric accuracy than the
LCV. This is something we have seen previously in the syithitaset. In the background area when
modek~object and mismatches occur, we see vertical and horizlimealresulting representing “generic
objects or models” in the same places as when the LCV was tfmaever the BP score is now lower
and as a result much closer to the optimal response on thedieagonal. This results in the plot in
general appearing darker than that obtained when the LC\Ws&xd (FigZ.25). This improvement is in
the opposite sense to the reduction in cross-correlatidineirexperiments we have analysed previously
. We may thus conclude that even though the accuracy is iligétter for the AAM approach than it is
for the LCV approach, the distinction between a correct avgbibly incorrect match has been reduced.

The final investigative step into comparison with the use AMS for model/object identification
involves examination of the optimisation efficiency, whishillustrated by the average appearance ac-
ceptance plot in Fig[_7.29. As has been the case so far, in aisop with the LCV approach, the

AAM returns very low acceptance scores for the same emptticasholds. In this particular set of tests
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Figure 7.29: Acceptance ratio for Modabbject at the frontal pose using AAM.

the recognition efficiency has dropped from 80-100% to 0-40%is again appears to be based on the

inability of the local optimisation to consistently recogood solutions.

As a conclusion we would like to point out that the LCV modelaimtain their good performance
in the presence of real-image data with high accuracy anejpaaece scores. Although there are fairly
high responses for some generic-looking objects in bothQteand BP measures they are not high
enough to cause any mismatches, and the instance of ead istgdways correctly identified in each
image. Compared to the AAM the LCV gives results of almostat@ecuracy, but when it comes to
efficiency, the local optimisation algorithm used in the AAKeven if initialised close to the solution)

cannot compare with the consistent performance of the thgboibal optimisation method built into the
LCV.

However this increase in efficiency rate also brings somsiplysundesirable, minor side-effects
such as the discovery of sub-optimal solutions with good @€ BP scores when modébbject. Al-
though they did not pose any problems in our tests they migta potential source of false positive
matches in another scenario when the ground truth CC or Blesailf the correct, positive matches
are inherently not so good. If such false positive mismaa@nmonly occur, it is not because of a
particular problem in the optimisation algorithm (if aniyth they are amplified by its exceptional ability
to explore a large number of possible solutions) but are pgstg of both the model/object and of the
match metric used. In other words, they are a property ofdhm bf the objective function. Complete
avoidance of this problem might not be possible and it mag thquire a re-evaluation of the modelling

process and of the error metric used.

The final set of tests for the COIL-20 database involve thevexy of the correct pose angle for
each model when we know that the object of interest is preisetite target, scene image but seen

from an unknown viewpoint. We have considered views betwegd at 5° intervals sampled in a
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Figure 7.30: RMSE pose variation plot for the COIL-20 datshaising LCV.

similar test/training set fashion as with the syntheti@blase discussed previously. In addition we tested
against the two extreme, untrained viewstat° to assess the capabilities of the models to extrapolate.
The combined pose variation results are incorporated mmeofallowing 15<11 grey-scale graphs of
model=objeck pose.

The first graph is the RMSE plot in Fif._7]30. We see that theesctange from 0.01 to approx-
imately 0.05 which we consider generally very good basedreripus test runs with other datasets.
It is further evident from the darker patches in the graplas pose angles betweer20°, ..., —5° and
59, ..., 15 have the lowest RMS error values. If we look at specific olsjeete can see that objects 4,
6, 7, 8 and 11 (a mixture of both generic and non-generic tgpkhapes) have the best agreement with
their g.t. values in the majority of poses. Moreover for sahpects there is a slight drop in RMS error
at0® which is the familiar “M” shape we have previously encouatkin various 2-D pose angle plots.

Next is the CC grey-scale plot in Fig._7131, where we obsdraethe majority of scores are above
0.9 especially for the angles representing frontal viewsept for object 14 for which the CC fluctuates
approximately between 0.85-0.9. We also note that objec8s 3 and 15 have the highest responses
for angles representing near-frontal views. Amongst thtso$ objects only objects 7 and 8 also have
a similarly low RMS error in Fig["7.30. This seems likely tococ either due to a high CC value in
the ground truth thresholds or is due to a lower acceptanée fax objects 13 and 15. In addition,
objects 13 and 15 (the former has a non-generic shape andtthe dimost looks rotation-invariant)
consistently produce high CC values throughout all the o$his of course does not mean that for all
the other objects we fail to recognise the correct pose,Haitfor the large angles af20%and + 25°
some models have more difficulty in recovering the optimgéabconfiguration (i.e. viewing angle).
As already mentioned this graph reveals an overall high Geswhich should translate to a high
acceptance percentage (at least for the angles which alarge} as we shall see later on.

We continue with the BP error plot (Fif._7132) which illuges very good geometric matching for
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Figure 7.31: CC pose variation plot for the COIL-20 databaseng LCV.
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Figure 7.32: BP pose variation plot for the COIL-20 databaseng LCV.

the frontal poses (the BP error ranges from 10 to 60), wehiwithe ground truth thresholds There is
some falloff for the extreme angles, similar to the lower CE€have seen previously and which probably
will affect the acceptance scores too. Objects 5, 7, 8 and/@ tie lowest scores with 5 being the one
with the consistently lowest error score for all poses. Esenbetween angles af15° all objects

produce a very low geometric error with the familiar slighojol for an angle o6°.

The last plot for the LCV model on this database is the aveeamgeptance graph shown in Fig.
[Z.33. This is displayed as a 3-D surface for the 15 modellg¢ectdband covers training angles between
+20°. We see a near flat surface at over 80% acceptance score fonjbsty of the objects with a few,
isolated basins at 70%. There are three spots where thetancegalls to a low of 10% for objects 9, 14
and 19 at angles af20° which coincides with our observations from the CC and BP lgsgpeviously.

Only object 1 has a significant drop in acceptance score éofrtimtal anglest5°, .., £15°. This is quite



7.4. Results 157

Acceptance percentage %

oo AORRR A
A A
e \\\Mw,lllllll 7

(Wl
it

Object = model

Figure 7.33: Acceptance performance surface plot for C20ldatabase, using LCV.

unusual and cannot be explained by looking at the accuratye&C and BP error results. Therefore, we

are lead to the assumption that it is perhaps due to errolyechussen, very high empirical thresholds.

Finally, we show the results from the tests using the AAMstendame data. Firstis the RMSE plot
in Fig. [Z.34 where it is obvious that there is a much higheoretran when the LCV was used. This is
something we have seen several times in our experiments.stVéetherefore expect a lower efficiency
due to the (now usual) disagreement of the AAM test resultstha ground truth. If we look closer
at Fig.[7.34 we see that object 13 still maintains a (relatjvgood and consistent performance across
most pose angles. In addition, objects 6, 8 and 10 seem tslfghdly better than 2, 5 and 7 in terms of
discrepancies between test score and g.t. values. Onestitey observation is that the high-RMS spikes
for a pose of)® visible in Fig. have now reversed into lower-RMS dipsirtkermore, the graph
contains many such spikes and dips, and there is no more dlstnaasition of the RMS error between
pose angles. This might occur because of the “binary” natfithe optimisation algorithm associated
with the AAMs. It will either converge at the correct solutior get completely lost, but nothing in

between.

We proceed to the CC and BP plots (Fig._1.35 land]7.36 respidtiwhere we see slightly lower
CC scores than obtained in the LCV case but conversely l@Regrror values. Objects 7 and 8 have
improved scores for most poses in both graphs whereas sHljécil5 and 19 have now worse accuracy
results, something that did not occur in the LCV tests. Inegahfor the AAMs the performance seems
to deteriorate more dramatically as we move away from the-fneatal poses. There are a few spikes of
lower accuracy in both graphs in particular for objects 5 @n&uch isolated spikes are most probably
associated with the inability of the optimisation algonitko converge rather than that of the AAM model
to capture the pose variation of the object or the error nteasio provide a unique, well-defined and

low global minimum at these pose angles

We conclude with the acceptance percentage efficiencysudrieh may be seen in the surface plot
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Figure 7.34: RMSE pose variation plot for the COIL-20 datshaising AAMSs.
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Figure 7.35: CC pose variation plot for the COIL-20 databasang AAMs.
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Figure 7.36: BP pose variation plot for the COIL-20 databaseng AAMSs.
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Figure 7.37: Acceptance performance surface plot for C2ldatabase, using AAMs.

in Fig.[Z.37. What is immediately obvious from this is thatrthis a dramatic difference from the LCV
graph in Fig[Z.3B and, in particular that the efficiency ssdrave dropped to 0-40%. This is a similar
pattern to what we have seen before when considering therpahce of the AAMs which becomes
more emphasised at angles representing non-frontal viebjects 1-4 seem to lead to marginally better
performance than obtained from other objects and 14-19 Wwavse overall scores. The rest, 5-13 are
somewhere in between the two extremes.

Based on what we have seen from these tests, we may say withcsarfidence that the LCV model
has comparable intensity and geometric accuracy to the AAMniobject identification is concerned.
When it comes to pose detection and, especially for frontdlrear-frontal viewing angles, the LCV
gives a somewhat better CC response than the AAMs while tpegife is true for the BP error. The
LCV performs well at the extreme viewing angles20°, 25°, something that the AAM is unable to
do, possibly owing to a limitation in the model that would ertiise allow it to deal with untrained
pose variation where extrapolation may be required. Theieffity results once again have shown the
LCV model to be superior mainly, it seems, thanks to its pdwérybrid optimisation algorithm which
produces good acceptance scores even in this more dematataget. When AAMs’ were used, the
overall efficiency has remained low with an additional 18@26eduction from the levels we have seen
in the previous dataset (Taljle]7.2).

7.4.3 Database 3

The final dataset is the Yale B database which is the mostertgiiig set. This is because it contains
real images taken under varying illumination conditiomalfgéent and spot-light) and also in this case the
background model is not available. Instead, an approxondt it is provided by an image taken with

the spot-lights turned off and only the ambient light illumaiing the scene. This is not a perfect solution
since the outline of the object (a person) is still visiblel éime image portion behind it is obscured but

using it nevertheless helps ensure a properly defined dlgdcinction is available when the model is
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Figure 7.38: RMSE modelobject array for the frontal pose, using LCV.

placed over the background.

We start with the identification tests in which every modet@npared against each of the 10
objects in turn at the frontal pose (P00) to see if we can fiecctirrect model instance (and its viewing
configuration) amongst many different individuals. 10Q tess were carried out in each case and the
results were captured in variousx 00, modek object arrays. As usual the first measure to be considered
is the RMS error plot (Fid_7.38) from which we see that thera Well-defined diagonal corresponding
to correct identification of model with each object, exceptdbjects 7, 9 and 10. If we compared this
to the error-plot in Figl_Z.21 we see that the errors in thedvaphs have approximately the same range,
something which is further affirmed by the sub-plots fromresmw. Both sub-plots range from 0.007
to 0.05 except for object 10 in the Yale B database where it islious outlier with a RMSE of 0.17.
As we have already seen in F[g._7.38, models 7 and 9 have ad¢sovirngly identified but their RMS
errors recovered in the sub-plot are within the nominal eaofghe rest of the correctly identified objects
and are not obvious outliers as object 10 is.

Also unlike what we found with the COIL-20 database thereraveobjects here that provide a
good match to all the models except perhaps object 7 thatwateell with several models. This is a
little surprising given that the database contains onlg$adut may perhaps be attributed to the more
distinguishing differences between the appearance (shextere and illumination) of the faces in the
Yale B database than we saw for the objects imaged underasurigghting conditions in the COIL-
20 dataset. The opposite holds for object 9 which seems wupeoa poor matching result for all the
models, including its own, and is depicted as a vertical molwf lighter intensity.

