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Linköping August 2014



Geometric Models for Rolling-shutter and Push-broom Sensors

c© 2014 Erik Ringaby

Department of Electrical Engineering
Linköping University
SE-581 83 Linköping
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Abstract

Almost all cell-phones and camcorders sold today are equipped with a CMOS
(Complementary Metal Oxide Semiconductor) image sensor and there is also a
general trend to incorporate CMOS sensors in other types of cameras. The CMOS
sensor has many advantages over the more conventional CCD (Charge-Coupled
Device) sensor such as lower power consumption, cheaper manufacturing and the
potential for on-chip processing. Nearly all CMOS sensors make use of what is
called a rolling shutter readout. Unlike a global shutter readout, which images
all the pixels at the same time, a rolling-shutter exposes the image row-by-row.
If a mechanical shutter is not used this will lead to geometric distortions in the
image when either the camera or the objects in the scene are moving. Smaller
cameras, like those in cell-phones, do not have mechanical shutters and systems
that do have them will not use them when recording video. The result will look
wobbly (jello effect), skewed or otherwise strange and this is often not desirable.
In addition, many computer vision algorithms assume that the camera used has a
global shutter and will break down if the distortions are too severe.

In airborne remote sensing it is common to use push-broom sensors. These
sensors exhibit a similar kind of distortion as that of a rolling-shutter camera, due
to the motion of the aircraft. If the acquired images are to be registered to maps
or other images, the distortions need to be suppressed.

The main contributions in this thesis are the development of the three-dimen-
sional models for rolling-shutter distortion correction. Previous attempts modelled
the distortions as taking place in the image plane, and we have shown that our
techniques give better results for hand-held camera motions. The basic idea is to
estimate the camera motion, not only between frames, but also the motion during
frame capture. The motion is estimated using image correspondences and with
these a non-linear optimisation problem is formulated and solved. All rows in
the rolling-shutter image are imaged at different times, and when the motion is
known, each row can be transformed to its rectified position. The same is true
when using depth sensors such as the Microsoft Kinect, and the thesis describes
how to estimate its 3D motion and how to rectify 3D point clouds.

In the thesis it has also been explored how to use similar techniques as for
the rolling-shutter case, to correct push-broom images. When a transformation
has been found, the images need to be resampled to a regular grid in order to be
visualised. This can be done in many ways and different methods have been tested
and adapted to the push-broom setup.

In addition to rolling-shutter distortions, hand-held footage often has shaky
camera motion. It is possible to do efficient video stabilisation in combination with
the rectification using rotation smoothing. Apart from these distortions, motion
blur is a big problem for hand-held photography. The images will be blurry due
to the camera motion and also noisy if taken in low light conditions. One of the
contributions in the thesis is a method which uses gyroscope measurements and
feature tracking to combine several images, taken with a smartphone, into one
resulting image with less blur and noise. This enables the user to take photos
which would have otherwise required a tripod.
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Populärvetenskaplig sammanfattning

Nästan alla mobiltelefoner och videokameror som säljs idag är utrustade med en
CMOS-bildsensor (Complementary Metal Oxide Semiconductor) och det finns
även en allmän trend att använda CMOS-sensorer i andra typer av kameror.
Sensorn har m̊anga fördelar jämfört med den mer konventionella CCD-sensorn
(Charge-Coupled Device) s̊asom lägre strömförbrukning, billigare tillverkning och
möjligheten att utföra beräkningar p̊a chippet. CMOS-sensorer i konsumentpro-
dukter använder sig av vad som kallas en rullande slutare. Till skillnad fr̊an en
global slutare, där alla pixlar avbildas samtidigt, s̊a exponerar en sensor med rul-
lande slutare bilden rad för rad. Kameror som använder rullande slutare kan liknas
vid en skanner som läser av ett papper rad för rad. Om man rör p̊a pappret un-
der tiden det skannas in s̊a kommer den slutgiltiga bilden att bli böjd eller v̊agig,
istället för rak som originalbilden. P̊a samma sätt kommer bilder och videor tagna
med en rullande slutare att uppvisa geometriska distorsioner (förvrängningar) om
antingen förem̊alen som filmas rör sig, eller om kameran själv flyttas. En meka-
nisk slutare avhjälper problemet, men dessa används inte vid videoinspelning och
mindre kameror, s̊asom de i mobiltelefoner, har ingen mekanisk slutare alls. Av-
handlingen har fokuserat p̊a metoder för att hantera de geometriska distorsioner
som uppkommer när kameran rör sig under exponering, främst genom handh̊allen
fotografering och videoinspelning. Många datorseendealgoritmer antar att den ka-
mera som används har en global slutare och kommer därför inte att fungera om
distorsionen är för stor, men med tekniker fr̊an denna avhandling blir det lättare
för forskare och konsumenter att använda kameror med rullande slutare.

De viktigaste bidragen i denna avhandling är nya tredimensionella modeller
för korrigering av distorsioner fr̊an rullande slutare. Tidigare metoder modellerade
distorsionerna i bildplanet och vi har visat att v̊ar teknik ger bättre resultat för
handh̊allna kamerarörelser. Den grundläggande idén är att uppskatta kamerans
rörelse, inte bara mellan bilder i en videosekvens, utan ocks̊a den rörelse som sker
under tiden en enskild bild tas. Rörelsen kan skattas med hjälp av matchning
av punkter mellan bilderna och genom att använda dessa kan ett matematiskt
problem formuleras och lösas. Alla rader i en bild tagen med rullande slutare
avbildas vid olika tidpunkter och när rörelsen för kameran är känd kan varje rad
flyttas till dess korrekta position.

Microsoft Kinect är ett tillbehör till Xbox 360 som registrerar människors
rörelser och tillhandah̊aller förutom färgbilder även bilder inneh̊allandes avst̊and
mellan sensorn och förem̊al i rummet. Tack vare möjligheten att erh̊alla avst̊ands-
bilder, tillsammans med det l̊aga priset har sensorn blivit populär att använda i
datorseendesystem och p̊a robotplattformar och om dessa är mobila kommer sen-
sorns rörelse att ge upphov till distorsioner b̊ade i färgbilder och i avst̊andsbilder
p̊a grund av användningen av rullande slutare. I avhandlingen beskrivs hur man
tar hänsyn till detta genom skattning av sensorns 3D-rörelse med efterföljande
korrektion av 3D-punkter.

I luftburen fjärranalys är det vanligt att använda push-broomsensorer. Dessa
sensorer uppvisar en liknande typ av förvrängning som för en kamera med rullande
slutare, p̊a grund av rörelsen hos flygplanet. I avhandlingen undersöks hur man
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använder liknande tekniker som i fallet med rullande slutare för att rätta till push-
broombilder och även olika metoder för att visualisera de korrigerade bilderna.

Förutom distorsioner uppkomna p̊a grund av rullande slutare s̊a har handh̊allna
videoupptagningar ofta skakig kamerarörelse. Avhandlingen beskriver hur man
gör effektiv videostabilisering, i kombination med borttagning av de geometriska
distorsionerna. Utöver dessa distorsioner s̊a är rörelseoskärpa ett stort problem
vid handh̊allen fotografering. Bilderna blir suddiga p̊a grund av att den som tar
bilderna inte kan h̊alla kameran stilla och bilderna blir även brusiga om de är
tagna i d̊aliga ljusförh̊allanden. Ett av bidragen i avhandlingen är en metod, som
med hjälp av gyroskopmätningar och matchning av bildpunkter kombinerar flera
bilder tagna med en mobiltelefon till en slutgiltig bild med b̊ade mindre brus och
rörelseoskärpa. Detta medför att användaren kan ta bilder som annars skulle kräva
att ett stativ används.
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Chapter 1

Introduction

1.1 Motivation

Almost all cell-phones and camcorders sold today are equipped with a CMOS
(Complementary Metal Oxide Semiconductor) image sensor and there is also a
general trend to incorporate CMOS sensors in other types of cameras. The sensor
has many advantages over the more conventional CCD (Charge-Coupled Device)
sensor such as lower power consumption, cheaper manufacturing and the potential
for on-chip processing. Nearly all CMOS sensors make use of what is called a
rolling shutter readout. Unlike a global shutter readout, which images all the pixels
at the same time, a rolling-shutter camera exposes the image row-by-row. If a
mechanical shutter is not used this will lead to geometric distortions in the image
when either the camera or the objects in the scene are moving. Smaller cam-
eras, like those in cell-phones, do not have mechanical shutters and systems which
do have them will not use them when recording video. Figure 1.1 shows some
examples of different distortions. The top left shows skew caused by a panning
motion, the top right shows distortions caused by a 3D rotation and the bottom
left shows distortions from a fast moving object (note that the car and the wheels
are distorted differently). Almost all computer vision algorithms assume that the
camera used has a global shutter. The work in this thesis will enable people to
also use rolling-shutter cameras and is focused on distortions caused by camera
motion, e.g. top row in figure 1.1.

In airborne remote sensing it is common to use push-broom sensors. These
sensors exhibit a similar kind of distortion as a rolling-shutter camera, due to the
motion of the aircraft, see figure 1.1 bottom right for an example. If the acquired
images are to be registered with maps or other images, the distortions need to be
suppressed. In this thesis it has been explored how to use similar techniques as
for the rolling-shutter case in order to correct push-broom images.

The work leading to this thesis was conducted within the Virtual Global Shut-
ters for CMOS Cameras project, and papers D and E in collaboration with the
Swedish Defence Research Agency (FOI).

3
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Figure 1.1: Geometric distortions in images. Top left: slanted house due to camera
pan. Top right: bent pole due to camera 3D rotation. Bottom left: slanted car
and curved wheels due to fast object motion. Bottom right: curved path in push-
broom image due to aircraft motion.
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1.2 Outline

The thesis is divided into two parts. The first part gives a background to the
theory and sensors used in my work. The second part consists of six publications
covering rolling-shutter and push-broom distortions.

1.2.1 Outline Part I: Background

The background part starts with chapter 2 which describes the sensors used in the
publications. Chapter 3 introduces the camera models. Chapter 4 describes sensor
motion estimation and how to correct for geometric distortions together with the
application of video stabilisation and stacking. Chapter 5 describes the evaluation
measures used, and how the ground-truth dataset was generated. The first part
ends with chapter 6, concluding remarks.

1.2.2 Outline Part II: Included Publications

Preprint versions of six publications are included in Part II. The full details and
abstracts of these papers, together with statements of the contributions made by
the authors, are given below.

Paper A: Rectifying rolling shutter video from hand-held devices

Per-Erik Forssén and Erik Ringaby. Rectifying rolling shutter video
from hand-held devices. In IEEE Conference on Computer Vision
and Pattern Recognition, San Francisco, USA, 2010. IEEE Computer
Society.

Abstract:
This paper presents a method for rectifying video sequences from rolling shutter
(RS) cameras. In contrast to previous RS rectification attempts we model dis-
tortions as being caused by the 3D motion of the camera. The camera motion
is parametrised as a continuous curve, with knots at the last row of each frame.
Curve parameters are solved for using non-linear least squares over inter-frame
correspondences obtained from a KLT tracker. We have generated synthetic RS
sequences with associated ground-truth to allow controlled evaluation. Using these
sequences, we demonstrate that our algorithm improves over to two previously
published methods. The RS dataset is available on the web to allow comparison
with other methods.
Contribution:
This paper was the first to correct rolling-shutter distortions by modelling the 3D
camera motion. It also introduced the first rolling-shutter dataset. The author
contributed to the rotation motion model, produced the dataset, and conducted
the experiments.
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Paper B: Efficient Video Rectification and Stabilisation for Cell-Phones

Erik Ringaby and Per-Erik Forssén. Efficient video rectification and
stabilisation for cell-phones. International Journal of Computer Vision,
96(3):335–352, 2012.

Abstract:
This article presents a method for rectifying and stabilising video from cell-phones
with rolling shutter (RS) cameras. Due to size constraints, cell-phone cameras
have constant, or near constant focal length, making them an ideal application for
calibrated projective geometry. In contrast to previous RS rectification attempts
that model distortions in the image plane, we model the 3D rotation of the camera.
We parameterise the camera rotation as a continuous curve, with knots distributed
across a short frame interval. Curve parameters are found using non-linear least
squares over inter-frame correspondences from a KLT tracker. By smoothing a
sequence of reference rotations from the estimated curve, we can at a small extra
cost, obtain a high-quality image stabilisation. Using synthetic RS sequences with
associated ground-truth, we demonstrate that our rectification improves over two
other methods. We also compare our video stabilisation with the methods in
iMovie and Deshaker.
Contribution:
This paper extends paper A, by allowing camera motions that are non constant
during a frame capture, a new GPU-based forward interpolation, and the appli-
cation of video stabilisation. The author was the main source of the findings for
the importance of spline knot positions, the GPU based interpolation, and imple-
mented the stabilisation.

Paper C: Scan Rectification for Structured Light Range Sensors with
Rolling Shutters

Erik Ringaby and Per-Erik Forssén. Scan rectification for structured
light range sensors with rolling shutters. In IEEE International Con-
ference on Computer Vision, Barcelona, Spain, November 2011. IEEE
Computer Society

Abstract:
Structured light range sensors, such as the Microsoft Kinect, have recently become
popular as perception devices for computer vision and robotic systems. These
sensors use CMOS imaging chips with electronic rolling shutters (ERS). When
using such a sensor on a moving platform, both the image, and the depth map, will
exhibit geometric distortions. We introduce an algorithm that can suppress such
distortions, by rectifying the 3D point clouds from the range sensor. This is done by
first estimating the time continuous 3D camera trajectory, and then transforming
the 3D points to where they would have been, if the camera had been stationary.
To ensure that image and range data are synchronous, the camera trajectory
is computed from KLT tracks on the structured-light frames, after suppressing
the structured-light pattern. We evaluate our rectification, by measuring angles
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between the visible sides of a cube, before and after rectification. We also measure
how much better the 3D point clouds can be aligned after rectification. The
obtained improvement is also related to the actual rotational velocity, measured
using a MEMS gyroscope.
Contribution: This paper was the first to address the rolling-shutter problem
on range scan sensors. Compared to paper A and paper B, the cost function is
defined on 3D features, and the full 6 DOF motion can be estimated and corrected
for. The author contributed to the motion estimation, feature rejection steps, and
the experiments.

Paper D: Co-alignment of Aerial Push-Broom Strips using Trajectory
Smoothness Constraints

Erik Ringaby, Jörgen Ahlberg, Per-Erik Forssén, and Niclas Wadströmer.
Co-alignment of aerial push-broom strips using trajectory smoothness
constraints. In Proceedings SSBA’10 Symposium on Image Analysis,
pages 63–66, March 2010

Abstract:
We study the problem of registering a sequence of scan lines (a strip) from an
airborne push-broom imager to another sequence partly covering the same area.
Such a registration has to compensate for deformations caused by attitude and
speed changes in the aircraft. The registration is challenging, as both strips contain
such deformations.

Our algorithm estimates the 3D rotation of the camera for each scan line, by
parametrising it as a linear spline with a number of knots evenly distributed in one
of the strips. The rotations are estimated from correspondences between strips of
the same area. Once the rotations are known, they can be compensated for, and
each line of pixels can be transformed such that the ground trace of the two strips
are registered with respect to each other.
Contribution: This paper explored the possibility of using the previously in-
troduced rolling-shutter correction scheme to register push-broom strips, by using
smoothness constraints. The author contributed to the registration and conducted
the experiments.

Paper E: Anisotropic Scattered Data Interpolation for Pushbroom Im-
age Rectification

Erik Ringaby, Ola Friman, Per-Erik Forssén, Thomas Opsahl, Trym Ve-
gard Haavardsholm, and Ingebjørg K̊asen. Anisotropic scattered data
interpolation for pushbroom image rectification. IEEE Transactions in
Image Processing, 2014

Abstract:
This article deals with fast and accurate visualization of pushbroom image data
from airborne and spaceborne platforms. A pushbroom sensor acquires images
in a line-scanning fashion, and this results in scattered input data that needs
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to be resampled onto a uniform grid for geometrically correct visualization. To
this end, we model the anisotropic spatial dependence structure caused by the
acquisition process. Several methods for scattered data interpolation are then
adapted to handle the induced anisotropic metric and compared for the pushbroom
image rectification problem. A trick that exploits the semi-ordered line structure
of pushbroom data to improve the computational complexity several orders of
magnitude is also presented.
Contribution: This paper models the spatial dependence structure of push-
broom data and is shown to be anisotropic. Five methods for scattered data
interpolation are extended to handle the anisotropic nature of pushbroom data
and compared for the image rectification problem. The author contributed to the
extension of the forward interpolation method, the surface structure model and
conducted the experiments.

Paper F: A Virtual Tripod for Hand-held Video Stacking on Smart-
phones

Erik Ringaby and Per-Erik Forssén. A virtual tripod for hand-held
video stacking on smartphones. In IEEE International Conference on
Computational Photography, Santa Clara, USA, May 2014. IEEE Com-
puter Society

Abstract:
We propose an algorithm that can capture sharp, low-noise images in low-light
conditions on a hand-held smartphone. We make use of the recent ability to acquire
bursts of high resolution images on high-end models such as the iPhone5s. Frames
are aligned, or stacked, using rolling shutter correction, based on motion estimated
from the built-in gyro sensors and image feature tracking. After stacking, the
images may be combined, using e.g. averaging to produce a sharp, low-noise photo.
We have tested the algorithm on a variety of different scenes, using several different
smartphones. We compare our method to denoising, direct stacking, as well as a
global-shutter based stacking, with favourable results.
Contribution: This paper explores the possibility to use gyroscope measure-
ments to reduce rolling-shutter artifacts and register several images in order to cre-
ate an image stack, resulting in a low-noise sharp image. The author contributed
to the implementation of the iOS data collection application, gyroscope bias and
gyroscope/frame synchronisation optimisation, translation model and conducted
the experiments.

Other Publications

The following publications by the author are related to the included papers.

Gustav Hanning, Nicklas Forslöw, Per-Erik Forssén, Erik Ringaby,
David Törnqvist, and Jonas Callmer. Stabilizing cell phone video us-
ing inertial measurement sensors. In The Second IEEE International
Workshop on Mobile Vision, Barcelona, Spain, November 2011. IEEE.
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Johan Hedborg, Erik Ringaby, Per-Erik Forssén, and Michael Felsberg.
Structure and motion estimation from rolling shutter video. In The
Second IEEE International Workshop on Mobile Vision, Barcelona,
Spain, November 2011.

Johan Hedborg, Per-Erik Forssén, Michael Felsberg, and Erik Ringaby.
Rolling shutter bundle adjustment. In IEEE Conference on Computer
Vision and Pattern Recognition, Providence, Rhode Island, USA, June
2012. IEEE Computer Society.

Erik Ringaby, Jörgen Ahlberg, Niclas Wadströmer, and Per-Erik Forssén.
Co-aligning aerial hyperspectral push-broom strips for change detec-
tion. In Proceedings of SPIE Security+Defence, volume 7835, Tolouse,
France, September 2010. SPIE, SPIE Digital Library.
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Chapter 2

Sensors

All imaging sensors used in this thesis share the property of sequential acquisition
of an image frame. How the sensors work will be described in the following sections.

2.1 Rolling-shutter sensors

The function of a camera shutter is to allow light to pass through for a determined
period of time. The shutter used can either be mechanical or electronic and have
a global, block or rolling exposure method. In a global-shutter camera, all pixels
in a frame are imaged at a single time instance. Rolling shutter on the other
hand is a technique used when acquiring images by scanning the frame. Instead of
imaging the scene at a single time instance, the image rows are sequentially reset
and read out. The rows which are not being read out continue to be exposed.
Figure 2.1 shows the difference between image integration with a global-shutter
and rolling-shutter camera. The rolling-shutter method has the advantage of longer
integration times, as shown in the bottom figure, which increases the sensitivity.

The two most common image sensors used in digital cameras are the CCD
(Charge-Coupled Device) and the CMOS (Complementary Metal Oxide Semicon-
ductor) image sensors. Generally, CCD sensors use global shutters and CMOS
use rolling shutters. There are CMOS sensors with a global shutter, where all the
pixels are exposed to light at the same time and at the end of integration time
they are transferred to a light-shielded storage area simultaneously. After this the
signals are read out.

In addition to increased sensitivity, the CMOS sensors are also cheaper to
manufacture, they use less power and it is also simple to integrate other kind of
electronics on the chip. Almost all camera-equipped cell-phones make use of a
rolling shutter and the CMOS sensor is gradually replacing the CCD sensor in
other segments such as camcorders and video capable SLR’s. The rolling shutter
will however introduce distortions when the scene or camera is moving, and the
amount of these distortions depend on how fast the shutter “rolls”. A rule of thumb
is that the higher the resolution is, the slower the sensor will be, and furthermore

11
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Global shutter Rolling shutter
Frame 2Frame 1

Line 1

Frame 1

Line 2

Line 3

Line 4
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Integration Readout Integration Readout Readout

Global shutter Rolling shutter
Frame 2Frame 1
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Line 2
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Frame 1
Integration Readout Integration Readout Readout

Figure 2.1: Global-shutter and rolling-shutter image integration.

expensive sensors are usually faster. Almost all computer vision algorithms assume
a global-shutter camera, but techniques from this thesis allow researchers and
others to also use rolling-shutter cameras.

2.2 Kinect sensor

In 2010, Microsoft released the Kinect sensor which is designed to provide motion
input to the Xbox 360 gaming device. The sensor has gained popularity in the
vision community due to its ability to deliver quasi-dense depth maps in 30 Hz,
combined with a low price. The hardware consists of a near infrared (NIR) laser
projector (A), a CMOS colour sensor (B) and a NIR CMOS sensor (C), see figure
2.2.

The laser projector is used to project a structured light pattern onto the scene.
The NIR CMOS sensor images this pattern and the device uses triangulation to
create a depth map. The image resolution is 640 × 480 when using an update
of 30 Hz, but it is also possible to receive NIR and colour frames in 1280 × 1024
resolution. The depth map can be obtained at the same time as either the NIR
image or the colour image, but the colour and NIR images cannot be obtained at
the same time.

Both the NIR and colour sensors have electronic rolling shutters. Since the
Kinect sensor is designed to be stationary and objects in front of it do not move
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Figure 2.2: The Kinect sensor, (A) NIR laser projector, (B) CMOS colour sensor,
(C) CMOS NIR sensor

Figure 2.3: Distortions (straight pole and wall look bent) in the NIR and depth
images caused by fast sensor motion.

that fast (or very close to the sensor), the rolling-shutter distortions are usually
not a big problem. If on the other hand the sensor is used on a mobile platform
it will have noticeable distortions, see figure 2.3 for an example of a fast rotation.
The straight pole and the wall look bent due to the moving sensor. The two image
sensors are not synchronised, so the same rows in the depth image and the colour
image are, in general, not imaged at the same time.

2.3 Push-broom sensors

Push-broom sensors are commonly used in airborne remote sensing. The images,
also called strips or swaths, from a push-broom sensor have similar geometric
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Figure 2.4: Left: How the 1D sensor “paints” the image. Right: Different spectral
bands separated on the sensor using a prism.

distortions to those from a rolling-shutter sensor, but the sensors differ a great
deal in their design.

Instead of capturing a two dimensional image, the sensor has a single line of
pixels and “paints” the image by exploiting the ego-motion of the moving platform,
see figure 2.4 left. The sensor itself is two dimensional and a prism refracts the
light into different wavelengths along one of the axes of the hyper-spectral sensor
(figure 2.4, right). The number of spectral bands depends on the sensor used.

If the imaging platform (e.g. aircraft) moves in a linear trajectory we would
have to solve a simple problem, but this rarely the case. When the aircraft rotates,
or moves away from the path, geometric distortions will be present in the image,
see figure 1.1 bottom right.

There are also hyper-spectral sensors which use two spatial dimensions, but
record the different wavelengths at different time steps. In this case, the regis-
tration has to be done across different spectral bands instead, but that is not
considered here.

2.4 Gyroscope sensors

A gyroscope sensor measures angular velocities and is used in some of the work
presented in this thesis. There exist different types of gyroscopes such as mechan-
ical, solid-state ring lasers, fibre-optic and quantum gyroscopes. Many modern
smartphones today make use of Micro-Electro-Mechanical Systems (MEMS) tech-
nology where it is common that the device includes multiple-axis gyroscope and
accelerometers. A three-axis gyroscope enables the calculation of the device yaw,
pitch and roll and has been used in the experiments described in paper F.

2.5 Other sensors

Other imaging sensors with similar geometry to rolling shutter, but not covered
in this thesis are crossed-slits [28], and moving LIDAR[4, 3].



Chapter 3

Camera models

Some computer vision algorithms operate only in the image plane and do not care
which camera has been used to record the image. In this work a model for the
camera is needed, and we are using the pin-hole camera model. The following
sections will describe the standard (global-shutter) model, and our rolling-shutter
version. Lens distortions are not considered in this work.

3.1 Pin-hole camera with global shutter

The pin-hole camera model is a simple model which describes how 3D points in
the world project onto the image plane. The camera aperture corresponds to a
point and no lenses are used to describe the focusing of light. Figure 3.1 shows
how a 3D object projects onto an image plane.

The relationship seen in figure 3.1 can be expressed as:

x

f
=
X

Z
(3.1)

y

f
=
Y

Z
. (3.2)

This relationship, together with a translation of the origin, skew and aspect
ratio can also be described in matrix notation using homogeneous coordinates:



λx
λy
λ


 =



f s cx
0 fα cy
0 0 1





X
Y
Z


 (3.3)

x = KX. (3.4)

The matrix K contains the intrinsic or internal camera parameters, and de-
scribes how the camera transforms the inhomogeneous point X onto the image. cx
and cy describe the translation of the principal point required to move the origin

15
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Figure 3.1: The pinhole camera model projects a 3D point X onto the image plane.

into image coordinates. The focal length f , in x and y direction may be different
due to the aspect ratio α. The pixels may also be skewed, but in most cases s = 0.

Cameras used in this thesis, e.g. the one in iPhone 3GS, have a (near) constant
focal length, which enables us to calibrate the camera once. We have also seen
that transferring the intrinsic camera parameters between smartphone cameras of
the same model works well. See section 3.4 for how the parameters are calibrated.

The extrinsic or external camera parameters describe how the camera relates
to a world coordinate system. This relation, or transformation, can be described
as a translation d and a rotation R and expressed as a matrix multiplication:

x = K[R|d]X̃, (3.5)

where X̃ is a homogeneous point, i.e. X̃ = [XT 1]T .

3.2 Pin-hole camera with rolling shutter

When a rolling-shutter camera is stationary and is imaging a rigid scene, the
same model as the global-shutter case may be used. The model must however
be changed when the camera is moving. The internal camera parameters are still
the same (we have fixed focal lengths), but the external parameters are now time
dependent. By assuming that the scanning begins at the top row, down to the
bottom row we get:

x = K[R(t)|d(t)]X̃, (3.6)

where t = 0 represents the first row of the frame.
With this representation we can describe the camera’s positions and orienta-

tions during a frame capture, and correct for the geometric distortions due to this
motion.
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3.2.1 Motion models

Instead of modelling the full camera motion as the source of the distortions one can
simplify the model to three different special cases: pure rotation, pure translation
and imaging of a planar scene. By choosing one of these models the estimation is
simplified, which will be described in section 4.2. The pure rotation case assumes
that the camera only rotates around the optical centre, which simplifies equation
3.6 to:

x = KR(t)X. (3.7)

If the camera is imaging a planar scene the motion can be described by:

x = KR(t)(X + d(t)) = KR(t)D(t)X̂ , (3.8)

where D =




1 0 d1

0 1 d2

0 0 d3


 , (3.9)

and X̂ is a three element vector containing the non-zero elements of X, and a 1 in
the third position. If the motion is a pure translation, 3.8 simplifies to:

x = KD(t)X̂ . (3.10)

In paper A we came to the conclusion that the rotation model was the best
for hand-held camera motions. When a user holds the camera, the main cause for
the motion (and also the cause for the distortions) is rotation. If we only look at
changes during a short time interval, e.g. 2-3 frames, the camera does not translate
significantly. There are however notable exceptions to this, where the translation
is the dominant component e.g. footage from a moving platform, such as a car.

