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Abstract—We propose a method for segmenting an arbitrary
number of moving objects using the geometry of 6 points in 2D
images to infer motion consistency. This geometry allows us to
determine whether or not observations of 6 points over several
frames are consistent with a rigid 3D motion. The matching
between observations of the 6 points and an estimated model
of their configuration in 3D space, is quantified in terms of
a geometric error derived from distances between the points
and 6 corresponding lines in the image. This leads to a simple
motion inconsistency score, based on the geometric errors of 6
points that in the ideal case should be zero when the motion
of the points can be explained by a rigid 3D motion. Initial
point clusters are determined in the spatial domain and merged
in motion trajectory domain based on this score. Each point
is then assigned to the cluster, which gives the lowest score.
Our algorithm has been tested with real image sequences from
the Hopkins155 database with very good results, competing with
the state of the art methods, particularly for degenerate motion
sequences. In contrast to the motion segmentation methods based
on multi-body factorization, that assume an affine camera model,
the proposed method allows the mapping from 3D space to the
2D image to be fully projective.

Index Terms—motion segmentation; 6-point geometry; fully
projective camera model; Hopkins 155

I. INTRODUCTION

Motion segmentation is the problem of segmenting the
image, as part of an image sequence, into objects where each
object is moving with a distinct 3D motion pattern. Given
a set of interest points on the imaged objects, each interest
point generates a trajectory over the image sequence, and
the segmentation is performed by analyzing these trajectories.
There exist a plethora of methods for solving the segmentation
problem, and as a result, several ways of grouping these meth-
ods based on common principles of operation and underlying
assumptions.

The two current state-of-the-art methods, relative to standard
datasets such as Hopkins155 [1], are Sparse Subspace Clus-
tering (SSC) [2] and Spectral Curvature Clustering (SCC) [3].
Both methods take as input a set of points sampled from a
mixture of affine or linear subspaces, one for each object to
be determined. The subspaces are determined by clustering the
samples based on sparse representations [2] or by iteratively
clustering the samples based on spectral curvature [3]. Other
common methods in the literature are based on Multi-Stage

unsupervised Learning (MSL) [4], Local Subspace Affinity
(LSA) [5], Agglomerative Lossy Compression (ALC) [6],
General Principal Component Analysis (GPCA) [7], or on
RANdom SAmple Consensus (RANSAC) [8].

II. MATHEMATICAL BACKGROUND

We consider a set of six 3D points, with homogeneous
coordinates xk, projected onto an image according to the
pinhole camera model: yk ∼ Cxk, k = 1, . . . , 6, where
yk are the corresponding homogeneous image coordinates,
C is the 3×4 camera matrix, and ∼ denotes equality up to
a scalar multiplication. xk vary over time, and we assume
that this variation can be modeled as a 3D homography
transformation1, that is

yk ∼ CH xk, k = 1, . . . , 6, (1)

where H is a time dependent 3D homography that transforms
the set of 3D points from some reference configuration to the
specific observation that produces the image coordinates yk

that now implicitly depend on H. The problem addressed here
is how we can determine if an observed set of image points
yk really is given by (1) for a particular set of 3D points xk,
the reference 3D points, but with C and H unknown.

To a large extent this problem has been solved by Quan [10],
later extended in [11], [12], [13], and we summarize here the
main results that will be used as a basis for the remaining parts
of this paper. In general, the homogeneous coordinates of the
3D points can be transformed by a suitable 3D homography
Hx to canonical homogeneous 3D coordinates x′ = Hx x,
where:

(x′1 x
′
2 x
′
3 x
′
4 x
′
5 x
′
6) ∼∼


1 0 0 0 1 X
0 1 0 0 1 Y
0 0 1 0 1 Z
0 0 0 1 1 T

 . (2)

Here ∼∼ denotes equality up to an individual scalar multipli-
cation on each column. Similarly, for the particular observation

13D homography transformations, or projective transformations, are general
non-singular linear transformations on the homogeneous 3D coordinates,
including rigid transformations of the 3D space [9].



of the corresponding image points we can transform them to
canonical homogeneous 2D coordinates y′k = Hy yk, where

(y′1 y′2 y′3 y′4 y′5 y′6) ∼∼

1 0 0 1 u5 u6
0 1 0 1 v5 v6
0 0 1 1 w5 w6

 . (3)

Hx and Hy depend on x1, . . . ,x5 and y1, . . . ,y4, respec-
tively, and y′k ∼ Hy CHH−1x x′k.