Next is the CC plot (Fig.["7.39) which illustrates the recdigmi accuracy of each model when
an appearance measure is used. We observe that it has a mallar sippearance to the previous

RMSE plot with generally a good response (between-@0®8) and a well-defined diagonal for cor-



7.4. Results 161

1k i
21 <> 5 08
3l i

0.7
4k i

© st . < 1 06

S

2 6

= 0.5
7+ o .

ol i 0.4
9F <> 4 03
10 € | d
Il Il Il Il Il Il Il Il Il Il
1 2 3 4 5 6 7 8 9 10
Object
1 T T T T T T T
©Q o9l g
3}
0.8 Il Il Il Il Il Il Il Il
2 3 4 5 6 7 8 9 10
Model

Figure 7.39: CC modelobject array for the frontal pose, using LCV.

rect model=object associations, except for object 10 whighs a score of 0.85. Such a poor cross-
correlation coefficient leads us to suspect that perhapgtrticular object has failed throughout all our
tests. However, further work is necessary before we can doaerete conclusions. Once again, object
9 is the object with the lowest response for all attempted:hest where the modgbbject.

We move on to the BP plot in Fif._7A0 which has been capped taxinmmum of 1000 to preserve
detail. Here we see a very good response and a complete nagiongdil for model=object without any
miss-identifications. However we note that the BP scorelijeat 10 is quite high# 325) and although
this object has been correctly identified, the image syighmight nevertheless be poor and one that we
would regard as invalid. The rest of the models give a respohsround 568-100 when they match
to their respective objects which, based on our empiricallts, are well inside the required acceptance
thresholds. As we can see there are no significant false@ssih the background region of the graph
(modek£object) with just a few isolated spikes in the BP error ragdiom 400—600.

The performance graph (Fig._7]41) reveals a high acceptatioeof 80-100% when model=object
and without any miss-identifications. Only objects 5 and &@eHow performance scores©60% and,
if we look back at the CC and BP graphs we can see that those ltjgots have the poorest overall
response even though the matching to object 5 has on ocdas@mover the convergence thresholdin
general the accuracy and efficiency results we have seemdfagténtification tests on the Yale B database
using the LCV approach are very encouraging except in the aisbject 10 which, as already noted,
needs to be investigated further.

We can now proceed to the AAM portion of the identificatiortdéeend consider the RMSE plot in
Fig.[Z.42. Itis immediately obvious that there are fewecdipancies in the main diagonal compared to
the LCV case (only models 3 and 6 are wrongly identified) btih@tsame time the RMS error is higher

in this case than it was when the LCV was used. This is bestisgabe sub-plot where the maximum
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Figure 7.40: BP modelobject array for the frontal pose, using LCV.

Acceptance Ratio

Figure 7.41: Acceptance performance surface plot for YalaBbase, using LCV.
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centres range from 0-20.6 whereas in the LCV case they vary from 6-070.17. Other remarks we can
make from this figure are that object 1 seems to have a good RE[®nse for most models whereas
objects 2 and 9 do not match well with most models in the list. have already seen this behaviour for
object 9 in the previous tests with the LCV.

The next figure is the CC plot (Fig—7143). We can see that we haperfect main diagonal of correct
model-object identifications with good, consistent CC esanostly around 0-:90.95. Nevertheless the
CC scores for objects 5 and 10 still remain low at around Or&b @8 respectively despite the fact
that they have been correctly identified. In addition, the ©C values obtained with the LCV when
modek£object for objects 2 and 9 now seem to be somewhat “diluted’ rapre consistent with the
background of the plot in comparison to the very distincpogses that we obtained in the LCV CC
plot.

The BP error plot (Fif.Z.44) shows a much improved, lowesreatong the main diagonal including
that for objects 5 and 10 and, surprisingly, these two objeate now the lowest BP scores Furthermore
the BP errors at the maximum centres range from 25 to 40 whechetter than when the LCV was used
and also under the empirically derived thresholds. In fiacbur tests so far we have seen a number of
different times that the AAMs have slightly better geonetliaccuracies than those obtained with the
LCV model. The LCV on the other hand gives a marginally hig6€r appearance score. We would
like to point out that such differences are very small nuoaly and they do not produce any practical
or observable difference in the image synthesis. Nevertiselthis may be of interest from a purely
theoretical point of view.

Finally we come to the performance plot (Fig._4.45) where eethat the acceptance performance
score obtained with the AAMs suffers once again with a caersible drop to 18-50% along the main

diagonal and with many objects (2, 4, 5, 8 and 10) giving aessobnear 0%. The score is 0% elsewhere
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Figure 7.45: Acceptance performance surface plot for Yatatabase, using AAMSs.

in the plot when modetobject as there are no false identifications (false-pe@s)iv The decline is
manifested therefore only in the number of times the cowbjdct has been identified rather than in the
(true positive)/(false positive) ratio. This is a typicakult arising from a poor optimisation algorithm
and is not due to some problem with the model itself since atterd would give rise to spikes outside
the main diagonal of Fid._7Z.#5. We also note how the perfooearf the AAMs seem to decline as the
datasets become more complex while at the same time therparfice of the LCV approach remains
relatively stable.

The rest of the results in this section involve the pose reitiog tests, with each model compared
against a scene image which contains just one instance afdhe objects that has been modelled. The
pose angles here are described in terms of spherical cabediand are different than in the synthetic
and COIL-20 datasets. They also combine pose variatiormviimg rotations about both vertical and
horizontal axes (see Fifl._7.8). The pose labelled 0 is thadt@ose along the camera axis. Poses 1,
2, 3, 4, and 5 are approximatelg® from the axis and poses 6, 7, and 8 were atdtfrom the axis.
With 9 poses in total (PO8P08) we generated various 20 arrays of model=objegtpose with each
cell being the average value of the chosen measure over §0futes. All the objects were tested for all
the poses except object 5 for poses P04 and P05 in which wreeneséderable portion of the face was
missing. The model thus could not be accurately built fos¢higvo poses selected as basis views owing
to landmark points that were missing. Although as we willvghin the next few chapters our model
(once built) can still be successfully applied to occludbkots, one cannot easily build an LCV model
from images in which an object is partially obscured. Weefane decided not to test use of these two
poses as basis views for this particular object and to Idavedlls blank in the arrays that follow.

Also, if we recall the problems described previously objEin the database we can explain now
that this was because pose P00 has additional data (i.e.etk® which is not present in any of the
images taken in the remaining 8 poses. This is the oppogitaqmn to that encountered with object 5
and in this case we do not have any missing landmarks. Therefe can go ahead and build the model

for all poses while considering the target images obtaingubse P00 to have additional data that cannot
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be modelled. This would explain the poor CC scores we have akeeady which were caused by the
additional data whereas the BP error remained good sine#dyitamnsiders the landmark positions and

ignores any background data. For this reason we expect & ©@@ecore for pose P00 for object 10.

We begin with the RMSE plot in Fid._7.#6. Note the missing jmorfor object 5. The scores are
mainly low ranging from 0.01 to 0.1. It is obvious that obge8t 9 and 10 have the highest error across
all the pose angles while the performance for objects 1, 6/asekms to be better irrespective of pose.
The results in this graph do not indicate any specific poséearbat consistently produce a very high
or low error score but we may remark that for some cases p@es P08 seem to give the lowest RMS

error. We also note the high error for object 10, pose POO.

The next graph is the CC plot in Fig_7]47. Most objects giveadyresponse with CC over 0.9
with again no particular pose angles standing out. Objec8ahd 10 are the usual under-performers
with the latter having the lowest overall score especiahposes PO0 and P85P08. Object 5 generally
does well except for poses P00 and PO1. What we have seen s@farixed picture with most models
recovering the correct pose to within a reasonable accurbiwever, certain models still fail in a
number of different poses much more frequently than we hage for the two previous datasets. This
is partly due to the fact that we are dealing with a complexaskit but, we suspect, more importantly
because the full background model is not given which is eapdifficulty in the optimisation search.
We expect this loss of accuracy therefore also to affectffimency scores especially for objects 5 and

10.

We proceed to the BP error plot (Fig._7148) where we see aaimitture of mixed results. The
BP error ranges from 58150. The geometrical error for objects 5 and 10 seems frosethesults
and those in Fig[_Z.47to be a more promising measure forifaetiton purposes than the combined
appearance measure. This is because, as we have alreadgnaéntny additional object features

that were not captured by the model (in the image-based tag)pdlo not affect the calculation of the
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Figure 7.47: CC object=modepose array, using LCV.

BP error which is only based on the landmark positions. Bdythiat remark we do not see anything
else that is worth mentioning, except perhaps that objectsabid 7 have medium BP error responses
for poses P08-P01 and that there seems to be a marginally better BP scopp$ais P02:P04 than
P05—-P08. It is because of the nature of this dataset with its mgrifiumination conditions and lack of
a proper background image that we have not observed angatigthigh or low responses that span all
poses or all objects in the graphs. Observation of suchdistihigh or low responses across all poses
or viewing angles was a common occurrence when either ofrtavio databases was used.

The final diagram for the LCV pose recognition tests is theaye efficiency graph in Fid._7.49.
Here the acceptance surface is different than the neatlglavalent from the COIL-20 database (Fig.
[7.33). We see some low-performance spikes (e.g. with abfedt, 8 and 10) caused by a similar drop in
accuracy scores due to the particular characteristicseof#he B dataset. Despite those few recognition
failures at specific poses, overall the acceptance pegensawithin acceptable limits ranging from
70—100 for most objects in the set.

Finally, we come to the last stage of our tests on the Yale Bs#atwhich is the question of pose
recognition when using the AAMs. First is the RMSE plot (FElgg0) in which we see a moderate RMS
error for most objects that is considerably higher than dhéined in the LCV approach. This outcome
has been the case so far. Objects 1 and 7 have the lowest sspesdally in poses P00, PO3P05.
Modelling of objects 2 and 3 remains problematic with a higidRerror indicating that there is a
deviation from the ground truth (g.t.) values. We also se¢ ¢ibject 10 has a relatively improved good
RMS error except for pose P00. Compared with the RMSE planftioe LCV tests (Fig[_7Z.46) when
AAMs are used there are fewer objects that have good RMS valneé the difference between objects
that produce (relatively) high and low scores has been déinénl. We therefore expect to see a definite

and considerable drop in efficiency scores for most of theaibjin the test set.

Next we look at the combined appearance accuracy in the CQilp [7.51). It seems that in
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Figure 7.51: CC object=modepose array, using AAMs.

general and compared to Fig._7.47 the CC scores have mowethmtlarker/lower score regions with
many objects now having a CC between 0-/&8 (e.g. objects 7, 2 and 3) whereas in the LCV case they
ranged on average from 0.9 to 0.95. We can also see thatgesaltmixed for most poses and perhaps
P03 is the only one that gives a moderately good outcome fabgcts with a CC ok 0.9. Also,

no object has an invariably low CC value for all poses unlikéhie LCV approach where, for example,
objects 6, 7 and 8 did.

We move on to the geometrical accuracy scores with the BP(pigt [7.52). At first glance it
appears very similar to the previous CC graph with diverspaases. There is no pose with universally
good results for all objects, except perhaps once again Bo&pared to the LCV case in Fif._7148
we see that for the AAMs object 10 performs much better andatbj4, 5 and 7 do worse for poses
P0O0—P02 but better for PO3. In addition, objects 1 and 3 have amdweg score for poses POEP02
but considerably worse scores for the rest of the views.llyif@ most objects in the set there seems to
be a clearer distinction between the posesPB03 that have a low BP error and those with a high error
namely P04-P08. In the LCV case this partition is less apparent sincesthe fewer objects that give

such high BP errors.

We end this section with discussion of the efficiency resmitEig. [7.53. When considered in
comparison to the LCV results in (Fig._7]49) it becomes appiathat when AAMs are used many more
objects have failed to recover the correct pose with a lowaated acceptance ratio of 0-5%. A few
of the objects seem to do slightly better such as 1 and 6 rgriggm 30-60% for poses PEOP05 and
P02—P08 respectively. Overall poses P02 and P03 are the onetheiltighest scores at approximately
30-40% unlike the LCV case where all poses gave very goodpeance results except for a few lower

spikes.
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Figure 7.53: Acceptance performance surface plot for YatBbase, using AAMs.
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7.4.4 Noise

The synthetic database we have used previously for theai@hof pose-invariant object recognition is
composed of error-free data and so it represents a ratt@itideunrealistic scenario. A more pragmatic
approach would be to add a certain amount of random, Gauseiaa that, for example, has not been
modelled in the basis views and repeat all the previous @xpets in order to assess the extent to which
the optimisation results are affected by the existence @eno

We therefore considered two possibilities: first additida onoderate amount of noise & 0.05,
see Fig.[7.54(a)) and secondly addition of a large amounbiseng = 0.1, see Fig.[7.534(b)) to the
target image pixel values, for both foreground and backguiquixels. The basis views and pose angle
samples are identical to the ones used in setfionl7.4.1 diti@u we have used similar graphical plots

for ease of direct comparison with the noise-free case.