3.3 Motion Blur

Other than rolling-shutter distortions, motion blur is a big problem for hand-
held footage. Motion blur becomes apparent when something changes during the
integration of the image and can be due to camera motion or moving objects, just
as for the rolling-shutter case. If the exposure time is shortened, the blur will
be reduced but at the same time more noise will be present. Therefore this is
mostly an issue during image capture in low light conditions and is present both
for cameras with global and rolling shutters.

Many methods try to estimate the camera motion during image capture, or the
blur kernel, in order to deblur the image and obtain a sharp version. In this thesis
the camera motion is estimated for several frames, which are then registered and
stacked together in order to get one sharp image, called video stacking. Instead of
using one long exposure, with resultant blurring, many short exposures are used
in sequence. When the photographer has a static aim (i.e. tries to aim at a fixed
point in space), these individual exposures tend to have blur smears in a random
distribution of directions. This means that when the frames are aligned we obtain
an effective point spread function (PSF) that is much more compact than one from
a single long exposure, as can be seen in figure 3.2.
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Figure 3.2: Illustration of video stacking idea. Top left: Trace of central pixel
where colours indicate time, ranging from red to green. Thick segments indicate
individual exposures. Top right: Alignment of the exposure segments. Bottom
left: Iso contours of the effective PSF. Bottom right: Corresponding iso contours
for a Gaussian with σ = 0.5.

3.4 Camera calibration

The algorithms in this thesis require calibrated cameras. We use the OpenCV
implementation of Zhang’s method [27] for camera calibration, which requires a
number of images of a planar checkerboard pattern from different orientations.
The intrinsic parameters K, see section 3.1, are acquired this way and the lens
distortion parameters are neglected.

On a rolling-shutter camera, an additional parameter also needs to be esti-
mated, the readout time. The rolling-shutter chip frame period 1/f (where f is
the frame rate) is divided into a readout time tr, and an inter-frame delay, td as:

1/f = tr + td . (3.11)

Figure 3.3 shows this relation. The inter-frame delay is useful to know when the
continuous camera motion is estimated. For more details on the readout time
calibration, see Appendix A in paper B.
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Figure 3.3: Relation between the frame period 1/f , readout time tr, and inter-
frame delay td.

3.5 Push-broom model

The push-broom sensor exploits the ego-motion of the moving platform when
creating the image. We do however neglect the translational component of the
motion and model the distortion of a strip as a sequence of rotation homographies:

H(t) = KR(t)K−1 . (3.12)

This means that we model the sensor as rotating purely about its optical centre
and thus the imaged ground patch is modelled as being on the interior surface of
a sphere. This will cause some distortions in the reconstruction, but if the radius
of the sphere (i.e. the aircraft altitude) is large enough (compared to the strip
length), this distortion is small.
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Chapter 4

Geometric distortion
correction

The distortions corrected for in this thesis are those caused by motion of the sensor.
This is done by exploiting the continuity of the camera motion in rolling-shutter
video. Feature points are detected and tracked across frames and used to estimate
the camera ego-motion, or synchronisation with a gyroscope. The distortions are
more severe when shooting video compared to pictures, since the user usually tries
to hold the camera steady for pictures, but it is still necessary to do correction
when combining several images or when high precision is needed. When depth is
available, as for the Kinect sensor, the 3D points can also be used to estimate the
motion.

Co-alignment of push-broom strips is a bit different since each strip comes from
a single flight and we typically only have a few strips (compared to many frames
in a video). Also, they might not overlap as much as two consecutive frames in a
video, but within each strip the sensor has a continuous motion.

4.1 Point correspondences

For rolling-shutter video we detect points using the good features to track detector
[24]. These are then tracked using the KLT-tracker [14] in order to acquire cor-
respondences across frames. The KLT-tracker uses an image patch in one image
and estimates the patch position in the next frame. It does so by using a spatial
intensity gradient search which minimises the Euclidean distance between the cor-
responding patches. To be able to cope with large motions we use a scale pyramid
approach.

We employ a cross-checking step, as in [2], which uses an additional tracking
from the second image back to the first one. Only those points which return to
their original position are regarded as inliers. Figure 4.1 shows points rejected
using a threshold of 0.5 pixels in red and accepted points in green.

21
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Figure 4.1: Tracked points between two frames. Rejected points in red, and ac-
cepted points in green.

Since push-broom strips are acquired at different times, tracking is difficult to
do. Less overlap than between video frames and also larger changes in illumination
makes feature matching a more suitable method for correspondence search than
e.g. KLT. We use SIFT features [13] and match them to acquire correspondences
for an initial registration of the strips.

4.2 Camera Motion estimation

The sparse point correspondences can be used to estimate the camera motion.
The assumption is that the camera is moving in a static scene, so all displacement
vectors are due to camera motion.

The camera motion is estimated through iterative non-linear least squares
(Levenberg- Marquardt) by minimisation of the cost function associated with the
camera motion model.

Since the image rows are exposed at different times, one would like to have the
camera pose for each of them. This will result in a high number of parameters to
be estimated and we therefore model the motion as a spline. In that way, we only
estimate the parameters for a certain number of points along this curve, called
knots. This spline exploits that the motion is smooth and interpolates all needed
poses between the knots.
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4.2.1 Motion parametrisation

In section 3.2 the different motion models were described and for the full model
the motion is represented as a sequence of rotations and translations (the knots).
The translations are represented as a three element vector and the rotation can be
represented as a 3× 3 matrix R, a unit quaternion, or a three element axis-angle
vector n = φn̂. n̂ is the corresponding unit vector to n, which defines the axis
where the rotation is taking place and φ is the magnitude of n which corresponds
to the rotation angle around the axis. Most of the work here make use of the axis-
angle representation during the optimisation, since it is a minimal representation
of a 3D rotation.

Converting from this representation to a rotation matrix is done using the
matrix exponent, which for rotations simplifies to Rodrigues formula:

R = expm(n) = I + [n̂]x sinφ+ [n̂]2x(1− cosφ) (4.1)

where [n̂]x =
1

φ




0 −n3 n2

n3 0 −n1

−n2 n1 0


 . (4.2)

To convert a rotation matrix back to vector form, the matrix logarithm can be
used and for rotations the following closed form exists:

n = logm(R) = φn̂ , where





ñ =



r32 − r23

r13 − r31

r21 − r12




φ = tan−1(||ñ||, trR− 1)

n̂ = ñ/||ñ|| .

(4.3)

Interpolation

For interpolation of translations we are using a linear interpolation:

dinterp = (1− w)d1 + wd2 , (4.4)

where d1 and d2 are two translation vectors (three elements) and w ∈ [0, 1] is the
weight parameter.

Interpolation of rotations is slightly more complicated due to the periodic
structure of SO(3). In most of the work here we use SLERP (Spherical Linear
intERPolation) [25] with an interpolation parameter τ ∈ [0, 1] between two knot
rotations:

ndiff = logm (expm(−n1)expm(n2)) (4.5)

Rinterp = expm(n1)expm(τndiff). (4.6)

n1 and n2 are two rotation axis-angle vectors and Rinterp is the resulting rotation
matrix.

SLERP gives constant-speed transition between two rotations and is the short-
est path on the rotation manifold (geodesic). Many other splines exist for doing
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the rotation interpolation and in paper F we compare SLERP, Cubic, Quartic and
B-splines.

4.2.2 Optimisation

By assuming that the row which is exposed first is the top one, the row number
is proportional to time. When using the rotation only model, two corresponding
homogeneous image points x, and y are projected from the 3D point X as:

x = KR(Nx)X , and y = KR(Ny)X (4.7)

where Nx and Ny correspond to the time parameters, e.g. the row number for
point x and y respectively. This gives us the relation:

x = KR(Nx)RT (Ny)K−1y = Hy . (4.8)

The positions of the knots are discussed in paper B. When these positions have
been decided, the rotation from an arbitrary row Ncurr (relative to the first row in
the first image) is acquired by:

R = spline(nm,nm+1, τ) , for (4.9)

τ =
Ncurr −Nm

Nm+1 −Nm
, where Nm ≤ Ncurr ≤ Nm+1, (4.10)

and Nm, Nm+1 are the two neighbouring knot times.
The cost function to be minimised is the summed (symmetric) image-plane

residuals of a set of corresponding points xk ↔ yk:

J =

K∑

k=1

d(xk,Hyk)2 + d(yk,H
−1xk)2, (4.11)

where d(x,y)2 = (x1/x3 − y1/y3)2 + (x2/x3 − y2/y3)2 . (4.12)

Here K is the total number of correspondences between two images. It is also
possible to use correspondences from more than two images in the cost function.
When using the rotation only model, H is defined in (4.8), and here it would be
beneficial to use a small number of frames per optimisation, in case the motion
also includes translations. When using the planar scene model from equation 3.8,
H is defined by:

H = KR(Nx)D(Nx)D(Ny)−1RT (Ny)K−1. (4.13)

If the rotations are replaced with the identity matrix, the pure translation case is
estimated instead.

Full motion estimation

If the 3D points X also are known, as in paper C, the cost function can be defined
on these instead, resulting in estimation of the full 6 degrees-of-freedom camera
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motion imaging an arbitrary scene. If X1 and X2 are two corresponding 3D points
reconstructed from two different images and depth maps, they can be transformed
to the position X0. This is the position where the reconstructed point should have
been, if it was imaged at the same time as the first row in the first image:

X0 = R(N1)X1 + d(N1) (4.14)

X0 = R(N2)X2 + d(N2). (4.15)

By assuming that the scene is static, the difference between these points can be
used to estimate the motion, resulting in the minimisation of:

J =

K∑

k=1

||R(N1,k)X1,k + d(N1,k)−

R(N2,k)X2,k − d(N2,k)||2, (4.16)

where N1,k and N2,k are the rows where the kth 3D point is observed in the first
and second image respectively.

Gyroscope-camera synchronisation

Instead of using visual features to estimate the camera motion, other sensors such
as gyroscopes and accelerometers can be used. In this case it is necessary to
make sure that the camera’s and sensor’s coordinate systems are aligned. In the
thesis different smartphone devices are used where the two coordinate systems are
assumed to have the same origin and a global transformation can be determined
manually once for every smartphone model.

In addition to the coordinate systems it is important to have the two different
inputs synchronised. The time delay between the two sources can be estimated by
minimising the residuals in equation 4.11 where the points are obtained by image
feature tracking. Here, instead of estimating the camera rotation at the knots,
angular velocities are given at specific time stamps and can be integrated and
interpolated to an orientation corresponding to the time the point where imaged.
The timestamp for the gyroscope, tgyro, is related to the frame timestamp ti as in
equation 4.17:

tgyro = ti + tr
x2

h
+ tdelay, (4.17)

where tr is the readout time described in section 3.4, x2 the current row for the
point, h the frame hight and tdelay is the time delay we would like to estimate.

To improve the performance even further we use the gyroscope sample model
g = ĝ + b, where g is the observed sample and b is the gyroscope bias. The bias
corrected gyroscope samples are then integrated to obtain an orientation sequence.

4.3 Image rectification

In this thesis image rectification is the process of resampling the input image to
a version which looks more rigid. When the camera motion has been estimated,
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Figure 4.2: Left: Distorted input image. Right: Rectified output image.

i.e. its pose at the time instances of the knots (which corresponds to a certain
image row) the poses for all the image rows can be acquired through interpolation.
By using a regular grid on the input image, each row can be transformed by a
different homography to create the forward mapping. The coordinate system to
be transformed to can be chosen as a specific row, e.g. the one corresponding to
the first or middle row of the image. This means that this reference row will be
exactly the same in the input image and the rectified image. When using a pure
rotation as motion model the rectification equation becomes:

x′ = KRrefR
T (N)K−1x, (4.18)

where x is the input image coordinate, x′ its rectified position, RT the rotation
corresponding to the time instance the pixel was imaged and Rref the rotation for
chosen reference row.

If equation 4.18 is reversed, the equation for the inverse mapping becomes:

x = KR(N)RT
refK

−1x′ . (4.19)

It is not possible to use this inverse interpolation correctly, since different pixels
within a row should be transformed with different homographies, see figure 4.2.
The pixels within a row in the input image do however share the same homography
and can be used to correctly transform the image.

If the depth is known, the 3D points can be rectified by:

X′ = Rref(R(N)X + d(N)) + dref, (4.20)

where X is the original distorted 3D point and X′ is the rectified version. Also, if
the depth map and video frame are to be rectified, X′ can be projected back to
the image plane and the corresponding intensity or depth value can be saved.

4.3.1 Image resampling

When the forward mapping has been calculated, the image must be resampled to a
regular grid in order to be visualised, and this can be done in different ways. This
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Figure 4.3: Illustration of the splatting method. In this case an input pixel (left)
is smeared into a 3× 3 region in the output grid (right).

scattered data interpolation can be divided into two different schemes: inverse and
forward interpolation and in paper E five different methods are compared using
push-broom data. An inverse interpolation means that each point in the output
grid, u, is mapped back to the input domain where the interpolation takes place
by a weighted sum of the neighbouring input samples, ui:

ẑ(u) =
∑

ui∈N (u)

wi z (ui) . (4.21)

How the weights wi are chosen depends on the interpolation method. In nearest
neighbour interpolation only the nearest sample value is considered, meaning wi

will be 1 for the closest one and 0 for all other samples. Another choice is to choose
the weights depending on the inverse distance to the sample as in Inverse Distance
Weighted Interpolation [23]. Instead of using the distance to calculate the weights,
Natural Neighbors interpolation [5] uses an area based measure by using Delaunay
triangulation. Kriging interpolation [12] in general uses the covariance function
between sample locations to derive the optimal weights in equation 4.21.

When the input data is irregularly sampled as here, one is faced with the
computational problem of identifying the neighbours, and another way of doing the
resampling is to do a forward interpolation, e.g. splatting. This method “smears”
each input pixel into a region (e.g. 3× 3 closest output grid locations), see figure
4.3, and the output RGB values y(u) = (r, g, b, w) are updated as:

y(u)← y(u) +

[
w(u)z(ui)
w(u)

]
. (4.22)

The weights wi depend on the grid location and can e.g. be chosen as:

w(u) = exp(−.5||u− x′||2/σ2) (4.23)

where σ is a smoothing parameter and x′ is the rectified pixel location. After
looping over all pixels they are normalised by the forth element, creating an out-
put RGB image. If the camera motion is very fast, a local 3 × 3 region may not
be enough to fill all output pixels and a larger region has to be used. For the
rolling-shutter correction a fast forward mapping can be performed on a graphics
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processing unit (GPU) and at the same time do the image resampling without
any risk of holes. A mesh can be placed on the input image and the GPU trans-
forms each row to their rectified position. Values between rows are automatically
interpolated (in hardware) so there is no risk of holes.

Paper E examines different interpolation methods on push-broom data using an
anisotropic distance measure and by also taking the surface structure into account.

4.4 Global alignment

When the sensor motion has been estimated, the rectified frames, or the tracked
and rectified points can be used in other algorithms which do not take the rolling-
shutter effect into account. Video stabilisation (paper B) and video stacking (paper
F) can be efficiently implemented by a selection of the common coordinate system
during the frame rectification.

4.4.1 Video stabilisation

The rectification technique described in section 4.3 allows for an efficient imple-
mentation of video stabilisation. When an image is rectified, all the rows are
transformed to a common coordinate system corresponding to the reference row.
Instead of transforming each image to e.g. the middle row, one can do a tempo-
ral smoothing of all reference rows in the image sequence and use the smoothed
versions instead.

Smoothing of rotations can be achieved by matrix averaging:

R̃k =

n∑

l=−n
wlRk+l (4.24)

where the temporal window is 2n + 1 and w are weights for the input rotations
Rk. The output of (4.24) is not guaranteed to be a rotation matrix, but this can
be enforced by constraining it to be a rotation [8]:

R̂k = USVT , where (4.25)

UDVT = svd(R̃k) , and S = diag(1, 1, |U||V|) .

The motion estimation is done during a short frame interval, and since all
optimisations have different origins they have to be transformed to a common
coordinate system. The stabilisation will be a restriction on the orientation, and
since the pure rotation model may not hold for a long video sequence there might
still be some translation left, but not so much to be disturbing.

4.4.2 Video stacking

Video stacking on hand-held sequences is quite similar to video stabilisation. The
biggest difference is that for stacking, all the frames should be registered to one
common position. When using the rotation only motion model there might be
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Figure 4.4: Zoomed in examples between global frame alignment (left) and our
rolling-shutter aware method (right).

some translation between the first and the later frames, even though the user
tries to hold the camera still. In order to avoid doing full structure from motion
the scene can be approximated with a fronto-parallel plane when estimating the
camera translation. A point y in one of the frames may be re-projected onto this
scene plane as u using:

u = λK−1y = λ (u1 u2 1)
T
. (4.26)

A global 3D displacement, d = (∆X ∆Y ∆Z)
T

, can be estimated by minimising
the residuals between the re-projected point x in equation 4.27 and the corre-
sponding point in the reference image.

x = K(λK−1y + d) (4.27)

The displacement can then be used during the rectification process to stack the
images at the same time.

Figure 4.4 shows the difference between using the rolling-shutter aware method
described here and a global (non-rolling-shutter aware) version. Even though the
user has tried to hold the camera still, the rolling-shutter image capture makes
the global version blurry, see paper F for details.
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Chapter 5

Evaluation

This chapter describes the generated ground-truth dataset, and the methods used
for evaluation of the algorithms.

5.1 Ground-truth generation

In order to do a controlled evaluation, a synthetic dataset was developed for paper
A and extended in paper B. The Autodesk Maya software was used to generate dif-
ferent camera motions in a 3D scene. Each rolling-shutter frame was simulated by
combining 480 global-shutter frames. One row from each global-shutter frame was
combined to form a rolling-shutter frame, starting at the top row and sequentially
moving down to the bottom row. Figure 5.1 shows different kinds of generated
camera motions in the scene.

The ground-truth for rolling-shutter rectification is a global-shutter frame.
Which global-shutter frame to be used depends on at which time instance (i.e. which
input image row) the distorted image is to be reconstructed. Global-shutter frames
corresponding to the first, middle and last row have been generated. Depending
on the motion, some parts of the ground-truth frame (borders and occlusions) are
not visible in the rolling-shutter frame. For this reason, visibility masks have been
generated to indicate which pixels in the ground-truth frames can be reconstructed
from the corresponding rolling-shutter frame.

5.2 Evaluation measures

In paper A we introduced the first rolling-shutter dataset. This enabled us to
do a comparison of different settings and methods. When a rolling-shutter frame
has been rectified by the algorithm it can be compared to the generated ground-
truth by calculating the average Euclidean distance to the colour pixel values
in the ground-truth images. In order to evaluate only the rectification, and not
the methods ability to interpolate and extrapolate values the distance is only
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Figure 5.1: Four categories of synthetic sequences. Left to right, top to bottom:
#1 rotation only, #2 translation only, # full 3DOF rotation. and #4 3DOF
rotation and translation.

calculated within the valid mask. Pixels that deviate more than a certain threshold
are counted as incorrect. This measure is however more sensitive in high-contrast
regions, than in regions with low contrast. In paper B, we therefore used a variance-
normalised error measure:

ε(Irec) =

3∑

k=1

(µk − Irec,k)2

σ2
k + εµ2

k

. (5.1)

Here µk and σk are the means and standard deviations of each colour band in a
small neighbourhood of the ground-truth image pixel (we use a 3×3 region), Irec,k

is the pixel value in the rectified image for colour channel k and ε is a small value
that controls the amount of regularisation. This measure also has the benefit of
being less sensitive to sub-pixel rectification errors.

5.2.1 Video stabilisation

Paper B also introduced an efficient method to do video stabilisation, and this is
more difficult to evaluate since we both want to reduce the image plane motions
and maintain a correct geometry. When no ground-truth is available, one can
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Figure 5.2: Left: Depth frame from a static sensor. Right: Manually marked
planes on frame captured during sensor rotation.

evaluate image plane motion by comparing consecutive frames in a video with a
certain motion. A video captured when a person is walking forward and holding the
camera will be shaky but consecutive frames will be very similar if the stabilisation
algorithm is good, and image plane motion from such a sequence is thus used as
an evaluation measure.

Another evaluation method, used in [9], is to do a user study. Such a study
was conducted as a blind experiment, where users were shown pairs of videos and
asked to choose the one they thought looked the best.

5.2.2 Point cloud rectification

When evaluating the rectification of 3D point clouds, a practical method is to mea-
sure geometrical properties of a known object, e.g. comparing the angles between
the visible sides of a box, before and after rectification. A ground-truth angle can
be obtained by imaging the box when the sensor is stationary, see figure 5.2. The
plane angles can be estimated by finding the cube normals using RANSAC [6] and
computing the angle between two normals using the formula:

Θk,l = sin−1(‖n̂k × n̂l‖) , (5.2)

where n̂k and n̂l are normal vectors for the two planes. By doing this it is possible
to show that the rectified point clouds are more geometrically correct than the
unrectified ones.

5.2.3 Push-broom

In papers D and E push-broom data were considered. The data in paper D did not
have any ground-truth, and visual inspection was used to evaluate the registration
quality as it is quite easy to observe, see figure 5.3.



34 CHAPTER 5. EVALUATION

Figure 5.3: Result of co-alignment of push-broom strips. Left: Overlap of two
strips. Right: Difference of two strips.

In paper E, different interpolation methods were implemented and compared.
The methods will predict slightly different values ẑ(ui) and they can be compared
to actual sample values z(ui) in the dataset not used during the interpolation.
This way, the dataset can be used to calculate the relative error which is used as
the evaluation measure:

ε(p) =
1

|E|
∑

i∈E

|ẑ(ui)− z(ui)|
z(ui)

, (5.3)

where |E| is the size of the evaluation set.

5.2.4 Stacking

Video stabilisation and video stacking is quite similar but with the difference that
for video stabilisation, frames far from each other may differ a great deal (that
is why we compare consecutive frames in section 5.2.1) while all the frames in a
stack should be registered to common frame. This makes it possible to evaluate the
stacking results using the standard deviation over time across a stack of frames,
see equation 5.4. The standard deviation will increase either if the stacking is poor
or if there are moving objects in the scene. The measure is averaged across all
pixels to obtain a scalar measure:

σavg =
1

3|Ω|
∑

x∈Ω

3∑

c=1

√√√√ 1

K

K∑

k=1

(Ik,c(x)− Iavg,c(x))2 , (5.4)

where Iavg,c(x) =
1

K

K∑

k=1

Ik,c(x) , (5.5)

k is a specific frame in the stack, c the colour channel, Ω is the set of image
coordinates in the frames, and |Ω| is the set size.

Another method is to use a physical tripod, taking a long exposure and use
this as a ground-truth. The problem with this is that you have to do an alignment
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between the stack and the ground-truth since it is difficult to image the scene from
the exact same position. The scene may also have changed between the acquisition
of the ground-truth and the dataset. Because of this we instead use the dataset
itself to calculate the evaluation measure.
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Chapter 6

Concluding remarks

This chapter summarises the main results and discusses possible areas of future
work.

6.1 Results

The methods presented in this thesis can be used to increase the usability of rolling-
shutter cameras, both for researchers and end users. The main contributions are
the development of the three-dimensional models for rolling-shutter distortion cor-
rection. Paper A was the first paper describing this and gave superior results for
hand-held camera motions compared to image-based methods. We also introduced
the first rolling-shutter dataset which enables other researchers to evaluate their
algorithms. Paper B introduced an efficient video stabilisation method in com-
bination with the image rectification. A new GPU-based forward interpolation
was also introduced and the paper extended the motion model to cope with faster
motions.

Typically, when the Kinect sensor is used on mobile platforms it has to be
moved slowly, or in a move-stop-look image acquisition so that the rolling-shutter
artifacts are kept at a minimum. With the technique from paper C the data is
rectified, and the sensor can be moved in an arbitrary manner.

Paper D introduced methods for co-aligning push-broom strips using similar
techniques as for the rolling-shutter case, using image only data. In paper E five
different interpolation methods were extended to handle the anisotropic nature of
the push-broom data and compared for the image rectification problem.

Instead of using only visual measurements, paper F also explored the possibility
of using gyroscope data to reduce the rolling-shutter artifacts. This was done
together with a stacking procedure which combined several hand-held images into
one resulting low-noise sharp image. This enables the user to take photos which
would otherwise have required a physical tripod.
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6.2 Future work

The image-based motion estimation assumes that the scene is stationary. During
evaluation it has been shown that it is robust to some object motion in the video,
but if a large part of the optical flow originates from fast-moving objects, a motion
segmentation (and local rectification) may be required. In [1] they have a model for
small objects with low-frequency motions but objects with high-frequency motion
is more challenging.

It would also be interesting to improve the quality and the temporal resolution
of the motion estimation. Possible ways may be to use a more dense optical flow,
variable knot positions, to model lens distortion and to optimise over a whole
sequence. This may enable the algorithm to cope with even faster camera motions,
such as when it is attached to a vibrating engine.

Another interesting future work would be an auto-calibration step, since it
is quite cumbersome to manually calibrate each different camera model. In [16]
a calibration method is proposed which does not require specialised hardware,
but still uses a calibration pattern. Paper D combined image rectification with
the intention of reducing blur and image noise ([15] present a combined rolling-
shutter and motion blur model, and [26] take the rolling shutter into account
during the blur estimation), and it would be interesting to combine it with even
more applications such as panorama stitching, augmented reality and so on.

The co-alignment of push-broom strips is currently not good enough for auto-
matic change-detection and a more advanced motion model and possible estima-
tion or incorporation of a height map may be required.

In [10] the 6 degrees-of-freedom motion was estimated for a monocular cam-
era using rolling-shutter aware bundle adjustment. This made it possible to do
structure from motion using a cell-phone with any kind of motion, but it is still
not as stable as when using a global-shutter camera. It would be interesting to
combine it with the variable knot positions from paper B and C, and the different
interpolation schemes from paper F.
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Rectifying rolling shutter video from hand-held
devices

Per-Erik Forssén and Erik Ringaby
Department of Electrical Engineering, Computer Vision Laboratory

Linköping University, Sweden

Abstract

This paper presents a method for rectifying video sequences from rolling shut-
ter (RS) cameras. In contrast to previous RS rectification attempts we model dis-
tortions as being caused by the 3D motion of the camera. The camera motion
is parametrised as a continuous curve, with knots at the last row of each frame.
Curve parameters are solved for using non-linear least squares over inter-frame
correspondences obtained from a KLT tracker. We have generated synthetic RS se-
quences with associated ground-truth to allow controlled evaluation. Using these
sequences, we demonstrate that our algorithm improves over to two previously
published methods. The RS dataset is available on the web to allow comparison
with other methods.

1 Introduction
Today consumer products that allow video capture are quite common. Examples are
cell-phones, music players, and regular cameras. Most of these devices, as well as
camcorders in the consumer price range, have CMOS image sensors. CMOS sensors
have several advantages over the conventional CCD sensors: they are cheaper to man-
ufacture, and typically offer on-chip processing [9], for e.g. automated white balance
and auto-focus measurements. However, most CMOS sensors, by design make use
of what is known as a rolling shutter (RS). In an RS camera, detector rows are read
and reset sequentially. As the detectors collect light right until the time of readout,
this means that each row is exposed during a slightly different time window. The more
conventional CCD sensors on the other hand use a global shutter (GS), where all pixels
are reset simultaneously, and collect light during the same time interval. The downside
with a rolling shutter is that since pixels are acquired at different points in time, motion
of either camera or target will cause geometrical distortions in the acquired images.
Figure 1 shows an example of geometric distortions caused by using a rolling shutter,
and how this frame is rectified by our proposed method, as well as two others.
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Figure 1: Example of rolling shutter imagery. Top left: Frame from an iPhone 3GS
camera sequence acquired during fast motion. Top right: Rectification using our rota-
tion method. Bottom left: Rectification using the global affine method. Bottom right:
Rectification using the global shift method. Videos are available on the web and in the
supplementary material.