The main result in [10] is that from these transformed
coordinates we can compute a set of five relative invariants of
the image points, denoted ik, and of the 3D points, denoted
Ĩk, according to:

z=


i1
i2
i3
i4
i5

=


w6(u5−v5)
v6(w5−u5)
u5(v6−w6)
u6(v5−w5)
v5(w6−u6)

 s=


Ĩ1
Ĩ2
Ĩ3
Ĩ4
Ĩ5

=


XY−ZT
XZ−ZT
XT−ZT
Y Z−ZT
Y T−ZT

 (4)

such that they satisfy the constraint

z · s = i1 Ĩ1 + i2 Ĩ2 + i3 Ĩ3 + i4 Ĩ4 + i5 Ĩ5 = 0. (5)

To realize what this means, we notice that this constraint
includes scalars derived from the reference 3D coordinates
xk (before they are transformed) and observed image points
yk (after the transformation H is made), but neither C
nor H are explicitly included. Therefore, the constraint is
satisfied regardless of how we transform the 3D points, as
long as they are all transformed by the same H. As long as
the observed image coordinates are consistent with (1), the
corresponding relative image invariants z must satisfy (5) for a
fixed s computed from the 3D reference points. The canonical
transformations Hx and Hy can be conveniently included into
the unknowns C and H. In short, (5) provides a necessary,
but not sufficient, constraint for the matching between the
observed image points and the 3D reference points.

A. Novelties.

In [10] s and its relation to z were derived implicitly by
observing that there exist Hx and Hy such that (2) and (3)
are satisfied and then solving for the unknown camera matrix.
Hx and Hy are unique and if we do the math explicitly, e.g.,
using symbolic tools for mathematics, we get:

z = α


D126D354

D136D245

D146D253

D145D263

D135D246

 , α =
D123

D124D234D314
, (6)

Dijk = (yi × yj) · yk = det
(
yi yj yk

)
. (7)

Since z is linearly combined with s in (5), the scalar α can be
omitted in the computation of z since we are only interested
in whether or not z · s = 0. This is further motivated by the
fact that we compute s and z from homogeneous 3D and 2D
coordinates, which are elements of the projective spaces P 3

and P 2 and therefore of undetermined scaling. This means
that also s and z are projective elements, in this case of P 4.

In [11], [14] the matching constraint z · s = 0 takes the
form of an incidence relation between the six points and
corresponding six lines. From the above expression of the
elements in z as functions of the six points, the point-line
incident relations can be derived in a straight-forward way.
For example, we can rewrite (5) as z · s = l1 · y1 = 0 with

l1 = l26D354Ĩ1 + l36D245Ĩ2 + l46D253Ĩ3+

+ l45D263Ĩ4+ l35D246Ĩ5 (8)

where lij = yi × yj . l1 depends on the five image points
y2, . . . ,y6 and on s. A similar exercise can be made for
the other five image points and in general we can write the
matching constraint as z ·s = lk ·yk = 0 where lk depends on
s and five image points: {yi, i 6= k}. With this description of
the matching constraint it makes sense to interpret lk as the
dual homogeneous coordinates of a line in the image plane.
To each of the 6 image points, there is a corresponding line
and the constraint is satisfied iff all 6 lines intersect their
corresponding image points.

The main reason for deriving the lines is that they allow us
to quantify Quan’s matching constraint constraint in terms of a
geometric error, derived from the distances between the points
and their corresponding lines, rather than an algebraic error.
This approach is common practice in epipolar and multi-view
geometry, motivated by more robust estimation of the given
geometry [9] and independence of scaling factors of projective
elements, e.g., α in Equation (6).