Moderate noise

First we examine the RMSE vs MAE graph (Fig._4.55). As expiatehis case the two error measures
are higher than in the noise-free experiments implying @araye some deviation from the ground truth
solutions purely due to the effects of noise. It is interegtio note that the error is bigger for angles
+15, 20, 25 than it is for smaller angles - something that we did not entewin the noise-free case
considered previously. Also we see that despite the fatthiedowest errors occur at near-frontal poses
these are also the angles where there is the largest discsepatween the RMSE and MAE measures.
This means that there is a much higher variation betweeduals of the 100 test runs at these angles
than for other viewing angles in our test set and that we mageguently expect to find high accuracy
but moderate efficiency scores for these small angles.

Next we examine the average CC graph (ffig.17.56) for the mbtleecsample. Once again it is
clearly demonstrated how the addition of pixel noise aff¢lse CC score and yields a significant differ-
ence between the observed and empirically derived growh walues. What is of particular interest
however is that all the observations are above the empitticakhold pltﬁ. Although the difference
between observation and empirical threshold is much low#ig occasion, it is still a very encouraging
result, which shows that the optimisation accuracy is netlgvaffected by the presence of a moderate
amount of noise.

Following the above we move on to discussion of the averagk-peojection error plot (Fid._7.57).
We see that this is very similar to the noise-free plot in Fig4, except for poses &t and5° which is
where we obtain only quite a low level of accuracy. Howewvechsa close resemblance of the two graphs
coupled with Fig["Z.56 itself leads us to the conclusion thase results are geometrically accurate even
in the presence of noise.

Finally for the moderate noise scenario we have includedynaphs (Figl_7.38(a) and (b)) that show
the overall acceptance percentage for the empirical CC &nithgsholds respectively. At the same time
we compare these results with the equivalent acceptaneg fram the noise-free case. We note the

aforementioned drop in recognition rates of between 5% b 20 different pose angles for both the

3Note that these empirically derived thresholds are diffefimm the ones in the noise-free case and are always relatiae t
current experiments and observations and hence the lowea{D€s/
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Figure 7.54: Synthetic database samples with differentuentnaf random noise.
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Figure 7.55: RMSE and MAE plots for moderate noise case.

types of threshold used. Of particular interest is the faat for the frontal poses, the noisy case seems
slightly to outperform the noise-free examples. Howevebekeve that this may be attributed purely to
the probabilistic nature of the optimisation algorithm amod to some underlying special characteristic
of the data.

Before we proceed to the examples with a large amount of ribi®uld be noted that we have
carried out similar experiments with the AAMs on this modelanoisy dataset in order to compare
how the active appearance model can cope with such effe@golvid that both the RMSE and MAE
(Fig. [Z.59) have increased considerably compared to the &fproach (Figl_Z.35) and there seems to
be a large discrepancy between the two measures for the AAdsating large variations in the error
residuals and consequently a drop in the efficiency rater@duced acceptance percentage). The latter
is most probably due to the inability of the local optimisatialgorithm to successfully traverse a noisy
error surface. As far as the accuracy is concerned, we see(ffiy. anZ.81) that it remains at
very good levels relative to those obtained with the LCV apph. As in Fig[’Z.18 arld 7119 the graphs
obtainmd when AAMs are used exhibit the familiar deterioratat the large viewing angles ef25°
and higher accuracy, in particular of the geometrical efasrthe frontal angles.

We end this sub-section with a graphical comparison betwleemverall efficiency scores of the
LCV and AAM for the two empirical thresholds (CC and BP scdirs-ig.[7.62. Itis clear that the LCV

approach outperforms the AAM approach especially at théearfgrthest away from the frontal pose
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Figure 7.59: RMSE and MAE plots for moderately noisy casagi$iAMSs.
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Figure 7.60: Average cross-correlation plot (mode of s&jor moderately noisy case.

for both types of empirically derived thresholds. This istguhe opposite from what we have seen in
the noise-free case where AAMs had better recognition sdbemn the LCV. The accuracy relationship
between the two methods seems largely unaffected. We maysiny that the LCV is more robust
to noise than the AAM and since only the efficiency differeahbetween the two methods is affected
(both the accuracy results degrade by analogous amouigtspbustness is probably due to the superior
optimisation solution employed in the former. Howeversihecessary to examine the results in the next
sub-section when a large amount of noise was added beforeaweathy additional, general conclusions

about the two methods.

Extensive noise

When a large amount of noise was added to the target image as saen from Fid. /.63 the RMSE and
MAE errors are higher than they were with moderate amount®ise and we see that both quantities
are almost identical. These observations allow us to makeridiction that there will be an analogous
decrease in both the efficiency and accuracy of the optimisaesults closely associated with the in-
creased amount of noise. If we had an unexpected, unilateyplin either the accuracy or the efficiency

scores we would expect to see a reduction in the RMSE and MAiseor an increased disparity be-
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Figure 7.63: RMSE and MAE plots for extensively noisy case.

tween the two but not both. The fact that both of these eveamigs bccurred to a limited degree is a
good sign that points to a graceful degradation of the olgmignition system in the presence of large
amounts of noise.

Fig.[7.64 shows the average CC response values and therappedad empirically derived thresh-
old. In this example we see a lower overall CC score than pusly and also that the two plots are much
closer together. In fact for some angles (especially pa¥ethe CC values drop below the threshold for
the first time in our tests. Indeed it may be the case that thsuat of noise is at the limits of what the
LCV model can handle with these optimisation settings. Tdwieacy scores are somewhat better when
the geometrical error is examined (see [ig. 17.65) with aflepangles yielding an average result above
the empirical threshold. We should note again that suclsliaoies are chosen experimentally and on an
ad-hoc basis in order to aid the evaluation of optimisaticcueacy. They are not definitive or absolute
pass or fail rules so we could decide to admit some CC teste¢hatonly narrowly fail provided they
have a very good geometrical reconstruction.

If we take account of the above point and use the establisimgitieal thresholds we can generate
overall recognition performance comparison graphs (Eii6@&) and (b)). For both of these graphs we
see a considerable drop in the acceptance rates (optiomsdtorithm efficiency) in the range of 5-30%
for the two types of thresholds. By close comparison to thdenate noise acceptance graphs (Eig.]17.58)
we can identify an average 10-20% drop in acceptance pagemts the Gaussian variance increases by
0.05. How well this decrease generalises to other variantees and if indeed there exists a simple,
linear relationship between variance and recognitiongr@ege is not apparent and requires more work
to resolve. Nevertheless, from the results obtained in tiserfree, moderately noisy and very noisy
cases we can identify a gradual and predictable deterorati optimisation results as the noise in the
target image increases. Such a result reinforces our nttadrthe performance of the LCV although
not unaffected by noise is quite robust and has a propoteahecline (or at least not a disproportionate
decline) as the amount of noise increases.

We also compare against the AAM search on the same databdheitarge amount of added noise.

The RMSE vs MAE plot (Fig[_Z.87) shows that even though théviddal pose errors have increased
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due to the effect of noise on the CC score the relative disthetween these curves is lower than in the
moderate noise case (Fig._7.59). In fact we see that thereidh hess increase in relative RMSE and
MAE errors between the moderate and large noise exampleg AsiMs than there was when the LCV
approach was used.

Figures 7Z.6B and_7.68 compare the average CC and BP respainisérsed by use of the LCV
and AAM methods respectively. It is obvious that the AAM isgsod as the LCV method in the
presence of large amounts of noise, except at the largendgeavigles of=25° which have presented a
recurring problem for the AAMs. Also when AAMs are used we dd see a drop in the scores near
the frontal angles but have a smoother transition betweffgreint poses. For the BP errors the results
seem to favour the AAMs between25°, ..., 10°, however for the remainder angles the two methods
have approximately the same level of accuracy.

If we now move on to the average acceptance results for thenwtbods (Figl_7.40) we see that the
AAM method has a slightly lower efficiency approximately 5% less than that of the LCV approach.
Note once again the steep drop at the large viewing angles.

In conclusion we may say that the LCV method has an overalil gesformance in the presence of
noise with a predictable degradation when the amount ofrisitncreased. More specifically, the av-
erage accuracy of our approach remains largely unaffecteé@bove the empirically derived thresholds
and also quite close to the threshold pertaining to the ga@akground truth too. In terms of efficiency
we see a gradual and graceful drop in recognition rates astience of the additive Gaussian noise is
increased. Compared to the popular AAM method the LCV paréojust as well with comparable ac-
curacy rates especially when the geometrical error of tbengtruction is evaluated. This is because our
LCV approach is aided by the powerful hybrid optimisatiogaalthm (sectiof 6.3]3). We have also seen
that the LCV can better model the deformation of the objeatmiimited extrapolation of the viewing
angles is required whereas the AAM has some difficultiest®gising the appearance of an object in a
pose that has not been seen before and needs to be extrdgamatehose comprising the training set.

Our only criticism of the LCV approach is that for the frontééw the model seems to deliver a
lower accuracy score and that this is exacerbated by thei@udif noise to the target, scene image.
As we have said earlier we believe this to occur because tedir view is where the basis views
are combined in equal amounts so any inherent noise in tteg laill be enhanced in the synthesised
image. If we combine this with the effect of the added Gaumsaizise in the target image we get the
characteristic, slight drop in cross-correlation for thase. Conversely, the BP error for the frontal pose
seems to be largely unaffected. Furthermore we would likeatoy out additional tests in the future to
establish more precisely the relationship between ineseasnoise level and decrease in optimisation

efficiency.

7.4.5 Occlusion

This section deals with the effects of un-modelled occlusio the performance of the LCV approach.
These test are designed to represent a replacement occlusidel, whereby an occluding object is

placed between the camera and object of interest, and it sdrad appearance completely “replaces”
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Figure 7.70: Recognition rates comparison using CC and BR #mwesholds.
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Figure 7.71: Synthetic database samples with differentusrinof random occlusion.

that of the object of interest (over the area of overlap). réhare of course alternative models (for
example we could have used a semi-opaqgue or even an objadilaitk, background pixels) that would
produce alternative error responses and thus recognégits. Nevertheless, we decided to experiment
with the replacement model which is most commonly encoextér real-image scenarios.

Our test data therefore was generated by randomly intergasiwhite, opaque, circular object
within the bounding box of the synthetic head model. We tesi® scenarios: first where there was
limited occlusion with the size of the occluding object se2@% of the area of the face (Fig_7171(a));
and second with increased occlussion where the circulacbhbias fixed at 40% of the size of the face
(Fig. [ZZ1(b)). The same tests were also carried out withAM and compared against our LCV

method.

Limited occlusion

As usual we begin with the RMSE vs MAE graph in Hig._1.72 whightisimilar levels to those obtained
in the occlusion-free case (Fig_7]111) although the latigpldys a more linear transition between pose
angles. There is a large difference between the RMSE and M#AfEsan Fig.[7.72 for pose5® but it

is too early to identify the reason for this as further anialysrequired. It is quite unlikely but still that
large number of optimisation tests failed to converge oveaged poorly for that particular angle. What
is apparent so far is that the 20% occluding object has natidedly affected the performance of the

optimisation.
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Figure 7.72: RMSE and MAE plots with 20% occlusion.

Figured 7.7B and 7.¥4 show the average cross-correlatidrback-projection plots respectively.
By close comparison with the occlusion-free plots (Fig.27ahd7.I%) we observe that the occluding
object has resulted in an average 0.02 drop in CC scores. &othimal drop is to be expected since
the image of the superimposed object has quite differerdl pitensities than are found in the image
of the synthetic head. Nevertheless the average obsangtare is between the ground truth and the
empirically derived thresholds for the majority of pose lasg There is however an overall smaller
distance between the observation and empirically derikieeshold plots than in Fig._7.112 indicating a
reduction in recognition accuracy caused by the occludbjgat. Results are much better for the BP
error plot since it has an almost identical, if not bettespense in the present case than that shown in the
plot from the occlusion-free experiment in Fig._4.14. Siadecalised change in pixel intensities by the
occluding object does not affect the BP error the latter is@dgndicator of the geometric consistency
between scene and synthesised views. It is therefore theetbas geometric accuracy has remained
virtually unchanged in the presence of limited occlusion.