1.1 Related work
A camera motion between two points in time can be described with a three element
translation vector, and a 3DOF (degrees-of-freedom) rotation. For hand-held footage,
the rotation component is typically the dominant cause of image plane motion. (A
notable exception to this is footage from a moving platform, such as a car.) Many
new camcorders thus have mechanical image stabilisation (MIS) systems that move
the lenses (some instead move the sensor) to compensate for small pan and tilt rota-
tional motions (image plane rotations, and large motions, are not handled). The MIS
parameters are typically optimised to the frequency range caused by a person holding
a camera, and thus work well for such situations. However, since lenses have a cer-
tain mass, and thus inertia, MIS has problems keeping up with faster motions, such
as caused by vibrations from a car engine. Furthermore, cell phones, and lower end
camcorders lack MIS. There is thus a large volume of video out there, that exhibit RS
artifacts.

For cases when MIS is absent, or non-effective, one can instead do post-capture
image rectification. There exist a number of different approaches for dealing with
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special cases of this problem [5, 13, 16, 6, 7, 8]. Some algorithms assume that the
image deformation is caused by a globally constant translational motion across the
image [5, 16, 8]. After rectification this would correspond to a constant optical flow
across the entire image, which is rare in practise. Liang et al. [13] improve on this
by giving each row a different motion, that is found by interpolating between constant
global inter-frame motions using a Bézier curve. Another improvement is due to Cho
et al. [6, 7]. Here geometric distortion is modelled as a global affine deformation that
is parametrised by the scan-line index.

All current RS rectification approaches perform warping of individual frames to
rectify RS imagery. Note that a perfect compensation under camera translation would
require the use of multiple images, as the parallax induced by a moving camera will
cause occlusions. Single frame approximations do however have the advantage that
ghosting artifacts caused by multi-frame reconstruction is avoided, and is thus preferred
in the related problem of video stabilisation [14].

Other related work on RS images include structure and motion estimation. Geyer
et al. [10] study the projective geometry of RS cameras, and also describe a calibra-
tion technique for estimation of the readout parameters. The derived equations are
then used for structure and motion estimation in synthetic RS imagery. Ait-Aider et
al. demonstrate that motion estimation is possible from single rolling shutter frames if
world point-to-point distances are known, or from curves that are known to be straight
lines in the world [1]. They also demonstrate that structure and motion estimation can
be done from a single stereo pair if one of the used cameras has a rolling shutter [2].

1.2 Contributions
All the previous approaches to rectification of RS video [5, 13, 16, 6, 7, 8] model
distortions as taking place in the image plane. We instead model the 3D camera motion
using calibrated projective geometry. We introduce two models, one purely rotational,
and one with rotation and translation with respect to an estimated plane in the scene.
In projective geometry terms, these can be thought of as a sequence of parametrised
homographies, one for each image row.

This far, no controlled comparison of RS algorithms have been published. Instead
each new algorithm has just been published together with images that show how well
images distorted by particular motions can be rectified. In related fields such as stereo,
and optical flow computation [3], evaluation datasets have been important for ensuring
that new algorithms actually improve on previous ones. For these reasons we have
generated synthetic RS sequences, with associated ground-truth rectifications. Using
these sequences, we compare our own implementations of the global affine model [6],
and the global shift model [8] to the new method that we propose. Our dataset and
supplementary videos are available for download at [18].

1.3 Overview
This paper is organised as follows: In section 2, we describe how to calibrate a rolling-
shutter camera, and introduce models and cost functions for camera ego-motion estima-
tion. In section 3 we discuss interpolation schemes for rectification of rolling-shutter
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imagery. In section 4 we describe our evaluation dataset. In section 5 we use our
dataset to compare different interpolation schemes, and to compare our camera ego-
motion approach to our own implementations of [13] and [8]. The paper concludes
with outlooks and concluding remarks in section 6.

2 Camera motion estimation
In this paper, we take the intrinsic camera matrix, the camera frame-rate and the inter-
frame delay to be given. This reduces the number of parameters that need to be esti-
mated on-line, but also requires us to calibrate each camera before the algorithms can
be used.

2.1 Rolling shutter camera calibration
A 3D point, X, and its projection in the image, x, given in homogeneous coordinates,
are related according to

x = KX , and X = λK−1x , (1)

where K is a 5DOF upper triangular 3×3 intrinsic camera matrix, and λ is an unknown
scaling [12]. We estimate K using the Zhang method in OpenCV. [21].

The RS chip frame period 1/f (where f is the frame rate) is divided into a readout
time tr, and an inter-frame delay, td as: 1/f = tr + td. The readout time can be
calibrated by imaging a flashing light source with known frequency [10], see figure 2,
left. If we measure the period T of the vertical oscillation in pixels, tr can be obtained
as:

tr = Nr/(Tfo) , (2)

where Nr is the number of image rows, and fo is the oscillator frequency. The inter-
frame delay can now be computed as td = 1/f−tr. For our purposes it is preferable to
use rows as fundamental unit, and express the inter-frame delay as a number of blank
rows:

Nb = Nrtd/(1/f) = Nr(1− trf) . (3)

We have performed both Zhang [21], and Geyer [10] calibrations for the cameras
built into the Apple iPhone 3GS, and the SonyEricsson W890i cell phones. As the
Geyer calibration is a bit awkward (it requires a signal generator, an oscilloscope and
an LED), we have reproduced the calibration values we obtained in table 1. The camera
frame rates are f = 30 Hz for the 3GS, and f = 14.7059 Hz for the W890i (according
to manufacturer specifications).

In his paper [10], Geyer suggests removing the lens, in order to get a homogeneous
illumination of the sensor. This is difficult to do on cellphones, and thus we instead
recommend to collect a sequence of images of the flashing LED, and then subtract the
average image from each of these, see figure 2, right. This removes most of the shading
seen in figure 2, left, and allows us to find the oscillation period from the first frequency
above DC.
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Figure 2: Calibration of a rolling-shutter camera. Left: Image of a flashing LED used
for calibration of the readout time. Right: Corresponding image after subtraction of
the temporal average.

Camera fo tr
5.02 60.94

W890i 6.5 60.76
7.5 60.88
avg. 60.86

Camera fo tr
4.01 30.54

3GS 5.01 31.22
6.5 30.5
avg. 30.75

Table 1: Used oscillator frequencies fo, and obtained readout times tr, for the SonyEr-
icsson W890i and Apple iPhone 3GS camera phones. Units are milliseconds.

2.2 Rolling shutter camera under pure rotation
Our first model of camera motion is a rotation about the camera centre during frame
capture, in a smooth, but time varying way. We represent this as a sequence of rotation
matrices, R(t) ∈ SO(3).

Two homogeneous image points x, and y, that correspond in consecutive frames,
are now expressed as:

x = KR(t1)X , and y = KR(t2)X . (4)

This gives us the relation:

x = KR(t1)R
T (t2)K

−1y . (5)

The time parameter is a linear function of the current image row (i.e. x2/x3 and y2/y3).
Thus, by choosing the unit of time as image rows, and time zero as the top row of the
first frame, we get t1 = x2/x3. In the second image we get t2 = y2/y3 + Nr + Nb,
where Nr is the number of image rows, and Nb is defined in (3).

Each correspondence between the two views, (5) gives us two equations (after elim-
ination of the unknown scale) where the unknowns are the rotations. Unless we con-
strain the rotations further, we now have six unknowns (a rotation can be parametrised
with three parameters) for each correspondence. We thus parametrise the rotations with
an interpolating spline with knots at the last row of each frame, see figure 3. Interme-
diate rotations are found using spherical linear interpolation [20].
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R2Rs R3R1

ttr td

Figure 3: Rotations, R1, R2, . . . are estimated for last rows of each frame. Intermediate
rotations are interpolated from these and Rs. Readout time tr, and inter-frame delay
td are also shown.

As we need a reference world frame, we might as well fixate that to the start of
frame 1, i.e. set Rs = I. This gives us 3N unknowns in total for a group of N frames.
These can be resolved if we have at least three correspondences between each pair of
views.

2.3 Rolling shutter imaging of a planar scene
In our second camera motion model, we assume that we are imaging a purely planar
scene. We now model the motion as a sequence of translations d(t) ∈ R3, and rotations
R(t) ∈ SO(3), with respect to a coordinate system located on the world plane. The
world coordinate system needs not be explicitly estimated, it suffices to know that we
can choose it such that the 3D points have a zero third coordinate, i.e. (0 0 1)X = 0.
The projection of such a point in the image, after a translation d(t1), and a rotation
R(t1), can be written:

x = KR(t1)(X+ d(t1)) = KR(t1)D(t1)X̃ , (6)

where D =



1 0 d1
0 1 d2
0 0 d3


 , (7)

and X̃ is a three element vector containing the non-zero elements of X, and a 1 in the
third position.

Since (6) is invertible, in the same sense as (1), we can relate the projections of the
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3D point in two images as:

x = KR(t1)D(t1)D(t2)
−1R(t2)

TK−1y . (8)

Note that by setting D(t1) = D(t2) = I we obtain the pure rotation model (5) as a
special case.

In contrast to the pure rotation case, we have now a variable origin, so we need
also to find Rs and ds. However, we note that a point in the world plane, expressed in
normalised camera coordinates Xc = λK−1x, has to satisfy a plane equation:

r̂TXc − ρ = r̂T (Xc − r̂ρ) = 0 . (9)

We now let this equation define the transformation from the camera to the third (zero
valued) world coordinate:

X = RT
s (Xc − r̂ρ) for Rs =

(
r̂⊥ r̂× r̂⊥ r̂

)
. (10)

This gives us the projection from the plane into the camera as:

Xc = Rs(X+ (0 0 ρ)
T
) . (11)

Finally, as a monocular reconstruction is only defined up to scale, we can fixate the
plane at ρ = 1. This locks the translation to ds = (0 0 1)

T , and we thus only get the
extra 3 parameters in Rs.

Just like in the pure rotation case, each correspondence gives us two equations, but
now we have 6N + 3 unknowns for a group of N frames. These can be determined if
we have at least 3N +2 correspondences, and at least 6 correspondences between each
pair of frames (8 is required for the first pair).

2.4 Pure translational motion
It is also possible to constrain the planar scene model to translations only. For this we
simply set all rotation matrices equal to the first, i.e Rn = Rs ∀n ∈ [1, N ]. This gives
us 3N + 3 unknowns, which again requires at least 3 correspondences between each
pair of frames.

2.5 Motion interpolation
We interpolate the translational component of the camera motion, d(t) ∈ R3 in-
between two key translations d1, d2, using regular linear interpolation. Using a pa-
rameter w ∈ [0, 1], this can be written as:

dinterp = (1− w)d1 + wd2 . (12)

For the rotational component, the situation is more complicated, due to the periodic
structure of SO(3).

We have chosen to represent rotations as three element vectors where the magnitude
corresponds to the rotation angle, and the direction is the axis of rotation, i.e. n = φn̂.
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This is a minimal parametrisation of rotations, and it also ensures smooth variations, in
contrast to e.g. Euler angles. It is thus suitable for parameter optimisation. The vector
n can be converted to a rotation matrix using the matrix exponent, which for a rotation
simplifies to Rodrigues formula:

R = expm(n) = I+ [n̂]x sinφ+ [n̂]2x(1− cosφ) (13)

where [n̂]x =
1

φ




0 −n3 n2
n3 0 −n1
−n2 n1 0


 . (14)

Conversion back to vector form is accomplished through the matrix logarithm in the
general case, but for a rotation matrix, there is a closed form solution. We note that two
of the terms in (13) are symmetric, and thus terms of the form rij − rji will come from
the anti-symmetric part alone. This allows us to extract the axis and angle as:

n = logm(R) = φn̂ , where





ñ =



r32 − r23
r13 − r31
r21 − r12




φ = sin−1(||ñ||/2)
n̂ = ñ/||ñ|| .

(15)

It is also possible to extract the rotation angle from the trace of R [17]. We recommend
(15), as it avoids numerical problems for small angles. Using (13) and (15), we can
perform SLERP (Spherical Linear intERPolation) [20] between two rotations n1 and
n2, using an interpolation parameter w ∈ [0, 1] as follows:

ndiff = logm (expm(−n1)expm(n2)) (16)
Rinterp = expm(n1)expm(wndiff) (17)

2.6 Optimisation
We now wish to solve for the unknown motion parameters, using iterative minimisa-
tion. For this we need a cost function:

J = ε(n1, . . . ,nN ) or (18)
J = ε(ns,n1, . . . ,nN ,d1, . . . ,dN ) , (19)

for the pure rotation, and the planar scene models respectively. To this end, we choose
to minimise the (symmetric) image-plane residuals of the set of corresponding points
xk ↔ yk:

J =
K∑

k=1

d(xk,Hyk)
2 + d(yk,H

−1xk)
2 (20)

where H = KR(xk)R
T (yk)K

−1 or (21)

H = KR(xk)D(xk)D(yk)
−1RT (yk)K

−1 (22)
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Here the distance function d(x,y) for homogeneous vectors, is given by:

d(x,y)2 = (x1/x3 − y1/y3)2 + (x2/x3 − y2/y3)2 . (23)

The rotation matrices are obtained as:

R(x) = SLERP(n1,n2, w) , for w = x2/(x3Nr), (24)

where SLERP is defined in (16,17), and Nr is the number of image rows.
In our experiments, we have minimised (20) using the MATLAB optimiser function

lsqnonlin. Rewriting the optimisation in e.g. C should however be done if real-time
operation is to be achieved.

For speed, we have chosen to optimise over short intervals ofN = 2, 3 or 4 frames.
For the pure rotation model, there is a simple way to initialise a new interval from the
previous one. Once the optimiser has found a solution for a group of frames, we change
the origin to the second camera in the sequence (see figure 3), i.e.

Ro = SLERP(n1,n2, Nb/(Nr +Nb)) . (25)

Then we shift the interval one step, correct for the change of origin, and use the previ-
ous rotations as initialisations

R′n = RT
o Rn+1 , for n = 1, . . . , N . (26)

As initialisation of the rotations in newly shifted-in frames, we use identity rotations.
In the planar scene model, we initialise the rotations to identity rotations, and the

translations to dn = (0 0 1)
T ∀n ∈ [1, N ].

2.7 Point correspondences
The point correspondences needed to estimate the rotations are obtained through point
tracking. First, Harris-points [11] are detected in the current frame and these are
tracked using the KLT tracker [15, 19]. The KLT tracker uses a spatial intensity gradi-
ent search which minimises the Euclidean distance between the corresponding patches
in the consecutive frames. We use the scale pyramid implementation of the algorithm
in OpenCV. Using pyramids makes it easier to detect large movements.

To increase the accuracy of the point tracker, a track-re-track procedure is used [3].
When the points have been tracked from the first image to the other, the tracking is
reversed and only the points that return to the original position (within a threshold) are
kept. The computation cost is doubled but outliers are removed effectively.

3 Image rectification
Once we have found our sequence of rotation matrices, we can use them to rectify the
images in the sequence. Each row gets its own rotation according to (24). We can then
align them to a reference row Ro (typically the middle row), using:

R′(x) = RoR
T (x) . (27)
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This gives us the forward mapping as:

x′ = KRoR
T (x)K−1x (28)

This tells us how each point should be displaced in order to rectify the scene. Using
this relation we can transform all the pixels to their new, rectified locations.

We have chosen to perform the rectifying interpolation in three steps: First, we
create an all-zero RGBA image. Second, we apply (28) to each pixel in the RS im-
age. The 3 × 3 closest grid locations are then updated by adding vectors of the form
(wr,wg,wb, w). Here r, g, b are the colour channel values of the input pixel, and w is
a variable weight that depends on the grid location u, according to:

w(u) = exp(−.5||u− x̃′||2/σ2) . (29)

Here x̃′ = (x′1/x
′
3 x′2/x

′
3)

T is the sub-pixel location of the pixel, and σ is a smoothing
parameter, which we set to σ = 0.15. Third, after looping through all pixels, we
convert the RGBA image to RGB, by dividing the RGB values by the fourth element.
This forward interpolation scheme is quite fast, and its parallel nature makes it well
suited to a GPU implementation.

Alternatively, the irregular grid of pixels can be resampled to a regular grid, by
defining a triangular mesh over the points, and sampling the mesh using bicubic inter-
polation. This is done by the function griddata in Matlab.

Finally, it is also tempting to use regular, or inverse interpolation, i.e. invert (28) to
obtain:

x = KR(x′)RT
o K
−1x′ . (30)

We can now loop over all values of x′, and use (30) to find the pixel locations in the
distorted image, and cubically interpolate these.

4 Synthetic dataset
In order to do a controlled evaluation of algorithms for RS compensation we have
generated six test sequences (available at [18]), using the Autodesk Maya software
package. Each sequence consists of 12 RS distorted frames of size 640 × 480, corre-
sponding ground-truth global shutter (GS) frames, and masks that indicate pixels in the
ground-truth frames that can be reconstructed from the corresponding rolling-shutter
frame. In order to suit all algorithms, the ground-truth frames and masks come in three
variants: for rectification to the time instant when the first, middle and last row of the
RS frame were imaged.

Each synthetic RS frame is created from a GS sequence with one frame for each RS
image row. One row in each GS image is used, starting at the top row and sequentially
down to the bottom row. In order to simulate an inter-frame delay, we also generate a
number of GS frames that are not used to build any of the RS frames. The camera is
however still moving during these frames.

We have generated four kinds of synthetic sequences, using different camera mo-
tions in a static scene, see figure 4.
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Figure 4: The four categories of synthetic sequences.

In the first sequence type, the camera rotates around its centre in a spiral fashion, see
figure 4 top left. Three different versions of this sequence exist to test the importance
of modelling the inter-frame delay. The different inter-frame delays are Nb = 0, 20
and 40 blank rows (i.e. the number of unused GS frames).

In the second sequence type, the camera makes a pure translation to the right and
has an inter-frame delay of 40 blank rows, see figure 4 top right.

In the last two sequence types the camera makes an up/down rotating movement,
with a superimposed rotation from left to right, see figure 4 bottom left. There is also
a back-and-forth rotation with the viewing direction as axis. The last sequence type
is the same as the third except that a translation parallel to the image plane has been
added, see figure 4 bottom right.

For each frame in the ground-truth sequences, we have created masks that indicate
pixels that can be reconstructed from the corresponding RS frame, see figure 5. These
masks were rendered by inserting one light source for each image row, into an oth-
erwise dark scene. The light sources had a rectangular shape that illuminates exactly
the part of the scene that was imaged by the RS camera when located at that particular
place. To acquire the mask, a global shutter render is triggered at the desired location
(e.g. corresponding to first, middle or last row in the RS-frame).
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Figure 5: Left to right: Rendered RS frame from sequence of type #2, with Nb =
40 (note that everything is slightly slanted to the right), corresponding global-shutter
ground-truth, and mask with white for ground-truth pixels that were seen in the RS
frame.
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Figure 6: Comparison of interpolation scheme errors. The plots show the average
Euclidean pixel distance between interpolated images and rendered ground truth for
each frame in sequence type #1, Nb = 0 (left), and type #3, Nb = 40 (right).
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5 Experiments

5.1 Interpolation accuracy
We have compared the errors of the three interpolation approaches described in section
3, in figure 6. Here we have used known ground-truth rotations to rectify each frame
in two pure camera rotation sequences, sequence type #1, with Nb = 0, and sequence
type #3, with Nb = 40 (see section 4 for a description of the sequences). We have used
two pure rotation sequences, as for these an almost perfect reconstruction is possible,
and thus the errors shown are due to interpolation only. The error measure used is
average Euclidean distance to the RGB pixel values in the ground truth images, within
the valid mask.

In some frames, the methods differ quite a bit, while in others they are very similar.
The reason for this is that only for larger rotations, do the neighbours in the distorted
and undistorted images start to differ. As can be seen in figure 6, griddata and
our forward interpolation are superior to inverse sampling. Among the three methods,
griddata stands out, by being approximately 40× more expensive on 640 × 480
images. As our forward interpolation scheme is both fast and accurate, we recommend
it over the other methods.

For very fast motions, and a slow rolling shutter, the 3× 3 grid used in forward in-
terpolation may be too small. The interpolated image would then have pixels where the
value is undefined. In our experiments on real video we have however not experienced
this. Should this effect occur, one could simply increase the grid size to 5× 5.

5.2 Rectification accuracy
We have compared our methods to the global affine model (GA) [6], and the global
shift model (GS) [8] on our synthetic sequences, see section 4. The comparison is done
using thresholded Euclidean colour distance. Pixels that deviate more than dthr = 0.3
are counted as incorrect. We have also tried other threshold values, and while the exact
choice changes the locations of the curves, it does not change their order (for reasonable
values of dthr). As evaluation measure we use the fraction of correctly reconstructed
pixels within the mask of valid locations. For clarity of presentation, we only present a
subset of the results on our synthetic dataset. As a baseline, all plots contain the errors
for uncorrected frames, with respect to the first frame ground-truth.

As our reconstruction solves for several cameras in each frame interval, we have
simply chosen to present all of them in the following plots. E.g. Rotation 1, 2, and 3 in
figure 7 are the three solutions in a 3-frame reconstruction.

In figure 7 we compare the GA, and GS methods with our pure rotation model. The
sequence used is type #1 (rotation only), with Nb = 0. As can be seen, our methods do
better than GA, GS, and the baseline.

In figure 8 we compare the GA, and GS methods with our pure rotation model on
sequence type #3 (rotation only), with Nb = 40. As can be seen our methods do better
than both GA, GS, and the baseline. GA, and GS, have problems with this sequence,
and sometimes fall below the baseline. In general, other values of Nb give very similar
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Figure 7: Sequence type #1 (rotation only), Nb = 0. Left: GA, GS, and uncorrected
frames, against our rotation model with 2-frame reconstruction window. Right: GA,
GS, and uncorrected frames, against our rotation model with 3-frame window.
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Figure 8: Sequence type #3 (rotation only), Nb = 40. Left: GA, GS, and uncorrected
frames, against our rotation model with 2-frame reconstruction window. Right: GA,
GS, and uncorrected frames, against our rotation model with 3-frame window.

results for our methods. For GA and GS the variability is larger, but we have not seen
any consistent degradation or improvement.

In figure 9, left, we compare the GA, and GS methods with our pure rotation model.
The sequence used is type #2 (translation only), with Nb = 40. As can be seen our
methods do slightly worse than GA and GS, but they still improve on the uncorrected
input. In figure 9, right, we compare GA, GS, and our translation-only model. The
translation reconstruction for the first frame is still worse than GA and GS, but the
other two do significantly better.

In figure 10 we have compared GA, GT, with our rotation only model (left) and with
the full model (right). As can be seen, the rotation only model does consistently better
than the others. Note that the full model currently does worse than the rotation only
model. When we gave the optimiser different starting points, (e.g. the result from the
rotation model) we obtained different solutions, thus we conclude that the cost function
for the full model is not convex. A better initialisation may solve this problem, but this
is out of the scope of this paper.
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Figure 9: Sequence type #2 (translation only), Nb = 40. Left: GA, GS, and uncor-
rected frames, against our rotation model with 2-frame reconstruction window. Right:
GA, GS, and uncorrected frames, against our translation model with 3-frame window.
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Figure 10: Sequence type #4 (translation and rotation), Nb = 40. Left: GA, GS, and
uncorrected frames, against our rotation model with 2-frame reconstruction window.
Right: GA, GS, and uncorrected frames, against our full model with 2-frame window.
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Figure 11: Image stabilisation. Left: Uncorrected RS frame. Centre: Rectified frame,
with tracked points indicated. Right: Frame stabilised by centring the tracked points
along a vertical line.

5.3 Stabilisation of rolling-shutter video
We have done a simple comparison of RS compensation algorithms on real imagery,
using image stabilisation. Such a comparison requires that the imaged scene is static,
and that the camera translation is negligible. We do this by tracking two points through
the RS frames, using the KLT-tracker [15, 19]. After rolling-shutter compensation, we
perform a virtual rotation of the frames (using a global homography), such that two
points in the scene are placed symmetrically about the image centre, along a vertical
line, see figure 11. The only manual input to this approach is that the two points are
indicated manually in the first frame.

We supply two such stabilised sequences as supplemental material (one for the
iPhone 3GS and one from the W890i), together with the corresponding uncorrected
RS sequences, and results for the GA and GS methods. A single frame comparison of
the rectification step is also shown in figure 1, for the iPhone 3GS.

6 Concluding remarks
In this paper, we have demonstrated rolling-shutter rectification by modelling the cam-
era motion, and shown this to be superior to techniques that model movements in the
image plane only. We even saw that image-plane techniques occasionally perform
worse than the uncorrected baseline. This is especially true for motions that they do
not model, e.g. rotations for the Global shift model [8].

The method we currently see as the best one is the rotation only model. In addition
to being the overall best method, it is also the fastest of our models. Note that even this
model corrects for more types of camera motion than does mechanical image stabili-
sation (MIS). In future work we plan to improve our approach by replacing the linear
interpolation with a higher order spline. We will also investigate better initialisations
for the full model. Another obvious improvement is to optimise parameters over full
sequences. However, we wish to stress that our aim is currently to allow the algorithm
to run on mobile platforms, which excludes optimisation over longer frame intervals
than the 2-4 that we currently use.

In general, the quality of the reconstruction should benefit from more measure-
ments. In MIS systems, camera rotations are measured by MEMS gyro sensors [4].
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It would be interesting to see how such measurements could be combined with mea-
surements from KLT-tracking when rectifying video. There are also accelerometers
in many cellphones, and measurements from these could also be useful in ego-motion
estimation.

References
[1] Omar Ait-Aider, Adrien Bartoli, and Nicolas Andreff. Kinematics from lines in a single

rolling shutter image. In CVPR’07, Minneapolis, USA, June 2007.

[2] Omar Ait-Aider and Francois Berry. Structure and kinematics triangulation with a rolling
shutter stereo rig. In IEEE International Conference on Computer Vision, 2009.

[3] Simon Baker, Daniel Scharstein, J. P. Lewis, Stefan Roth, Michael J. Black, and Richard
Szeliski. A database and evaluation methodology for optical flow. In IEEE ICCV, 2007.

[4] Jonathan Bernstein. An overview of MEMS inertial sensing technology. Sensors Magazine,
2003(1), February 2003.

[5] Li-Wen Chang, Chia-Kai Liang, and H.H. Chen. Analysis and compensation of rolling
shutter distortion for CMOS image sensor arrays. In ISCOM’05, 2005.

[6] Won-Ho Cho and Ki-Sang Hong. Affine motion based CMOS distortion analysis and
CMOS digital image stabilization. IEEE TCE, 53(3):833–841, August 2007.

[7] Won-Ho Cho, Dae-Woong Kim, and Ki-Sang Hong. CMOS digital image stabilization.
IEEE TCE, 53(3):979–986, 2007.

[8] Jung-Bum Chun, Hunjoon Jung, and Chong-Min Kyung. Suppressing rolling-shutter dis-
tortion of CMOS image sensors by motion vector detection. IEEE TCE, 54(4):1479–1487,
2008.

[9] Abbas El Gamal and Helmy Eltoukhy. CMOS image sensors. IEEE Circuits and Devices
Magazine, May/June 2005.

[10] Christopher Geyer, Marci Meingast, and Shankar Sastry. Geometric models of rolling-
shutter cameras. In 6th OmniVis WS, 2005.