B. Estimation of s.

By replacing each Ĩk with its corresponding second order
expression in X,Y, Z, T , (4), and then expanding the terms,
we get an internal constraint on s in terms of a homogeneous
third order polynomial in its elements that must vanish (see
Appendix A in [13]):

Ĩ1Ĩ2Ĩ5− Ĩ1Ĩ3Ĩ4+ Ĩ2Ĩ3Ĩ4− Ĩ2Ĩ3Ĩ5− Ĩ2Ĩ4Ĩ5+ Ĩ3Ĩ4Ĩ5 = 0. (9)

From three observations of the 6 points we get three
linear homogeneous equations zk · s, k = 1, 2, 3, in the five
unknown elements of s. This means that we can determine a
2-dimensional basis s̄1, s̄2 of the space of a possible s that
matches the three observations, i.e., s = γ s̄1 + (1 − γ) s̄2.
Inserting this into Equation (9), gives a third order polynomial
in γ. This leads to a method for estimating s from observed
data in terms of six point correspondences over three images.
Since γ is obtained by solving a third order polynomial, this
method produces 3 different solutions s1, s2, s3.

The above discussion on how to determine s refers to
the case when the six 3D points are in general positions. A
particular case of non-generality occurs when the points are
in a plane. In this case, and in general, z is non-zero but since
3D homographies now correspond to 2D homographies in the
image, and z by definition is invariant to such transformations,



z is invariant to any transformation Hx. Consequently, the so-
lution space for s described above increases to four dimensions
which, however, still means that the above estimation method
will provide correct solutions, only now they are not unique.

C. Matching score.

For motion analysis, these results can be used to verify the
motion consistency given a set of 6 image points with known
trajectories. From 3 observations of the 6 points, the method
described above can be used to give s1, s2, s3. If the 6 point
are moving consistently, i.e., if they belong to the same object,
the matching between one sk and the 6 points should be small
(ideally zero) over the trajectory time span.

Based on this idea, we compute a motion inconsistency
score for set of 6 points as follows. The first three time frames
of their trajectories are used for estimation of s1, s2, s3. These
are then matched against the trajectories by taking observation
at time t to compute the six lines as described above and
measure the distance from each line lk to its corresponding
point yk, and then take the maximum distance over the six
lines. This is denoted dk(t), where k=1, 2, 3 are the different
maximum distances given by three different solutions sk.
Finally, the score is given by

S = max
t

(min
k

[dk(t)]) (10)

In the case that the 6 points are on a single object, one of
the three sk should give a good match, i.e., a small dk(t) for
all t, which is the motivation for the above formulation of the
score S. If the 6 points are on two or more objects however, S
should instead be large, an assumption that is true depending
on how different the motion patterns of the objects are.

III. ALGORITHM

We propose a simple yet effective algorithm that can be
used for the segmentation of multiple moving objects in a
scene. It involves selecting a number of 6-point clusters that
will form the initial seeds from which the segmentation will
evolve. The remaining points will be assigned to these clusters
based on a simple “motion consistency”, or rather “motion
inconsistency”, criterion.

We start with a basic clustering algorithm (in this case K-
means) in the image domain to divide the points from a single
frame into spatially distinct regions. These may not correspond
to motion distinct regions, but this is acceptable since we
will merge or discard any redundant clusters later on. At this
stage we only need to obtain the approximate object centres
in the image. We then select 6-points at a certain distance τD
from each K-means centre and form our initial seed clusters.
Following this, we perform a merging step in motion trajectory
space so as to combine clusters that describe the same motion,
and eliminate cluster redundancies. Once we have obtained
the motion consistent 6-point clusters, we can evaluate the
remaining points and assign them to the appropriate cluster
based on the score in (10). As such, for each remaining point
Pi yet to be classified, and each 6-point cluster Cj={P j

1 ,...,P j
6 }

we compute (10) from the points {Pi, P
j
2 ,...,P j

6 }. The rationale

behind this is that if the point Pi has the same (or very similar)
motion trajectory in t frames, as does the cluster Cj , then by
adding Pi to Cj in this way the score should remain low.
Conversely, if their respective motions are different, then their
combination will lead to an inconsistency with high score. We
are using a “winner takes all” approach with point Pi assigned
to the cluster with the lowest score and for this reason there
is no threshold associated with the actual classification stage.