Finally we compare the average acceptance percentageiplotsthe empirically derived CC (Fig
[7.75(a)) and BP (Fid._Z.75(b)) thresholds. We see that éfcefhe two spikes for poses20° and—15°
where the occluded test scores fall considerably we havese dimilarity between the occlusion-free
and occluded cases. These spikes indicate low efficiencgsod the optimisation algorithm for these
poses. Although this observation is mirrored by a fall inuxacy for pose-15°, as we have seen in the
cross-correlation plot, it does not occur for angl20® or at all in the BP plot. Results are thus rather
inconclusive for these poses. However it may be that the @rapierror thresholds were erroneously
chosen too high for these poses (see empirical threshdis @ithese angles in Fig. 7173 dnd 7.74).

We now move on to the AAM tests where we see a significant réztuict the optimisation accuracy
which is depicted as an increase in both the RMSE and MAE giemin Fig.[7.76. The fact that both
these errors are approximately equal for most angles itetidhat the error residuals from the 100 test
runs differ significantly from the average ground truth esuThe accuracy drop is further pronounced
in the average CC and BP plots (Figutes V.77 [and] 7.78 regplgtiwhere we can see quite a lot of

oscillation between good and poor matching scores. This fadt due to the apparent sensitivity of
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the AAMs to missing data (that may be the result of an occlgdibject) and not some phenomenon
associated with a particular pose angle. In fact, the egich at different pose angles is completely
random and is determined by the local optimisation algorittsed with the AAMs.

Note additionally, that in this particular case the datadgsams are multi-modal with the primary
mode caused by trivial solutitg@ee CC histogram in Fig._779). Thus, even though thereds@mslary
mode above the empirically derived threshold and even thdogsome poses the primary mode may
indicate a correctly converged solution, when all the tastsexamined collectively we can see that the
overwhelming response is toward very small cross-coioglatalues. This explains the appearance of
the CC and BP plots.

It would also be reasonable to expect a similarly large dedl acceptance scores. This is indeed
the case if we examine the acceptance graphs in [Eig.] 7.80. AR tests have subsided to very
low acceptance rates (zero in some cases) for both empjridafived thresholds in comparison to
those obtained with the LCV approach for the same, 20% oictludataset. These results are perhaps
indicative of the fact that the AAM may not be very robust teewa small degree of occlusion unlike the
LCV method. However we should analyse the results from tHé 40clusion dataset before we draw

any further conclusions about how the two approaches campar

Increased occlusion

For the second case where the occluding object is doubleg#vee see a small increase in RMSE and
MAE errors (Fig[[Z.8]11) in the magnitude of 0.02-0.03 for thajonity of pose angles. The two quantities
are now much closer together indicating an overall agreébmtween individual error residuals and the
average ground truth. Combined with the low scores it is dication that the accuracy and efficiency
of the algorithm might have decreased slightly but still a&ms at good levels. There is some increase in
the RMSE and MAE values as we move away from the frontal pos¢himiis normal and has already

been observed in the 20% occlusion case (Eig.]7.72).
As far as the average responses are concerned Fig. 7.82(&h)atlemonstrate that both the CC

4The AAM has collapsed to a single point that gives a CC scargedlo zero when compared to the scene image.
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Figure 7.80: Recognition rates comparison using CC and BReghresholds.

and BP scores are adequately above the empirically derredholds. The geometrical error seems
to be largely unaffected by the increase in size of the odetudbject and at similar levels to those
obtained when the occluding object’s size was 20% of the. fibés indicates a good reconstruction of
the geometry of the object from the trained model even if aiigant portion of the data is missing from
the scene image. The CC has dropped from the values obtairikd previous tests but that is a result
of the occluding object which directly affects the CC caftidn. We see that despite this the average
CC scores are obtained from synthesized images that preiligdly acceptable reconstructions of the
target, scene image although the CC plot is now closer torttgrieal threshold plot than it was when a
20% occluding object was used. We may also look at the twodpiams (Fig[7.83(a) and (b)) and see
that there are no other significant modes with a good prapodf test runs scoring consistently over the
empirical thresholds. As a result we may conclude that tharacy of the synthesized geometry remains
unchanged whereas the combined appearance accuracy ppedrgightly but still demonstrates a
robust result given the significant increase in the occlgidibject’s area.

If we now move to the optimisation efficiency determined frtra test-run empirical acceptance
percentages (Fif._7.B4(a), (b)) we see that they are atesitailels to those obtained when an occluding
object 20% of the face size was used. In more detail we see @heegponse in this case of increased
occlusion is higher than most the responses were in the €#semore limited occlusion for non-frontal
poses. For the BP threshold the results obtained with 40%sioo have a small drop in efficiency which
increases for non-frontal viewing angles but is still cle@¢hat obtained in the experiments with more
limited occlusion. Similarly to the accuracy, the averaffiiency rates have not been overly affected
by the increased occlusion of the object of interest.

We have carried out the same experiments with the AAM anddabhat none of the test runs
managed to converge to score that would meet the empiridatiyed thresholds for any of the viewing
angles. If we look at the two histograms (Eig.1.85(a) any\{l&) can see an overwhelming concentration
at CCx0 and a shift toward high BP error values. This is a similahi lbehaviour in the case of less
severe occlusion we have seen before where the AAM cannetway well with occlusion of the target

object of interest. The drop in accuracy and efficiency sc@dighly disproportionate to the increased
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Figure 7.85: Average CC and BP plots (mode of sample).

area of the occlusion and as a result we may generalise oalusion by saying that the AAM in the
current implementation we have used is not robust to misditig due to occlusion.

On the other hand the LCV approach deals very well with odgotuwith very little loss of accuracy
and an acceptable minor loss of efficiency. Furthermordyaamount of occlusion is increased (to 40%
of the object of interest) the LCV performance remains Igrgachanged. We believe this is because of
the fact that the allowed coefficient ranges are learneadtraining and incorporated into the Bayesian
priors which play an important role in the optimisation sbgorocess. In addition, the hybrid algorithm,
assisted by these priors can avoid trivial solutions andceotrate on areas of the objective function
where meaningful solutions are most likely to occur. The AAMen confronted with unknown data
(such as that arising from the occluding object) in the vigiof its search locus is ill-equipped to deal
with uncertainty and randomly searches the objective fanaintil it converges to a trivial solution (as
we have seen in both the occlusion CC histograms Fid.7. 29@Y.85(a) ).

7.4.6 Expression

The experiments in this section reflect our attempt to tesinagthe effects of localised, flexible defor-
mations of the object of interest, exemplified in our experits by changes of facial expression. We

considered views of the synthetic head in two differentmodelled expressions and carried out the
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usual kind of experiments using our existing LCV model. Cangbns were carried out against the
previous results obtained from use of the LCV approach véthet images exhibiting the modelled,
natural facial expression. The AAM portion of the tests hlaeen excluded in this case since the AAM
cannot model local deformation that has not been includederiraining set. We therefore focused on
the ability of the LCV method to recover the correct pose alon

The first point of comparison is between the average CC andrilP glots. We see that due to
the change of expression, the CC plots (Eig.[7.86(a) anch(e))ower that those obtained in the neutral
(modelled) expression plot (Fif._7]12) but still above thepéical threshold. Only pose angle25°
and —20° are marginally below the cut-off point. A similar situatiésm apparent when we examine
the BP plots (Fig.[[7.87(a) and (b)) and compare them with thelas graphs obtained for the the
neutral expression (Fig._7114). The plots for both un-miedeéxpressions are further away from the g.t.
boundary but below the empirical threshold whereas thefplathe neutral expression is closer to the
former and thus more accurate geometrically. We also noliglatlg better overall score obtained for
experiments with the happy expression as opposed to thg angrsince the former represents a more
localised deformation and a smaller change (e.g. in therldiwethe chin and the nose) is required to
transform from a neutral face to a happy one than from a nidatr@ to an angry one. This may be a fine
point but it is nevertheless clear that the two expressionsad produce exactly the same responses.

For the evaluation of the average efficiency we have incladeamparison of the graphs (Fig._7.88)
for the three expressions. As we have already seen efficien@xperiments on target face images in
the natural expression ranges between 55 to 80%. It apprass Bnd stable between different poses
without any significant spikes in the curves. The same algpdiepfor the BP threshold acceptance
response. For the two un-modelled expressions, it has erlaagiation in the efficiency rates ranging
from 30% for angle€5° and—15° to 90% and 100% for posés® and0° respectively. We see a similar
result in the BP plot. We would like to make clear at this pdhdt the empirical thresholds for this
particular scenario, were determined based not on how WwelLCV model could synthesise the new
expression as this would simply be impossible, but on how ivelould recover the (visually) correct
pose in the presence of localised, un-modelled variatitis §hould explain why sometimes we observe
higher efficiency rates than in the experiments incorpogatinly pose variation in sectién 7.#.1. The
empirically derived thresholds are thus different but atgame time slightly lower response scores may
be obtained because the model cannot match precisely t@gwighe face with the previously unseen

expressions.

7.4.7 Rotation about a horizontal axis

In this sub-section we present our experimental resultsose pariation due to rotation about the hori-
zontal axis. Five samples were used frerh0” to 10° at 5° intervals while the pose about the vertical
axis remained fixed at° (frontal pose). With these tests we intend to examine thityabf the LCV

model to accommodate a second set of view changes. To do seatldmdetermine the plausible limits
for the 10 coefficients and their optimal combination(s} thauld produce valid target image view syn-

theses. We would also like to compare the results with thoséqusly obtained when the pose of the
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object or equivalently the viewpoint were rotated about dica@ axis and identify any similarities and
differences between the two. In the interest of completemeshave also included in this scenario the
tests carried out using the AAM.

The first figure we will consider is as usual the RMSE vs MAE (ffiy.[7.89). We see a very good
low error response for both quantities that rises slightyaingles-10° and—5°. If we compare it to the
results obtained for rotation about a vertical axis (Eid.Jj we see that rotation about a horizontal axis
produces much lower error values for the frontal pose pbssitlicating that basis views selected along
the vertical axis are better suited for synthesis of thai@aar angle than ones along the horizontal axis.
Next come the average response graphs for the cross-¢mmedaore, CC, and for the back-projection
errors, BP (Fig.[ 7.90(a) and (b)). The accuracy results hezevery good comfortably meeting the
required thresholds for both measures. In particular fectioss-correlation we note that some responses
are above the ground truth values. A close comparison toebelts obtained for rotation about the
vertical axis at the frontal pose (Figures _1.12 and]7.14¢aks/considerably higher accuracy scores
when the rotation is about the horizontal axis. The averfggemcy plot for the CC and BP thresholds
is shown in Fig[”Z.91. The algorithm produces good resuldsfansome angles close to 90% and 100%.
There is only a significant drop for pos&®’ and—5° for the BP threshold.
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We now take a look at the coefficient diversity plot in Hig. Z.®nlike the case for rotation about
a vertical axis (Fig[_7.16) here tlte coefficients are the ones responsible for the pose variatiole
the a; are static, except fatg which together withhy represents translation of the synthesized image.
As the translation on the abscisgagxis) is minimalag is much smaller thahy. Note once again that
these two coefficients have different units (or as physicisty, dimensions) than the rest and so it is
not unusual to see a larger variation in therm than in theratbefficients. For the remainder, ortly
and b, vary while b; andbz are fixed at zero.b, andb, vary from ~0.3 to~1.5 and from~-0.5 to
~0.7 respectively wittb,=b,=0.5 corresponding to the frontal po&& The diversity spread for these
coefficients is similar to that fo#; andas in the case studied for rotation about a vertical axis even if
the range of angles of rotation was larger in the latter clisaight be the case therefore that the scale
of the non-trivial corresponding; andb; in the two experiments are also different. Such differences
will reflect the extents to which the appearance of the fa@nghs as it is rotated about the two axes
In addition, the translation range capturedbinin the current experiments is much smaller than that
captured byug in Fig.[Z.16.