[11] C. G. Harris and M. Stephens. A combined corner and edge detector. In 4th Alvey Vision
Conference, pages 147–151, September 1988.

[12] R. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision. Cambridge
University Press, 2000.

[13] Chia-Kai Liang, Li-Wen Chang, and H.H. Chen. Analysis and compensation of rolling
shutter effect. IEEE Transactions on Image Processing, 17(8):1323–1330, August 2008.

[14] Feng Liu, Michael Gleicher, Hailin Jin, and Aseem Agarwala. Content-preserving warps
for 3D video stabilization. In ACM Transactions on Graphics, 2009.

[15] B.D. Lucas and T. Kanade. An iterative image registration technique with an application
to stereo vision. In IJCAI81, pages 674–679, 1981.

[16] Steven P. Nicklin, Robin D. Fisher, and Richard H. Middleton. Rolling shutter image
compensation. In Robocup 2006 LNAI 4434, pages 402–409, 2007.

[17] F.C. Park and Bahram Ravani. Smooth invariant interpolation of rotations. ACM Transac-
tions on Graphics, 16(3):277–295, July 1997.

63



Paper A: Rectifying rolling shutter video from hand-held devices

[18] Erik Ringaby. Rolling shutter dataset with ground truth.
http://www.cvl.isy.liu.se/research/rs-dataset.

[19] Jianbo Shi and Carlo Tomasi. Good features to track. In IEEE Conference on Computer
Vision and Pattern Recognition, CVPR’94, Seattle, June 1994.

[20] Ken Shoemake. Animating rotation with quaternion curves. In Int. Conf. on CGIT, pages
245–254, 1985.

[21] Zhengyou Zhang. A flexible new technique for camera calibration. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 22(11):1330–1334, 2000.

64



Chapter B

Efficient Video Rectification
and Stabilisation for
Cell-Phones

This is an edited version of the paper:

Erik Ringaby and Per-Erik Forssén. Efficient video rectification and
stabilisation for cell-phones. International Journal of Computer Vision,
96(3):335–352, 2012.

The final publication is available at springerlink.com
Digital Object Identifier: 10.1007/s11263-011-0465-8

65





Paper B: Efficient Video Rectification and Stabilisation for Cell-Phones

Efficient Video Rectification and Stabilisation for
Cell-Phones

Erik Ringaby and Per-Erik Forssén
Department of Electrical Engineering, Computer Vision Laboratory
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Abstract

This article presents a method for rectifying and stabilising video from cell-
phones with rolling shutter (RS) cameras. Due to size constraints, cell-phone cam-
eras have constant, or near constant focal length, making them an ideal application
for calibrated projective geometry. In contrast to previous RS rectification attempts
that model distortions in the image plane, we model the 3D rotation of the camera.
We parameterise the camera rotation as a continuous curve, with knots distributed
across a short frame interval. Curve parameters are found using non-linear least
squares over inter-frame correspondences from a KLT tracker. By smoothing a
sequence of reference rotations from the estimated curve, we can at a small ex-
tra cost, obtain a high-quality image stabilisation. Using synthetic RS sequences
with associated ground-truth, we demonstrate that our rectification improves over
two other methods. We also compare our video stabilisation with the methods in
iMovie and Deshaker.

1 Introduction
Almost all new cell-phones have cameras with CMOS image sensors. CMOS sensors
have several advantages over the conventional CCD sensors: notably they are cheaper
to manufacture, and typically offer on-chip processing [13], for e.g. automated white
balance and auto-focus measurements.

However, most CMOS sensors, by design make use of what is known as a rolling
shutter (RS). In an RS camera, detector rows are read and reset sequentially. As the
detectors collect light right until the time of readout, this means that each row is ex-
posed during a slightly different time window. The more conventional CCD sensors
on the other hand use a global shutter (GS), where all pixels are reset simultaneously,
and collect light during the same time interval. The downside with a rolling shutter
is that since pixels are acquired at different points in time, motion of either camera or
target will cause geometrical distortions in the acquired images. Figure 1 shows an
example of geometric distortions caused by using a rolling shutter, and the result of our
rectification step, as well as two other methods.
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Figure 1: Example of rolling shutter imagery. Top left: Frame from an iPhone 3GS
camera sequence acquired during fast motion. Top right: Rectification using our rota-
tion method. Bottom left: Rectification using the global affine method. Bottom right:
Rectification using the global shift method. Corresponding videos are available on the
web [27].

1.1 Related Work
A camera motion between two points in time can be described with a three element
translation vector, and a 3 degrees-of-freedom (DOF) rotation. For hand-held footage,
the rotation component is typically the dominant cause of image plane motion. [31]
gave a calculation example of this for the related problem of motion blur during long
exposures. (A notable exception where translation is the dominant component is footage
from a moving platform, such as a car.) Many new camcorders thus have mechanical
image stabilisation (MIS) systems that move the lenses (some instead move the sen-
sor) to compensate for small pan and tilt rotational motions (image plane rotations, and
large motions, are not handled). The MIS parameters are typically optimised to the
frequency range caused by a person holding a camera, and thus work well for such sit-
uations. However, since lenses have a certain mass, and thus inertia, MIS has problems
keeping up with faster motions, such as caused by vibrations from a car engine. Fur-
thermore, cell-phones, and lower end camcorders lack MIS and recorded videos from
these will exhibit RS artifacts.

For cases when MIS is absent, or non-effective, one can instead do post-capture im-
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age rectification. There exist a number of different approaches for dealing with special
cases of this problem [8, 19, 25, 9, 10, 11]. Some algorithms assume that the image
deformation is caused by a globally constant translational motion across the image
[8, 25, 11]. After rectification this would correspond to a constant optical flow across
the entire image, which is rare in practise. [19] improve on this by giving each row
a different motion, that is found by interpolating between constant global inter-frame
motions using a Bézier curve. Another improvement is due to [9] and [10]. Here ge-
ometric distortion is modelled as a global affine deformation that is parametrised by
the scan-line index. Recently [4] improved on [9] and [19] by using not one model
per frame, but instead blended linearly between up to 30 affine or translational models
across the image rows. This means that their model can cope with motions that change
direction several times across a frame. This was made possible by using a high-quality
dense optical flow field. They also used a L1 optimisation based on linear program-
ming. However, they still model distortions in the image plane.

All current RS rectification approaches perform warping of individual frames to
rectify RS imagery. Note that a perfect compensation under camera translation would
require the use of multiple images, as the parallax induced by a moving camera will
cause occlusions. Single frame approximations do however have the advantage that
ghosting artifacts caused by multi-frame reconstruction is avoided, and is thus often
preferred in video stabilisation [20].

Other related work on RS images include structure and motion estimation. [14]
study the projective geometry of RS cameras, and also describe a calibration tech-
nique for estimation of the readout parameters. The derived equations are then used
for structure and motion estimation in synthetic RS imagery. [1] demonstrate that mo-
tion estimation is possible from single rolling shutter frames if world point-to-point
distances are known, or from curves that are known to be straight lines in the world.
They also demonstrate that structure and motion estimation can be done from a single
stereo pair if one of the used cameras has a rolling shutter [2].

Video stabilisation has a long history in the literature, an early example is [16]. The
most simple approaches apply a global correctional image plane translation [16, 9]. A
slightly more sophisticated approach is a global affine model. A special case of this is
the zoom and translation model used by [10].

A more sophisticated approach is to use rotational models. Such approaches only
compensate for the 3D rotational motion component, and neglect the translations, in
a similar manner to mechanical stabilisation rigs [32]. Rotational models estimate a
compensatory rotational homography, either using instantaneous angular velocity [32]
(differential form), or using inter-frame rotations, e.g. represented as unit quaternions
[24]. Since only rotations are corrected for, there are no parallax-induced occlusions to
consider, and thus single-frame reconstructions are possible.

The most advanced (and computationally demanding) video stabilisation algorithms
make use of structure-from-motion (SfM). An early example is the quasi-affine SfM
explored by [7]. These methods attempt to also correct for parallax changes in the sta-
bilised views. This works well on static scenes, but introduces ghosting when the scene
is dynamic, as blending from multiple views is required [20]. A variant of SfM based
stabilisation is the content preserving warps introduced by [20]. Here single frames are
used in the reconstruction, and geometric correctness is traded for perceptual plausibil-
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ity.
Recently [21] presented a new stabilisation approach based on subspace constraints

on 2D feature trajectories. This has the advantage that it does not rely on SfM, which
is computationally heavy and sensitive to rolling shutter artifacts. The algorithm does
not explicitly model a rolling shutter, instead it is treated as noise. The new algoritm
can deal with rolling shutter wobble from camera shake, but not shear introduced by a
panning motion.

1.2 Contributions
All the previous approaches to rectification of RS video [8, 19, 25, 9, 10, 11, 4] model
distortions as taking place in the image plane. We instead model the 3D camera motion
using calibrated projective geometry.

In this article, we focus on a distortion model based on 3D camera rotation, since we
have previously shown that it outperforms a combined rotation and translation model
[12]. In this article, we extend the rotational model to use multiple knots across a frame.
This enables the algorithm to detect non-constant motions during a frame capture. We
also introduce a scheme for positioning of the knots that makes the optimisation stable.

We demonstrate how to apply smoothing to the obtained rotation sequence to ob-
tain a high quality video stabilisation, at a low computational cost. This results in a
stabilisation similar to rotational models previously used on global shutter cameras.
However, as we perform the filtering offline, the amount of smoothing can be decided
by the user, post capture. This can e.g. be done using a slider in a video editing appli-
cation running on a cell-phone. We compare our video stabilisation with the methods
in iMovie and Deshaker.

We also introduce a rectification technique using forward interpolation. Many new
smartphones have hardware for graphics acceleration, e.g. using the OpenGL ES 2.0
application programming interface. Such hardware can be exploited using our forward
interpolation technique, to allow rectification and stabilisation during video playback.

We recently introduced the first dataset for evaluation of algorithms that rectify
rolling shutter video [27]. We now extend it with another 2 sequences, and add a more
sophisticated comparison between rectifications and ground truth. Using the dataset,
we compare our own implementations of the global affine model [9], and the global
shift model [11] to the new method that we propose. Our dataset, evaluation code and
supplementary videos are available for download at [27].

1.3 Overview
This article is organised as follows: Section 2, describes how to calibrate a rolling-
shutter camera. Section 3 introduces the model and cost function for camera ego-
motion estimation. Section 4 discusses interpolation schemes for rectification of rolling-
shutter imagery. Section 5 describes how to use the estimated camera trajectory for
video stabilisation. Section 6 describes the algorithm complexity and cell-phone im-
plementation feasibility. Section 7 describes our evaluation dataset. In section 8 we use
our dataset to compare different rectification strategies, and to compare our 3D rotation
model to our own implementations of [9] and [11]. We also compare our stabilisation to
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iMovie and Deshaker. In section 9 we describe the supplemental material and discuss
the performance of the algorithms. The article concludes with outlooks and concluding
remarks in section 10. Appendix A describes the calibration procedure, and appendix
B lists the online resources.

2 Rolling Shutter Camera Calibration
In this article, we take the intrinsic camera matrix, the camera frame-rate and the
inter-frame delay to be given. This reduces the number of parameters that need to be
estimated on-line, but also requires us to calibrate each camera before the algorithms
can be used.

On camera equipped cell-phones, such calibration makes good sense, as the pa-
rameters stay fixed (or almost fixed, in the case of variable focus cameras) throughout
the lifetime of a unit. We have even found that transferring calibrations between cell-
phones of the same model works well.

2.1 Geometric Calibration
A 3D point, X, and its projection in the image, x, given in homogeneous coordinates,
are related according to

x = KX , and X = λK−1x , (1)

where K is a 5DOF upper triangular 3×3 intrinsic camera matrix, and λ is an unknown
scaling [18].

We have estimated K for a number of cell-phones using the calibration plane
method [33] as implemented in OpenCV.

Note that many high-end cell-phones have variable focus. As this is implemented
by moving the single lens of the camera back and forth, the camera focal length will
vary slightly. On e.g. the iPhone 3GS the field-of-view varies with about 2◦. However,
we have found that such small changes in the K matrix makes no significant difference
in the result.

2.2 Readout Time Calibration
The RS chip frame period 1/f (where f is the frame rate) is divided into a readout
time tr, and an inter-frame delay, td as

1/f = tr + td . (2)

The readout time can be calibrated by imaging a flashing light source with known
frequency [14], see appendix A for details. For a given frame rate f , the inter-frame
delay can then be computed using (2). For our purposes it is preferable to use rows as
fundamental unit, and express the inter-frame delay as a number of blank rows:

Nb = Nrtd/(1/f) = Nr(1− trf) . (3)

Here Nr is the number of image rows.
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3 Camera Motion Estimation
Our model of camera motion is a rotation about the camera centre during frame capture,
in a smooth, but time varying way. Even though this model is violated across an entire
video clip, we have found it to work quite well if used on short frame intervals of 2-4
frames [12]. We represent the model as a sequence of rotation matrices, R(t) ∈ SO(3).

Two homogeneous image points x, and y, that correspond in consecutive frames,
are now expressed as:

x = KR(Nx)X , and y = KR(Ny)X (4)

where Nx and Ny correspond to the time parameters for point x and y respectively.
This gives us the relation:

x = KR(Nx)RT (Ny)K−1y . (5)

The time parameter is a linear function of the current image row (i.e. x2/x3 and y2/y3).
Thus, by choosing the unit of time as image rows, and time zero as the top row of the
first frame, we get Nx = x2/x3 for points in the first image. In the second image we
get Ny = y2/y3 + Nr + Nb, where Nr is the number of image rows in a frame, and
Nb is defined in (3).

Each correspondence between the two views, (5) gives us two equations (after elim-
ination of the unknown scale) where the unknowns are the rotations. Unless we con-
strain the rotations further, we now have six unknowns (a rotation can be parametrised
with three parameters) for each correspondence. We thus parametrise the rotations with
an interpolating linear spline with a number of knots placed over the current frame win-
dow, see figure 2 for an example with three frames and M = 6 knots. Intermediate
rotations are found using spherical linear interpolation [29].

As we need a reference world frame, we might as well fixate that to the start of
frame 1, i.e. set R1 = I. This gives us 3(M − 1) unknowns in total for a group of M
knots.

3.1 Motion Interpolation
Due to the periodic structure of SO(3) the interpolation is more complicated than reg-
ular linear interpolation.

We have chosen to represent rotations as three element vectors, n, where the mag-
nitude, φ, corresponds to the rotation angle, and the direction, n̂, is the axis of rotation,
i.e. n = φn̂. This is a minimal parametrisation of rotations, and it also ensures smooth
variations, in contrast to e.g. Euler angles. It is thus suitable for parameter optimisa-
tion. The vector n can be converted to a rotation matrix using the matrix exponent,
which for a rotation simplifies to Rodrigues formula:

R = expm(n) = I + [n̂]x sinφ+ [n̂]2x(1− cosφ) (6)

where [n̂]x =
1

φ




0 −n3 n2
n3 0 −n1
−n2 n1 0


 . (7)

72



Paper B: Efficient Video Rectification and Stabilisation for Cell-Phones

R1 RMRm

ttr td

Figure 2: Rotations, R2, R3, . . . ,RM found by non-linear optimisation. Intermediate
rotations are defined as interpolations of these, and R1 = I. Readout time tr, and
inter-frame delay td are also shown.

Conversion back to vector form is accomplished through the matrix logarithm in the
general case, but for a rotation matrix, there is a closed form solution. We note that two
of the terms in (6) are symmetric, and thus terms of the form rij − rji will come from
the anti-symmetric part alone. Conversely the trace is only affected by the symmetric
parts. This allows us to extract the axis and angle as:

n = logm(R) = φn̂ , where





ñ =



r32 − r23
r13 − r31
r21 − r12




φ = tan−1(||ñ||, trR− 1)

n̂ = ñ/||ñ|| .

(8)

It is also possible to extract the rotation angle from the trace of R alone [26]. We
recommend (8), as it avoids numerical problems for small angles. Using (6) and (8),
we can perform SLERP (Spherical Linear intERPolation) [29] between two rotations
n1 and n2, using an interpolation parameter τ ∈ [0, 1] as follows:

ndiff = logm (expm(−n1)expm(n2)) (9)
Rinterp = expm(n1)expm(τndiff) (10)
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3.2 Optimisation
We now wish to solve for the unknown motion parameters, using iterative minimisa-
tion. For this we need a cost function:

J = ε(n1, . . . ,nN ). (11)

To this end, we choose to minimise the (symmetric) image-plane residuals of the set of
corresponding points xk ↔ yk:

J =
K∑

k=1

d(xk,Hyk)2 + d(yk,H
−1xk)2 (12)

where H = KR(xk)RT (yk)K−1 (13)

Here the distance function d(x,y) for homogeneous vectors, is given by:

d(x,y)2 = (x1/x3 − y1/y3)2 + (x2/x3 − y2/y3)2 . (14)

For each frame interval we have M knots for the linear interpolating spline. The
first knot is at the top row of the fist frame, and the last knot at the bottom row of the
last frame in the interval. The position of a knot, the knot time (Nm), is expressed in
the unit rows, where rows are counted from the start of the first frame in the interval.
E.g. a knot at the top row of the second frame would have the knot timeNm = Nr+Nb
and correspond to the rotation nm.

We denote the evaluation of the spline at a row value Ncurr by:

R = SPLINE({nm, Nm}M1 , Ncurr) . (15)

The value is obtained using SLERP as:

R = SLERP(nm,nm+1, τ) , for (16)

τ =
Ncurr −Nm
Nm+1 −Nm

, where Nm ≤ Ncurr ≤ Nm+1. (17)

Here SLERP is defined in (9,10), Ncurr is the current row relative to the top row in first
frame and Nm, Nm+1 are the two neighbouring knot times.

For speed, and to ensure that the translation component of the camera motion is
negligible, we have chosen to optimise over short intervals of N = 2, 3 or 4 frames.

We have chosen to place the knots on different height for the different frames within
the frame interval, see figure 3 for two examples. If the knots in two consecutive
frames have the same height, the optimisation might drift sideways without increasing
the residuals.

There is a simple way to initialise a new interval from the previous one. Once the
optimiser has found a solution for a group of frames, we change the origin to the second
camera in the sequence (see figure 2). This shift of origin is described by the rotation:

Rshift = SPLINE({nm, Nm}M1 , Nr +Nb) , (18)
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frame 1 frame 2

frame 1 frame 2 frame 3

Figure 3: Top: Frame interval of 2 frames with 6 knots. Bottom: Frame interval of 3
frames with 9 knots.

Then we shift the interval one step, by re-sampling the spline knots {nm}M1 , with an
offset of Nr +Nb

Rm = SPLINE({nk, Nk}M1 , Nm +Nr +Nb) , (19)

and finally correct them for the change of origin, using

n′m = logm(RT
shiftRm) , for m = 1, . . . , L , (20)

where NL is the last time inside the frame interval. As initialisation of the rotations in
the newly shifted-in frame, we copy the parameters for the last valid knot, n′L.

3.3 Point Correspondences
The point correspondences needed to estimate the rotations are obtained through point
tracking. We use Harris points [17] detected in the current frame and the chosen points
are tracked using the KLT tracker [23, 28]. The KLT tracker uses a spatial intensity
gradient search which minimises the Euclidean distance between the corresponding
patches in the consecutive frames. We use the scale pyramid implementation of the
algorithm in OpenCV. Using pyramids makes it easier to detect large movements.

To increase the accuracy of the point tracker, a crosschecking procedure is used
[5]. When the points have been tracked from the first image to the other, the tracking
is reversed and only the points that return to the original position (within a threshold)
are kept. The computation cost is doubled but outliers are removed effectively.

3.3.1 Correspondence Accuracy Issues

If the light conditions are poor, as is common indoors, and the camera is moving
quickly, the video will contain motion blur. This is a problem for the KLT tracker,
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which will have difficulties finding correspondences and many tracks will be removed
by the crosschecking step.

If the light conditions are good enough for the camera to have a short exposure, and
a frame has severe rolling shutter artifacts, the KLT tracker may also have problems
finding any correspondences due to local shape distortions. We have however not seen
this in any videos, not even during extreme motions. The tracking can on the other
hand result in a small misalignment or a lower number of correspondences, when two
consecutive frames have very different motions (and thus different local appearances).

It may be possible to reduce the influence of rolling-shutter distortion on the track-
ing accuracy, by detecting and tracking points again, in the rectified images. This is
however difficult because the inverse mapping back to the original image is not always
one-to-one and it may thus not be possible to express these new correspondences in the
original image grid. How to improve the measurements in this way is an interesting
future research possibility.

4 Image Rectification
Once we have found our sequence of rotation matrices, we can use them to rectify the
images in the sequence. Each image row has experienced a rotation according to (15).
This rotation is expressed relative to the start of the frame, and applying it to the image
points would thus rectify all rows to the first row. We can instead align them all to a
reference row Rref (we typically use the middle row), using a compensatory rotation:

R′(x) = RrefR
T (x) . (21)

This gives us a forward mapping for the image pixels:

x′ = KRrefR
T (x)K−1x (22)

This tells us how each point should be displaced in order to rectify the scene. Using
this relation we can transform all the pixels to their new, rectified locations.

We have chosen to perform the rectifying interpolation by utilising the parallel
structure of the GPU. A grid of vertices can be bound to the distorted rolling shutter
image and rectified with (22) using the OpenGL Shading Language (GLSL) vertex
shader. On a modern GPU, a dense grid with one vertex per pixel is not a problem, but
on those with less computing power, e.g. mobile phones with OpenGL ES 2.0, the grid
can be heavily down-sampled without loss of quality. We have used a down-sampling
factor of 8 along the columns, and 2 along the rows. This gave a similar computational
cost as inverse interpolation on Nvidia G80, but without noticeable loss of accuracy
compared to dense forward interpolation.

By defining a grid larger than the input image we can also use the GPU texture
out-of-bound capability to get a simple extrapolation of the result.

It is also tempting to use regular, or inverse interpolation, i.e. invert (22) to obtain:

x = KR(x′)RT
refK

−1x′ . (23)
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Different homographies
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i+1
i+2
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Hf

Figure 4: Left: RS distorted image. Right: Output image.

By looping over all values of x′, and using (23) to find the pixel locations in the dis-
torted image, we can cubically interpolate these. If we have large motions this approach
will however have problems since different pixels within a row should be transformed
with different homographies, see figure 4. Every pixel within a row in the distorted im-
age does however share the same homography as we described in the forward interpo-
lation case. For a comparison between the results of forward and inverse interpolation
see figure 5.

Figure 5: Example of forward and inverse interpolation with large motion. Top left:
Rolling shutter frame. Top right: Ground truth. Bottom left: Rectification using inverse
interpolation. Bottom right: Rectification using forward interpolation.
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5 Video Stabilisation
Our rectification algorithm also allows for video stabilisation, by smoothing the esti-
mated camera trajectory. The rotation for the reference row Rref in section 4 is typically
set to the current frame’s middle row. If we instead do a temporal smoothing of these
rotations for a sequence of frames we get a more stabilised video.

5.1 Rotation Smoothing
Averaging on the rotation manifold is defined as:

R∗ = arg min
R∈SO(3)

∑

k

dgeo(R,Rk)2 (24)

where
dgeo(R,Rk)2 = ||logm(RT

1 R2)||2fro (25)

is the geodesic distance on the rotation manifold (i.e. the relative rotation angle), || · ||fro
is the Fröbenius matrix norm, and logm is defined in (8). Finding R using (24) is
iterative, and thus slow, but [15] showed that the barycentre of either the quaternions
or rotation matrices are good approximations.

We have tried both methods, but only discuss the rotation matrix method here. The
rotation matrix average is given by:

R̃k =
n∑

l=−n
wlRk+l (26)

where the temporal window is 2n+1 and w are weights for the input rotations Rk. We
have chosen wl as a Gaussian filter kernel. To avoid excessive correction at the start
and end of the rotation sequence, we extend the sequence by replicating the first (and
last) rotation a sufficient number of times.

The output of (26) is not guaranteed to be a rotation matrix, but this can be enforced
by constraining it to be a rotation [15]:

R̂k = USVT , where (27)

UDVT = svd(R̃k) , and S = diag(1, 1, |U||V|) .

5.2 Common Frame of Reference
Since each of our reference rotations Rref (see section 4) has its own local coordinate
system, we have to transform them to a common coordinate system before we can
apply rotation smoothing to them.

We do this using the Rshift,k matrices in (18) that shift the origin from one frame
interval to the next. Using these, we can recursively compute shifts to the absolute
coordinate frame as:

Rabs,k = Rabs,k−1Rshift,k , and Rabs,1 = I . (28)
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IP detection
      14%

Tracking
    33%

Smoothing
     <1%

Optimisation
       53%

Rectification
     <1%

Figure 6: Overview of algorithm complexity. The width of each box roughly corre-
sponds to the fraction of time the algorithm spends there during one pass of optimisa-
tion, and one pass of smoothing and playback.

Here Rabs is the shift to the absolute coordinate system, and Rshift is the local shift
computed in (18).

We can now obtain reference rotations in the absolute coordinate frame:

R′ref,k = Rabs,kRref,k . (29)

After smoothing these, using (26) and (27), we change back to the local coordinate
system by multiplying them with RT

abs,k.

6 Algorithm Complexity
The rectification and stabilisation pipeline we have presented can be decomposed into
five steps, as shown in figure 6. We have analysed the computational complexity of
these steps on our reference platform, which is a HP Z400 workstation, running at
2.66GHz (using one core). The graphics card used in the rectification step is an Nvidia
GeForce 8800 GTS.

As can be seen in figure 6, most computations are done in three preprocessing steps.
These are executed once for each video clip: (1) Interest-point detection, (2) KLT
tracking and crosschecking, and (3) Spline optimisation. We have logged execution
times of these steps during processing of a 259 frame video clip, captured with an
iPhone 3GS (The stabilisation example video from [12]). This video results in a highly
variable number of trajectories (as it has large portions of textureless sky), and thus
gives us good scatter plots. We present these timings in figure 7.

The remaining two steps are (4) Rotation smoothing, and (5) Playback of stabilised
video. Although these are much less expensive, these steps must be very efficient,
as they will be run during interaction with a user when implemented in a cell-phone
application.

In the following subsections, we will briefly analyse the complexity of each of the
five steps.
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Figure 7: Execution times for algorithm steps. Top left: Detection as function of
number of points. Top right: Tracking as function of number of points. Bottom left:
Optimisation as function of number of accepted trajectories. Dots are individual mea-
surements, solid lines are least-squares line fits. Bottom right: Rotation smoothing
time as function of σ in the Gaussian kernel.

80



Paper B: Efficient Video Rectification and Stabilisation for Cell-Phones

6.1 Interest-Point Detection
The time consumption for the Harris interest point detection is fairly insensitive to
the number of points detected. Instead it is roughly linear in the number of pixels. If
needed, it can with a small effort be implemented in OpenGL. Average absolute timing:
11.4 ms/frame.

6.2 KLT Tracking
The KLT tracker (see section 3.3) has a time complexity of O(K × I), where K is
the number of tracked points, and I is the number of iterations per point. The average
absolute timing for this step is: 26.9 ms/frame including crosschecking rejection. The
tracking time as a function of number of interest points is plotted in figure 7.

6.3 Spline Optimisation
The spline optimisation (see section 3.2) has a time complexity ofO(N ×I×M ×F ),
where N is the number of points remaining after crosschecking rejection, I is the
number of iterations, M is the number of knots used in the frame interval, and F is the
number of frames in the interval. Average absolute timing: 14.4 ms/frame, when using
M = 3 and the levmar library1. The optimisation time as a function of number of
accepted trajectories is plotted in figure 7.

6.4 Rotation Smoothing
Rotation smoothing (see section 5.1) is run each time the user changes the amount of
stabilisation desired. It is linearly dependent on the length of the video clip, and the
kernel size. Figure 7, bottom right, shows a plot of execution times over a 259 frame
video clip (averaged over 10 runs).

