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Abstract

In this work, we present a method for model-based
recognition of 3d objects from a small number of 2d in-
tensity images taken from nearby, but otherwise arbitrary
viewpoints. Our method works by linearly combining im-
ages from two (or more) viewpoints of a 3d object to syn-
thesise novel views of the object. The object is recognised
in a target image by matching to such a synthesised, novel
view. All that is required is the recovery of the linear combi-
nation parameters, and since we are working directly with
pixel intensities, we suggest searching the parameter space
using an evolutionary optimisation algorithm in order to ef-
ficiently recover the optimal parameters and thus recognise
the object in the scene.

1 Introduction

Object recognition is one of the most important and ba-
sic problems in computer vision and, for this reason, it has
been studied extensively resulting in a plethora of publica-
tions and a variety of different approaches' aiming to solve
this problem. Nevertheless accurate, robust and efficient
solutions remain elusive because of the inherent difficul-
ties when dealing in particular with 3d objects that may be
seen from a variety of viewpoints. Variations in geome-
try, photometry and viewing angle, noise, occlusions and
incomplete data are some of the problems with which ob-
ject recognition systems are faced.

In this paper, we will address a particular kind of ex-
trinsic variations: variations of the image due to changes
in the viewpoint from which the object is seen. Tradition-
ally, methods that aimed to solve the recognition problem
for objects with varying pose relied on an explicit 3d model

'For a comprehensive review of object recognition methods and de-
formable templates in particular, see [10, 16, 23, 2].

of the object, generating 2d projections from that model and
comparing them with the scene image. Such was the work
by Lee and Ragnarath [13]. Although 3d methods can be
quite accurate when dealing with pose variations, generat-
ing a 3d model can be a complex process and require the use
of specialised hardware. Other methods [12, 3] have thus
tried to capture the viewpoint variability by using multiple
views of the object from different angles, covering a por-
tion of, or the entirety of, the view sphere. If the coverage
is dense these methods require capture and storage of a vast
number of views for each object of interest. Quite recently,
new methods have been introduced that try to alleviate the
need for many views while still working directly with 2d
images.They are called view-based methods and represent
an object as a collection of a small number of 2d views.
Their advantage is that they do not require construction of
a 3d model while keeping the number of required stored
views to a minimum. Prime examples are the works by Be-
bis et al. [1], Turk and Pentland [21] and Cootes et al. [6].

Our proposed method is a view-based approach working
directly with pixel values and thus avoids the need for low-
level feature extraction and solution of the correspondence
problem such asin [1]. As aresult, our model is easy to con-
struct and use, and is general enough to be applied across a
variety of recognition problems. The disadvantage is that it
may also be sensitive to illumination changes, occlusions
and intrinsic [7] shape variations. We adopt a “generate
and test” approach using an evolutionary algorithm to re-
cover the optimal LCV coefficients that synthesise a novel
image, which is as similar as possible to the target image. If
the similarity (usually the cross-correlation coefficient) be-
tween the synthesised and the target images is above some
threshold then an object is determined to be present in the
scene and its location and pose are defined (at least in part)
by the LCV coefficients.

In the next section we introduce the LCV and explain
how it is possible to use it to synthesise realistic images



from a range of viewpoints. In section 3 we present our 3d
object recognition paradigm which incorporates the LCV
and the optimisation algorithm, and in section 4 we show
some experimental results of our approach on synthetic and
real imagery. Finally, we conclude in section 5 with a crit-
ical evaluation of our method and suggestion how it could
be further improved in the future.

2 Linear combination of views

LCV is a technique which belongs in the general theory
of the tri- and multi-focal tensors, or Algebraic Function of
View (AFoV) [18] and provides a way of dealing with varia-
tions in an object’s pose due to viewpoint changes. This the-
ory is based on the observation that the set of possible im-
ages of an object undergoing 3d rigid transformations and
scaling is, under most (i.e. affine) imaging conditions, to a
good approximation embedded in a linear space spanned by
a small number of 2d images. It therefore follows that the
variety of 2d views depicting an object can be represented
by a combination of a small number of 2d basis views of the
object.