Finally for the rotation about a horizontal axis we presastresults obtained usiung the AAMs. As
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usual we begin with the RMSE vs MAE plot in Fig. 7193. Companith the equivalent LCV plot (Fig.
[7.89) the AAM results show a larger overall disparity betwéige two quantities while it is noticeable
that the former performs better for the pose94t5°, 10°. In the average accuracy response (Fig.
[7.94(a) and (b)) the AAM has the clear advantage when the-peajkction error is measured but it's
approximately at the same cross-correlation levels agtbbtained with the LCV. It is our hypothesis
that when the objection function has an easily traversabte surface, and provided a good initialisation
is available the AAM can recover a more geometrically adeusalution than the LCV either because
of a more capable model or a better local optimisation allgori Note that we have only tested a small
range of rotation angles about the horizontal axis so thesenaptions might not generalise very well to

other situations.

Lastly, we examine the acceptance graph (Eig.]17.95) whiohldhgive us a general idea about the
efficiency of the AAM in comparison to that of the LCV approaétirst we observe that the AAM has
the same acceptance results for both the CC and BP thresheld® have encountered previously, due
to the local optimisation algorithm and the tight optimisatthreshold boundaries. We can also see that
the AAM model has a good acceptance rate between 70-100% satine region as that obtained with
the LCV model. In addition, results from the AAM do not exhitiie same excessive drop for the BP
score at an angle 6f10°. On the other hand the LCV seems to outperform the AAM at thetél pose

on both score.

In conclusion we have built an LCV model for a scenario in ahibe synthetic face object or
viewpoint is rotated about a horizontal axis and have exachits application across the range of the
poses—10°, ..., 10° with all landmarks being visible at all times. We have seew lweb; coefficients
fluctuate and over what ranges they vary in order to accourthéopose variation. This is particularly
interesting from a training point of view for the calibratiof the Bayesian priors. In terms of accuracy
and efficiency the LCV approach seems to perform better ferrtitation about a horizontal axis, espe-
cially for the recognition of the object in the frontal poséeve we can carry out a direct comparison
with the similar situation when the pose ort viewpoint isatetd about a vertical axis. We believe that
this increase in accuracy and efficiency rates is partially © the additional descriptive power of the
model created from the basis views separated by this ratatiout a horizontal axis and the fact that
the pose variation is examined over a smaller angular rahgspite of these differences we saw that
the diversities of the LCV coefficients are at similar levelshose obtained when the viewpoint rotated

about a vertical axis.

The LCV also compares very well with the AAMs in this case witith producing very high CC
results although the AAMs are superior when the accuradyeofieometric reconstruction is considered.
This may be because the AAM is more capable of capturing thigsstal variation of the object’s
geometry during these particular pose changes or it may eddalthe ability of the local optimisation
algorithm used in the AAM better to traverse the objectivection which may be more convex-like
and thereby recover more accurate solutions. In terms oéffireéency both methods produce equally

pleasing recognition performance results.
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7.4.8 lllumination variation

In the beginning of this chapter we have briefly mentionedintantion to carry out a limited number
of experiments with the LCV model on images that exhibit tioear variation in illumination. By
non-linear we mean variation in pixel intensities that aatrive fully explained by an affine model which
transforms the intensity to al + b whereq is the gain and the bias. Such variations may occur due to
changes in the location and angle of the light source or ssualative to the camera and object positions
- especially if the object of interest has shiny surfacesctvican produce specular reflections and can be

manifest as cast shadows especially due to non-convexshape

We thus would like to evaluate the performance of an LCV sysdtethe presence of un-modelled,
non-linear changes in illumination. Note that the evahmapresented is by no means complete in scope
or thoroughly examined. However it represents a startirigtgor study of the effects of illumination
variation on our LCV system and may help to identify some efitiost general problems or shortcom-
ings of our model that may need to be addressed in future vilvekchose to test only the LCV model
in this case and not to compare with the use of AAMs since ttierlapecifically models changes in
appearance (which includes implicit illumination charjgdttherefore such changes are quite close to
what is modelled by the training set and may be accuratetypotated by the AAM we would expect
the correct object view to be easily recovered and thus liee@AM would have an advantage over the
LCV. The latter does not explicitly model the appearancéatian but tries to approximate it from what

is known in the basis views.

For our tests we have considered the Yale B database whithiosrexamples of non-linear illu-
mination variation for all the objects in the set. This isiaglkd with the use of 64 light sources that
can fire individually and are set-up in a configuration rg&ato the camera as shown in Fig. 4.96. The
locations of the lights are given in spherical coordinatéh azimuth (A) = elevation (E) = 0 being the
camera frontal view. We began with an LCV model of the frorialv (P0O) for the first object in the
database (B01) and with the illumination source at A=E=CeTtor all the 64 scene views of that object
in that pose we tried to recover the object configuration aspkeially the pose angle. The averaged
results from 100 test runs for each scene view are give in thatland surface plot form in Fig§._7197
and7.98 for the CC and BP errors respectively. Note that F8(B) has been restricted to a maximum
BP error of 500 in order to preserve the level of detail at tveelr BP values. Also we have used bilinear
interpolation to generated values between the sampleswtechin order to create a smooth surface to
better aid visualisation. The centres of the light souraations for which we have exact results are

plotted along with the surface data.

Based on these results we can make some interesting olisesvaFirst we see that the best re-
sponse for both measures is not at (0,0) as we might havepatéd but at (7.9, -13.4) and (7.9, 32.4)
for the CC and BP plots respectively. This may be explaingubitt by our misplaced expectation that
the maximum cross-correlation should be at (0,0) or in othands at exactly the same location as the
scene image for which we trained the model. This is becawske@Y does not contain an illumination

model but instead tries to approximate the appearance bagbeé estimated distance of the object from
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the basis views. Therefore if specific illumination datads present in the basis views then it cannot be
synthesised in the novel view. The fact that the error is maxn (or minimum) for light sources other
than (0,0) simply indicates that the lighting conditionghie two basis views matched more closely to
the scene at (7.9, -13.4) than (0,0). This is possibly duentaispecularities and cast shadows that may
have been present in the basis views because of the digmositine object of interest, light sources and

camera and the fact that the images were taken under sptst éigtl not only under ambient lighting.

A further observation is that the location of the minimum g at the same place in the two graphs
(Figured 7.9I7 and7.98). It is hardly surprising from what lveee seen in our results so far that the
CC and BP graphs do not always agree. What is more interestitigai the two basins of attraction
have different shape, size and location. We notice that fdésBnuch larger and wider but also has a
relatively flat bottom bearing in mind that the ground trut® Bresholds for that pose range are between
50 and 115. This means that quite a large array of lightindigorations will give a low BP error score
or phrased another way, the LCV can detect the correct simapmiy different illumination settings.
These range from approximateh30 — 40 in the azimuth to-40 — 55 in the elevation and form the
oval shape in Fid_7.98(b).

For the CC things are a bit more complicated. The basin ofctttm looks smaller and much
narrower but in this case it is not easy visually to deterntireecorrect convergence. The reason for
this is that a localised change in pixel intensities affebes CC match score in a very unobvious and
unpredictable way and as a resultit is therefore possihalathile the synthesised object is geometrically
accurate to produce a very low CC value. In addition we caohose an empirical cut-off threshold
since we are dealing with non-linear changes in appearartctha correct matches cannot be separated
from the incorrect matches by a single line. Neverthelesststf checking each result individually
we can attempt to select a threshold based on a (traditigrtatih CC value and assume that all the
examples which meet it represent correct solutions. Thisageh of course can miss many other valid
solutions with lower CC scores. We can see this for examplergvthe BP error plot is at a minimum
and at the same position the CC plot ranges betwesh— (.88 values that under constant illumination
would signify a very poor synthesis of the target image. haster therefore to use the BP error plots as

an aid to judge accuracy rather than the CC.

One final comment that we would like to make is that both s@ddtave a convex-like appearance
(more pronounced for the BP error surface) with many goodt®wis when the light source is close to
the camera view axis which gradually get worse as we move &wmore extreme lighting conditions
both in elevation and azimuth. Moreover there are no sigmifitocal minimum spikes anywhere in the
surfaces indicating perhaps that although linear chamggilocation of the light sources produce non-
linear illumination effects in the images they also prodaoeerror surface with simple characteristics
which could be modelled and predicted. Nevertheless wedddanot to make any specific assump-
tions about this relationship since we have employed a dmiot¢rpolation technique for the surface

visualisation that might make any definite observationshapbtheses somewhat inaccurate.

What is important to take away from these results is that the i©del can recover the correct pose
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not only in the single configuration for which it has been Habavhen many other similar light sources
are located nearby even though they can produce subshaidiiférent scenes in term of appearance.
This is demonstrated by the wide and flat basins. Also, ther e@gems to deteriorate in a predictable
manner as the light source moves away from the camera viesaaxi causes heavier cast shadows and
localised reflections on the object.

Much more work is obviously required to determine the exaftuénce of a varying light source
on the scene appearance and how this affects the behavibpediormance of an LCV model. It would
be ideal if such work could lead to an extension of the LCV apph to include a basic non-linear

illumination component.

7.5 Summary

In this chapter, we have carried out a detailed evaluatiotherperformance of our LCV system in the
presence of pose variations, using 3 image datasets obsiogecomplexity. In addition, we run a large
number of pose detection experiments with added noiseysiotl, illumination and expression changes
in order to determine how well our system can cope with maaégtic situations.

We have shown that our LCV object recognition approach aeliés design objectives of accu-
rately and efficiently recovering the correct pose and cetegionfiguration of the object in a scene with
varying characteristics, using both real and synthetigigsa Our examination into the accuracy capabil-
ities of the algorithm involved experimentation with di#at combined appearance and geometry-only
measures (RMSE, MAE, cross-correlation and landmark Ipaojection error) and detailed comparison
against ground-truth and empirically chosen threshold® f€sts demonstrated a notable performance
with results in close proximity to the thresholds and wittidi actual accuracy deterioration when pro-
gressing to more demanding datasets.

In terms of efficiency performance, defined here as the nurabémes our tests have termi-
nated within the convergence thresholds and expressecegsetisentage of the total, we have seen
very promising results in the region of 80-100%, only fadliny a small amount for the more difficult
Yale B database. We have also established that the LCV agipisajuite robust to the presence of a
considerable amount of unmodelled noise or occlusion wimall and acceptable drop in efficiency
and accuracy rates that increases gracefully and preticatthe amount of noise is amplified or the
occluding surface area is enlarged. As far as the changegpiassion are concerned, we have seen that
although the LCV cannot model these localised variatidnsam cope very well and maintain its good
performance against changes in appearance.

Furthermore, our system manages very well both in the deteof the correct pose for a fixed
object but also as an identification approach for differemhbinations of models-objects given a fixed
pose. In the former we see that the system can approach ttezcsolution with very few localisation
errors, and in the latter with next to none false positive a@giative matches.

All the above experiments were re-run using the AAM appraauththe results compared with our
method. This was done not for determining which of the twdesys was better, since our method uses

a much more powerful optimisation algorithm, but in ordeuse the AAMs for the baseline measure
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that it is and see how much more effective and accurate ouradetas in comparison to this tried-and-
tested approach, and as a result against other recognytenss that have used the AAMs as a measure
in the past. We showed that the two methods have on averageacatively good accuracy results, with
the LCV being slightly superior in the combined appeararomigacy (i.e. cross-correlation), while the
AAMs performed marginally better when the geometric erraswneasured. The big difference was in
the efficiency rates, where the optimisation algorithm cemnéo play. Our experiments demonstrated
that the hybrid approach gives consistently hight conuargeates and can cope with increasingly com-
plex data, unlike the local minimisation scheme that the AAdMploy, which cannot scale very well
when the optimisation problem becomes more demanding.