6.5 Playback of Stabilised Video
The rectification and visualisation step is run once for each frame during video play-
back. This part is heavily dependent on the graphics hardware and its capability to
handle calculations in parallel. The execution time can approximately be kept con-
stant, even though the resolution of the video is changed, by using the same number of
vertices for the vertex shader.

6.6 Cell-phone Implementation Feasibility
Our aim is to allow this algorithm to run on mobile platforms. It is designed to run
in a streaming fashion by making use of the sliding frame window. This has the ad-
vantage that the number of parameters to be estimated is kept low together with a low
requirement of memory, which is limited on mobile platforms.

1http://www.ics.forth.gr/∼lourakis/levmar/
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The most time-consuming part of our algorithm is usually the non-linear optimisa-
tion step when optimising for many knots. Our sliding window approach does however
enable us to easily initialise the new interval from the previous one. Since cell-phone
cameras have constant focal length we do not need to optimise for this. The KLT track-
ing step also takes a considerable amount of the total time. The time for both tracking
and optimisation can however be regulated by changing the Harris detector to select
fewer points.

The most time critical part is the stabilisation and the visualisation, because when
the camera motion has been estimated, the user wants a fast response when changing
the stabilisation settings. The stabilisation part is already fast, and since the visualisa-
tion is done on a GPU it is possible to play it back in real-time by down-sampling the
vertex grid to match the current hardware capability.

7 Synthetic Dataset
In order to do a controlled evaluation of algorithms for RS compensation we have gen-
erated eight test sequences, available at [27], using the Autodesk Maya software pack-
age. Each sequence consists of 12 RS distorted frames of size 640×480, corresponding
ground-truth global shutter (GS) frames, and visibility masks that indicate pixels in the
ground-truth frames that can be reconstructed from the corresponding rolling-shutter
frame. In order to suit all algorithms, the ground-truth frames and visibility masks
come in three variants: for rectification to the time instant when the first, middle and
last row of the RS frame were imaged.

Each synthetic RS frame is created from a GS sequence with one frame for each RS
image row. One row in each GS image is used, starting at the top row and sequentially
down to the bottom row. In order to simulate an inter-frame delay, we also generate a
number of GS frames that are not used to build any of the RS frames. The camera is
however still moving during these frames.

We have generated four kinds of synthetic sequences, using different camera mo-
tions in a static scene, see figure 8. The four sequence types are generated as follows:

#1 In the first sequence type, the camera rotates around its centre in a spiral fashion,
see figure 8 top left. Three different versions of this sequence exist to test the
importance of modelling the inter-frame delay. The different inter-frame delays
are Nb = 0, 20 and 40 blank rows (i.e. the number of unused GS frames).

#2 In the second sequence type, the camera makes a pure translation to the right and
has an inter-frame delay of 40 blank rows, see figure 8 top right.

#3 In the third sequence type the camera makes an up/down rotating movement,
with a superimposed rotation from left to right, see figure 8 bottom left. There is
also a back-and-forth rotation with the viewing direction as axis.

#4 The fourth sequence type is the same as the third except that a translation parallel
to the image plane has been added, see figure 8 bottom right. There are three
different versions of this type, all with different amounts of translation.
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Figure 8: The four categories of synthetic sequences. Left to right, top to bottom: #1
rotation only, #2 translation only, # full 3DOF rotation. and #4 3DOF rotation and
translation.

For each frame in the ground-truth sequences, we have created visibility masks that
indicate pixels that can be reconstructed from the corresponding RS frame, see figure
9. These masks were rendered by inserting one light source for each image row, into
an otherwise dark scene. The light sources had a rectangular shape that illuminates
exactly the part of the scene that was imaged by the RS camera when located at that
particular place. To acquire the mask, a global shutter render is triggered at the desired
location (e.g. corresponding to first, middle or last row in the RS-frame).

8 Experiments

8.1 Choice of Reference Row
It is desirable that as many pixels as possible can be reconstructed to a global shutter
frame, and for this purpose, rectifying to the first row (as done by [11] and [9]), middle
row, or last image row make a slight difference. The dataset we have generated allows
us to compare these three choices. In figure 10, we have plotted the fraction of visible
pixels for all frames in one sequence from each of our four camera motion categories.
As can be seen in this plot, reconstruction to the middle row gives a higher fraction of
visible pixels for almost all types of motion. This result is also intuitively reasonable,
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Figure 9: Left to right: Rendered RS frame from sequence of type #2, with Nb =
40 (note that everything is slightly slanted to the right), corresponding global-shutter
ground-truth, and visibility mask with white for ground-truth pixels that were seen in
the RS frame.

as the middle row is closer in time to the other rows, and thus more likely to have a
camera orientation close to the average.

8.2 Rectification Accuracy
We have compared our methods to the global affine model (GA) [9], and the global
shift model (GS) [11] on our synthetic sequences, see section 7.

8.2.1 Contrast Invariant Error Measure

When we introduced the RS evaluation dataset [12] we made use of a thresholded
Euclidean colour distance to compare ground-truth frames with the rectification out-
put. This error measure has the disadvantage that it is more sensitive in high-contrast
regions, than in regions with low contrast. It is also overly sensitive to sub-pixel rec-
tification errors. For these reasons, we now instead use a variance-normalised, error
measure:

ε(Irec) =
3∑

k=1

(µk − Irec,k)2

σ2
k + εµ2

k

. (30)

Here µk and σk are the means and standard deviations of each colour band in a small
neighbourhood of the ground truth image pixel (we use a 3×3 region), and ε is a small
value that controls the amount of regularisation. We use ε = 2.5e − 3, which is the
smallest value that suppresses high ε values in homogeneous regions such as the sky.

The error measure (30) is invariant to a simultaneous scaling of the reconstructed
image and the ground-truth image, and thus automatically compensates for contrast
changes.

8.2.2 Statistical Interpretation of the Error

If we assume that the colour channels are Gaussian and independent, we get ε ∈ X 2
3 ,

and this allows us to define a threshold in terms of probabilities. E.g. a threshold t that
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Figure 10: Comparison of visibility masks for sequences #1, #2, #3, and #4 with B =
40. Plots show the fraction of non-zero pixels of the total image size.

85



Paper B: Efficient Video Rectification and Stabilisation for Cell-Phones

accepts 75% of the probability mass is found from:

0.75 =

∫ t

0

pX 2
3
(ε)dε =

∫ t

0

√
ε

2π
e−ε/2dε . (31)

This results in t = 4.11, which is the threshold that we use.

8.2.3 Sub-Pixel Shifts

An additional benefit of using (30) is that the sensitivity to errors due to sub-pixel shifts
of the pixels is greatly reduced. We used bicubic resampling to test sub-pixel shifts in
the range ∆x,∆y ∈ [0.5, 0.5] (step size 0.1) on sequence #2. For (30), we never saw
more than 0.05% pixels rejected in a shifted image. The corresponding figure for the
direct Euclidean distance is 2.5% (using a threshold of 0.3 as in [12]).

8.2.4 Accuracy Measure

As accuracy measure we use the fraction of pixels where the error in (30) is below t.
The fraction is only computed within the visibility mask.

For clarity of presentation, we only present a subset of the results on our synthetic
dataset. As a baseline, all plots contain the errors for uncorrected frames represented
as continuous vertical lines for the means and dashed lines for the standard deviations.

8.2.5 Results

As our reconstruction solves for several cameras in each frame interval, we get multi-
ple solutions for each frame (except in outermost frames). If the model accords with
the real motion, the different solutions for the current frame are similar, and we have
chosen to present all results for the first reconstruction.

The size of the temporal window used in the optimisation has been studied. The
longer the window, the less the rotation-only assumption will hold, and a smaller num-
ber of points can be tracked through the frames. In figure 11 the result for two of the
sequences can be seen, where the number of frames varied between 2 and 4. In each
row, the mean result of all available frames is represented by a diamond centre. Left
and right diamond edges indicate the standard deviation.

The result for different numbers of knots can also be seen in figure 11. For fewer
knots the optimisation is faster, but the constant motion between sparsely spaced knots
is less likely to hold. For many knots, the optimisation time will not only increase
(and become more unstable), the probability to have enough good points within the
corresponding image region also declines.

On pure rotation scenes it is also interesting to compare the output rotations with
the corresponding ground truth. In figure 12 an example from sequence type #3 with
four knots spaced over four frames is shown, together with the ground truth rotations.
The rotations are represented with the three parameters described in section 3.1. A
comparison between different numbers of knots and the ground thruth is shown in
figure 13, using the geodesic distance defined in (25).
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Figure 11: Top: sequence type #1. Bottom: sequence type #3. Two examples of
rectification results with different number of knots and window sizes. Diamond centres
are mean accuracy, left and right indicate the standard deviation. The continuous line
is the unrectified mean and the dashed lines show the standard deviation.
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Figure 12: Sequence type #3 with four knots spaced over four frames. Continuous
line: ground truth rotations. Dashed lines: result rotations. Vertical black lines define
beginning of frames and vertical magenta defines end of frames.

From figure 11 we see that 6 knots over 2 frames, 9 knots over 3 frames and 12
knots over 4 frames give good results. We have also seen good result on real data with
these choices and have chosen to do the remaining experiments with the 2 and 3 frame
configurations.

For the pure rotation sequences (type #1 and #3) we get almost perfect results,
see figures 14 and 15. The GS and GA methods however, do no improvement to the
unrectified frames. Figure 16 shows the results from three sequences of type #4 with
different amounts of translation. Our methods work best with little translation, but they
are still better than the unrectified baseline, as well as the GS and GA methods. In
the bottom figure the amount of translation is big and would not be possible to achieve
while holding a device in the hand.

An even more extreme case is sequence type # 2, where the camera motion is pure
translational. Results for this can be seen in figure 17. This kind of motion only gives
rolling shutter effects if the camera translation is fast, e.g. video captured from a car.
To better cope with this case, a switching of models can be integrated. The GA method
performs better than the GS method on average. This is because the GS method finds
the dominant plane in the scene (the house) and rectifies the frame based on this. The
ground does not follow this model and thus the rectification there differs substantially
from the ground-truth.

Worth noting is that if the rolling shutter effects arise from a translation, objects on
different depth from the camera will get different amounts of geometrical distortions.
For a complete solution one needs to compensate for this locally in the image. Due to
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Figure 13: Sequence type #3. Comparison between different numbers of knots and
the ground truth rotations. Vertical black lines define beginning of frames and vertical
magenta defines end of frames.

occlusions, several frames may also have to be used in the reconstruction.

8.3 Stabilisation of Rolling-Shutter Video
A fair evaluation of video stabilisation is very difficult to make, as the goal is to simul-
taneously reduce image-plane motions, and to maintain a geometrically correct scene.
We have performed a simple evaluation that only computes the amount of image plane
motion. In order to see the qualitative difference in preservation of scene geometry, we
strongly encourage the reader to also have a look at the supplemental video material.

We evaluate image plane motion by comparing all neighbouring frames in a se-
quence using the error measure in (30). Each frame thus gets a stabilisation score
which is the fraction of pixels that were accepted by (30) over the total number of
pixels in the frame. An example of this accuracy computation is given in figure 18.

The comparisons are run on a video clip from an iPhone 3GS, where the person
holding the camera was walking forward (Online Resource 1). The walking motion
creates noticeable rolling shutter wobble at the end of each footstep.

We compare our results with the following stabilisation algorithms:

#1 Deshaker v 2.5 [30]. This is a popular and free rolling shutter aware video sta-
biliser. We have set the rolling shutter amount in Deshaker to 92.52% (See ap-
pendix A), and consistently chosen the highest quality settings.
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Figure 14: Rectification results for sequence type #1, Nb = 40.
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Figure 15: Rectification results for sequence type #3.
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Figure 16: Rectification results for sequences of type #4. Different amounts of transla-
tion, starting with least translation at top and most translation at the bottom.
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Figure 17: Rectification results for sequence type #2.
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Figure 18: Stabilisation accuracy on iPhone 3GS sequence. Left to right: Frame #12,
frame #13, accepted pixels (in white).
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Figure 19: Stabilisation accuracy on iPhone 3GS sequence. Left: stabilisation on origi-
nal frames. Right: with extrapolation, and zoom to 135%. Diamond centres are median
accuracy, tops and bottoms indicate the 25%, and 75% percentiles.

#2 iMovie’09 v8.0.6. [3]. This is a video stabiliser that is bundled with MacOS
X. We have set the video to 4:3, 30fps, and stabilisation with the default zoom
amount 135%.

The rotation model is optimised over 2 frame windows, with M = 6 knots. The
stabilised version using a Gaussian filter with σ = 64 can be seen in Online Resource
3 and with extrapolation and 135% zoom in Online Resource 4.

In figure 19, left we see a comparison with stabilisation in the input grid. This plot
shows results from resampling single frames only, borders with unseen pixels remain
in these clips (see also figure 18 for an illustration). As no extrapolation is used here,
this experiment evaluates stabilisation in isolation. Borders are of similar size in both
algorithms, so no algorithm should benefit from border effects.

The second experiment, see figure 19, right, shows results with border extrapolation
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turned on, and all sequences are zoomed to 135%. This setting produces video with
few noticeable border effects, but at the price of discarding a significant amount of the
input video.

The evaluation plots in figure 19, show that our algorithm is better than Deshaker
2.5 at stabilising image plane motion. iMovie’09, which is not rolling-shutter aware,
falls significantly behind. However, we emphasise that this comparison tests for image-
plane motion only. It is also our impression that the stabilised video has more of a 3D
feel to it after processing with the 3D rotation method, than with Deshaker, see Online
Resources 4, 6 and 7. The reason for this is probably that Deshaker uses an image
plane distortion model.

9 Video examples
In the supplemental material we show results from three videos captured with three
different cell-phones, and our result on [22] supplemental video set 1, example 1.

In section 8.3 we used a sequence captured with the iPhone 3GS where Online Re-
source 1 is the original video, Online Resource 2 is a 135% zoomed version, Online
Resource 3 is rectification and stabilisation with our method, Online Resource 4 is our
method with additional zoom and extrapolation, Online Resource 5 is the Deshaker re-
sult, Online Resource 6 is the Deshaker result with zoom and extrapolation and Online
Resource 7 is the result from iMovie.

The supplemental material also contains videos captured from an HTC Desire at
25.87 Hz, see figure 20 left, and a SonyEricsson Xperia X10 at 28.54 Hz, right.

In the HTC Desire sequence the camera is shaken sideways while recording a per-
son, see the original video (Online Resource 8). Online Resource 9 is the result with
our rectification and stabilisation method, while Online Resource 10 is stabilisation
without rolling-shut-ter compensation. Online Resource 11 and Online Resource 12
are the results from Deshaker and iMovie respectively.

In the SonyEricsson Xperia X10 sequence the person holding the camera is walk-
ing while recording sideways, see the original video (Online Resource 13). Online
Resource 14 contains the result from our method, Online Resource 15 is the result
from Deshaker and Online Resource 16 is the result from iMovie.

From these sequences it is our impression that our 3D rotation model is better at
preserving the geometry of the scene. We can also see that Deshaker is significantly
better than iMovie which is not rolling shutter aware. Especially on Online Resource
15 we observe good results for Deshaker. Artifacts are mainly visible near the flag
poles.

[21] demonstrated their stabilisation algorithm on rolling shutter video. The result
can be seen on the supplemental material website, video set 1, example 1 [22]. The
algorithm is not rolling shutter aware and distortions are instead treated as noise. The
authors report that their algorithm does not handle artifacts like shear introduced by a
panning motion but reduces the wobble from camera shake while stabilising the video
[21].

Our algorithm needs a calibrated camera, but the parameters are unfortunately not
available for this sequence. To obtain a useful K matrix, the image centre was used as
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the projection of the optical centre and different values for the focal length and readout
time were tested. As can be seen in Online Resource 17, the 3D structure of the scene
is kept whereas the output of [21] still have a a noticeable amount of wobble. The
walking up and down motion can still be seen in our result, and this is an artifact of not
knowing the correct camera parameters.

Figure 20: Left: First frame from the HTC Desire input sequence. Right: First frame
from the SonyEricsson Xperia X10 input sequence.

10 Concluding Remarks
In this article, we have demonstrated rolling-shutter rectification by modelling the cam-
era motion, and shown this to be superior to techniques that model movements in the
image plane only. We even saw that image-plane techniques occasionally perform
worse than the uncorrected baseline. This is especially true for motions that they do
not model, e.g. rotations for the Global shift model [11].

Our stabilisation method is also better than iMovie and Deshaker when we compare
the image plane motion. The main advantage of our stabilisation is that the visual
appearance of the result videos and the geometry of the scene is much better. Our
model also corrects for more types of camera motion than does mechanical image
stabilisation (MIS).

In future work we plan to improve our approach by replacing the linear interpola-
tion with a higher order spline defined on the rotation manifold, see e.g. [26]. Another
obvious improvement is to optimise parameters over full sequences. However, we wish
to stress that our aim is currently to allow the algorithm to run on mobile platforms,
which excludes optimisation over longer frame intervals than the 2-4 that we currently
use.

For the stabilisation we have used a constant Gaussian filter kernel. For a dynamic
video with different kinds of motions, e.g. camera shake and panning, the result would
benefit from adaptive filtering.

In general, the quality of the reconstruction should benefit from more measure-
ments. In MIS systems, camera rotations are measured by MEMS gyro sensors [6].
Such sensors are now starting to appear in cell-phones, e.g. the recently introduced
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iPhone4. It would be interesting to see how such measurements could be combined
with measurements from KLT-track-ing when rectifying and stabilising video.
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A Readout Time Calibration
The setup for calibration of readout time is shown in figure 21, top left. An LED is
powered from a function generator set to produce a square pulse. The frequency fo of
the oscillation is measured by an oscilloscope. Due to the sequential readout on the
RS chip, the acquired images will have horizontal stripes corresponding to on and off
periods of the LED, see figure 21, top right. If we measure the period T of the vertical
image oscillation in pixels, the readout time can be obtained as:

tr = Nr/(Tfo) , (32)

where Nr is the number of image rows, and fo is the oscillator frequency, as estimated
by the oscilloscope.

As can be seen in figure 21 top right, the images obtained in our setup suffer from
inhomogeneous illumination, which complicates estimation of T . In their paper, [14]
suggest removing the lens, in order to get a homogeneous illumination of the sensor.
This is difficult to do on cell-phones, and thus we instead recommend to collect a
sequence of images of the flashing LED, and then subtract the average image from
each of these. This removes most of the shading seen in the input camera image, see
figure 21, middle left, for an example. We then proceed by averaging all columns in
each image, and removing their DC. An image formed by stacking such rows from a
video is shown in figure 21, middle right. We compute Fourier coefficients for this
image along the y-axis, and average their magnitudes to obtain a 1D Fourier spectrum,
F (u), shown in figure 21, bottom left.

F (u) =
1

Nf

Nf∑

x=1

∣∣∣∣∣
1

Nr

Nr∑

y=1

f(y, x)e−i2πuy/Nr

∣∣∣∣∣ . (33)

HereNf is the number of frames in the sequence. We have consistently usedNf = 40.
We refine the strongest peak of (33), by also evaluating the function for non-integer
values of u, see figure 21, bottom right. The oscillation period is found from the
frequency maximum u∗, as T = Nr/u

∗.
As the Geyer calibration is a bit awkward (it requires a function generator, an os-

cilloscope and an LED), we have reproduced the calibration values we obtained for
a number of different cell-phone cameras in table 1. The “<30” value for frame rate
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Figure 21: Calibration of a readout time for a rolling-shutter camera. Top left: Used
equipment; an oscilloscope, a function generator and a flashing LED. Top right: One
image from the sequence. Middle left: Corresponding image after subtraction of the
temporal average. Middle right: Image of average columns for each frame in sequence.
Bottom left: 1D spectrum from (33), Bottom right: refinement of peak location.
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Camera resolution f tr N σ
iPhone 3GS 640× 480 30 30.84 7 0.36
iPhone 4(#1) 1280× 720 30 31.98 6 0.25
iPhone 4(#2) 1280× 720 30 32.37 4 0.27

iPhone 4(#1,front) 640× 480 30 29.99 5 0.16
iTouch 4 1280× 720 30 30.07 5 0.25

iTouch 4 (front) 640× 480 30 31.39 5 0.07
HTC Desire 640× 480 < 30 57.84∗ 3 0.051
HTC Desire 1280× 720 < 30 43.834∗ 4 0.034
SE W890i 320× 240 14.706 60.78 4 0.16

SE Xperia X10 640× 480 < 30 28.386∗ 4 0.024
SE Xperia X10 800× 480 < 30 27.117∗ 5 0.040

Table 1: Calibrated readout times for a selection of cell-phone cameras with rolling
shutters. f (Hz) - frame rate reported by manufacturer. tr (milliseconds) average read-
out time, N number of estimates, σ standard deviation of tr measurements. Readout
times marked by an “*” are variable. See text for details.

in the table signifies a variable frame rate camera with an upper limit somewhere be-
low 30. The oscillator frequency is only estimated with three significant digits by our
oscilloscope, and thus we have averaged obtained readout times for several different
oscillator frequencies in order to improve the accuracy.

Reported readout times marked with an “*” are one out of several used by the
camera. We have seen that a change of focus, or gain may provoke a change in readout
time on those cameras. We have found that rectifications using the listed value look
better than those from other readout times, and thus it appears that this value is used
most of the time.

The Deshaker webpage [30] reports rolling shutter amounts (a = tr × f ) for a
number of different rolling shutter cameras. The only cell-phone currently included is
the iPhone4, which is reported as a = 0.97± 0.02. Converted to a readout time range,
this becomes tr ∈ [31.67ms, 33ms] which is the range where we find our two iPhone4
units.
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B Online Resources
Number Filename Description

1 ESM 1.mpg iPhone 3GS input sequence
2 ESM 2.mpg iPhone 3GS 135% zoomed input
3 ESM 3.mpg iPhone 3GS rectification and stabilisation
4 ESM 4.mpg iPhone 3GS rectification and stabilisation with 135% zoom

and extrapolation
5 ESM 5.mpg iPhone 3GS Deshaker
6 ESM 6.mpg iPhone 3GS Deshaker with 135% zoom and extrapolation
7 ESM 7.mpg iPhone 3GS iMovie with 135% zoom and extrapolation
8 ESM 8.mpg HTC Desire input sequence
9 ESM 9.mpg HTC Desire rectification and stabilisation

10 ESM 10.mpg HTC Desire stabilisation only
11 ESM 11.mpg HTC Desire Deshaker
12 ESM 12.mpg HTC Desire iMovie with 135% zoom and extrapolation
13 ESM 13.mpg SonyEricsson Xperia X10 input sequence
14 ESM 14.mpg SonyEricsson Xperia X10 rectification and stabilisation
15 ESM 15.mpg SonyEricsson Xperia X10 Deshaker
16 ESM 16.mpg SonyEricsson Xperia X10 iMovie with 135% zoom and ex-

trapolation
17 ESM 17.mpg Rectification and stabilisation results on sequence Liu et al.

2011 Supplemental Video Set 1, example 1
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Abstract

Structured light range sensors, such as the Microsoft Kinect, have recently
become popular as perception devices for computer vision and robotic systems.
These sensors use CMOS imaging chips with electronic rolling shutters (ERS).
When using such a sensor on a moving platform, both the image, and the depth
map, will exhibit geometric distortions. We introduce an algorithm that can sup-
press such distortions, by rectifying the 3D point clouds from the range sensor.
This is done by first estimating the time continuous 3D camera trajectory, and then
transforming the 3D points to where they would have been, if the camera had been
stationary. To ensure that image and range data are synchronous, the camera trajec-
tory is computed from KLT tracks on the structured-light frames, after suppressing
the structured-light pattern. We evaluate our rectification, by measuring angles
between the visible sides of a cube, before and after rectification. We also mea-
sure how much better the 3D point clouds can be aligned after rectification. The
obtained improvement is also related to the actual rotational velocity, measured
using a MEMS gyroscope.

1 Introduction
Structured light range sensors (SLRS) have recently become popular, e.g. Microsoft
Kinect and the Asus WAVI Xtion. Both these devices are based on a patented refer-
ence implementation by the company Primesense [17]. The intended purpose for these
sensors is full body gesture based human-computer interfaces. As these devices deliver
quasi-dense depth maps at 30 fps (computed using a built-in SoC) they also have many
other applications (see e.g.
http://kinecthacks.net/ for some examples).

We want to make these sensors more useful for dynamic robot perception. 3D
range sensing has proven to be very useful for autonomous robots, as demonstrated
in the 2007 DARPA urban challenge [21]. In this competition, all of the successful
contenders made heavy use of 3D sensing, both for mapping, and to perceive nearby
obstacles. However, the high price for time-of-flight and laser-range sensors have this
far limited a more widespread use.
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Figure 1: Top row: Depth map, and NIR frame from a Kinect sequence acquired during
fast motion. Bottom row: Re-projected depth map, and NIR frame from rectified point
cloud. The structured light pattern in the NIR frames have been suppressed using the
method in section 3.

SLRS are directly useful for short range obstacle perception (typically up to 3.5m
[17]), and they also have the potential to be useful in simultaneous localisation and
mapping (SLAM) [12]. Doing SLAM using these devices is somewhat problematic,
as they make use of CMOS cameras with electronic rolling shutters (ERS). In an ERS
camera, all pixels are not exposed at the same time (as is the case in a global shutter
camera). Instead each row is exposed at a slightly different time interval, that is charac-
terised by the sensor readout time [10, 9, 2]. The effect of this is geometric distortions
in the image, when either the camera or the scene changes during exposure, see figure
1, top row.

Unless rolling shutter distortions are modelled, a SLAM system using a rolling
shutter sensor is limited to slow motions, or move-stop-look image acquisition cycles
(analogous to stop motion animation).

In this paper, we introduce an algorithm that rectifies sensor data affected by rolling
shutter distortions. An example of sensor data before, and after the proposed rectifica-
tion is shown in figure 1.
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1.1 Related Work
Simultaneous Localisation and Mapping (SLAM) is the on-line equivalent of the Struc-
ture from Motion problem [11]. SLAM has been extensively studied over the years, and
a good introduction is given in [7]. We do not study the full SLAM problem, instead
the algorithm presented in this paper is a pre-processing step that makes the output
from SLRS systems useful in a SLAM framework under more general motions.

An alternative to our proposed correction is to use conventional global-shutter sen-
sors, as has been explored by others. Se and Jasiobedzki built a structured light stereo
system using a global shutter stereo camera [18]. In order to allow dense correspon-
dences from stereo in untextured environments, a random dot structured light pattern
(SLP) is projected onto the scene in every second frame. Frames without the SLP are
used to acquire textures for the 3D meshes, and to compute SIFT feature correspon-
dences that are used to align the 3D meshes over longer pose changes.

For SLRS systems with rolling shutters, we have only found one attempt at SLAM.
Henry et al. [12] have used the Primesense reference platform [17] to do 3D mapping.
3D point clouds are aligned in two steps, first a rigid body transformation between two
scans is estimated using visual features. This is then refined using a fusion of visual
feature alignment, and range scan alignment from the Iterative Closest Point algorithm
(ICP) [23]. This solution appears to be effective as loop-closing is used to correct for
drifts, but as mentioned on the author’s YouTube channel (RGBDvision) it can fail “in
the hands of a non technical user”, and a requirement is that care is taken to avoid fast
camera motions.

There has also been work on rectification of sweeps from moving laser range sen-
sors, where the sensor is rotating [5], or nodding [8]. These are related as they also
deal with rectification of 3D point clouds. In [8] planes are found in the scene, and
then 3D rotations are optimised for to make the planes as flat as possible. In [5] ICP
between neighbouring scans is used, augmented with local scene structure constraints.
The sought trajectory is first gridded, and then interpolated with a cubic spline.

