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Abstract
Combining the channels of a multi-band image with the help

of a pixelwise weighted sum is one of the basic operations in
color and multispectral image processing. A typical example is
the conversion of RGB- to intensity images. Usually the weights
are given by some standard values or chosen heuristically. This
does not take into account neither the statistical nature of the im-
age source nor the intended further processing of the scalar im-
age. In this paper we will present a framework in which we specify
the statistical properties of the input data with the help of a rep-
resentative collection of image patches. On the output side we
specify the intended processing of the scalar image with the help
of a filter kernel with zero-mean filter coefficients. Given the im-
age patches and the filter kernel we use the Fisher information of
the manifold of two-parameter Weibull distributions to introduce
the trace of the Fisher information matrix as a cost function on
the space of weight vectors of unit length. We will illustrate the
properties of the method with the help of a database of scanned
leaves and some color images from the internet. For the green
leaves we find that the result of the mapping is similar to standard
mappings like Matlab’s RGB2Gray weights. We then change the
colour of the leaf using a global shift in the HSV representation of
the original image and show how the proposed mapping adapts
to this color change. This is also confirmed with other natural
images where the new mapping reveals much more subtle details
in the processed image. In the last experiment we show that the
mapping emphasizes visually salient points in the image whereas
the standard mapping only emphasizes global intensity changes.
The proposed approach to RGB filter design provides thus a new
methodology based only on the properties of the image statistics
and the intended post-processing. It adapts to color changes of
the input images and, due to its foundation in the statistics of
extreme-value distributions, it is suitable for detecting salient re-
gions in an image.

Introduction
Channel combination of a multi-band image with the help

of a pixelwise weighted sum, is one of the basic operations in
colour and multispectral image processing. A typical example
is the conversion from RGB to intensity images. Usually, the
weights are given by some standard values or are chosen heuristi-
cally. This does not take into account the statistical nature of the
image source, nor the intended further processing of the scalar
image.

The standard selection of weights might not be optimal when
the statistics of the input images deviate significantly from com-
mon situations. An example where this might be the case is auto-

mated inspection of input samples with very special visual prop-
erties, such as images of plants and especially of their leaves. This
is of particular interest in applications where the growth of indi-
vidual plants is monitored by a robotic system. Such a system has
to locate the plant in a scene and extract relevant features from it.
Apart from the boundary of the leaf, its texture and the structure
of its veins give significant information about the conditions of
the plant. It is therefore important to design optimized methods to
extract such information. This can be difficult to achieve in prac-
tice since the colour properties of the leaves can vary significantly
between different plants and can also be highly specific for some
type of species.

The contributions in this paper are the following:

• We will present a framework, which combines the principles
of group-theoretically designed filter systems, the statisti-
cal models of the extreme-value distributions (especially the
two-parameter Weibull distributions) and the tools from in-
formation geometry to define a cost function on the space of
filter design parameters, that allows us to design filter func-
tions by an optimization or selection process.

• We demonstrate the properties of the optimization crite-
rion in experiments where the only free parameters are the
weight coefficients for the R,G and B combination.

• We show that the selection process leads to weight vectors
that are useful in detecting salient regions in the image and
that provide a more detailed description of the structure in
the case of objects with a very narrow range of colours.

Filters and Weibull Distributions
In the following we will use filter functions based on the rep-

resentation theory of the dihedral groups which are the symmetry
groups of the square and the hexagonal grids. Specific details of
the construction are described extensively in [6, 7]. One property
that is important here, is the fact that these filter systems consist
of orthonormal vectors and one of the filter vectors consists of
constant coefficients only. From the orthogonality property, it fol-
lows that the sum of the filter coefficients of the non-constant filter
functions is always zero. We will use only the simplest filter func-
tions defined over a 3×3 neighbourhood, where it can be shown
that in that case all the filter coefficients have either the value one,
minus one or zero. They are therefore computed by additions and
subtractions only.