Certainly this evaluation is by no means complete, and éurtbst are necessary in order to make
more robust and generalised conclusions about the efficatgapropriateness of our approach in both
theoretical and real-life, practical applications. Nékeless, these experiments, carried out in a struc-
tured and systematic fashion, tried to cover as much of teegeund ass possible with particular
emphasis to 3-D affine, extrinsic pose variations. For tqeirements of this thesis (i.e. initial appraisal
of the accuracy and efficiency in controlled settings andiplytavailable data) we believe that we have
gone some way into addressing the questions posed in theHagter. Further experimentation may
always be carried out in future work using a larger numberest and data sources in order to fully

evaluate a larger domain of different scenarios.
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Chapter 8

Conclusions

In this chapter we provide a brief summary of our work togethi¢h a review of the main contributions.
We proceed with a critical evaluation of our method and anghether or not it has met our original
objectives and if the main hypothesis of this thesis has laekitessed. We end this chapter with a

discussion on the most important limitations in our workt timay be addressed in the future.

8.1 Research summary

We started this work with the intention of examining an aggtoto the problem of recognition of 3-D
objects via a small number of 2-dimensional intensity insaghile at the same time avoiding the tasks
of feature extraction and correspondence during the an-timodel matching stage. In particular, we
wished to examine the possibility of using the linear corabion of views theory to build a framework
and solve this specific problem using realistic, real-imdagia.

Our first step was to examine the problems associated withakie feature extraction approach,
mainly those of feature extraction and correspondencethediormer we looked at various well-known
methods such as edge and corner detectors [Canny! (1986)s Hiad Stephens (1988)]. For the latter,
we discussed techniques such as the interpretation trémg$Gmn (1990)] and the RANSAC algorithm
[Fischler and Bolles| (1981)] designed to alleviate the potationally intensive correspondence match.
It soon became apparent that these are significant problehsannot be solved to an adequate extent in
a practical computational time-frame or without consité&ananual input during runtime. Since such
object-to-model matching greatly relies on precise feagxtraction and establishment of the correspon-
dences (and indeed if these two requirements are met befwl¢hen matching is a fast, straightforward
and relatively accurate process) we decided to avoid anly dependencies and explore a different
approach whereby the feature extraction and matching stagee been combined into a single task
resembling a template matching approach.

In this way the whole model image is considered a single, irdiuttensional feature that deforms
according to some predefined transformation in order to Im@@tthe scene view. As a result our search
is performed over the transformation space, which is ugualich smaller than the original feature
or correspondence spaces. In addition, the model buildiegeshas now been further simplified We

initially looked at the 2-D object recognition case as a gieg-stone in order to identify and solve some
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particular problems in a more manageable set-up beforeepdiag to the more complicated 3-D case.
We considered a 6 d.o.f. affine transformation and used atyp# template containing both grey-level
and boundary information. It was later observed that owmthe specific characteristics of the error
surfacg there exist a large number of trivial solutions with very danatching scores and also many
local optima when the model is placed over the backgrounas&hwo problems make search for the
correct, global solution very difficult even for the most bigticated of optimisation algorithms.

Solution to both these problems required the introductibprobabilistic constraints to avoid the
trivial solutions when for example, the transformation ebcause the template to shrink to zero area,
and also to regularise the error surface over the backgroemidns. In order to develop these con-
straints we separated the affine transform into indepengnmametric transformations and associated
a prior probability with each parameter, thus building a &agn inference model. Additionally, we
explored different matching metrics including the smoothbEr norm that has a continuous second
derivative and can be used with gradient-descent-typenigstion algorithms. Furthermore, it can have
a linear response over the background area and thus proehadieismatching error residuals, which are
easier for an optimisation algorithm to traverse. Our regethen delved into the specifics of the scale
transformation as one of the transformations that causest problems with the occurrence of trivial
solutions and, given the assumption that the prior shouwle lsame relationship with the distribution
of the underlying parameter, we attempted to find the besteiniod the distribution of image object
scale amongst a set of commonly used parametric distritmitio the end, our tests determined that the
lognormal distribution produced the best fit and we usedahithe scale prior. The full Bayesian model
was then tested on various real-image samples and prodecg@ncouraging results even when using
a local optimisation algorithm.

Before we moved onto the 3-D case we explored the use of aistinpkexplicit model as a way
of illustrating the importance of incorporating the stétigl variation of the background area and of
regularising the error surface more effectively. We fourat thcorporating the background is a necessary
step if a valid probabilistic interpretation of the matdiiprocess is required and also that by doing so
one can avoid some of the trivial and spurious solutions hiowever difficult to come up with a perfect
model of a complex and cluttered background and unless thettamage background is provided the
error surface will be rugged with many local optima. This isywwve decided to focus more on the
regularisation effects of the Bayesian model and the usepofngerful optimisation algorithm to avoid
such problems.

Once we were confident with our solution to the 2-dimensignablem, we progressed on to 3-D
objects and applied our new knowledge about the specifiacteristics of template matching to this
new scenario. We began by building a complete recognitistegy which combines an image synthesis
step with an optimisation search-and-match approach. ¥&emm synthesises new images using the
LCV theory to calculate the correct image object geomet/@piecewise affine interpolation method

to cater for the pixel intensities. For the matching we usedlar metrics as in the 2-D case such as

1These are things which we have encountered many times thratighoresearch and so consider them to be related to the
matching metric and the transformati@hused as opposed to a particular data source.
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cross-correlation and SSD and we briefly experimented Wwithuse of a mutual information metric.

Just as in the 2-D example we built a Bayesian model for thecade. It was not however possible
to suitably decompose the 3-D LCV extended affine matrix inttividual, distinct transformations
and so we assumed a generic mixture model and assigned aig@adissribution to each the 10 LCV
coefficients. We then isolated certain transformationg. (8-D rotation of the object of interest or
viewpoint since we were interested in pose changes) andeesw the corresponding variation of the
coefficients. Based on this information we chose the meadsstandard deviations of the 10 prior
distributions to mimic that variation. Thus for example efficients that were almost constant were
assigned a very narrow prior with very small standard danatvhile others that had larger variation

were given an almost uniform prior with a high standard diwia

Our next research task was to choose an appropriate optiomsdgorithm with particular empha-
sis on the ability to recover a global optimum - usually a minim - (or at least to get as close to it
as possible) without the requirement of a good initial@atbr excessive restriction on the parameter
boundaries since we had designed the Bayesian priors tatakeof any necessary parameter localisa-
tion. Efficiency and overall execution speed was a concetmaiiof paramount importance at least in
this proof-of-concept stage that our work represents. Wkdd at various well-known local and global
optimisation algorithms and tested them against syntlatit progressively more complex real-image

datasets.

The result was that a hybrid approach, which combined arugeobry global method (SOMA
[Zelinka (2004)]) and a local, deterministic algorithm dthestarting simplex_[Zografos and Buxton
(n.d.)]) proved to be the best choice to compromise betweenracy and efficiency because it in-
cluded the localisation performance of the global methatitha fast refinement capabilities of the local
approach. Based on that outcome we decided to use that satiari technique in all our subsequent

experiments with the LCV object recognition system.

The final part of our study involved the testing and evaluatd the LCV system on real and
synthetic datasets. We carried out a large number of stetexperiments on three different databases
under pose variation but also considering the existenceisénocclusion and changes in expression (on
a face example to represent un-modelled intrinsic vanadioan object) and illumination. In addition,
we used the Active Appearance Mocdel [Cootes et al. (2001)hatkas a general benchmark in order to
judge how well our approach was at solving the coupled pesegnition problem, and in effect how it
compares to other relevant strategies that have used AARIsimilar fashion. The tests have shown that
the two methods have on average similarly good accuracitsesith the LCV being slightly superior in
the combined appearance accuracy (i.e. cross-correlatiufe the AAMs performed marginally better
when the geometric error was measured. The significantreiftee was in the efficiency rates, where
the hybrid approach gives consistently higher convergestes and can cope with increasingly complex

data, unlike the local minimisation used in the AAMS.
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8.2 Ciritical evaluation - Remarks

This work has examined the challenging task of image-basedtj-view object recognition and man-
aged to address a number of associated problems by emplitaaigCV theory. With the addition of

a regularising Bayesian prior and a powerful optimisatityodthm we managed to build a complete
system for recognition of objects that exhibit extrinsiciations, such as pose changes relative to the
camera. This is the main achievement of our research; afpfqwinciple’ that this approach can work.

More specifically, we have demonstrated that using the LClesy gave us the ability to detect
objects of substantially different shape and intensityrabizristics in a variety of poses. We have shown
our approach to be capable of dealing with datasets of vgrgomplexity both in terms of the fore-
ground object, but also more importantly, the backgroundnyhundreds of experiments were carried
out on publicly available datasets of real and syntheticgiesa the vast majority of which have high-
lighted a very good system performance in terms of accunadyefficiency that degrades gracefully and
predictably as the experimental data gradually becomes smnplicated.

We also illustrated that our method compares very favoynaith the AAM approach which may
be regarded as a baseline when aimed at solving approxiymthesame problem. In more detail, the
LCV can recover a similarly accurate solution to a correctiymverged AAM which in actual terms is
very near the globally optimal solution. On the other hangling to the more powerful optimisation
algorithm used, the LCV is able to reach the correct solututh more often than the conventional
AAM approach we adopted.

We have seen that our recognition system can deal with adenadile amount of un-modelled
Gaussian noise present in the scene or target view with th&acy remaining at high levels and the
overall efficiency diminishing in a predictable fashionatéle to the noise level. Similar results were
observed when we introduced an occluding surface in frotiteobbject of interest covering up to 40% of
the object’s surface. The system was able to find the coremtoptimal solution the majority of times
and with the average efficiency steadily dropping as theuniiey object became larger. The accuracy
was mostly unaffected relative to the chosen the empiticabholds. Additionally, we demonstrated that
the system is largely robust to localised, non-affine (flliexibhanges in the object’s shape (e.g. changes
in expression in a face example). Even though the LCV systmat itself model and synthesise these
intrinsic shape variations the overall recognition parfance has proven not to be strongly influenced
by their presence.

Further to the above our tests on the illumination variaBgamples in the Yale B database have
indicated that our system, although it does not explicitiglide an illumination moc@but synthesises a
new image based on the information present in the basis yisWexible enough to correctly recognise
the object in a number of similar (but not identical) liglginonfigurations. In other words, where we
might have expected the solution error surface to have anampw and deep basin of attraction (the
narrowness representing the single or very restrictechithation solution and the depth the considerable

difference in magnitude from incorrect solutions), we hagen that it is actually the opposite. There

2We have however experimented with a rudimentary affine illutivnamodel for the background and, in addition, note that
the cross-correlation coefficient is invariant to affineraes in pixel intensity.
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appears to be a wide and shallow basin of attraction with efitbm that points to a solution space
of adjacent lighting conditions (in terms of light sourcesjpimns given in spherical coordinates) that
our system in its present form is able to recover sufficieatigurately. We believe this to be due to the
notable extrapolation abilities of the LCV system which méaat such solutions do exist and they can

be found with the optimisation algorithm.

Apart from these main findings we have also identified a nunolbeslecondary themes from our
research relating to model-based object recognition iregen First is that a full-background model
can effectively regularise the error surface when an adapdmplate is used and especially when the
template model is positioned over regions in the image wtierebject is not present and which can be
traversed only with great difficulty by many optimisatiogatithms. We have seen that the existence of a
good background model can simplify the error surface to smotxtent that we may only require a basic,
local optimisation algorithm to effectively reach the ghblptimum. In the absence of such a compre-
hensive model for the background, the alternative is to ysmagerful global optimisation approach. We
have found that evolutionary methods such as SOMA and/ DEH%tod Pricel (1997)] are very good
candidates for handling the complicated error surfaceshvhie a common problem in template-based
object recognition. In addition they require very littlerpmeter configuration work making them appli-
cable to many different problems and datasets. They ardlaigble enough to cope with different types
of variables, another characteristic of template matchimglications. Another observation was that by
allowing the global optimiser to execute for a limited numbg&function evaluations (or FEs for short)
and switching to a local method when inside or near the bdsattaction of the global optimum, we
can obtain results comparable to or better than those froatl,agfobal optimisation run in a smaller

amount of computation time.