Ait-Aider et al. [1] and Klein et al. [13] solve the perspective-n-point problem (PnP)
[11] under linear motion across a rolling shutter frame. This is somewhat similar to our
problem, but note that we have distorted 3D to 3D correspondences, whereas [1, 13]
deal with 2D to 3D correspondences, where the 3D points are assumed undistorted.

Another related line of work is rectification of rolling shutter video. This problem
has been studied, and solved to some extent [9, 2]. What is different here is that in
SLRS systems we also have access to depth values in most pixels, and these allow us
to robustly solve for the full 3D camera trajectory, instead of resorting to affine motion
[2], or rotation only models [9].

Our rolling shutter model is similar to [9], but instead of assuming a pure rota-
tional motion, or that the scene is purely planar, we model both the camera rotation
and translation in an arbitrary static scene. This is possible since we have the depth
values for most pixels in the image, and can formulate a cost function on the 3D point
correspondences.

105



Paper C: Scan Rectification for Structured Light Range Sensors with Rolling Shutters

1.2 Contributions
We introduce a scheme for scan-matching on SLRS with rolling shutters (e.g. the Mi-
crosoft Kinect and the Asus Wavi Xtion), under more general camera motions.

• We describe a simple and efficient technique to remove the structured light pat-
tern from the NIR images. This allows us to use feature tracking in the NIR
images.

• We describe how to automatically tune the parameters of the structured light
filter, to maximise the performance of the feature tracking step.

• We provide estimates of the readout times for both the NIR and the colour cam-
eras on the Kinect. These should be useful for any researcher that wants to use
the Kinect under a rolling shutter model.

• We derive models of rolling shutter correction of structured light range scans,
and verify their effectiveness on real data.

• We demonstrate the effectiveness of our approach using experiments on real data.

1.3 Example Calculation
A reasonable question to ask is when the rolling shutter problem matters. To answer
this, we give an example calculation for a panning Kinect NIR sensor below (the cal-
culation for tilt is similar, but translations are more complicated characterise, as the
distortion now depends on the distance to scene objects). For a pin-hole camera, the
sensor width w in pixels, the horizontal field of view hFoV, and the focal length f are
related according to [11]:

w/(2f) = tan(hFoV/2) . (1)

Assume that we can tolerate a pixel distortion of 5 pixels between the top and the
bottom of the frame. For hFoV = 58◦ and w = 640 [17] we get the focal length
f = 577.3 pixels. If we now set w = 5, and solve for hFoV we get the rotation
corresponding to a 5 pixel skew at the image centre (this is an underestimate, as pixels
in the periphery span smaller angles). The result is θ = 0.496◦. By dividing this by
the readout time r = 30.55 msec for the Kinect NIR camera (see section 5), we get the
angular velocity, ω = θ/r = 16.2◦/sec.

That is, if we want to bound the geometric distortion to 5 pixels, we need to con-
strain the camera pan to always be below 16.2◦/sec (At this speed a full 360◦ pan lasts
22.2 seconds). For tilt we instead get a 14.2◦/sec bound.

1.4 Overview
This paper is organised as follows: Section 2 briefly describes our approach to solve
the range scan rectification problem. In section 3 we introduce a filter that suppresses
the structured light pattern, and demonstrate how to tune the filter for maximal feature
tracking performance. In section 4 we introduce the motion model and cost functions
for camera ego-motion estimation, and methods for rectification of point clouds, depth
maps and video frames. Section 5 describes how the sensor calibration was performed.
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In section 6 we evaluate our algorithm by measuring angles between the visible sides of
a cube, and by comparing the closest point distances in the rectified point clouds to the
unrectified point clouds. The paper concludes with outlooks and concluding remarks
in section 7.

2 Our Approach
As both the NIR structured light camera and the RGB camera have rolling shutters, and
their readout times are different in general, the correspondence problem is problematic
under camera motion. (Corresponding pixels in the NIR and RGB images are in general
acquired at slightly different times, as the acquisition time depends on the image row.)
We use only the NIR camera here, as this ensures temporal correspondence between
depth and intensity values. We have also noticed that indoors, the NIR camera uses
shorter shutter speeds than the RGB camera, resulting in less motion blur. Using the
NIR camera images does however require that we can somehow suppress the influence
of the structured light pattern present in the NIR images. Our full approach consists of
the following steps:

1. We suppress the structured light pattern in the NIR images, and use feature track-
ing to find correspondences between frames.

2. We solve the ego-motion estimation problem by optimising over the continuous
NIR camera trajectory to minimise the alignment errors in the 3D model.

3. We rectify the 3D model using the estimated motion, and rectify both the filtered
NIR images, and the depth map, by projecting the rectified point cloud through
the camera again.

3 Removing the Structured Light Pattern
The structured light pattern consists of small circular disks of uniform illumination (see
figure 2, left). We have noticed that the scene in-between these illuminated dots is also
illuminated, by a weak ambient light. In order to track regions in the NIR images,
we thus remove the structured light pattern, and use interpolation to fill in the gaps.
We detect the structured light pattern peaks using normalised difference of Gaussian
filtering of the NIR image f(x):

s(x) =
(f ∗ (gσ1

− gσ2
))(x)

(f ∗ gσ2
)(x)

. (2)

Here gσ1
and gσ2

are two Gaussian kernels, with σ1 < σ2, and ’∗’ is the convolu-
tion operator. Note that since the Gaussian kernel is separable, and f can be factored
in, the whole operation consists only of four 1D convolutions, and some point-wise
operations.

The numerator in (2) serves as a pattern-detector, while the denominator is a lo-
cal magnitude normalisation. The normalisation is useful because the structured light
pattern varies substantially in magnitude across a scene.
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In order to remove the structured light pattern, we make use of a technique called
normalized averaging [16, 14]. This requires that we first convert the pattern function
to a confidence map c ∈ [0, 1]:

c(x) = max(0,min(1, s(x) · w)) , (3)

where w is a parameter that controls the scaling of the input. Using the confidence sig-
nal, we can now remove the structured light pattern using the quotient of two additional
convolutions:

f̂(x) =
(f · c ∗ gσ3)(x)

(c ∗ gσ3
)(x)

, (4)

where the σ3 parameter controls the amount of blurring in the output image. The result
of this operation is shown in figure 2, right. Note that the input image has also been
gamma corrected by taking the square root of image intensities in the range f ∈ [0, 1].

Figure 2: Removal of structured-light pattern in NIR image. Left: input image (gamma
corrected) Right: result of pattern removal.

3.1 Parameter Tuning
We tune the parameters for the SLP filter to give the best performance for the pyramid
KLT tracker [6] in OpenCV. We do this by first selecting five pairs of images in a
sequence where the camera was rotating sideways. We then run the SLP filter with a
particular parameter setting. Next we detect interest points using the good features to
track measure [19], and run the KLT tracker on these points. To remove bad tracks,
we also apply the a crosschecking rejection with a threshold of 0.5 pixels [9, 3]. After
this we have a set of correspondences: {xk ↔ yk}K1 , where xk are interest points, and
yk are the corresponding locations found by KLT. As we know that the camera was
panning, we then separate the correspondences into two categories:

G = {xk ↔ yk : xk,1 − yk,1 ≤ −5, |xk,2 − yk,2| ≤ 10}
B = {xk ↔ yk : k ∈ [1,K]} \ G (5)
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where the thresholds for G membership were found by manual inspection. We can now
define a score function as

J(σ1, σ2, w, σ3) = |G|/(|G|+ |B|) . (6)

That is, we want to maximise the fraction of correct correspondences.
The simple form of a box constraint in (5) has been chosen as this test needs to

be performed in the centre of an optimisation loop. In practise we have found it to be
quite effective at finding good filter parameters. Note also in particular that we can not
use e.g. a fundamental matrix, or homography constraint [11] for outlier rejection here,
as the camera motion causes each image row in a rolling shutter camera to move in a
different way.

We have used coordinate-wise optimisation, with alternating exhaustive search in a
fixed grid along each coordinate. This is a simple and reasonably efficient way to find
useful parameters, it is also straight-forward to implement. Note however that there is
no guarantee that the global minimum is found, and that more sophisticated approaches
exist. Note also that e.g. gradient descent, and Newton style methods are not suitable,
as the score function (6) is not continuous. The parameters we found are listed in table
1. As 5 × 5 blocks gave the highest score, we have used this setting throughout the
paper.

block size σ1 σ2 w σ3 J
13× 13 0.35 1.0 4.5 3.5 0.8909
11× 11 0.475 1.0 4.5 3.4 0.8959
9× 9 0.575 2.4 5.0 3.4 0.8991
7× 7 0.375 2.1 5.0 3.4 0.8989
5× 5 0.575 2.3 9.0 3.4 0.9026
3× 3 0.575 2.4 9.0 3.4 0.8887

Table 1: Parameters at maximal scores found for different KLT block sizes.

4 Geometry Estimation and Rectification
Since the sensor has a rolling shutter, the reconstructed 3D scene will have geometric
distortions if the sensor is moving during a frame capture. To compensate for this we
need to model the camera motion and rectify the 3D points accordingly. In contrast
to previous work that assumed affine [2], or purely rotational models [9], we model
both the camera rotation and translation in an arbitrary static scene. This is possible
since we have the depth values for most pixels in the image, and can formulate a cost
function on the 3D point correspondences.

4.1 Pre-processing of Points
When the NIR images have been filtered from the structured-light pattern these can
be used, together with the depth images, to compute each pixel’s 3D point. The same
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method as described in section 3.1 is used to find point correspondences between con-
secutive frames. The interest point detector finds points at corners, which could rep-
resent a depth discontinuity. Since the KLT-tracker has sub-pixel accuracy, the values
in the depth image must be interpolated in a small neighbourhood. Values on differ-
ent sides of the discontinuity may differ a lot, and interpolation must in such cases be
avoided. We create a validity mask to select which KLT tracks are good. For this, an
edge detector is used on each depth image to detect the discontinuities. The thresholded
edge map is then expanded by 4 pixels to create the validity mask.

The Kinect’s depth map is quite noisy, and this can considerably affect a point’s 3D
position. In addition to the possibly incorrect z value, the depth values are also mul-
tiplied with a point’s x and y coordinates after projection through the camera matrix,
which gives larger distances between 3D point correspondences, even though image
point correspondences in consecutive frames are close. To remove these outliers, point
correspondences are fed into a rigid motion estimation RANSAC loop [11]. In each
sample, the camera’s per frame rotation and translation is estimated using the orthog-
onal Procrustes method, see e.g. [22]. Even though the 3D point clouds exhibit geo-
metric distortions due to the rolling shutter (which violates the rigid motion model),
outliers can still be rejected, by using a high inlier threshold.

4.2 Camera Motion Model
A 3D point in the scene, X, and its projections, x (homogeneous), in the NIR and depth
images, have the following relationship in the camera’s coordinate system:

x = KX , and X = z(x)K−1x , (7)

where K is a 5DOF upper triangular 3 × 3 intrinsic camera matrix, and z(x) is the
point’s value in the depth image.

We model the camera motion as a sequence of rotation matrices R(t) ∈ SO(3) and
translation vectors d(t) ∈ R3. We use the image row N , as time parameter starting at
the top row. By calibrating the camera’s readout time tr (see section 5), the inter-frame
delay td can be calculated and expressed as number of blank rows Nb [9]:

Nb = Nrtd/(1/f) = Nr(1− trf) , (8)

where f is the frame rate. For an image pair, this gives us the time parameter N1 =
x2/x3 for a homogeneous point in the first image and N2 = x2/x3 + Nr + Nb for a
homogeneous point in the second image, where Nr is the number of image rows.

4.3 3D Motion from Image and Range Video
Since the camera is moving during frame capture, corresponding points in the images
will reconstruct different 3D points. Assuming that the 3D points are static, this differ-
ence is used to find the camera motion. Assuming a point in the first image is at row
N1, and its corresponding point in the second image is at row N2, their reconstructed
3D points can be written as X1 and X2 for frame 1 and 2, and calculated using the im-
age coordinates and the depth map according to (7). These points can be transformed
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to the position X0, where the reconstructed point should have been, if it was imaged at
the same time as the first row in the first image:

X0 = R(N1)X1 + d(N1) (9)
X0 = R(N2)X2 + d(N2). (10)

The cost function to minimise is thus:

J =
K∑

k=1

||R(N1,k)X1,k + d(N1,k)−

R(N2,k)X2,k − d(N2,k)||2, (11)

where K is the number of point correspondences.
In the experiments we have minimised (11) using the Matlab solver lsqnonlin

with the trust-region reflective algorithm.
We represent each rotation with a three element axis-angle-vector and each 3D

translation by another three element vector. This results in 12 unknowns for each
point correspondence, which only gives us three equations. In order to solve this,
we parametrise rotations and translations with two interpolating splines, using SLERP
(Spherical Linear intERPolation) [20] for the rotations and linear interpolation for the
translations. Since we fixate the origin at the beginning of a spline, the parameters
for this knot do not need to be estimated. The number of spline knots during a frame
interval can be chosen depending on how fast the motion is changing and how many
correspondences we have. With L number of knots in one of the splines, and M knots
in the other, we have 3(L+M − 2) unknowns to solve for.

4.4 3D Motion using Known Model
If the 3D structure of the scene is known beforehand, point correspondences (e.g. from
SIFT [15]) between the model and the rolling shutter video can be used to find the
camera motion. Given 3D point correspondences
Xm,k ↔ X1,k we optimise:

J =
K∑

k=1

||Xm,k −R(N1,k)X1,k − d(N1,k)||2, (12)

where Xm is a point in the 3D model and X1 a point in the point cloud calculated from
the Kinect data. Since the position of Xm is known, we now only have 6 unknowns for
each point correspondence. We parametrise the rotations and translations with interpo-
lating splines as before, but now we also have to estimate the rotation and translation
for the first knot.

4.5 Rectification
When the camera motion has been estimated, the point clouds can be geometrically
rectified to better represent the correct 3D scene. This can be done either per point, if
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a sparse number of points is to be rectified, or row-wise, in the dense reconstruction
case, since all the pixels within a row share the same transformation. A distorted 3D
point X1 can be transformed to the rectified position X′ by:

X′ = Rref(R(N1)X1 + d(N1)) + dref, (13)

where Rref and dref describe a global transformation to a reference coordinate system.
By choosing Rref = I and dref = [0 0 0]T , the point cloud will be transformed to the
position the camera had at the first knot in each spline.

Once a 3D point cloud has been rectified, the corresponding depth map and video
frame can also be rectified. By projecting the 3D points through the camera matrix,
and saving the rectified image coordinates in a new image grid, at the same position
as the original points, a forward mapping is created. This is a combination of (7) and
(13):

x′ = K[Rref(R(N1)X1 + d(N1)) + dref]. (14)

The mapping tells us how each pixel (where depth information is available) in the depth
map or video frame should be moved to its rectified position x′. Note that since the 3D
points are re-projected into the camera, even the noisy depth values can be used here
as most of the noise will be removed by the projection. Figure 1 shows an example of
a Kinect NIR frame and depth map acquired during fast motion, and the re-projected
results from our rectified point cloud.

5 Readout Time Calibration
We have calibrated the rolling shutter readout times for the colour camera (not used in
this paper) and the NIR camera in the Kinect, using the method and implementation
described in [9]. This involves imaging an LED that flashes with a known frequency,
and measuring the width of the resultant stripes in the image. We have used a DSO
Nano pocket oscilloscope to generate the square waves that power the LEDs. For the
colour camera, we used a plain red LED, and for the NIR camera, we used an Osram
SFH 485-2 IR-LED, with 880nm wavelength. For each camera we used six probing
frequencies, and thus obtained six readout values. The obtained values are listed in
table 2, together with their means and standard deviations.

For the NIR camera, we also noticed a slight drift in the frame delivery. When
imaging the IR-LED when flashing at 60 Hz, one should obtain a fixed pattern of
horizontal stripes if the camera has a 30 Hz frame-rate. By measuring the slope of
these stripes over time we found a correction factor for the frame-rate. Assuming that
the frequency delivered by the DSO Nano is correct, the actual frame-rate of the NIR
camera is 29.9688 Hz. For the colour camera no such drift was observed.

6 Experiments
We evaluate our algorithm by measuring angles between the visible sides of a cube, be-
fore and after rectification. We also compare the closest point distances in the rectified
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oscillation readout time oscillation readout time
(Hz) (msec) (Hz) (msec)
58 25.7069 57 30.7018
65 26.8769 66 30.4848
87 26.2414 87 30.5977
93 25.914 92 30.5217
115 25.8957 117 30.4957
124 26.0323 122 30.4918

µ = 26.11 µ = 30.549
σest = 0.17 σest = 0.0350

Table 2: Measured readout times, mean estimate (µ), and std of estimate (σest). Left:
colour camera, Right: NIR camera.

point clouds to the unrectified point clouds. In order to relate the alignment accuracy
to rotational velocities, we have computed the sensor rotational velocity using an iPod
Touch4 device. Even though rolling shutter artifacts can arise from a fast translation
of the sensor (moving platform, such as a car) the dominant cause is usually due to
rotation. Our method estimates both translation and rotation, but the sensor has only
been rotated in the experiments.

6.1 Ground Truth Rotational Velocities
We have generated several series of panning motions, at various rotational velocities,
by rotating the Kinect while mounted on a tripod. During capture of the Kinect data,
we also logged actual rotational velocities using an iPod Touch4. The gyro in the
iPodTouch4 is surprisingly accurate (we have estimated the standard deviation to be
less than 0.7 degrees/second). Synchronization between the devices is obtained by
tapping the Kinect, and setting time-shifts to the time where the distortion occurs in
each data stream. The setup, and an example gyro log are shown in figure 3.

6.2 Angle estimation from known object
We evaluate our method by comparing the angles between the visible sides of a wooden
box, before and after rectification. The three sides of the box are manually segmented
in each evaluated frame. Ground-truth angles are obtained by imaging the box when
the sensor was stationary, see figure 4. We estimate the plane angles, by first finding
the cube normals using RANSAC, with an inlier threshold of 0.01. We then compute
the angle between two normals using the formula

Θk,l = sin−1(‖n̂k × n̂l‖) , (15)

where n̂k and n̂l are normal vectors for the two planes.
In figure 5 we plot the estimated angles between the box sides before and after

rectification. As can be seen, the angles after rectification are closer to the ground-
truth, especially the angles that include the top plane (plane 2).
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Figure 3: Setup for rotation ground-truth measurement. Left: A Kinect mounted on
a tripod, together with an rigidly duct-taped iPod Touch4, with built-in gyro, which
are used to estimate rotations. Right: Example of measured rotational velocity in de-
grees/second (BLUE), and integrated position in degrees (RED).

Figure 4: Left: Depth frame from a static sensor. Right: Manually marked planes on
frame captured during sensor rotation.

For high rotational velocities (to the right in figure 5), the motion blur is severe, and
the plane normals are difficult to estimate accurately. The depth data appears to be less
noisy on the top side, which may be the reason why angles that include this side are
more accurate. At velocities above about 115◦/sec, depth maps are simply too noisy to
be useful. However, the rectified point clouds and depth maps at high velocities still
look less geometrically distorted than the originals. See figure 6 for a rectification at a
rotational velocity of 172.9◦/sec.

6.3 ICP Alignment
Another way to evaluate the point cloud rectifications, is to check how well two rec-
tified point clouds can be aligned, compared to the corresponding unrectified point
clouds. As evaluation measure we use the distribution of closest point distances after
alignment. For two point clouds, we first find the best alignment using the iterative
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Figure 5: Angles between box sides, as function of rotational velocity. Each colour
corresponds to a particular pair of planes, and the horizontal dashed lines show the
ground-truth. Top: Box angles before rectification. Bottom: Box angles after rectifica-
tion. The corresponding plane numbers are given in figure 4.
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Figure 6: Top row: Unrectified and rectified point clouds at rotational velocity
172.9◦/sec. Bottom row: Re-projected depth maps

closest point algorithm (ICP) [23]. We then transform one of them using the found
transformation, yielding aligned point clouds {X}M1 , and {Y}N1 . Using these, we now
compute closest point distances for all points in the first set to the second one:

dm = d(Xm, {Y}N1 ) = min
n∈[1,N ]

||Xm −Yn|| . (16)

For these distances, we then compute a kernel density estimate (KDE) [4], to obtain
a probability density curve p(d). Figure 7 shows an example of aligned point clouds,
without rectification, and with rectification applied. The corresponding KDE plots are
given below. Each two pairs of point clouds have been generated from two images,
approximately imaging the same part of the scene, but with different motions. For
one of the point clouds in a pair, the sensor was panning left, and for the other one it
was panning right. The images have been down-sampled 8 times in each dimension
to speed up the ICP calculations. This corresponds to approximately 4800 points per
image depending on how much depth data is available.
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Figure 7: Point cloud alignment at 233.0◦/sec relative rotation. Top left: ICP align-
ment of unrectified point clouds. Top right: ICP alignment of rectified point clouds.
Bottom: p(d) for the two alignments.

∆rotation µd(unrectified) µd(rectified) ∆µd
71.5◦ 24.0907 21.1574 2.9333
134.3◦ 26.1565 20.602 5.5545
156.8◦ 25.7794 20.1405 5.6389
233.0◦ 26.4491 18.994 7.4551

Table 3: Average improvements of alignment errors for various relative rotational
speeds. µd values are sample means (i.e. the centre-of-gravities for the correspond-
ing KDE curves).
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7 Concluding Remarks
We have introduced an algorithm that suppresses rolling shutter distortions caused by
device motion and describe how to rectify the 3D point clouds. We also show how the
point clouds can be used for rectification of the corresponding depth maps and video
frames.

Only one previous attempt to use SLRS with rolling shutters during device motion
has been made [12], and it required slow motion of the device. We have demonstrated
that our method improves the geometric consistency of the 3D scene by comparing the
closest point distances between rectified point clouds with min distances for unrectified
ones. We have also shown that our rectification can restore planar surfaces under rota-
tional velocities up to 115◦/sec. At higher velocities the depth maps from the structured
light sensor are too noisy to be useful.

A strength and a weakness with the proposed method is that it relies on feature
correspondences. While feature correspondences help avoiding the local minima that
ICP is sensitive to, fast motions will cause motion blur, which removes many corre-
spondences. Furthermore, if a scene without structure is imaged (e.g. a white wall) no
correspondences can be found. For better robustness, more sources of information are
needed. For example, one could also use range data features to find correspondences.
Another interesting line of future work would be to add a gyroscopic sensor to the
structured light device. The proposed rectification scheme could then instead be fed
with device motion estimated from the inertial sensors. Such an approach would also
work for scenes with neither texture nor 3D structure.

We have found that it is important to have good points as input to the optimisation.
This is because with too much noise in the data, the algorithm may not converge.
However, in such cases the result is still better than using the Procrustes method or
ICP on the unrectified data. We currently use three rejection steps (cross-checking,
validity mask, and RANSAC), and in the future we would like to improve and simplify
this process. It would also be interesting to feed the estimated camera trajectory as a
starting guess to a SLAM, or a bundle adjustment system.
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Co-alignment of aerial push-broom strips using trajectory smoothness
constraints. In Proceedings SSBA’10 Symposium on Image Analysis,
pages 63–66, March 2010.

121





Co-alignment of Aerial Push-Broom Strips using
Trajectory Smoothness Constraints

Erik Ringaby1, Jörgen Ahlberg2, Per-Erik Forssén1, and Niclas
Wadströmer2
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Abstract

We study the problem of registering a sequence of scan lines (a strip) from an
airborne push-broom imager to another sequence partly covering the same area.
Such a registration has to compensate for deformations caused by attitude and
speed changes in the aircraft. The registration is challenging, as both strips contain
such deformations.

Our algorithm estimates the 3D rotation of the camera for each scan line, by
parametrising it as a linear spline with a number of knots evenly distributed in one
of the strips. The rotations are estimated from correspondences between strips of
the same area. Once the rotations are known, they can be compensated for, and
each line of pixels can be transformed such that the ground trace of the two strips
are registered with respect to each other.

1 Introduction
In airborne remote sensing, push broom imagers are commonly used. Such an imager
has a spatial resolution of 1×K pixels, and exploits the ego motion of the platform on
which the imager is mounted to form an image. The imager in itself is thus equivalent
to a scanning sensor, but without the scanning mechanics. The platform, typically
a fixed-wing aircraft, does not move in a perfectly straight line, and moreover rotates
slightly around all three axes. This causes distortions in the resulting image (a sequence
of lines), which thus needs registration and orthorectification to be useful for most
applications. Hardware for navigation (GPS, INS) and sensor stabilisation can be used
to some degree, but are not always available.

Our primary applications are change detection and anomaly detection [1], while
mapping and signature-based target detection are secondary. For change detection to
be possible at all, the image lines of the two (or more) acquired data strips must be
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registered with high precision. In order for any kind of detection (change, anomaly,
target) to be georeferenced, the imagery must be registered to other available orthorec-
tified images.

In this paper, we propose a method for mutual registration of push broom data
strips. The method is an adaptation of the method developed at CVL for rolling shutter
video sensors.

The outline of the paper is as follows. The scenario, the sensor, and the data are
described in Section 2, the registration method is described in Section 3, results are
shown in Section 4, and conclusions are drawn in Section 5.

2 Sensors and data
The imager, ImSpec, is a visual and near-infrared (391–961 nm) hyperspectral imager
from SpecIm [3], with 1024 pixels in each scan line and a maximum of 256 spectral
bands. Due to limitations in read-out electronics’ data rate, the number of spectral
bands might need to be reduced to meet requirements on the number of lines to be
acquired per second. In this experiment 60 spectral bands are recorded, which is more
than enough for our applications. The imager is mounted nadir-looking in a small
fixed wing aircraft as shown in Fig. 1. Data was acquired by flying over approximately
the same land strip twice, a rural area at the Swedish Army Ground Combat School
premises at Kvarn outside Linköping. The flight altitude was 1000 meters, yielding
a pixel footprint of around 0.5 meters. The aircraft was equipped with GPS, but for
unknown reasons the GPS data was not logged to the hard disk during the flight. Two
resulting data sets are shown in Fig. 2.

Figure 1: The sensor installation in the aircraft. Left: The sensors are installed in the
metal box beside the pilot. Right: Computer and storage equipment in the back seat.

For the purpose of strip alignment, we view each ImSpec strip as one image. For
visualisation, and correspondence finding, a mean of three wavelengths approximately
corresponding to blue, green and red are used.
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Figure 2: Two strips from approximately the same area.

3 Registration method
Our algorithm estimates the 3D rotation of the camera to compensate for the misregis-
tration due to the aircraft’s rotation. The algorithm can be summarised in the following
steps:

1. Initial strip alignment using SIFT-features and a global homography model

2. Dense point correspondences with KLT using the initial alignment

3. Separation of the strip into segments where rotation is assumed smooth

4. Rotation estimation

5. Image rectification

3.1 Homography estimation with SIFT-features
Even though the pilot tries to fly over the same area for each strip, the paths may differ
(due to e.g. small rotations during the flight). The spatial location of the first row may
also differ if the data gathering started at different locations. The aircraft speed may
also differ between different strips.

To get a coarse initial alignment of the strips we use SIFT descriptors [5] together
with RANSAC to estimate a homography, see Fig. 3. In each strip, SIFT finds be-
tween 10 000 and 25 000 features. From these we select the 300 with the highest ratio
score, and use these to estimate a homography using RANSAC. We have used an inlier
threshold of 50 pixels on the symmetric transfer error [4].