Ullman and Basri [22] were the first to show how line
drawings or edge map images of novel views of a 3d object
could be generated via a linear combination of similar 2d
basis views. More specifically, they showed that under the
assumption of orthographic projection and 3d rigid transfor-
mations, 2 views are sufficient to represent any novel view
of a polygonal object from the same aspect. The proof may
easily be extended to any affine imaging condition. Thus, to
a good approximation, given two images of an object from
different (basis) views I’ and I" with corresponding im-
age coordinates (z’,y’) and (", y"), we can represent any
point (z, y) in a novel view I according to, for example:

T = ag + a1z’ + asy’ + azz” 0
y = by + bz’ + boy’ + bgz”
The novel view is reconstructed from the above two equa-
tions given a set of valid coefficients (a;, b;). Provided we
have at least 4 corresponding “landmark” points in all three
images (I, I’,I") we can estimate the coefficients (a;, b;)
by using a standard least squares approach®. Several others
have taken this concept further from its initial application to
line images and edge maps to real images [11, 9, 15, 1] .
Such results suggest that it is possible to use LCV for
object recognition in that novel views of an object can be

2 It has also been shown that more general and in particular a more
symmetrical set of equation involving all the basis view co-ordinates may
be used, though in general such equations are over-complete. The general
solution is to express the LCV in terms of an affine tri-focal tensor [7],
though for our purposes where the changes of viewpoint are mainly in a
single direction between the basis views, which may be used to define the
z,x’ and z'’ axes, (1) suffices.

recognised by matching them to a combination of stored,
basis views of the object. The main difficulty in applying
this idea within a pixel-based approach is the selection of
the LCV coefficients (a;, ;). In particular, as described in
the next section, synthesis of an image of a novel view from
the images of the basis views, although straightforward, is
a non-linear and non-invertible process.

2.1 Image synthesis

To synthesise a single, novel image using LCV and two
views we first need to determine its geometry from the land-
mark points. In principle we can do so by using (1) and n
corresponding landmark points (where n > 4), and solving
the resulting system of linear equations in a least squares
sense. This is straightforward if we know, can detect, or
predict the landmark points in image I. Such methods may
therefore be useful for image coding and for synthesis of
novel views of a known object [11, 9]. For pixel-based ob-
ject recognition in which we wish to avoid feature detection
a direct solution is not possible, but we instead use a pow-
erful optimisation algorithm to search for and recover the
LCV coefficients for the synthesis.

Given the geometry of the novel image I, in a pixel-
based approach we need to synthesise its appearance
(colour, texture and so on) in terms of the basis images I’
and I"”. Since we are not concerned here with creation of
a database of basis views of the objects of interest, we may
suppose that a sparse set of corresponding landmark points
(@'(4),y'(j)) and (2" (j),y"”(j)) may be chosen manually
and offline in images I’ and I" respectively and used to tri-
angulate the images in a consistent manner. An illustration
of the above can be seen in Fig. 1.

Given a set of hypothesised landmark points (z(j), y(5))
in the target image we can, then to a good approximation,
synthesise the target image I as described in [5, 7, 11] from
a weighted linear combination:

I(z,y) =w'I'(z',y") +w"I"(z",y") + e(x,y), (2)

in which the weights w’ and w” my be calculated from the
LCV coefficients. Essentially this relies on the fact that, in
addition to the multi-view image geometry being to a good
approximation affine, the photometry is to a good approxi-
mation affine or linear [17]. The synthesis essentially warps
and blends images I’ and I” to produce I. It is important
to note therefore that (2) applies at all points (pixels) (z, y),
(«',y") and (2”,y")in images I, I’ and I" with the dense
correspondence defined by means of the LCV equations (1)
and a series of piecewise linear mappings [8] within each
triangle of the basis images. If (2/,y’) and (z”,y") do not
correspond precisely to pixel values, bilinear interpolation
is used [9, 11]. The same idea may be extended to colour



Figure 1. Example of real data from the CMU
PIE database. The two basis views (a) and
(b) and the target image (c). The synthesised
image (d) is at the correct pose identified by
our algorithm.

images by treating each spectral band as a luminance com-
ponent (e.g. Ir, I, Ip).

