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Abstract

Complementary information, when combined in the
right way, is capable of improving clustering and seg-
mentation problems. In this paper, we show how it is
possible to enhance motion segmentation accuracy with
a very simple and inexpensive combination of comple-
mentary information, which comes from the column and
row spaces of the same measurement matrix. We test
our approach on the Hopkins155 dataset where it out-
performs all other state-of-the-art methods.

1. Introduction

Motion segmentation is the task of partitioning every
image from a sequence F into separate regions, each
associated with a distinct 3D motion. Here we focus
on methods that are applied to a sparse set of points
N , typically interest points, that are consistently tracked
over time, and their trajectories analysed in the images.

The most common way of solving these types of
problems, is to define some type of motion-based sim-
ilarity between the points (pairwise or higher-order),
calculate and collect all such similarities into a sym-
metric, N×N affinity matrix A, and then carry out
segmentation by clustering in some appropriate lower-
dimensional space. Since we are only considering a
sparse set of feature points, working with and manip-
ulating A is not a difficult or expensive task, as could
be the case for fully dense motion segmentation ap-
proaches.

The segmentation problem may be simplified further
by assuming that we generally only encounter small
depth variations in the imaged scene, and so we may
utilise an affine camera model. Under this assumption,
points on different moving objects will lie on a union of
low-dimensional linear subspaces and the segmentation
problem is abstracted to one of subspace clustering.

This idea of enhancing segmentation through combi-
nation of additional, complementary information is the

Figure 1. An illustration of the induced
subspaces from the matrix W.

main focus of this paper. Here we show how it is possi-
ble to obtain a very accurate motion segmentation result
by simple combination of affinities, that come from the
same point trajectory data, but from different parts of it.
Our experiments clearly demonstrate that our scheme
produces segmentation results beyond the state-of-the-
art methods in literature, while keeping the computa-
tional cost low. In addition, we have observed that us-
ing a simple combination approach (Hadamard prod-
uct), outperforms more complicated approaches from
machine learning research. We evaluate our scheme
on the extended Hopkins155 dataset[11], which is com-
monly used in sparse motion segmentation research.

2. Background

In this section we introduce some important back-
ground concepts, together with a brief review of the
state-of-the-art motion segmentation approaches as well
as different combination schemes for clustering.

We begin with the notion of an affinity matrix A.
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Given N feature points and an appropriate similarity
measure, an affinity matrix is the N×N symmetric ma-
trix that contains all pairwise similarities between the
points in the scene. Once we have an affinity matrix,
we can obtain the segmentation by standard clustering
approaches, such as spectral clustering [8].

The next concept is that of a 2F×N measurement
matrix W, under an affine camera model. The rows of
W contain the coordinates of all theN feature points in
each view, whereas its columns contain the x,y coordi-
nates of each point across all views F :

x11 ... x1N
y11 ... y1N
...

. . .
...

xF1 ... xFN
yF1 ... yFN


=

 m1

...
mF




X1 ... XN

Y1 ... YN

Z1 ... ZN

1 ... 1


W[2F×N ] = M[2F×4] S[4×N ]

.

(1)
As we can see W factors into a motion matrix M con-
taining all the 2×4 projection matrices, and a 3D shape
matrix S. Observe that rank(W)≤4.

Assuming for simplicity a single object in the scene,
then each column of W, defines a point on a 4D linear
subspace (hyperplane) embedded in R2F (see Fig. 1).
This hyperplane, contains the motion trajectories of all
the points on the 3D rigid object. Furthermore, we may
obtain every point on the hyperplane as a linear combi-
nation of 4 basis columns from W. If we do the same
for the rows of W we obtain a different 4D hyperplane,
this time in RN . The points contained therein, each rep-
resent the coordinates of the 3D shape in a single view.
Again, we may synthesise the shape of the object in any
novel view by a linear combination of 4 rows of W (see
[13]). Obviously these two spaces are related and pro-
vide complementary information that may be utilised to
improve motion segmentation. This hypothesis as well
as whether the combination can be carried out in a sim-
ple way, are the two questions we will try to examine.