Since the filter kernels consist of an equal number of ones
and minus ones we can expect that a large proportion of the fil-
ter results will have a very small magnitude. Intuitively it is also
clear that the large magnitude filter results indicate visually im-



portant events and that the distribution of these non-zero filter
results should characterize the visual appearance. A important
class of statistical distributions that describe non-negative valued
stochastic variables are the extreme-value distributions. For these
filter systems previous work [11, 8, 5, 2, 4] has shown that for a
vast majority of images the distributions of the magnitude of these
filter responses follow these extreme value distributions. In these
studies the authors argued that without further a-priori knowledge
it seems reasonable to assume that the R, G and B channels in
colour images should be treated equally. Therefore the permu-
tation invariant combination R+G+B was used there. For many
image sources the three channels are obviously of different statis-
tical nature and in the following we will thus use the construction
of the weighted sum of the R, G and B channels as an example
demonstrating an application of the theoretical framework to be
described.

In this work, we follow the above mentioned research on
derivative filters and sums of correlated variables, and choose to
describe the statistical distributions of the filtered images by the 2-
parameter Weibull distribution. The probability density function
(pdf) of the (2-parameter) Weibull distribution is given by:

p(x,{k,λ}) =
e−(

x
λ )

k

k
( x

λ
)−1+k

λ
(1)

where k is the shape and λ is the scale parameter. It is defined
for positive values of x. The Weibull distribution and especially
its 3-parameter variant [11, 10], have shown very good fitting per-
formance with similar type of filtered data such as ours. The 3-
parameter version has an extra degree of freedom (location pa-
rameter), which gives the flexibility of fitting to a larger range
of filtered images. The disadvantage however is that the geom-
etry of the 3-parameter Weibull becomes very complicated (e.g.
the metric tensor vanishes) for any practical work to be carried
out. As such, we have opted to first fit a 3-parameter Weibull us-
ing MLE [11], extract the location parameter and then subtract it
from the data; effectively removing that extra degree of freedom
since it is of little interest. This gives us a 2-parameter Weibull,
with the same properties (scale and shape parameters) as in the 3-
parameter case, but now we have closed form expressions for all
the relevant components of the geometry of the Weibull manifold.
We will briefly describe these components in the next section.

The Geometry of the Weibull Distribution
From equation (1) we observe that the Weibull distribution

depends on two parameters, and we may consider every realisa-
tion from the same family as a point in the 2-dimensional Weibull
space. These two parameters act as the coordinate vector of that
point. In the framework of information geometry [1, 9], it is pos-
sible to consider the space of Weibull distributions as a manifold
with a Riemmanian geometry, in which properties such as dis-
tances, angles and geodesics may be defined. We give here only
an intuitive description of the necessary, basic concepts.

In Riemann geometry a manifold is a geometric object that
looks locally like a flat Euclidean space. In the case of the Weibull
distributions the manifold looks locally like a plane since it de-
pends on two variables and has thus two dimensions. On the
manifold one can define directional derivatives, which form the
tangent space at this point. The geometry is defined by a met-
ric on the tangent space at each point. This metric is given by

a symmetric positive matrix whose elements are traditionally de-
noted by gi j . In information geometry these are the elements of
the Fisher information matrix and are computed as

gi j =
∫ ∂ log p(x,θ)

∂θi

∂ log p(x,θ)
∂θ j

p(x,θ) dx (2)

where θ is the parameter vector of the distributions, p(x,θ) is the
the pdf and the integral is computed over the range of the distribu-
tion. The terms ∂ log p(x,θ

∂θi
measure how the pdf varies as a function

of the parameters and the integral is the expectation of the product
of these two partial derivatives. An equivalent expression is:

gi j =
∫ −∂ 2 log p(x,θ)

∂θi∂θ j
)p(x,θ) dx (3)

which is the expectation of the second order partial derivative of
the log-likelihood function − log p(x,θ).