3 The recognition system

In principle using the LCV for object recognition is easy.
All we have to do is find the LCV coefficients in an equation
such as (1) which will optimise the sum of squared errors €
from (2) and check if it small enough to enable us to say our
synthesised and target images match.
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Figure 2. Example of a synthetic image used
for testing (a). The average test results are
shown in (b).

3.1 Template matching

The first component of our system is the two stored basis
views I’ and I”. These are rectangular bitmap images that

contain gray-scale, pixel information of the object without
any additional background data. The images are obtained
from basis views chosen, as indicated earlier, so that the
viewpoint from which the target image [ is taken lies on
the view sphere between or almost between the basis views
from which I’ and I" are taken. It is important not to choose
a very wide angle between the basis views since this can
lead to I’ and I” belonging to different aspects of the object
and thus to landmark points being occluded?.

Having selected the two basis views, we pick a number
of corresponding landmark points in particular lying on dis-
continuity boundaries, edges and other prominent features.
When the appropriate number of landmarks have been se-
lected we use constrained Delaunay triangulation to pro-
duce consistent and corresponding triangular meshes of all
the images. The above processes may be carried out dur-
ing an offline training stage and are not examined here. The
recognition system involves choosing the appropriate LCV
coefficients (a;, b;), synthesising an image I; and compar-
ing it with the target image I, using some similarity or dis-
similarity metric. Since we compare the two images over all
pixels (i.e. over both foreground and background), either a
dissimilarity metric such as the sum of squared differences
(SSD) or a similarity measure such as the cross-correlation
coefficient ¢(I, I;) may be used. We have used the latter
because when applied to the whole image it is invariant
to affine photometric transformations [4]. The choice of
LCV coefficients is determined by maximising the cross-
correlation coefficient. Essentially we are proposing a flex-
ible template matching system, in which the template is al-
lowed to deform in the LCV space until it matches the tar-
get image. The only component that affects the deforming
template is the match or miss-match between the target and
scene images.

3.2 Optimisation

To find the LCV coefficients we need to search a high-
dimensional parameter space using an efficient optimisa-
tion algorithm. For this purpose, we have chosen a recent
evolutionary, population-based optimisation algorithm that
works on real-valued coded individuals and is capable of
handling non-differentiable, nonlinear and multi-modal ob-
jective functions. It is called Differential Evolution (DE)
and was introduced by [20]. Briefly, DE works by adding
the weighted difference between two randomly chosen pop-
ulation vectors to a third vector, and the fitness resultant
is compared with that of another individual from the cur-
rent population. In this way, DE can deduce from the dis-
tances between the population vectors where a better solu-

3 It is still quite possible to synthesise novel images at wider angles
and remove any self-occluded triangles. Although we do not address this
problem here, see [9].



tion might lie, thereby making DE self-organising. We have
chosen DE because it is very easy to set-up and use, espe-
cially in a template matching scenario where we are using a
mixture of discrete and continuous parameters. In addition,
it is efficient in searching high-dimensional spaces and is
capable of finding promising basins of attraction [4] early
in the optimisation process without the need for good ini-
tialisation.
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Figure 3. A colormap plot (a) showing the en-
tries in the confusion array averaged across
pose. (b) shows the recognition rate across
pose angle for all models.