Motion segmentation. The column based method
was initially used by [10] for motion segmentation
and 3D reconstruction. They used SVD to factor
W=UΣVT⇒M=UΣ

1
2 ,S=Σ

1
2VT , in a similar fash-

ion to (1), and obtain a pairwise affinity via Q=VVT .
The majority of the motion segmentation methods in

literature, use the same approach and cluster directly on
the induced hyperplane(s). Where they differ, is on the
way they define their motion affinity. So for example
(SSC) by [3] exploits the sparsity of representation be-
tween points on the same subspace as a form of affinity.
(SCC) [1] iteratively clusters points based on the polar

curvature between the trajectories. The (SC) method by
[7] generates a pointwise affinity matrix directly from a
reduced column V. The affinity is then defined as

A(i, j) =

(
vTi vj
‖vi‖ ‖vj‖

)2

, (2)

where vi,vj are columns of V. (2) is simply the first
principal angle between the subspaces inside a cosine
kernel. More recently, [12] have introduced a method
(SLBF) that iteratively fits linear subspaces from a lo-
cal neighbourhood of points, the size of which is deter-
mined automatically.

The row based approach for motion segmentation
was identified by [13] (LCV), where they synthesised
probable motion trajectories of feature points using 4
basis rows from W, and compared them with the actual
trajectories to define a motion affinity for segmentation.

Combination schemes. Combination of information
in order to improve segmentation or clustering results
has been examined in machine learning literature. We
may briefly categorise combination methods into two
types: ones that perform the fusion on the affinity level
and those that combine the final labelling.

In the first category, we have the simple addition or
componentwise product (Hadamard) between the ma-
trices. This can be further extended by a weighted
combination and multi-view expansion of the affinity
matrices [2]. More advanced methods such as the co-
regularisation by [6] that enforce clustering agreement
or the co-training method by the same authors [5] where
the graph structure of one affinity matrix is modified by
the clustering results of the other, are also of interest.

In the second category, multiple clusterings are per-
formed separately and their results are combined in the
end. Here we test the clustering ensemble method by
[9] that uses a set of consensus functions to determine
the correct clustering, and the graph approach by [4].

3. Method

As mentioned previously, we exploit the fact that
there is a clear relationship between the two linear sub-
spaces induced by the matrix W. Although each sub-
space contains different information (shape and motion)
they are related since they originate from the same data.

Our combination is done on the affinity level by gen-
erating an affinity matrix from the shape information
(column-based) and one from the motion trajectories
(row-based). We combine the two matrices with a sim-
ple Hadamard product. Once the combined affinity ma-
trices have been generated, we perform the segmenta-
tion using spectral clustering. For the column-based
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SC [7] LCV [13] SCC [1] SLBF [12] SSC [3] HAff HEigen
Mean error % / Var. 2.10 / 0.0 2.34 / 0.07 4.68 / 0.25 1.71 / 0.0 1.47 / 0.06 1.63 / 0.04 1.14 / 0.01
Average time (sec) 4.87 1.47 1.61 9.98 111.78 6.34 5.28

Table 1. Comparison between motion segmentation methods in literature and our combination
scheme, on the Hopkins155 dataset.

Mean error %
Co-regularisation [6] 4.17
MCLA [9] 2.36
HBGF [4] 2.09

Table 2. Advanced information combina-
tion approaches.

affinity we use a reformulation of (2) and for the row-
based, the approach by [13]. An overview of the method
shown in Algorithm 1.

Algorithm 1 Algorithm of proposed method
Generate n-way affinity matrix E using LCV [13]
q1=0, q2=0;
for α = 1→ 10 do

AR = (E2 + α2)−0.5

quality← SpectralClustering(AR)
if quality>q1 then ARopt = AR, q1=quality

end for
[U,Σ,V]=SVD(W)
for β = 1→ 10 do

X = V(:, 1 : β)
X0 = diag(1/

√∑
col. X

2)X

AC =
∣∣X0X

T
0

∣∣4
quality← SpectralClustering(AC )
if quality>q2 then ACopt = AC , q2=quality

end for
A = ARopt. ∗ACopt
Labels= SpectralClustering(A)

Note here that since we have two affinity matrices
we need to optimise two kernel parameters α, β. In
this 2D space, it would be prohibitively expensive to do
spectral clustering (i.e. eigen-decomposition) for every
choice of parameters. The simple way around this is
to generate the affinity matrices individually, thus solv-
ing the optimisation problem as independent 1D slices,
and combine the results in the end. Although this might
not necessarily be the global optimum in α, β-space, it
gives very good results at a fraction of the cost.