For the two-parameter Weibull distribution the parameter
vector θ is given by the shape-scale pair {k,λ} and the three ele-
ments in the matrix defining the metric are given in [3] as:

g11 =
k2

λ 2 (4)

g12 =
γ −1

λ
(5)

g22 =
1−2γ + γ2 +π2/6

k2 , (6)

where γ ≈0.577216 is Euler’s constant.
For the specific case of 2× 2 metric tensors, their eigenval-

ues and eigenvectors as well as their combinations (e.g. trace) can
be computed analytically. In addition, these entities can be com-
puted with systems like Mathematica and we find for the trace the
following expression:

tr(gi j) =
6+6(−2+ γ)γ +π2 + 6k4

λ 2

6k2 . (7)

In Figures 1 and 2 we show a few typical example pdfs for
different parameter pairs of {k,λ}. We see that for lower val-
ues of shape and scale the mode of the distribution is near the
origin whereas for combinations of high shape and scale the con-
tributions are more concentrated away from the origin. Distribu-
tions with high scale and high shape values are therefore visually
more detailed and interesting. If we consider a filter operation
as a transformation from the original image to a scalar valued
image, it seems reasonable to favor transformations that lead to
high-scale/high-shape parameter pairs of the distributions of the
absolute filter results.

The metric tensor of a 2-parameter Weibull distribution de-
scribing the local geometric properties around a point in the man-
ifold, is a symmetric 2× 2 matrix and therefore given by three
elements. Geometrically, it is easier to describe its properties by
the trace, its eigenvalues and the orientation of the first eigenvec-
tor. Here we choose as descriptor the trace (7) of the matrix. The
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Figure 1. Weibull Distributions with Scale = 1.5, Shape = 0.8 and 2.0
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Figure 2. Weibull Distributions with Scale = 15, Shape = 0.8 and 2.0
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Figure 3. Weibull distributions trace as a function of the two parameters,

scale and shape. Small trace values imply large scale and shape combina-

tions.

plot of the trace in the region specified by the distributions in Fig-
ures 1 and 2, is illustrated in Figure 3. We see that low values
of the trace imply high-scale/high-shape parameter pairs and as
a result, we propose to select RGB weight vectors for which the
fitted Weibull distribution has minimum trace.

Experiments

In this section we illustrate the properties of our approach
by selecting RGB weight vectors that map RGB images to scalar
valued images. We have generated a collection of 81 different unit
vectors specifying the weight vectors. They represent 81 points
on the upper half sphere. For a collection of 15 different types of
leaves and all directions, we compute the filtered image, estimate
the Weibull parameters and compute the corresponding trace. We
consider each trace value as a vote for the corresponding weight
vector. The accumulated votes (trace values) measure how good
this weight vector performs for the whole class of leaves.

In Figure 5 we mark the positions on the upper half sphere
with “×” and for selected points we show the accumulated votes.
We also mark the position of the equal weight vector by “Iden-
tity” and the weight vector of the Matlab function RGB2Gray by
“Rgb2gray”. We see that for the class of green leaves both weight
vectors lie in a region of low votes which might explain their good
performance for the leaf-images. After applying the RGB map-
ping we use the following pairs of edge filters and compute the
magnitude of the resulting feature vector.

F1 =

 1 1 1
1 0 −1
−1 −1 −1

 F2 =

 1 −1 −1
1 0 −1
1 1 −1

 (8)

Following that, we estimate the Weibull parameters and compute
the trace. We then select the weight vector with the lowest trace.
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Figure 4. The scatter plot of the 81 RGB weight samples in the Weibull

(scale, shape) space. What is interesting to show is that the sample with

the minimum trace has a large scale and shape parameters and the sample

with the highest trace has the lower scale and shape parameters. Note that

this plot is only a Euclidean approximation of the manifold used for illustration

purposes only.
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Figure 5. 81 weight RGB samples as points in the upper half sphere. This

technique is used to determine the optimal mapping.

Figure 6. Lowest (left) and highest (right) trace value mapping results.

For large images (like the leaves) we optimized the mapping using
a small patch of 64 × 64 pixels from the interior of the leaf. For
the other, smaller images we used the full image. We present the
results as images of the magnitude of the resulting filter vectors.
These raw result images are then normalized to values between
zero and one and shown as black-and-white images.

In Figure 6 we see the results where we used the weight vec-
tor with the lowest trace value to obtain the left image and the
weight vector with the highest trace value to obtain the image on
the right. Just as expected, we see that the lowest trace choice
leads to a result with much more detailed information preserved,
especially in the vein structure of the leaf.