3.2 Point correspondences with KLT
In order to estimate the camera rotation we need point correspondences between the
strips. We obtain them by tracking points with the KLT-tracker [6, 7]. The KLT tracker
uses a spatial intensity gradient search which minimises the Euclidean distance be-
tween the corresponding patches in the different strips. We use the scale pyramid
implementation of the algorithm in OpenCV. Correspondences from KLT benefit from
the initial homography alignment, and also from first scaling the forward axis of each
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Figure 3: Initial homography alignment found with SIFT and RANSAC. Top: strip 1,
bottom: strip 2, with transformed bounding box from strip 1 overlaid.

dataset by a factor of two. The first image is initialised with a regular grid of points
which are tracked and re-tracked. This means that when a point is tracked from the
first strip to the other one, it is tracked again and if it returns to the original position the
point is regarded as a match [2]. This procedure removes outliers efficiently.

3.3 Separation of the strip into segments
The rotations during a flight are assumed to vary smoothly, and thus the strip can be
split into several segments. At each line that splits two segments, we introduce a key-
rotation, i.e. a knot in a linear spline that interpolates aircraft rotations. The number
of key-rotations needed may differ depending on how long the strip is, and how big
the aircraft rotations were (i.e. if the strips differ much). We have chosen to have N
key-rotations uniformly spaced in the first strip and to use local linear regression to
calculate where these rotations approximately should be in the other strips, see Fig. 4.

Figure 4: Rotation distribution with N = 21

3.4 Rotation estimation
We model the distortion of a strip as a sequence of rotation homographies:

H(t) = KR(t)K−1 , (1)
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i.e. we neglect the translational component of the aircraft motion. This means that we
model the sensor as rotating purely about its optical centre, and thus the imaged ground
patch is modelled as being on the interior surface of a sphere. This is bound to cause
some distortions in the reconstruction, but if the radius of the sphere (i.e. the focal
length in K) is large enough (compared to the strip length), this distortion is small.

We optimise for a sequence of rotations n1,. . . , nN using the MATLAB optimiser
lsqnonlin. The optimisation makes use of a cost function

J = ε(n1, . . . ,nN ) , (2)

with image correspondences xk ↔ yk as constant parameters. The rotations n1,. . . ,
nN are represented as three element vectors, where the magnitude corresponds to the
rotation angle, and the direction is the axis of rotation, i.e. n = ϕn̂. This is a mini-
mal parametrisation of rotations, and it also ensures smooth variations, in contrast to
e.g. Euler angles. The vector n can be converted to a rotation matrix using the ma-
trix exponent. Because we are dealing with only rotations this can be simplified to
Rodrigues formula.

In order to make the optimisation more stable, the first and last key-rotations in
the first strip is set to identity rotations. To help the global optimisation with an initial
guess, smaller segments (areas between vertical lines in figure 4) is locally optimised
and used as input to the global optimisation.

We have also augmented the cost function with a regularisation, where we put an
extra cost on large changes between consecutive rotations. This trajectory smoothness
constraint is done by adding a term in the cost function:

J = ε(n1, . . . ,nN ) + α

(
N−1∑

l=1

1− n̂T
l n̂l+1

)
. (3)

This regularisation is necessary, otherwise the optimiser may find very strange tra-
jectories, see Fig. 6.

3.5 Image rectification
When the key-rotations have been estimated, they can be used to assign a rotation to
each row using SLERP (Spherical Linear intERPolation) [8]. With this we know how
each point should be displaced in order to rectify the scene.

We have chosen to perform the rectifying interpolation in three steps: First, we
create an all-zero RGBA image. Second, we apply the rectification to each pixel in the
strip image. The 3× 3 closest grid locations are then updated by adding vectors of the
form (wr,wg,wb, w). Here r, g, b are the colour channel values of the input pixel, and
w is a variable weight that depends on the grid location y, according to:

w(y) = exp(−.5(y − x′)2/σ2) . (4)

Here x′ is the sub-pixel location of the pixel, and σ is a smoothing parameter, which we
set to σ = 0.15. Third, after looping through all pixels, we convert the RGBA image to
RGB, by dividing the RGB values by the fourth element. The whole operation is quite
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Inverse interpolation

Input Output

Forward interpolation

Input Output

Figure 5: Forward and inverse interpolation. Left: In forward interpolation, we rectify
the locations of all pixels to obtain an irregular grid. Neighbours are now correctly
defined by the irregular grid. Right: In regular interpolation, one uses the inverse
mapping to find out where to sample points. Neighbours are then defined by the regular
grid where the distorted pixels lie.

fast, and its parallel nature makes it well suited to a GPU implementation. The number
of channels may be changed to correspond to the correct number of bands.

Alternatively, the irregular grid of pixels can be resampled to a regular grid, by
defining a triangular mesh over the points, and sampling the mesh using bi-cubic in-
terpolation. This is done by the function griddata in Matlab. This method gives a
good result but is much slower than the previous proposed method.

Finally, it is also tempting to use regular, or inverse interpolation. We can now loop
over all values of output pixels, and use inverse mapping to find the pixel locations
in the distorted image, and cubically interpolate these, see Fig. 5, right. This is fast
but it does not give as good a result as the previously proposed methods because the
interpolation takes place in the distorted image.

4 Results
The results presented here are from one of the three strips acquired during the flight.
Fig. 6 shows the result when the regularisation parameter is set to zero. The strips are
overlapping but it is difficult to make use of the images. When using α = 60 000 as
regularisation parameter the trajectory is much smoother and the images look more like
the original scene, see figure 7.

5 Conclusion and future work
In order to exploit the hyper-spectral imagery for the mentioned targeted applications,
there are additional steps that need to be taken. Where the strips are overlapping in
figure 8 left, many false change detections are made. The pixel registration needs to be
more exact, which can be achieved by exploiting navigation data (GPS, INS) from the
aircraft as well as a suitable motion model. Also additional imagery can be used for
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Figure 6: Result for aligning the two strips from the first flight path, without regulari-
sation of large deviations in rotation.

registration. For registration, simultaneously acquired imagery from a staring sensor
with high spatial and low spectral resolution (for example a consumer digital camera)
can be used, possibly enabling registration exact enough for spectral change detection.

In general, we got better results the more rotations we added. The downside was
much higher computation time, and additionally the optimisation had an increasingly
harder time to converge.
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Figure 7: Result for aligning the two strips from the first flight path, with N = 21, and
regularisation parameter α = 60 000.
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Figure 8: Left: The difference image for the two strips in figure 7.
Right: The average of the two images.
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Abstract

This article deals with fast and accurate visualization of pushbroom image data
from airborne and spaceborne platforms. A pushbroom sensor acquires images in
a line-scanning fashion, and this results in scattered input data that needs to be
resampled onto a uniform grid for geometrically correct visualization. To this end,
we model the anisotropic spatial dependence structure caused by the acquisition
process. Several methods for scattered data interpolation are then adapted to han-
dle the induced anisotropic metric and compared for the pushbroom image rectifi-
cation problem. A trick that exploits the semi-ordered line structure of pushbroom
data to improve the computational complexity several orders of magnitude is also
presented.

1 Introduction
Pushbroom scanners are common in multi- and hyperspectral imaging applications
from satellite and airborne platforms. A pushbroom scanner has a linear array of sen-
sor elements oriented perpendicular to the flight direction, see Fig. 1. Image data is
acquired in a line-by-line fashion as the carrier platform moves forward and the foot-
print of each scan line therefore depends on the position, velocity, and orientation of the
platform at the time of acquisition. Since the platform motion and the topography of
the scene typically prevent neighboring scan lines from being parallel, a direct stacking
of scan-lines generates a geometrically distorted image, see Fig. 2 top. To produce a
geometrically correct rectified image, as shown in Fig. 2 bottom, two problems must
be solved: (1) georeferencing and (2) scattered data interpolation. A georeferencing
algorithm assigns a world coordinate to each acquired data point, e.g., in the standard
WGS84 system [10, 16, 19], by projecting the point down to the ground. This can be
done based on a camera model and navigation data from an on-board INS system [3].
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Figure 1: Left: A pushbroom camera acquires images by scanning the ground surface
in a line-wise fashion. Right: A hyperspectral pushbroom camera splits the light that
enters through the entrance slit into different spectral bands using a dispersive element
such as a prism.

Accurate georereferencing also requires a Digital Surface Model (DSM) to determine
where the back-projection of a data point intersects the ground surface. The georef-
erenced pushbroom data constitutes a set of scattered or irregularly sampled points
on the ground surface (i.e. each point has a longitude, a latitude, and an elevation).
By interpolating this scattered data onto a uniform longitude-latitude sampling grid, a
geometrically correct image is produced, see Fig. 2 bottom.

The focus of this paper is on the scattered data interpolation problem. The general
problem of scattered data interpolation has received much attention in the literature and
several surveys are available [9, 14, 1]. Due to the varying sample density, scattered
data interpolation is a much more challenging problem than interpolation of data in
a uniform grid. There is also a computational aspect that is related to neighbor rela-
tions: in a uniform grid the nearest sample neighbors to an arbitrary point are quickly
identified, whereas the distance to all sample points must be calculated in an irregu-
larly sampled data set to find the closest sample neighbors to an arbitrary point. This
difference leads to two different schemes of scattered data interpolation considered in
this work: forward and inverse interpolation, see e.g. [23]. In a forward interpolation
scheme, each sample point in the irregular input data is spread onto the neighbor loca-
tions in the uniform output grid. This is a fast operation as the sample neighbors are
trivially located in the uniform output grid. The main disadvantage with forward map-
ping schemes is that it is difficult to guarantee that each point in the output grid receives
any contribution, i.e., there is a risk that holes with undefined values are obtained in
the interpolated image. Therefore, in image interpolation and resampling in general,
inverse mapping schemes are preferred to ensure that each position in the output grid
is assigned a value. An inverse mapping means that each point in the output grid is
mapped back to the input domain where the interpolation takes place by a weighted
sum of the neighboring input samples. However, when the input data is irregularly
sampled, one is faced with the computational problem of identifying the neighbors, as
discussed above. As pushbroom data sets typically are large, this computational aspect
becomes an issue to consider.

This work evaluates a number of different techniques for interpolating pushbroom
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Figure 2: Top: Example of an unrectified pushbroom swath over the city of Oslo. The
image consists of stacked lines acquired over time. Bottom: Rectified version of the
image in a world coordinate system.
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data to produce a rectified image. In the forward interpolation category, the Splat-
ting method is evaluated [26]. This method performs the forward spreading of values
using a radial basis function such as a Gaussian kernel. This technique has, for ex-
ample, previously been used in correction of rolling shutter video [8], which utilizes
an acquisition technique similar to the pushbroom acquisition. In the inverse interpo-
lation category, Nearest Neighbor (NN), Inverse Distance Weighted (IDW), Kriging
and triangulation-based interpolation methods are included in the comparison. NN in-
terpolation simply uses the closest input sample as the interpolated value. IDW, also
known as Shepard’s method [21], calculates a weighted sum of the neighboring in-
put samples with the weights equal to the inverse distances from the input samples
to the point to interpolate. The Kriging interpolation similarly finds the weights by
minimizing a reconstruction error in a least-squares sense, assuming knowledge of
the spatial covariance function governing the statistical dependence between samples
[13, 15], which typically decays monotonically with distance. Finally, in triangulation-
based techniques, neighbor relations in the scattered input data are first established in
a pre-processing step, e.g., using a Delaunay triangulation [1]. For triangulated data,
interpolation can be made very efficient as the neighbor relations are given, but for
large input data sets, the triangulation itself can be expensive. The triangulation-based
technique evaluated here is the Natural Neighbor (NAT) method [5, 1]. In contrast to
the previous inverse interpolation schemes, which weight input samples according to
the distance to the point to interpolate, NAT uses an area-based measure to compute
the weights. Other possible interpolation methods include thin-plate splines [4] and
Non-Uniform-Rational-B-Spline (NURBS) surfaces [18]. These methods are typically
used for smooth approximations in computer graphics and Computer Aided Design
applications and require large linear equation systems to be solved, so they are not the
first choice for the pushbroom rectification problem. Comparisons of methods for scat-
tered data interpolation have been performed for different applications other than the
pushbroom imaging one, see [6, 7] and references therein, with mixed conclusions as
to the best method to apply. To the best of the authors’ knowledge, an evaluation for
the specific pushbroom imaging application has not been presented previously.

There are a number of contributions of the present work. First, the spatial depen-
dence structure of pushbroom data is modeled and shown to be inherently anisotropic,
i.e., data correlation is different in different directions. Second, five methods for scat-
tered data interpolation are extended to handle the anisotropic nature of pushbroom
data and compared for the image rectification problem. Third, a method that utilizes
the semi-structured sampling pattern of a pushbroom sensor to significantly speed up
inverse interpolation schemes is presented.

2 Problem description
The problem we consider in this work is to resample pushbroom data onto a uniform
grid to obtain a geometrically correct rectified image. We assume that the pushb-
room data has been georeferenced so that each pushbroom sample has an associated
world coordinate in a coordinate frame for the Earth, e.g., the standard WGS84 system
[10, 16, 19]. For a nadir looking sensor, the pushbroom samples are structured in an
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Figure 3: Illustration of the scattered data interpolation problem. Irregularly spaced
samples ui (black dots) are located on pushbroom lines (dashed). The rectified image
is produced by resampling onto the points in a regular output grid (crosses).

approximate line pattern, see Fig. 3. However, both the distance between points on a
line and the distance between lines are non-uniform due to, among other factors, per-
spective geometry and variations in carrier platform velocity and attitude. The set of
pushbroom points is therefore irregular. We denote a 2D position in world coordinates
by u = (ux, uy) and the specific positions of the pushbroom samples are enumerated
by a subscript ui. For each pushbroom point ui there is a measured radiance value
z(ui). Multi- and hyperspectral pushbroom sensors generate multi-valued vectors with
radiance values for different wavelength bands at each sample point. While both the
spectral and spatial dimensions can be considered when interpolating new sample val-
ues, we focus on the spatial dimension in this work. The rectification is then performed
for one wavelength band at a time.

The uniform output grid is user-defined. Typically, one defines the grid as the
bounding box of all, or of a subset, of the pushbroom lines, and with a spatial spacing
∆x and ∆y of the same magnitude as the spacing between the input samples. The
rectified image is produced by interpolating values at the uniform grid points. We
denote by ẑ(u) the interpolated value at an arbitrary position u.

3 Modeling
Successful data interpolation relies on a certain degree of data correlation that can be
exploited to predict data values at arbitrary locations. This section investigates and
models the dependence structure of pushbroom data in terms of the spatial autocovari-
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ance function
ρ(∆u) = cov(z(ui), z(ui −∆u)) (1)

that describes the covariance between a pushbroom sample and a point at a distance
∆u. It is shown that the covariance function is both non-stationary and anisotropic,
a fact that must be considered when interpolating new sample values in the rectified
uniform grid. As we are working with georeferenced input coordinates, the unit of ∆u
is meters. For pushbroom and remote sensing images in general, covariance is induced
by two main components:

1. Measurement covariance arises when sensor elements integrate light from the
same surface region. A pixel footprint function (PFF) describes the region over
which a sensor element integrates light.

2. Structural autocovariance of the ground surface reflectance zr(u) that one ulti-
mately is interested in imaging.

While it is clear that the structural autocovariance generally is both non-stationary and
locally anisotropic depending on the ground surface structure, it is shown below that
the same also holds for the measurement covariance for pushbroom data. For multi-
spectral imaging sensors, there may also be a non-negligible covariance along the spec-
tral dimension that can be exploited to improve the interpolation. If the spectral sensi-
tivity curves, i.e., the spectral footprints, of each band are known, the overlap between
these defines a covariance in the measured data across spectral bands. In this work,
however, the bands are treated as independent and interpolated separately.

In the sections below, we first derive a model of the pixel footprint function. We
then introduce the surface structure model and finally combine these in a measurement
model to obtain the total spatial covariance function ρ(∆u) in (1).

3.1 Pixel footprint function
Each detector element in the pushbroom sensor integrates reflected light from a sur-
face region described by a Pixel Footprint Function (PFF) f(u). The PFF describes
the relative contribution from each point on the ground surface to the measured sample
value and it therefore integrates to 1. Note that the PFF is the reciprocal of the Point
Spread Function (PSF), p(x), that describes how light from a point source is imaged
onto different sensor elements at positions determined by x in the image plane. Specif-
ically, the PFF is the reprojection of the PSF onto the ground plane, assuming that the
topography is locally flat. It is assumed that the georeferenced coordinate of each input
data sample is located in the middle of its PFF. Input samples with overlapping PFFs
receive light from the same ground area and will therefore be correlated.

For pushbroom sensors, the PFF is determined by an optical component and a mo-
tion component. The optical component is obtained directly from the sensor specifica-
tion in terms of the so-called Instantaneous Field of View (IFOV), which is the angle
subtended by each detector element in the pushbroom sensor. This angle defines a
ground-projected pixel footprint at any given time. The IFOV may be different in the
along-track and across-track directions of the carrier platform, i.e., pixel footprints are
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Figure 4: Components in the pixel footprint function. Left: The optical component,
fIFOV (u) is an anisotropic Gaussian function, here illustrated with an elliptic contour
line, with size σn normal to the pushbroom line, and σt tangent to the line. Right: The
motion component fM (u) is an integration over the ground plane trajectory between
input sample locations in the output grid. The solid part of the curve corresponds to the
integration of the sample at uj .

generally anisotropic. For example, the pushbroom sensor used in this work has an
along-track IFOV angle that is twice that of the across-track angle. Although the IFOV
typically is specified as a rectangle in angular space, it is modified by both the entrance
slit and the lens of the sensor optics, see Fig. 1, right, which both cause diffraction. The
diffraction pattern is described by the so-called Airy function, which is often approx-
imated by a Gaussian function when describing the PSF [12]. The shape of the PFF
defined by the IFOV can therefore also be modeled by a Gaussian function:

fIFOV (u) ∝ e− 1
2u

TF−1
IFOV u, (2)

where ∝ means that the scaling factor required for fIFOV (u) to integrate to 1 is omit-
ted. For brevity and without loss of generality, we also assume that the point sample we
consider is centered at the origin of the coordinate system. The potentially anisotropic
form of the PFF is modeled by defining the metric tensor in (2) as

FIFOV = σ2
t n̂tn̂

T
t + σ2

nn̂nn̂
T
n , (3)

with different extents σt and σn in the tangential and normal directions n̂t and n̂n of
the pushbroom line respectively, see Fig. 4, left. The parameters σt and σn have the
unit meters and they can be derived from the IFOV specification of the pushbroom
sensor and the distance to the ground.

The second component affecting the pushbroom PFF is motion blur. This is caused
by the integration time during which the shutter remains open while the carrier platform
moves forward, and can be thought of as a function fM (u) that is non-zero along the
scan trajectory of a particular sensor element, and that integrates to 1, see Fig. 4, right.
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A zeroth order approximation of fM (u) is a straight line of constant length l in the
normal direction n̂n for all samples ui. To obtain a tractable expression for the total
PFF, we further approximate this line with a degenerate Gaussian-shaped function

fM (u) ∝ e− 1
2u

TF−1
M u (4)

with a metric tensor defined to have no extent in the tangent direction so that it is only
non-zero along a line

FM = 0 n̂tn̂
T
t + σ2

l n̂nn̂
T
n . (5)

The parameter σl is set so that the Gaussian function approximates a box function of
length l, e.g., σl = l/2. The motion model can be extended to account for curved
trajectories using a higher order approximation to account for sideway motions caused
by turbulence. The metric tensor in (5) would then have some extent in the tangent
direction too and still be applicable in the continued derivation below.

The total pushbroom PFF is now obtained as the IFOV PFF convolved with the mo-
tion PFF, using the fact that the convolution of two Gaussians yields another Gaussian:

f(u) = (fIFOV ∗ fM ) (u) ∝ e− 1
2u

TF−1u (6)

with
F = FIFOV + FM = σ2

t n̂tn̂
T
t +

(
σ2
n + σ2

l

)
n̂nn̂

T
n . (7)

Hence, the forward motion of the carrier platform effectively stretches the footprint
induced by the optics.

3.2 Surface structure model
The structure of the surface reflectance can be characterized by its autocovariance func-
tion zr(u). For homogeneous regions the function decays slowly and for rugged sur-
faces it has a faster decay. Along structures such as roads or roof edges, the covariance
decays slowly along the structures and quickly across. Hence, the structural autocovari-
ance in an image is generally both non-stationary and anisotropic. A Gaussian model
of an anisotropic surface covariance structure is

ρs(∆u) = σ2
s e

∆uTS−1∆u. (8)

In this model, σ2
s represents the general magnitude of the variations on the ground

surface. The potentially anisotropic covariance matrix S controls the smoothness of
the surface and the autocovariance decays with spatial distance in a Gaussian-shaped
fashion. Adaptive image processing approaches that try to adapt to the local structural
autocovariance, for example edge-preserving filtering that filters along edges but not
across them, have been suggested, e.g., steerable filters [2] and anisotropic diffusion
[25]. These ideas were adapted to irregularly sampled data in [24] using alternating
optimization of smoothing parameters and local structure.

In this work, a variant of the surface structure modeling method described in [24]
is used. First, a structure tensor is estimated in each output pixel, u, as the weighted
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outer product of gradients:

T =
∑

uk∈N (u)

g(uk, σ)∇z(uk)∇z(uk)T . (9)

The neighborhood N (u) is a set of 7 × 7 neighbors determined in the input grid,
and g(u, σ) is a Gaussian decay. Let e1, e2 be the eigenvectors and λ1 > λ2 > 0 the
eigenvalues of T respectively. A surface structure covariance matrix is then constructed
as

S = σ2
i φ(λ2)

[
I− λ1 − λ2

λ1 + λ2
e1e

T
1

]
, (10)

where σ2
i is a global scaling factor and

φ(λ) =

{
1− λ/λmax if λ ≤ λmax,
0 if λ > λmax.

(11)

The function 0 ≤ φ(λ) ≤ 1 is close to 0 when there is much surface structure, as
indicated by a large λ2, leading to a low overall covariance. If λ2 instead is small
there is at least one direction in which the covariance should be large. The parameter
λmax indicates the edge strength in the image above which the covariance should be
zero. For the data in this work, which is restricted to the range [0,1], λmax = 0.05
was a good value. The factor λ1−λ2

λ1+λ2
is close to 0 for the isotropic surface structure

case λ1 ≈ λ2, leading to an isotropic S, but at edges where λ1 >> λ2 this factor is
close to 1, indicating a strong anisotropic structure in the e1 direction along which the
covariance should be low. For reference, an isotropic surface structure covariance is
also considered in the experiments

S = σ2
i I. (12)

3.3 Total pushbroom sample covariance
Using the notation introduced above, i.e., f(u) for the Pixel Footprint Function and
zr(u) for the true surface image, a pushbroom data sample is generated from the light
integrated by a sensor element plus a noise term:

z =

∫

R2

f(u)zr(u) du + ε. (13)

The goal is to find the autocovariance function ρ(∆u) in (1) of such a sample. By
inserting (13) into (1) and simplifying the following expression is obtained

ρ(∆u) = C e−∆uT (F+S)−1∆u + σ2
ε δ(∆u), (14)

where C is a constant that is determined by σt, σn, σl, σs and σi as introduced in the
previous sections, and σ2

ε denotes the noise variance.
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For data interpolation, it is generally sufficient to use the normalized autocorrela-
tion function r(∆u) = ρ(∆u)/ρ(0) which becomes

r(∆u) =
C

C + σ2
ε︸ ︷︷ ︸

SNR

e−∆uT (F+S)−1∆u
︸ ︷︷ ︸

Anisotropic decay

for ∆u 6= 0. (15)

The autocorrelation function consists of two parts: a constant factor that is related to
the Signal-To-Noise (SNR) level and a factor that describes how the correlation decays
with spatial distance. The decay is determined by the metric tensor

M = F + S , (16)

i.e., a combination of the PFF and the ground surface structure. The metric describes an
anisotropic correlation structure that depends on the local image edges and the current
motion of the aircraft carrying the pushbroom sensor. This result is used in the next
section to perform anisotropic interpolation of the pushbroom data.

4 Anisotropic scattered data interpolation
In section 2 it was established that pushbroom image rectification requires an inter-
polation from the irregular pushbroom samples onto a uniform grid. In section 3 it
was furthermore established that the spatial dependence structure of pushbroom data
is inherently anisotropic. In this section, different scattered data interpolation schemes
known in the literature are adapted to take this local anisotropy into account. Five
different methods are evaluated, one based on forward interpolation and four based
on inverse interpolation. The pushbroom interpolation problem is illustrated in Fig. 5,
where the value at the point u in the uniform output grid is predicted using the neigh-
boring input samples u1, u2, . . ..

4.1 Anisotropic metric
To account for the fact that pushbroom data is differently correlated in different direc-
tions, we introduce the Mahalanobis distance metric

dM (u,v) =

√
(u− v)

T
M−1 (u− v), (17)

where u and v are two arbitrary points in space and M is a metric tensor that defines
a possibly anisotropic distance measure. The interpolation methods outlined below are
valid for any choice of metric tensor, but for the pushbroom interpolation case we use
the tensor defined in (16), which has its main axes oriented relative to a pushbroom line,
i.e., along the normal and tangential directions n̂n and n̂t. We introduce a shorthand
notation for the distance from a pushbroom input sample point ui to any arbitrary point
u

di (u) = dMi (ui,u) . (18)
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Figure 5: Samples on two consecutive pushbroom lines denoted by Lk and Lk+1. The
goal is to predict the value at u given the measured values on the pushbroom lines u1,
u2, . . .. The ellipses illustrate the anisotropic data dependence as a contour curve of a
Gaussian function which is aligned with the corresponding pushbroom lines.

The orientation and degree of anisotropy defined by Mi vary between the pushbroom
lines depending on the speed and trajectory of the carrier platform. Hence, the degree
of anisotropy varies over the image. Therefore, if Mi and Mj are different, there is
also an asymmetric distance relationship di (uj) 6= dj (ui).

4.2 Forward interpolation
In forward interpolation [8], also known as Splatting [26], each input pushbroom sam-
ple is spread (or splatted) out onto the neighborhood points in the uniform output grid.
The contribution from each input sample point z(ui), is accumulated iteratively in the
output grid points

y(u)← y(u) +

[
wi(u)z(ui)
wi(u)

]
, (19)

where wi(u) is a weight that depends on the distance between the irregular sample
location ui and the uniform grid location u. Here we use the function

wi(u) =

{
e−d

2
i (u) if u ∈ NK(ui)

0 otherwise,
(20)

which splats each input sample with a Gaussian anisotropic shape defined by the metric
tensor Mi, cf. (18). To limit the computational effort, each input sample is only splatted
onto the output points in a square neighborhoodNK(ui) parameterized by the side K,
i.e., the Gaussian in (20) is truncated. Here we set K so that at least 95% of the
Gaussian is included within the splatting kernel:

e
− K2

2σ2max < 0.05 ⇒ K >
√
−2σ2

max ln 0.05 , (21)
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where σmax is the largest value of σn and σt. After the accumulation in (19), the
interpolated value ẑ(u) is found after normalization with the second element of y(u) =
[y1(u), y2(u)]T :

ẑ(u) = y1(u)/y2(u) . (22)

That is, the predicted value ẑ(u) is a weighted average of the contributions of the input
samples.

The advantage of the forward interpolation is that it is computationally efficient. A
main drawback is that holes with undefined values are created in the output image if
the neighborhood NK(ui) is too small.

4.3 Inverse interpolation
In an inverse interpolation scheme, an interpolated value is calculated as

ẑ(u) =
∑

ui∈N (u)

wi z (ui) , (23)

where wi represent weights, z (ui) is an input sample and N (u) denotes a neighbor-
hood around u. In principle, N (u) can encompass the entire space so that all input
samples contribute to the interpolated value, but smaller localized neighborhoods are
generally chosen. In this work, the nine or four closest input samples are typically
used, see Fig. 5. The weights wi are determined as a function of distance (17). With-
out loss of generality, let us assume that we found n input points in the neighborhood
N (u) and denote them u1, . . . ,un. Different methods have been suggested for choos-
ing the weights w1, . . . , wn in (23). In this work, the Nearest Neighbor, Inverse Dis-
tance Weighted, Natural Neighbors, and Kriging interpolation schemes are extended to
anisotropic interpolation and compared for the pushbroom image rectification.