4. Experiments

In this section we test our approach against other
methods in literature. All the tests have been carried

out on the Hopkins155 dataset [11], which contains 159
sequences of 2-5 motions with ground truth trajectory
data. We have carried out 100 test runs for each method
and quote the mean segmentation error and run-times
over the whole dataset, averaged over all the test runs.

In Table 1, we compare the individual motion seg-
mentation methods. SSC and SLBF are amongst the
best but also amongst the slowest. Our affinity com-
bination approach (HAff) is shown in the 7th column.
We see that this is a much improved result than the in-
dividual SC and LCV methods and comparable to the
state-of-the-art.

In addition, we have tested the combination in the
eigen-space instead of in the affinity space. That is, dur-
ing spectral clustering, we obtain the row-normalised
N×k matrix Y on which we run the clustering step. Y
contains the k-largest eigen-vectors of the affinity ma-
trix A, where k is the number of objects in the scene.
We then create the N×N matrix K=YYT and we use
that for the information fusion. Thus in the same way
as in Algorithm 1, K=KRopt.∗KCopt, and the final
steps of the spectral clustering are done on the K ma-
trix instead, without the need for an additional eigen-
decomposition. The results, shown in the last column
(HEigen) of Table 1. We see that this type of Hadamard
combination has a dramatic effect in the overall miss-
classification error, and is also slightly faster than the
affinity-level combination.

We now look at the more complicated combination
schemes such as co-regularisation [6] and the cluster-
ing ensemble methods [9, 4]. For the latter shown in
Table 2. We see that only the HBGF method slightly
improves the segmentation over the individual results,
but it is still far away from the affinity-based and eigen-
based Hadamard products.

To illustrate exactly how important it is to combine
complementary information, we also show in Table 4
the Hadamard products for the 10 row-based only and
10 column-based only affinity matrices from Algorithm
1, both unweighted and weighted by their clustering
quality. That is, affinity matrices with poor clustering
scores, will be suppressed as A=

∏
A1−qi

i , where qi
is the normalised distortion error. We see that none of
the scores in Table 4 are anywhere near those in Table
1. These results suggest that the improvement does not
come from the Hadamard product alone but also from
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LCV SC HEigen
Distortion < 0.123 0.121 0.052
Silhouette > 0.854 0.864 0.945
Davies-Bouldin < 0.180 0.190 0.06
Dunn > 8.88 6.92 21.34
Calinski-Harabasz > 4.39E3 4.84E3 1.45E4
Hartigan > 14.15 16.05 5.69
Krzanowski-Lai > 29.44 33.40 11.85

Table 3. Comparison of clustering mea-
sures on the 2RT3RC sequence.

Mean error % Std
HRow 2.9 0.0
Weighted HRow 7.24 0.0
HCol 6.44 0.14
Weighted HCol 3.86 0.08

Table 4. Hadamard combination of non-
complementary information.

the existence of complementary information.
In Table 3 we isolate a sequence from the Hop-

kins155 and show the improvement in common clus-
tering quality measures, between the row-based and
column-based methods and their Hadamard product.
These criteria measure properties such as distortion,
distance from the cluster centroid, cluster dispersion
and so on. The symbol next to each measure indicates
whether this measure should be maximum or minimum
for a good clustering result. We see that the Hadamard
product improves most of the criteria. Such a behaviour
is typical for most of the sequences in the Hopkins155.

Finally, we show a cdf error plot in Fig. 2 for the
original methods (LCV, SC and SLBF) and the over-
all improvement introduced by the Hadamard product
combination. We see that not only has the new approach
improved on the mean error but also reduced the oc-
currence of very large classification errors, something
which is a problem with the competing methods.

5. Conclusion

We have presented a simple combination scheme for
improving the accuracy of motion segmentation. This
scheme exploits the related but complementary infor-
mation that exists in the column and row spaces of the
measurement matrix W. We show that our method
outperforms any other method in literature while still
remaining computationally attractive. In addition, the
simple Hadamard product performs much better than
other combination schemes from machine learning re-
search. We wish to extend this method to incorporate

Figure 2. Error distributions for different
segmentation methods.

non-motion cues and use their complementary informa-
tion to determine other important parameters such as the
number of moving objects.
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