A. Cluster merging and rejection.

The merging step takes us from spatial segmentation to
consistent motion clusters. In order to merge two 6-point
clusters Ck and Cl with k 6=l, we generate a small number (≈
20-30) of intermediate combination clusters Cr that contain
permutations of 6 randomly chosen points from both Ck and
Cl. We then calculate the scores for these intermediate clusters
Cr and take their median, resulting in a merging score Sm.
This is to avoid excessively high or low values influencing the
merging results and producing inconsistencies. If Sm is below
some threshold τm then the two clusters are merged. This
threshold may be arbitrary selected or since the function that
maps the number of merged clusters N to τm is monotonically
decreasing, we can equally select a value for the clusters and
derive τm. This is similar to the other competing methods in
the literature that make use of explicit knowledge about the
number of moving objects in the scene.

It is quite possible for a seed cluster to contain points from
two or more differently moving objects. In this case however,
such a cluster will describe a unique motion that no (or due to
noise, very few) points will be assigned to. Such clusters can
be easily detected during classification since they will grow
very little in size. They will be removed and their points
returned to the heap for re-classification. The algorithm is
presented in pseudocode in Algorithm 1.

Create spatial clusters using K-means
Merge spatial clusters into Cj

foreach point Pi do
foreach cluster Cj do

Select 6 points {Pi, P
j
2 , ..., P

j
6 }.

Calculate score Si,j from (10).
end
Assign Pi to cluster with min(Si,j).
Reject inconsistent clusters.

end
Algorithm 1: Motion clustering pseudocode.

IV. EXPERIMENTAL RESULTS

We have carried out a number of experiments on real
image sequences from the publicly available Hopkins155
database [1]. It includes different motion sequences of 2 and
3 objects, of various degrees of classification difficulty (per-
spective, degenerate or articulated motions) and is corrupted
by tracking noise. For our experiments, we set the merging



(a) (b)
Fig. 1. Hopkins155 database results.

(a) 4 different motions (b) 0.4% resulting segmentation error
Fig. 2. 4 object motion example. Best viewed in colour.

threshold τm to produce 2 or 3 seed clusters, depending on
each sequence in the database. Furthermore, we adjusted the
minimum distance parameter τD to fine-tune the classification
accuracy. This tuning is not essential but it can bring some
small improvements on the classification results. τD depends
on the points and K-means centres density and has to be
determined by trial and error for each dataset.

Our results (six point consistency, SPC) for 2 and 3 motions
are shown in Figure 1 and Tables I and II. Note also that we
compare against the published results of the state-of-the-art
methods. If we look at Table I, we can see that our method
gives good results on average for most sequences, while being
particularly effective for the degenerate traffic sequences (2nd
after SSC). Again, for the articulated sequences we rank 2nd
and 3rd overall for all 2 motion sequences. By comparison,
our performance is close to MSL for the checkerboard data. In

Table II, we see a somewhat similar behaviour with very good
results on the traffic sequences and results closer to MSL for
the other sets. Considering however the simplicity and speed
of our method compared to the MSL and other approaches,
these results are very encouraging. Finally, if we look at Figure
1 and comparing with the results published in [15], we see
that our method performs at the same levels with most of the
state-of-the-art, with a performance over 90% occurrences at
0-10% error rates for 2 motions and close to 65% occurrences
for 3 motions. Overall, for all motions, the occurrences peak
around 87% for the same error rates. However, we outperform
all other methods, including SSC and SCC in the higher error
regions since we have no error greater than 30%. As a result
the distributions in Figure 1(a) have much heavier tails than
any method in [15]. This is also mirrored in Figure 1(b) where
we reach 100% on the y-axis faster than the other methods. Of