Finally, from our research into Bayesian priors we found tha distribution of the scale parameter
of an object imaged from random locations in an indoors emirent seems to follow a lognormal
model. Subsequent use of this model as a Bayesian prior earbktter regularisation effects on the error
function than an uninformative Gaussian distribution. ®generally, we have discovered that a properly
chosen Bayesian prior can help with the optimisation overtthckground regions especially when an
explicit model is not available and at the same time assiavaiding trivial solutions. Furthermore, it
is preferable to restrict the variation of the solution paeters by penalising them according to a prior
distribution than by explicitly setting boundaries in thatimisation algorithm configuration. This way
we can focus the search on the interesting areas of the@okgiace while still maintaining a sufficiently

high diversity in the search parameters.

8.2.1 Hypothesis 1

“It is possible to synthesise a novel view of an object andcimétto a target image of that
object. A good matching score will indicate that the objegbiesent in the scene, and the

object’s pose and shape parameters are given by the LCVdeaf§”

Our initial implementation of the LCV approach (synthesisl anatching steps in sectibn b.1) sup-
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porteH the claim of our first hypothesis as we were able to use it amthegise valid and realistic-
looking views of the modelled object(s) taken from betwees Ibasis views. In addition, by using a
matching function we managed to compare the synthesisegeiwith the scene view and recover a
matching score for different model configurations. Owinghe particular way this matching function
was constructed (i.e. using prior distributions) a goodesamas only associated with a good match
between the model and the object. We could then use thisnirgfion together with the model’s con-
figuration and identify the location of the object in the se@mage. The optimal configuration was also
used in conjunction with the already recovered variationthef LCV coefficients partially to identify
the pose of the scene object. In that way, the object’s cordigun is provided implicitly by the LCV
coefficients. As a result, it was not possible to refute owt tiypothesis, but have instead provided

considerable evident to support it.

8.2.2 Hypothesis 2

“We can improve the accuracy and speed of the recovery of taehparameters of a rigid,
3-D object with the introduction of prior probability dishutions in the template deforma-
tion process, based on previous knowledge of the underigiage generation process and

imaging conditions.”

One of our principal speculations was that we could imprava gimple optimisation search over
the solution space with the use of previously-known infaioraabout the objective function parameters
by means of prior distributions. This information might lne tvariation, range or actual distributions
of the individual parameters and result from the imagingditions (e.g. sampling, camera parameters,
light configurations and so on) that were used to generatédtze

Throughout our research (first in chagiér 4 for 2-D and therhiaptef’b for 3-D) we demonstrated
how it is possible to use such prior distributions to regskathe error surface, restrict the search to
promising regions of the space and most importantly, avoigtmove any trivial solutions. In chapter
[7 we had the opportunity to test this hypothesis with numemxperiments on real data using prior
distributions based on the explicit knowledge about thétian of the LCV coefficients for the specific
transformation of 3-D rotation about a vertical axis. Werfduhat in all cases the priors resulted in a
significant improvement in the performance (speed, effayieand accuracy) of the search over standard
maximum likelihood optimisation (or equally, using uninfmative uniform priors) especially when the
template model was positioned over background regionseofatget image where, in the absence of a
proper model the resulting objective function surface maydplete with many local minima, causing
the optimisation algorithm to spend an unnecessarily largeunt of time in these areas and possibly to
converge incorrectly.

In the 2-D version studied first our priors were created to imithe actual distributions of the
transformation parameters (2-D affine) and we have acquieegdgood regularisation results and elim-
ination of trivial solutions. This was illustrated by fastcdhaccurate convergence to the global optimum

(usually a minimum) using an elementary optimisation atar on real data and without the help of a

3strictly speaking in scientific terms we have failed to falsifir hypothesis.
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background model, although only a limited number of experita were carried out since we required
a simple proof of concept. In the 3-D version we instead usatkegc Gaussian priors (owing to the
difficulty in decomposing or accurately composing the 3-finaftransformation matrix that implicitly
incorporated the characteristics of the 10 LCV coefficipritde would have preferred to use the explicit
modelg but nevertheless the Gaussian alternatives proved to heffective in capturing the underlying
coefficient distribution.

Based on these results we have shown numerous times howanathlly chosen priors can assist
the optimisation algorithm in accurately and efficientlgaeering promising solutions, something which
would otherwise very likely be difficult and time consuming matter how elaborate the optimisation
algorithm may be. The fact that we use subjective priors include information about the LCV
coefficients and also our expectation about the kind of foansation with which we are dealing we
believe is more accurate and useful as far as the optimisptimcess is concerned rather than using the
more objective, uninformative priors that are based onlyhenevidence observed during a run of the
system. It may also be argued that from a Bayesian point of the former approach (i.e. including
information about the imaging process and conditions inptfi@'s) is more valid since every available
piece of information should be exploited accordingly. Weyrtteerefore claim that instead of refuting

our second hypothesis, we have provided strong evidengmsing our original claims.

8.2.3 Hypothesis 3

“Recovery of the optimal LCV coefficients requires exhaeastiearch of the large solu-
tion space. By using an appropriate optimisation algorittve can efficiently recover the

optimal set of coefficients and thus recognise the objedtdrstene”.

We have already mentioned that in our work because of thedffeatures (intensity template) and
the objective function used it is not possible to produceoaead-form solution to the object recognition
problem. Instead we have to use an iterative optimisatipnageh to get as close as possible to the actual
solution. Owing to the size and complexity (the presencecéll optima, increased 'noisiness’ of the
objective function over background regions) of the solupace, the choice of a suitable optimiser is a
very important factor in the performance of the recognisgatem. As part of our work into building a
robust recognition system we investigated a number ofrdiffeoptimisation approaches, both traditional
and some new to computer vision applications, global andllmtochastic and direct deterministic
search. It soon became apparent that suitability could balyjudged by considering the accuracy in
terms of the error value reached and the efficiency in termtbetotal number of objective function
evaluations (or FEs for short). A local, direct search metisoquite fast and efficient but suffers from
a low accuracy (at least in our specific set-up). On the othedha global approach is slow but can
recover more accurate results.

The natural progression was to combine the advantages loinhbethods in order to build a hybrid
optimiser that is relatively efficient while retaining thecaracy associated with the global approach.

This hybrid method was used throughout our 3-D object reitiogrexperiments with very good results

4That may still be possible using the affine tri-focal tensor.
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and detected the modelled objects in the scene in variouggooations and under different imaging
conditions. When compared to the other optimisation apprescthis method proved to be the pre-
ferred solution for our multi-view template matching prefnl. As a result we may assume that these

observations provide adequate support for our third hygsih

8.2.4 Main hypothesis statement

“A solution to the view-based object recognition problend dhe integration of the linear
combination of views technique can be used to build a theatdtamework for the recog-
nition of three-dimensional, rigid objects under a variefiyconfigurations, using a small

number of images taken from different viewpoints”

The recognition system we have built, which combines the 1tkB6ry for modelling the extrinsic
variations in an object’'s appearance due to changes of vievpiith the Bayesian framework and a
powerful optimiser for recognising an object in an image reaisation of our main hypothesis state-
ment. The evidence we have provided so far in support forhreetindividual sub-hypotheses of this
thesis when combined substantiate our main statement gh@ve. Therefore we were unable to refute

the main hypothesis and have in fact generated strong esédarits favour.

Furthermore, by only finding support for our main hypothegéshave also achieved the main aim
of this thesis which was to examine the suitability of the L&Wory for recognition of complicated
objects using pixel intensity information. In addition, wenaged to meet a number of the research
objectives we set in sectidn _1.3. More specifically, our exysts capable of automatically detecting
any (single instances of an) object in the scene without aagual intervention during the on-line
search. A 3-D object may be modelled by using two or more hasigs without any restrictions on its
shape appearance and complexity. Furthermore, our testsedhhat the system is relatively robust to
noise and occlusion with little degradation in overall penfiance for moderate amounts of either and a

predictable drop in efficiency when the noise or occludingesie are exaggerated.

We carried out a large array of tests on three public datagttsa combined number of 26 objects.
Although this is by no means as large a number of objects asrigmally hoped to use the system
has nevertheless shown that it can handle the differenesmanfigurations and that, no matter what the
object shape complexity may be, the modelling process msrargely unaffected. Also, the identified
variations of the LCV coefficient and the priors remainedkaln addition, the miss-match and false
alarm errors were kept to a minimum as demonstrated by tHedeBhed diagonals in the modebbject
or modek pose arrays produced from our test experiments. Localisatistakes were also low, espe-
cially in the absence of added noise or occlusion, with thees®f the test samples comfortably above
the convergence thresholds and with acceptable recogmiies throughout all the datasets. It would
have been desirable to execute additional experimentstar pbse-variation datasets in order to get

more general results, but however this has to be addres$euliie work.
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8.3 Limitations and future work

This work is not however without certain limitations whichh@ugh they do not result in a deviation
from the main scope of our research should at least be ackdget! in order to be addressed in future
work. One of the more interesting topics for further invgation is the inclusion of intrinsic shape
variations such as those that give rise to localised chaag®sciated with facial expressions. As we
have mentioned numerous times in this thesis, our approalghcaters for extrinsic, pose variations
that account only for global, 3-D affine deformations of tiseat of interest. By including the localised
flexible changes we would be able to model and identify, fanegle, the expression of an individual

together with the overall face shape and location in theescen

For this to succeed however we will need to model the two diffetypes of variation separately
so they can be considered individually. The reason for th&ithat we can define the object’s implicit
pose and shape configurations from the objective functioarpaters and possibly direct the search
in each dimension based on each transformation’s perceladacteristics, but most importantly in
order to chose appropriate Bayesian priors for the indepemndsolated deformations. Inclusion of
intrinsic variations will allow us to deal with non-rigid @mensional objects increasing thus the scope

and applicability of our method.

To address this limitation, we may look at the work of Dlasd®and Buxtar (2002)] who managed
to combine two flexible shape models (FSMs [Cootes et al. XAPWvith a reformulation of the LCV
theory and an alignment algorithm (Extended Procrustegnftlient - EPA) to create the integrated shape
and pose model (ISPM). The ISPM does not mix the (intrindigjpe and (extrinsic) pose variations as
the two different types are modelled independently via #h@ ¢component models (i.e. the multi-view
FSM and the LCV), and it provides a better solution than thepted-view FSM. Use of such an ap-
proach will require us however to re-evaluate our Bayesi#&r podels since in that work the LCV has
been formulated using the central affine tri-focal tens@TT) and we would be dealing with additional
variables and different types of transformations that maylifficult to bound and regularise. Further-
more, what we have learned about the characteristics oftbeseirfaces in template matching and about
the 3-D affine transformations may be less relevant hereusecaf the flexible shape deformations we

will have to include.

We should note here that the ISPM method is a purely shaperéedriven approach that does not
incorporate any texture information in the LCV or FSM modétsorder to synthesise realistic-looking
novel views and perform template-matching search on thdIgRs necessary to include grey-scale
information on this combined shape and pose model. This neagtfaightforward provided texture
alignment can be achieved in a manner similar to the EPA iltgor If texture alignment works then
it might be possible to construct two flexible appearance et®o@FAMs [Cootes et al. (2001)]) and
combine them into a multi-view IPAM (Integrated Pose and égmance Model). However, it may
be very complicated to build an equivalent alignment athaonifor implicitly transferring the intrinsic
texture from an arbitrary image to the scene views. Destiténig, we believe that if one wishes to

accurately and efficiently model flexible shape changes iatgect, Dias’ ISPM is a viable method to



8.3. Limitations and future work 208

consider as a starting point.

Another possible limitation is that both our LCV system ahd tSPM model utilise only 2 basis
views for the synthesis of novel images. This means that wenly deal with pose variations 'between’
(or slightly outside) the angular range spanned by the viémip of the two basis views. If we wanted
to work over a larger range of pose angles we would have to dd#i@nal 2-basis view models to
capture the additional information. However, [Koufakisld&Buxton (1998a); Kennedy etlal. (1999);
Buxton et al. [(1998)] have shown that it is possible to useertban two views if necessaly The
questions that then need to be answered include: does aaggcin the number of basis views and the
pose angles they cover bring about a similar increase indpadity of our model (i.e. can we synthesise
and detect an object in this new, enlarged pose space); svthegt maximum amount of joint-image space
our model can include by adding new basis views, or in othedasbow many more basis views can we
add to the system before we start to see no discernible iselieahe pose angles we can model (law
of diminishing returns); and is the model capacity conewlso that it remains sufficiently specific for
object recognition. If we decide that there is not much peattdvantage in using more than 2 basis
views, then we could use several 2-view models and devisetelsmg scheme or selection process to

work with the model that gives the best synthesis match.