4 Experimental results

We performed a number of experiments on synthetic and
real images under varying camera angle. The synthetic im-
ages were generated by taking 2d snapshots of a 3d object
(a human head model) in front of a black background (see
Fig. 2(a)). Landmarks where manually selected amongst
the vertices of the 3d object and their projected positions
were automatically calculated in the 2d images. For the real
images, we used pose variation subsets from the CMU PIE
[19] database, making sure the chosen landmarks where vis-
ible in both basis views (see Fig. 1). In the synthetic dataset,
the pose angles where chosen mainly between £14° about

the vertical and +10° about the horizontal axes. The major-
ity of the target views lay on the view-sphere between the
basis views, but in a few examples the system had to extrap-
olate the data in order to recover the optimal coefficients. In
total, we ran 10 synthetic experiments and the results are
illustrated in Fig. 2.

These results are very encouraging with the majority of
the experiments converging to the correct solution with a
cross-correlation of > 0.97. Only cases in which the target
viewpoint was far from the line in view space between the
basis views failed to converge. In such cases, the LCV could
not synthesise the target view accurately indicating the need
to use more than two basis views in order to better represent
that portion of the view-sphere.

For the real image experiments on the CMU PIE data-
base, we constructed LCV models from 10 individuals us-
ing as basis views, the left and right images (c29, c05) of
each individual at the natural expression. The face once
synthesised was then superimposed onto the background
which is given separately in the database and the result-
ing image was compared with a test view. Comparisons
were carried out against the images of the 10 individu-
als in the database while attempting to detect poses from
—45°,-22.5°,0°,22.5%, 45° about the vertical and a lim-
ited range about the horizontal axes (images c09 and c07).

In total we carried out 700 experiments across pose
and constructed a 10 x 10 x 7 “confusion array” of
model ximagexpose. Each 10x10 pose-slice of this ar-
ray contains information about the recognition responses
(cross-correlation) of our tests, the highest being along the
main diagonal, where each individual’s model is correctly
matched to that individual’s image. The recognition re-
sponse should fall off when comparing a specific model
with images of other individuals. This behaviour, aver-
aged across pose can be seen in Fig. 3(a) and the pose-
dependent recognition rate (averaged across the 10 models)
in Fig. 3(b). The results are quite pleasing with the correct
pose identified the majority of times when the target view
was between the basis views (£22.5°) as no extrapolation
is required. The recognition rate falls off when the target
examples lay outside that range, (+45°) and for images c09
and c07. It is possible to increase this considerably using
more basis views during the modelling stage. In addition,
constructing more models and carrying out additional tests
would provide more accurate recognition rates, especially
for the fronal image (c27) at 0°.

5 Conclusion

We have shown how the linear combination of views
(LCV) method may be used in view-based object recogni-
tion. Our approach involves synthesising intensity images
using LCV and comparing them to the target, scene image



using a similarity metric. The optimal LCV coefficients for
the synthesis are recovered by an evolutionary algorithm,
differential evolution [20]. Experiments on both synthetic
and real data demonstrate that the method works well for
pose variations especially those where the target view lies
between, or almost between the basis views. DE plays an
important role in our method, by searching efficiently the
high-dimensional, LCV space. Such solutions can narrow
the search space to a promising basin of attraction within
which a local optimisation method may be used for finding
an accurate solution.

Further work is required, however. In particular, we
would like to reformulate (1) by using the affine tri-focal
tensor and introducing the appropriate constraints in the
LCV mapping process. Formulating (1) in term of indi-
vidual 3d transforms might also help bound the range of the
LCV coefficients and make the selection process more intu-
itive. Furthermore, we would like to introduce probabilistic
weights on the coefficients as prior information about the
range of likely views and formulate a Bayesian inference
mechanism. This, we believe, will greatly aid the recogni-
tion process. At this stage we have only addressed extrinsic,
viewpoint variations, but we have indicated how it should be
possible to include intrinsic, shape variations (see for exam-
ple [7] and lighting variations on the image pixels. In addi-
tion, more experiments are needed in order to evaluate the
performance of our method against public available datasets
(e.g. [14]) and against other, competing methods designed
to solve the same problem, such as the Active Appearance
Models [6].
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