GPCA LSA RANSAC MSL ALC SSC SCC SPC
Checkerboard: 78 sequences
Mean: 6.09 2.57 6.52 4.46 1.55 1.12 1.77 4.49
Median 1.03 0.27 1.75 0.00 0.29 0.00 0.00 3.69
Traffic: 31 sequences
Mean: 1.41 5.43 2.55 2.23 1.59 0.02 0.63 0.22
Median 0.00 1.48 0.21 0.00 1.17 0.00 0.14 0.00
Articulated: 11 sequences
Mean: 2.88 4.10 7.25 7.23 10.70 0.62 4.02 2.18
Median 0 1.22 2.64 0.00 0.95 0.00 2.13 0.00
All: 120 sequences
Mean: 4.59 3.45 5.56 4.14 2.40 0.82 1.68 3.18
Median 0.38 0.59 1.18 0.00 0.43 0.00 0.07 1.08

TABLE I
THE 2 MOTION ERROR % RESULTS.

GPCA LSA RANSAC MSL ALC SSC SCC SPC
Checkerboard: 26 sequences
Mean: 31.95 5.80 25.78 10.38 5.20 2.97 6.23 10.71
Median 32.93 1.77 26.01 4.61 0.67 0.27 1.70 9.61
Traffic: 7 sequences
Mean: 19.83 25.07 12.83 1.80 7.75 0.58 1.11 0.73
Median 19.55 23.79 11.45 0.00 0.49 0.00 1.40 0.73
Articulated: 2 sequences
Mean: 16.85 7.25 21.38 2.71 21.08 1.42 5.41 6.91
Median 28.66 7.25 21.38 2.71 21.08 0.00 5.41 6.91
All: 35 sequences
Mean: 28.66 9.73 22.94 8.23 6.69 2.45 5.16 8.49
Median 28.26 2.33 22.03 1.76 0.67 0.20 1.58 8.36

TABLE II
THE 3 MOTION ERROR % RESULTS.

course we are not limited to 3 motions but can deal with an
arbitrary number of moving objects as can be seen in Figure
2 (a) and (b).

Our approach is very efficient with an average running time
of 0.01 sec for calculating the score in (10) for each point,
using Matlab on a 2.4 GHz CPU. In addition, the algorithm is
of linear complexity on the number of points×clusters, a step
that can very easily be separated and parallelised for faster
computation.

V. CONCLUSION

We have presented a novel approach for the segmentation of
a number of moving objects, using the geometry of 6 points in
2D images to infer motion consistency. The proposed method
is based on Quan’s [10] geometry of six points in a 2D image
that allows us to determine whether or not observations of
6 points over several frames are consistent with a rigid 3D
motion of the corresponding 3D points. A main feature of the
proposed method is that the motion consistency is determined
based on a geometric error, given by distances between the
6 points and corresponding 6 lines in the image. This leads
to an motion inconsistency score that quantifies, in geometric
terms, how much the motion of 6 points deviates from the
case of rigid 3D motion. Another feature of this approach
is that it allows a fully projective camera model, instead of
being restricted it to the affine camera model, stipulated by the
factorization-based motion segmentation methods described in
the literature.

Our algorithm begins by selecting 6-point object clusters
in the image domain and proceeds by merging them in the
motion trajectory domain. This is done using the motion
inconsistency score, where initial clusters that have sufficiently
similar motions are merged. The final segmentation is carried
out by assigning each remaining object point to the cluster
that gives the lowest score.

We have demonstrated the efficacy of our solution on the
Hopkins 155 motion segmentation dataset, with good results
(especially for degenerate motions) that are comparable with
many state of the art methods. In particular, we perform
the best for error rates above 30% for all sequences in
the database. Furthermore, out method is not restricted to 3
different motions in the scene, but rather scales quite well as
the number of individual motions is increased.
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