The adaptivity of the selection process is illustrated in the
next two Figures 7 and 8. Here we started with the original image
of the leaf. We then apply a RGB2HSV transformation in Mat-
lab and change the hue values by a common shift. The resulting
image is transformed back to RGB via HSV2RGB. We then ap-
plied the weight vectors with the lowest trace to obtain the image
on the left and a constant weight vector resulting in the image on
the right. Again we see that the lowest-trace solution results in a
much more detailed image.

A similar result, demonstrating the difference between adap-
tive weight selection and a fixed transformation, is shown in Fig-
ure 9. In these experiments we compare again the results of using
the trace-based weight vector with the identity vector. We see the
original image (left) together with the two filter results, one using
the trace-vector (centre) and the other the identity vector (left),
i.e. averaging of the RGB channels. The results are practically
identical.

In Figure 10 we see the same type of experiments now ap-
plied to a part of a purple leaf. We see that the trace based
mapping brings out much finer details than the identity mapping.
We also include a scatter plot in the Weibull scale, shape space
(Euclidean approximation) in Figure 4 of the 81 weight samples



Figure 7. An example of an adjusted HSV-blue leaf that we have used of

the comparison between the two mapping approaches.

Figure 8. RGB mappings of the HSV-blue leaf. The left is for our approach

with a low trace where important vein information is preserved. On the right

we show results from generic, constant grayscale conversion with loss of

detail.

taken. We see that, just like in Figure 3, low trace weights give
higher scale and are as such more informative and preserve more
of the finer details in the image.

Finally we show an example where the trace based weight-
ing leads to a selection of salient parts of the image that are vi-
sually much more important than the mere intensity based differ-
ences. The original image is shown in Figure 11 (a), the trace-
based result in Figure 11 (b) and the solution using Matlab’s
RGB2Gray weights in Figure 11 (c). Note that the RGB2Gray
function is using the CCIR 601 luma weights, with the formula
Y ′ = 0.299R+0.587G+0.114B. We see that the trace based im-
age brings out the red details in the original image while the stan-
dard map concentrates on the global intensity differences.

Conclusions
We showed that the Fisher information matrix of the Weibull

distribution provides a natural cost function which can be used to
map RGB images to scalar valued images with great richness in
detail. This approach has the advantage that on the input side it
is driven by the image statistics and therefore adaptive and tuned
to the input images under investigation. On the output side we as-
sume that the result of the processing follows the two-parameter
Weibull distribution which is often the case when the process-
ing consists of a linear filtering with filters of zero-mean coeffi-
cients. In the current illustration we only selected the R, G, and B
weight coefficients from a table of pre-defined unit vectors. Since
the quality of the processing is defined in terms of the statistical
properties of the processing results it is possible to generalize the
procedure to an optimization process where the general form of
the filter kernels can be learned from examples. The proposed op-
timality criterion can therefore be combined with the group theo-
retical filter design method which allows various combinations of
the group theoretically defined filter systems that are all equally
good regarding the group theoretical properties. Apart from the
technological advantage of defining a cost function that can be
used to derive filter functions from examples the proposed frame-
work should also be helpful in analyzing properties of other vision
systems, like those found in animals and humans, since it provides
a statistically motivated characterization of the usefulness of low-
level vision processes.
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Figure 9. SilverPatch. No significant differences between the two mappings and the same amount of details are preserved. Original image (left), trace-based

mapping (middle) and identity mapping (right).

Figure 10. Purple Patch. We can see that the Weibull trace mapping preserves much more details than the identity mapping. Original image (left), trace-based

mapping (middle) and identity mapping (right).

(a) (b) (c)
Figure 11. An example where the trace-based mapping can be used for saliency enhancement. If we compare this with Matlab’s RGB2Gray function we can

see that while our method still retains all the main edges and outlines in the image, similar to RGB2Gray, we can also highlight colour-salient regions in the

image (red structures in the tree). Note that the image colourmaps have been automatically scaled.