So far we have seen that our LCV system is quite robust to tleetefof occlusion. Although
not examined from a strictly accurate statistical viewpoour limited tests have shown some initially
positive results. What we have not studied in this thesisasctise of self-occlusions caused by non-
convexities in the 3-D structure of the object. Such ocdusiusually occur when we move to different
regions of the view-sphere and cross over to a new scenetagpeqregions over which small changes
in viewpoint produce large changes of appearance [Koemkland van Doorn (1979)] for which there
is no equivalent in any of the basis views). In these cas&snmation necessary for synthesis and recog-
nition are lost in the transition from basis views to scerewiStill however, it is possible to perform
hidden surface removal by using the basis views to competaffine depths [Koenderink and Doorn
(1991)] at the control points of the basis images, similah®work by [Hansard and Buxton (2000b)].
Since affine transformations are order-preserving we cathisinformation as input to a hidden surface
removal program and resolve any self-occlusion ambiggiitie

All our experiments so far have been limited to grey-scalages. This was done mainly for
simplicity and speed since it is straightforward to extelnel LCV synthesis step to colour images by
applying the same process to each colour channel separehgover, there are known forms of the
cross-correlation measure applied to RGB images [Tsai ¢€2@03)] and we may exploit this additional
descriptive power in the three channels to assist with thienigation search. The only possible problem
we can anticipate at this stage is any artefacts that migée a@ue to our texture mapping/synthesis
approach, especially for example at object boundary raginrthe image and which can hinder the

performance of the optimisation algorithm.

Throughout this research, we have demonstrated the posifiects of a proper background model.

SReformulating the ISPM with more than two basis views via muiktiv geometry will require higher-order multi-focal tensors
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We have examined a simplistic background model as an examplectior 4.6 and have briefly noted
the effects of having a known background in datasets lik€te) PIE [Sim et al.|(2002)] (although not
presented in this thesis in detail) and the Yale Face B, wiherbackground image is wholly or partially
provided. The goal of course would be to build a compreherditistical model of the background area
in order to fully benefit in cases where it is not explicitlwegn with the rest of the data. A good starting
point is perhaps the work by [Grenander and Srivastava (2(®vastava et al! (2002, 2003)] on the
statistics of natural images and that|of [Sullivan et alO®®000)] on foreground/ background mixture
modelling. In fact, we have begun working on formalising esi@n of the LCV formulation with a basic,
affine background intensity model that may be used as a siggpdne to building more sophisticated
algorithms. If we take the above one step further we may imeagiso including an explicit model
of the scene illumination and the non-affine changes in te@e¢both foreground and background)
photometry. Although we have observed that the current L@vhfilation is able to cope with some
lighting changes inclusion of a basic lighting model may bke o capture variations that the background
model cannot deal with alone. We suggest looking at the nsdile]Georghiades et al. (2001)] that were

developed with face recognition under varying illuminatend pose in mind.

One of our future aims is to decompose the 3-D affine matrixaag$ possible into individual,
fundamental transformation not only for more efficient &in and training of the LCV coefficients
but also for a more statistically correct Bayesian formiatatsince strictly speaking the prior distri-
bution if expressed as a product of separate distributiboslld correspond to independent variables.
Furthermore, the LCV equations (3114) need to be formulbtebhcluding the original constraints by
[Ullman and Basril(1991)] and any constraints associateld thie 3-D affine transformations since the
linear system is over-complete with additional degreesaed#dom|[Buxton et al| (1998)]. The required
decomposition or reformulation may not be possible withaffane matrix and so it might be neces-
sary to consider the alternative route towards view-sysithevhich is using the affine tri-focal tensor
[Shashua (1997)].

Ultimately, we would like to examine any possibilities irgartially or fully automating the off-line
landmark selection and correspondence establishmerg. ségpthe moment, a relatively experienced
user is required to choose a number of landmarks on prompeetdg of the modelled object followed
by establishing a valid correspondence in all the basissiéle long-term aim would be to make the
system such that it can select the landmarks in all the basigeés and establish the correspondences
automatically. If such a feat is not possible we should astledlow for a non-expert user to pick
out a set of landmarks independently in each image and perhetermine an initial correspondence
automatically. In order to ensure that the user has selectesgful set of landmarks the system might
for example perform a few synthesis examples with grounith tata and calculate the match between
synthesised and ground truth images. For this step, it inexgssary to have the LCV coefficient values
but they can instead be interpolated based on the knowntieaxsa(sectiol 5.114) which are to a large

extent, for most views, approximately object-independent

Finally, it is our intention to carry out more experiments amtditional datasets with significantly
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more objects/individuals so as to get a better understgrafinow our method performs in larger-scale
classification problems and of the specificity of our modélke first one is the M2VTS multi-modal
face database by [Pigeon and Vandendarpe (1997)] whiclicmritnages of 37 individuals acra90°
pose variation, with localised face changes (and in spdipfraovement) and the existence of facial ac-
cessories such as glasses, scarves etc. The other dafssebisthe Face Recognition Grand Challenge
(FRGC) [Phillips et al.[(2005)] and includes training andidation subsets of frontal images of various
individuals, each images across two facial expressionsrabdth controlled and varying illumination
settings. Both of these databases have been used extgrisivitle evaluation of object (face) detection
algorithms, and as a result our experiments can be compatiedasent, competing methods.
Furthermore, we would like to research on possible ways g@fraving the execution speed of
the search, perhaps by reducing the time required for aessgithesis (which equals one FE). One
possibility is to make use of the latest dedicated graphéedware and map the synthesis straight onto

the GPU or by using the standard graphics APIs [Hansard artbB{2000a)].
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Appendix A

Algorithms

In this section we include some more details, in the form @&fug®code, on the various algorithms
presented and used in this thesis.

Algorithm 1 Restarting simplex algorithm pseudocode
while iterations k<N do
Rank sinplex vertices //(Best, Wrst, nextWrst)
R=Reflect(Wrst); [//Mke a reflection R
i f R<Best then
E=Expand(Worst); [//Mike expansion FE

if E<R then

Wrst=F //Replace worst point with F
el se

Wrst=R //Replace worst point with R
end if

el se if R<nextWrst then
Wrst=R //Replace worst point with R

else if R<Wirst then
Cp=posContract (Worst) /I Make a positive contraction C,
Worst=C, //Replace worst point with C,

el se
Cp,=negContract (Wrst) //Mike a negative contraction C,
Worst=C,, //Replace worst point with C,

end if

if Sinmplex has stalled then
Restart sinmpl ex

end if

end while

Algorithm 2 A general pattern search algorithm pseudo-code.
for iterations £=0,1,... do
Compute function at f(z)
Determ ne a step s using exploratory noves al gorithm
if f(xx) < f(xx +sx) then then
T4+1 = Tk + Sk
el se
Tk41 = Tk
end if
Update C, and Ay
end for
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Algorithm 3 Genetic algorithm pseudocode
Set ¢g=0 //generation counter
Initialise population P(g)
Eval uate popul ation P(g) //conpute fitness val ues
r epeat
g=g+1
Sel ect P(g) from P(g—1) //performconpetitive selection
Crossover popul ation P(g)
Mut at e popul ation P(g)
Eval uate popul ation P(g) //conpute fitness val ues
until terminating condition

Algorithm 4 Differential evolution pseudocode

for each target 7', vector in current generation G do
Random y choose two popul ation menbers 7,1 ¢ and 7,oc
Bui I d wei ghted difference vector 726 =F(7m.6, Tre.c)
Add a third randonly chosen vector =}, = 7,126+ Trsc

—

Crossover with target vector wigi1=2.o® Tic
. — —
if f( U i,G—i—l) < f( x THG) t hen
— —
TiG+1 = Ui G+1
el se
— —
TiG+1 = T4,G
end if
end for

Algorithm 5 SOMA pseudocode

Generate new random popul ati on w t hi n bounds.

Find i ndex of |eader L

for each mgration do

for each individual in population do
for each step in pathLength do

Generate new PRTVector for the individual
Cal cul ate new position 7 = zg+ m t PRTVector
if f(7')< f(zg)r then

Accept T
end if
end for
end for
Find i ndex of |eader L
end for

Algorithm 6 AAM search single iteration
Eval uate the difference d, = g5, — gm, PDetWeen the nodel's grayl evel s
and the i nage sanple g;.
Eval uate the error Ey=|d,|?
Conput e the predicted di splacenent §. = AA.
Set k=1
Let ci=co- kd(
Sanpl e the image at this new configuration and calculate E; = |5, |*> =
|gs1 _gm1|2
if Ey>FE; then
Accept new configuration at ¢
el se
Try at k=1.5,0.5,...
end if
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Appendix B

Exploratory data analysis techniques

Quantitative techniques take all of the data and map it infewanumbers describing the modelling
process and the parameter estimates. The advantage of stlobds is that these few numbers focus on
important trends (location, variation and so on) of the pafion while being sensitive to any changes in
that data (for example shift in location). However overlyicentrating on these few properties can filter
out other important characteristics such as skewnesdetajth, autocorrelation and so on. Graphical
methods on the other hand make use of all the available ddtprasent information in such a way that
combined with our natural pattern-recognition abilitieeyt allow us to gain additional insight into the
data.

We present the following standard graphical methods: agintiby plot, a histogram with overlaid
estimated parametric pdf, and an empirical cumulativeiligion function (cdf) with overlaid estimated
parametric cdf. A probability plol [Chambers et al. (198B)Ja graphical technique for qualitatively
assessing the fit of data to a theoretical distribution. is ot the data is drawn against a theoretical
distribution in such a way that the points should lie appmately on a straight line. Departures from
this straight line indicate departures from the distribnti Suppose that we have ordered sample values
X; = X1, X5, ..., Xy, calledorder statisticsand the hypothesis thaf; follows a certain distribution

F'. The probability plot is formed by plotting:

_ it
X, vs. F <N+1) (B.1)

where F'~! is the percent point function (inverse of the cdf) of the hyesised distribution. The pdf
and cdf are obtained by maximum likelihood estimation (MLE)ven N ordered data pointX; =

X1, X5, ..., Xy the empirical cdf is defined as:
n(1
By = 100 2

wheren(i) is the number of points less tha#}. This essentially is a step function that increases By
at the value of each ordered point. The larger the sampldlsizemaller the increase step and thus the

closer the estimated empirical cdf matches the actual cdf.

In addition we introduce the following quantitative metsodhe Kolmogorov-Smirnov (K-S) test
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[Chakravarti et al.[(1967)] and the Anderson-Darling (AtB3t [Stephens (1974)]. The K-S test is used
to decide if a sample comes from a population with a specifitribution and is based on the empirical
distribution function. It depends on the maximum differefetween a hypothesised theoretical distri-
bution and the empirical distribution. More rigorouslyetK-S test is defined by two hypothesHg
and H1, the test statistic, the significance lewehnd the critical region. The simple, null hypothesis
states that the data follows a specified distribution, amdesely the alternate hypothegis states that
the data does not follow the specified distribution. The $estistic is defined as:

1

F(X;) —

N (B.3)

D = max
1<i<N

whereF is the theoretical cdf of the distribution being tested wameust be continuous and fully spec-
ified. The significance level is the probability of rejectitige null hypothesis when it is in fact true.

Finally, the critical region may be obtained from statiatitables depending on the significance level
and the hypothesi# is rejected ifD is greater than a given critical value.

The A-D test is a modification of the K-S test that gives morégheto the tails of the distribution.
Although the K-S test is distribution-free, in the senset flscritical values are not dependent on a
specific distribution, the A-D test makes use of specificrittigtions in calculating critical values. The
advantage of this is that it allows for a more sensitive testdm the other hand critical values must
be calculated for each distribution and unfortunately weeasable to find critical value tables in the

literature for some of the distributions. The A-D test sifitiis defined as:

A’=_N-8§ (B.4)

where

N .
5= 3 2 (X, + In(1 = F(Xxs1-4) (8.5)

and N, F and X; are as above. For a given distribution the A-D test may beiptigl by a factor
dependent on the sample sizé We call this the “adjusted A-D” statistic and this is whabshd be

compared against the critical values.
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