The inverse interpolation scheme guarantees that each point in the output grid is
assigned a predicted value. The main disadvantage of inverse interpolation schemes
for irregular inputs is the computational complexity of determining the neighboring
input points ui ∈ N (u). This section is concluded with a trick that exploits the semi-
structured nature of pushbroom data to reduce the computational workload by many
orders of magnitude. It can also be noted that inverse interpolation schemes are trivially
parallelized as the points in the output grid are calculated independently of each other
through (23).

4.3.1 Nearest Neighbor interpolation

In NN interpolation, only the closest input sample is considered,

min
i
di (u) , (24)

for which the weight is set to 1 in (23). Note that the anisotropic distance from the
input samples is used. Another characteristic of the NN interpolation is that the same
neighbor will be the closest regardless of the size of the isotropic component of the
metric tensor M; only the anisotropic part of M can yield a different neighbor.

146



Paper E: Anisotropic Scattered Data Interpolation for Pushbroom Image Rectification

4.3.2 Inverse Distance Weighted interpolation

In the IDW interpolation, also known as Shepard’s method [21], the weights in (23) are
set to

wi =
γ

di (u)
2 , (25)

where γ is a normalization factor chosen so that
∑
wi = 1. Just as for the NN inter-

polation, only changes to the anisotropic part of M give different interpolation results.
Changes to the isotropic magnitude of M will not change the weights wi.

4.3.3 Natural Neighbors interpolation

Natural neighbors [5, 1] (NAT) is a technique originally developed for solving partial
differential equations on irregular grids [5]. In most inverse interpolation schemes, the
weights in (23) are based on distances. NAT instead uses an area-based measure to
compute the weights. The first step of the algorithm is to triangulate all input samples
using the Delaunay algorithm, from which then the Voronoi tessellation is computed,
as shown in Fig. 6 left. Next, the output interpolation point u is added to the set and
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Figure 6: Illustration of natural neighbors interpolation. Left to right: Voronoi cells for
{ui}, Voronoi cells for {ui} ∪ u, intersection of the two.

the Voronoi tessellation is updated, as shown in Fig. 6 middle. Finally, the intersection
of the regions in the two tessellations is used to find areas

ai = area(region(ui) ∩ region(u)) , (26)

one for each input data point, as shown in Fig. 6 right. Using these, the weights in (23)
are computed as:

wi = ai/


 ∑

uk∈N (u)

ak


 . (27)

The use of an area-based weight computation in NAT was introduced to better handle
highly irregular sampling densities [1]. For example, having many input samples on
one side of the output sample will lead to a bias which area based approaches automat-
ically compensates for. As NAT relies on an initial triangulation with a global metric,
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there is no straightforward modification of the NAT method to make it take a local
anisotropic metric into account.

4.3.4 Kriging interpolation

Kriging interpolation in general uses the covariance function ρ(ui,uj) between sam-
ple locations to derive the optimal weights in (23) in a Best Linear Unbiased Estimator
(BLUE) sense [11]. The covariance between two points typically decreases with the
spatial distance so that the covariance also can be seen as a measure of distance be-
tween points. The so-called ordinary Kriging equation is used here for finding the
interpolation weights:




w1

...
wn
−µ


 =




ρ(u1,u1) · · · ρ(u1,un) 1
...

. . .
...

...
ρ(un,u1) · · · ρ(un,un) 1

1 · · · 1 0




−1 


ρ(u1,u)
...

ρ(un,u)
1


 (28)

The covariances between the input points ρ(ui,uj) capture the sampling density, and
the covariances with the interpolation point ρ(ui,u) can be interpreted as distances.
The additional parameter µ is a nuisance parameter that is not used but which is re-
quired in (28) to ensure that

∑
wi = 1. A Gaussian covariance function that uses the

anisotropic metric defined in (18) is used here as follows:

ρ(ui,uj) = e−d
2
i (uj). (29)

4.4 Parameter tuning for pushbroom interpolation
To make a fair comparison of the different interpolation methods, the parameters of
each method are tuned using a procedure described in this section. The tuned param-
eters include σi which controls the surface structure covariance, as well as σn and σt
which control the pixel footprint size. These parameters are grouped into a parame-
ter vector p = (σi, σn, σt). Optimal parameter values are determined using a cross-
validation scheme: For a certain choice of p, one actual sample z(ui) is removed from
the pushbroom data set. The predicted value ẑ(ui) at this position is then interpo-
lated using the remaining samples in the data set. By repeating this for many samples
the interpolation accuracy can be measured. In this work, the relative error is used as
accuracy measure

ε(p) =
1

|E|
∑

i∈E

|ẑ(ui)− z(ui)|
z(ui)

, (30)

where |E| is the size of the evaluation set. Using this cross-validation error, one can
search for the parameter vector p∗ that gives the best interpolation accuracy. To find
values close to the optimal ones, a brute-force grid search in reasonable intervals of
each parameter is carried out. The final tuning is then made using a non-linear Nelder-
Mead simplex optimization with the parameters found in the coarse search as starting
point.
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The parameters {σi, σn, σt} do not have independent influences on the accu-
racy measure in (30). Specifically, the surface structure component S and the pixel
footprint component F will both likely contain an isotropic part. The parameter op-
timization described above may therefore choose to put the isotropic part in S by
adjusting the magnitude of σi, or in F by adjusting the magnitudes of σn and σt,
i.e., the parameter set {σi, σn, σt} results in almost the same structural covariance as{√

σ2
i + a,

√
σ2
n − a,

√
σ2
t − a

}
, as long as a < σ2

n and a < σ2
t . Note that the

combined covariance M = F + S in (16), which ultimately is used for the interpo-
lation, remains the same with either choice, so this becomes a problem of parameter
interpretability rather than a problem of using the found parameters for the rectifica-
tion. Nevertheless, one should use sample points at strong surface structures for the
cross-validation in the optimization, as these carry more information about F and S
than samples on isotropic surfaces. In practice, we do this by sorting the pixels in E ,
according to their gradient strength, i.e., the trace of the structure tensor tr(T) com-
puted according to (9). We then use only the 10% of pixels with the largest gradient
values during parameter tuning. When reporting evaluation scores, however, the entire
evaluation set E is used.

Finally, to compare results of isotropic and anisotropic interpolation, parameters
for purely isotropic interpolation that do not account for surface structure of anisotropic
footprints are also optimized. For this optimization, σn and σt are set to zero, and σi is
used to define S according to (12).

5 Computational speedup for inverse interpolation of
pushbroom data

In regular image resampling on uniform grids, the neighbors inN (u) are immediately
given by the grid structure. When the input is irregularly sampled, a naive implementa-
tion must compute the distance from the interpolation point u to all input points ui to
determine the neighbors in N (u). If the number of input points is large this becomes
computationally very expensive. Below, an approach is presented that exploits the
semi-regular structure of pushbroom data to speedup the neighbor-finding procedure.
The key idea is to approximate each line of pushbroom samples Lk in a parameterized
standard line equation form

Lk : Akx+Bky + Ck = 0. (31)

The parameters Ak, Bk and Ck can be found by a least-squares fit or simply by con-
necting the first and last points on the pushbroom line. Using this parameterization, we
can efficiently

1. Identify the closest pushbroom line to u.

2. Immediately predict the closest input samples on this line to u by assuming that
the samples are equidistant on the line.
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The shortest orthogonal distance d(u, Lk) from a point u to the line Lk is given by

d(u, Lk) =
|Akux +Bkuy + Ck|√

A2
k +B2

k

, (32)

and the closest line(s) are thus easily identified. Next, the closest point on each param-
eterized line is also easily calculated. This closest point will in general not coincide
with an input sample location, but as the input samples are almost evenly distributed
on the pushbroom lines, the indexes of the input points that are closest to u can be
predicted.

This trick makes it possible to quickly home in on a small set of candidate neighbor
points. Thus, instead of calculating the distance to all input points to find the neighbors
to u, we need only calculate the distance to a handful of points. Specifically, if we have
Nlines each consisting of Nsamples in a pushbroom data set, to interpolate one point,
the straightforward naive implementation requires O(NlinesNsamples) distance com-
putations whereas the method above only requires O(Nlines) distance computations.
Since Nsamples typically is larger than 1000 samples, the method above increases the
computational efficiency by three orders of magnitude.

It is stressed that once the candidate neighbor points have been found, the actual
distances to these points are calculated for the interpolation using their georeferenced
coordinates; the line parameterization is just used as an efficient way of identifying a
small subset of neighbor candidate points. The parameters {Ak, Bk, Ck} are calculated
for all lines only once in a pre-computation step, and the computational effort for this
is insignificant. It should be stressed that the above procedure works also when the
samples on a pushbroom line deviate slightly from a straight line, e.g., due to lens
distortion and small effects caused by the topography in the scene. It will also work if
the pushbroom lines cross each other or if the ground prints of lines appear in reversed
order relative to the flight direction due to strong motions caused by, e.g., banking or
turbulence.

6 Data
Data used for evaluation in this work was acquired over the city of Oslo using the
hyperspectral HySpex VNIR-1600 pushbroom sensor that is part of the FFI demon-
strator system described in [22]. Each line in the image consists of 1600 pixels and 160
spectral bands are measured in the visual to near-infrared wavelengths. Each sensor el-
ement has an instantaneous field-of-view of approximately 0.18 mrad across- and 0.36
mrad along-track, yielding an average ground sample distance for this particular data
set of about 35 cm. The data was georeferenced using auxiliary INS and DSM data
[16]. Three subsets from the 8.6 km long swath were selected for the evaluations ex-
periments, see Fig. 7. All three data sets have the same input size, i.e., 600 pushbroom
lines times the 1600 samples of each line. The spatial resolution of the rectified output
images (∆x,∆y) was set to 30 × 30 cm2 in all experiments. Table 1 summarizes the
sizes of the input data and the uniform output grids for the three data sets. As the air-
craft had different altitudes and velocities in different parts of the swath, the density of
the irregular input grid is varying, and data set 3 is more sparse than the others.
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Figure 7: Three data sets for evaluation are taken from different parts of a long push-
broom swath over the city of Oslo. Each data set consists of the same number of
pushbroom lines.

Table 1: Sizes of the input pushbroom data and the uniform output grid.
Input size Output size

Data set 1 600× 1600 986× 1338
Data set 2 600× 1600 1034× 1467
Data set 3 600× 1600 3181× 2098

7 Results
The interpolation methods described in Section 4 were implemented in C/C++, except
for the NAT method for which the TriScatteredInterp-function in Matlab was used. Be-
low, pushbroom image rectification using the different interpolation methods is com-
pared in terms of accuracy, parameter stability and computational speed.

7.1 Parameter tuning
The parameters obtained with the cross-validation procedure outlined in Section 4.4
are presented in Table 2. The IDW method is not sensitive to the isotropic part of the
metric tensor, as discussed in Section 4.3. For this reason, the optimization is not stable
for this method and only σn was optimized, keeping σi and σt manually set to 1.0.

As discussed in section 4.4, there is an inherent ambiguity in the isotropic part of
the covariance. In Table 2, we can see that this has caused most of the isotropy to
end up in σi. While this has no negative effect on the resultant interpolation quality,
it is still unfortunate, as the found parameters are more difficult to interpret. Still, the
larger values of σi suggest that the anisotropic surface component is more important
to model than the anisotropic pixel footprint function. However, σn and σt also get
significant values, indicating that the model of an anisotropic footprint also contributes
to the interpolation accuracy. In most cases we have σn > σt, which means that the
pixel footprint is stretched in the movement direction of the aircraft. Dataset #3 is of
a different nature than datasets #1 and #2, with the same number of samples covering
a much larger area, see Fig. 7. This makes the optimizer prefer larger covariances for
dataset #3, and as can be seen in Table 2 the larger covariance is produced by a large
σi.

The cost function ε(p) for the Splatting method is plotted in Fig. 8. To investigate
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Method Parameter DS1 DS2 DS3 1% rise bracket
NN σi 0.90 1.20 0.96 [0.84, 0.98]

σt 0.65 0.00 0.35 [0.50, 0.76]
σn 0.00 0.00 0.00 [0.00, 0.20]

IDW σi 1.00∗ 1.00∗ 1.00∗ -
σt 1.00∗ 1.00∗ 1.00∗ -
σn 3.61 3.02 0.00 [2.26, 5.09]

Kriging σi 0.65 0.72 1.88 [0.48, 0.76]
σt 0.12 0.00 0.00 [0.00, 0.36]
σn 0.46 0.30 0.00 [0.30, 0.58]

Splatting σi 1.12 1.18 2.70 [0.95, 1.27]
σt 0.00 0.00 0.00 [0.00, 0.073]
σn 0.50 0.33 0.00 [0.31, 0.65]

Table 2: Optimized values for interpolation methods on the different datasets. 1% rise
brackets are found on dataset 1. ∗ means that the value was set manually.
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Figure 8: Example of a grid search. The relative interpolation error is plotted as a
function of the σn and σt parameters (with σi = 0) in the Splatting method.
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the stability of the parameters, we characterize the local shape of the cost function at the
minimum ε(p∗) by checking how far we have to move in each direction for it to rise by
1%. These rise points can be found using the following approximative procedure: Very
close to the optimum, the cost function (30) as a function of one of the parameters,
may be approximated with a second order Taylor expansion. Thus, we first move a
small delta h up and down from the optimum p∗ = (σ∗i , σ

∗
t , σ
∗
n), along each parameter

dimension. We then fit quadratic polynomials to the function values and arguments
along each axis. Using the fitted polynomials, we then find the points where ε(p) has
risen 1% above the minimum. These intervals are reported in the rightmost column in
Table 2. For example, the parameters found on dataset #2 agree well with the ranges
found on dataset #1. Thus, we conclude that the found parameters generalize well
between these two sets.

7.2 Interpolation accuracy comparison
The average relative interpolation errors across all three datasets for each interpola-
tion method with optimal parameters are plotted in Fig. 9. It is clearly seen that the
NN method has inferior interpolation accuracy. The remaining methods all perform
similarly, with only a small accuracy advantage of the Kriging method. It can also
be seen that the anisotropic interpolation in all cases perform better than the isotropic
interpolation. Fig. 10 shows the interpolation error per dataset. Again the NN method
has the highest error while the other methods perform similarly. Data set 3 has some-
what higher interpolation errors due to the more irregular flight path and larger ground
sampling distances, cf. Fig. 7.

In Fig. 11, three bands in the red, green and blue wavelengths have been rectified to
produce RGB-images for a visual comparison between the methods. The NN method
exhibits blocking artifacts that are typical for this method. For the remaining methods,
a close examination reveals slight differences in the degree of smoothness, but over-
all they are similar. This is consistent with the interpolation accuracy results above.
In some of the rectified images, the pushbroom line sampling pattern is visible, see
for example the third and fourth rows from the top in Fig. 11. The line patterns are
most prominent in the NN, Splatting and IDW methods, but for Kriging the effect is
almost completely removed. To further visualize differences between the interpolation
methods, all spectral bands in the hyperspectral datasets were rectified. In Fig. 12,
the spectra in selected pixels in the evaluation set are plotted together with the actual
measured spectra. Again the main difference is between the NN and the other methods.

7.3 Surface structure dependency
In order to further analyze the benefits of the anisotropic interpolation model, we have
also separated the evaluation pixels in subsets with large and small amounts of surface
structure respectively. All ground truth pixels are sorted according to their gradient
strength as reflected in the trace of the structure tensor tr(T) computed according to
(9), and the top 10% are denoted the ANISO subset. Similarly, the lowest 10% are
denoted the ISO subset. Errors for these two subsets for dataset 2 are reported in Table
3 for the IDW and Splatting methods respectively. The largest difference between the
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Figure 9: Accuracy comparison of the interpolation methods with tuned optimal pa-
rameters. The relative interpolation error has been averaged across all three datasets.
The suffix ISO indicates isotropic interpolation and no suffix means anisotropic inter-
polation. The NN method has the lowest accuracy and the Kriging method the highest
accuracy.
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Figure 10: Accuracy results for each of the three datasets using the different tuned
anisotropic interpolation methods.
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(a) NN (b) Splatting (c) NAT (d) IDW (e) Kriging

Figure 11: Details of the reconstruction results. Top two rows are from dataset 1,
middle two rows are from dataset 2 and bottom two rows are from dataset 3. The
images are best viewed in the electronic version of this article.
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Figure 12: Interpolation for a few pixels in all spectral bands of the hyperspectral
image. Left: the pixel used for interpolation. Right: Spectral plots for the different
methods. “orig” is the actually measured spectrum and the other curves are different
interpolation results.
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IDW ISO ANISO
10% ISO 1.29% 1.28%

10% ANISO 7.13% 6.18%

Splatting ISO ANISO
10% ISO 1.29% 1.27%

10% ANISO 6.13% 5.11%

Table 3: Comparison of errors in regions with isotropic and anisotropic ground struc-
ture for the IDW and Splatting methods on dataset 2.

methods using anisotropic or isotropic surface structure model is for the ANISO subset.
Similar results are obtained for the other interpolation methods.

7.4 Speed comparison
Depending on the application, computational speed may be an important factor. The
interpolation methods have quite different computational complexities and we have
compared the speed between the methods on the different datasets, see Table 4. The

Table 4: Method timings in seconds (serial execution)
Dataset 1 Dataset 2 Dataset 3

Splatting 0.4 0.7 4.0
NN 5.4 6.3 26.3

IDW 5.5 6.5 27.5
NAT 21.4 25.8 141.4

Kriging 39.3 43.7 208.3

numbers in this table were obtained with serial implementations of the algorithms. The
forward interpolation scheme represented by the Splatting method is about an order
of magnitude faster than the other methods. Among the inverse interpolation schemes,
NN and IDW are the fastest. The computational effort in these methods is mainly spent
on finding the closest input samples for the interpolation according to the procedure
outlined in Section 5. The Kriging interpolation requires additional computations, e.g.,
the matrix inverse in (28), and it is the slowest method. The NAT method requires a
triangulation pre-processing step which is computationally demanding.

In the inverse interpolation schemes the points in the output grid are calculated in-
dependently of each other, cf. (23). The implementation of these schemes, in particular
NN, IDW and Kriging, is for this reason trivial to parallelize. For example, on a CPU
with 4 cores, a speedup of a factor 3.5 was obtained with a parallel implementation
compared to the serial implementation. Thus, these methods benefit extensively from
parallel processing architectures such as multicore CPUs or GPUs, and may outperform
the Splatting method if such resources are available.
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In summary, the Splatting method performs the interpolation with the lowest amount
of computations, but with a proper implementation, all methods should be able to per-
form real-time, for example to rectify images on-line in a carrier aircraft.

8 Discussion
The image rectification problem addressed in this work is required for visualization of
pushbroom data and for fusing results derived from such data with other imaging or
geographic information. A key contribution is the modeling of the spatial dependence
structure of pushbroom data in terms of the spatial covariance function. The covariance
function involves two generally anisotropic and spatially non-stationary components:
one that depends on the special properties of the pushbroom data acquisition and one
that depends on the imaged surface structure itself. Based on this dependence model,
five different interpolation methods for scattered spatial data are compared to interpo-
late the pushbroom samples at positions in a uniform grid.

In terms of interpolation results, the Nearest Neighbor method is inferior to the
other interpolation methods, as can be expected due to its simplicity. The Kriging
method consistently performs the best and has fewer visual striping artifacts, but the
remaining methods are also viable from a practical view. Furthermore, the anisotropic
interpolation schemes consistently yield better results than their isotropic counterparts.
From a practical perspective, it is interesting to look at the computational performance
of the different algorithms. In a straightforward implementation on a serial processing
unit, the Splatting method has a clear advantage. With the trick to utilize the semi-
structured sampling pattern of the pushbroom sensor, inverse interpolation schemes
become feasible from a computational view, albeit still not as fast as the Splatting
method. The inverse interpolation schemes have the attractive property of guarantee-
ing that there are no holes with undefined values in the rectified image. Moreover,
the inverse interpolation schemes benefit trivially from parallel computational archi-
tectures, as each output pixel can be computed independently. With such resources
available, inverse schemes could overtake the Splatting method.

A limitation of the current work, and a subject of future work is how to make
the ground structure covariance estimation fully automatic. In this work we employ
the approach suggested in [24], which uses neighborhoods of constant size, and thus
implicitly assumes a constant sample density. In e.g. our dataset 3, where the samples
are considerably more sparse, and irregular than in the other two, we had to adjust the
neighborhood size manually, i.e. the σ parameter in (9).

A second limitation is that the footprint component of the covariance function is
assumed to have constant magnitude (we only change its orientation), the reason being
that more investigations are required of how to determine the parameters in the theo-
retical covariance model in (14) and to let it adapt from pixel to pixel. Through some
approximations, e.g., a locally flat terrain around a pushbroom sample and a locally
linear flight path, the pixel footprint function is modeled with an anisotropic Gaussian
shape in this work. In recent work [17], the pixel footprint for each pushbroom sam-
ple was estimated using a Monte Carlo ray tracing method which takes the continuous
flight path measured by the on-board INS system and a Digital Surface Model (DSM)
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into account. Thousands of rays are sent to build up a non-parametric representation of
the distribution of ground points that contribute to the pushbroom sample under con-
sideration. Though computationally very demanding, the resulting distribution could
be used for interpolation using a forward interpolation Splatting scheme.

Here we have only performed experiments with data acquired using a pushbroom
sensor, but it may also be relevant for other types of sensors. Rolling shutter images
acquired during motion need to be rectified and interpolated in order to be visualized
correctly [20, 8] and any method used in this paper could be used for this, as long as
there exists a mapping for all the pixels.

9 Conclusions
Different scattered data interpolation methods for the rectification of pushbroom im-
ages have been compared. A model of the pushbroom image acquisition process reveals
an inherently anisotropic spatial data dependence structure that should be taken into
account in the interpolation, in addition to an anisotropic surface model. This is sup-
ported by the experimental results, where consistent gains in accuracy were observed
when adding anisotropic modeling, compared to the isotropic case. The anisotropic
interpolation models presented here strikes a good balance between efficiency and ac-
curacy, as it results in interpolation methods that can run at interactive speeds. Further
gains in accuracy may be obtained with more sophisticated models, but at the expense
of more demanding computations. To conclude with a recommendation of method
choice, the Inverse Distance Weighted method strikes a good balance between accu-
racy and practical usability. The Kriging method is superior in terms of quality at the
expense of a higher computational complexity, and the Splatting method could be the
method of choice if computational resources are scarce.
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Abstract

We propose an algorithm that can capture sharp, low-noise images in low-
light conditions on a hand-held smartphone. We make use of the recent ability to
acquire bursts of high resolution images on high-end models such as the iPhone5s.
Frames are aligned, or stacked, using rolling shutter correction, based on motion
estimated from the built-in gyro sensors and image feature tracking. After stacking,
the images may be combined, using e.g. averaging to produce a sharp, low-noise
photo. We have tested the algorithm on a variety of different scenes, using several
different smartphones. We compare our method to denoising, direct stacking, as
well as a global-shutter based stacking, with favourable results.

1 Introduction
In this paper we propose an algorithm that can capture sharp, low-noise images in low-
light conditions on a hand-held smartphone. Recent smartphone models such as the
Apple iPhone5s, Acer Liquid S2 and Samsung Galaxy Note 3 have the ability to ac-
quire bursts of high resolution images at a high rate. For smartphones equipped with
a gyroscope sensor, such image bursts may be aligned or stacked at low cost, using
sensor data. The stacked frames can then be fused into a single (less noisy) frame us-
ing e.g. averaging, median or bilateral filtering. This enables hand-held acquisition of
sharp, low-noise images with long exposure times, without the requirement of addi-
tional mechanical image stabilisation hardware.

Video stacking on a smartphone currently requires a tripod, due to the rolling shut-
ter (RS) distortions that appear during hand-held capture. In this paper we introduce
an RS based correction, that allows also images from hand-held video to be stacked.

An illustration of the proposed approach is given in Figure 1. Instead of using
one long exposure, with resultant blurring, many short exposures are used in sequence.
When the photographer has a static aim (i.e. tries to aim at a fixed point in space), these
individual exposures tend to have blur smears in a random distribution of directions.
This means that when the frames are aligned (using gyroscope readings and image
feature tracking), we obtain an effective point spread function (PSF) that is much more
compact than one from a single long exposure.
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Figure 1: Illustration of video stacking idea. Top left: Trace of central pixel of an
iPhone5 during hand-held capture of 20 frames at 14 fps, with 40 msec exposure time.
The motion has been recorded with an L3G4200D gyroscope at 800Hz, and colours
indicate time, ranging from red to green. Thick segments indicate individual exposures.
Top right: Alignment of the exposure segments. Bottom left: Iso contours of the
effective PSF (scaled to sum to 255), obtained by convolving the aligned exposure
segments with the stationary PSF (here assumed to be a Gaussian with σ = 0.5).
Bottom right: corresponding iso contours for a Gaussian with σ = 0.5.

1.1 Related work
Besides the stacking approach used in this paper, there are several other approaches to
low-light image capture. One is to use pairs of flash and no-flash images, see e.g. [14]
and [3], and another is to use a pair with one blurry and one noisy image, e.g. [22].
As these approaches rely on accurate alignment of frames, they could also benefit from
the rolling shutter aware alignment procedure proposed here, if they were to be used
on mobile devices.

Another related approach is video denoising. Here the exposure time is set low
enough to obtain sharp, but noisy images, and then spatiotemporal denoising [11,
15] is performed. These methods find correspondences across several frames, using
e.g. dense optical flow, and approximate KNN search, and this makes them infeasible
to implement on a smartphone.
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A much faster, but less accurate approach than video denoising is to denoise a
single frame captured with a short exposure, using e.g. anisotropic diffusion [20]. We
will compare to single frame denoising in the experiment section.

Single frame deblurring using inertial sensors (INS) has been investigated in [8].
Recently this has also been extended to use a rolling shutter camera model [19]. Such
algorithms are iterative in their nature, as they obtain the final sharp images using
e.g. Richardson-Lucy style deconvolution [16, 13]. If the sensor biases also need to
be found, this requires a second optimisation loop outside the first one [8]. In general,
these algorithms are either relatively efficient, but prone to ringing artifacts, or very
expensive if complex priors are employed.

Single frame deblurring without INS is also an option, see e.g. [21], and the recent
approach in [23]. In addition to performing deconvolution, these approaches also need
to find the point-spread functions in each image location, and as this is typically done
using a second optimisation loop outside the first one, these methods are an order of
magnitude more expensive than methods that use INS data.

As nearly all digital video recording devices use rolling shutters, the video stack-
ing is related to video stabilisation under rolling-shutter [17, 5]. Stabilisation of RS
video has also been done using inertial sensors [6, 9]. Basically, the problem in video
stacking is a video stabilisation, where the desired camera trajectory is a single point
in space with static aim. In order not to introduce blurring however, stacking has a
much higher requirement on stabilisation accuracy than video stabilisation. For high
accuracy we use the cumulative quaternion B-splines introduced by Kim et. al [10], to
interpolate the gyro samples. These splines were also recently used in an optimisation
framework for SLAM in [12], by minimising the reprojection errors on tracked features
and sensor data. Compared to [12] our algorithm is many orders of magnitude faster,
as our optimisation only needs to solve for 4 unknowns, instead of several thousands.

Stacking has been popular for quite some time in astrophotography, and the idea
actually originates here [1]. Here the camera is typically mounted on a telescope that
tracks slow motion (e.g. of the moon, or the celestial sphere), and long exposure times
are used. The motion to be compensated for is thus the residual of the tracking and
the actual motion, and not the complex atmospherical aberrations observed at short
time-scales.

Recently stacking using inertial sensors has been introduced by compact camera
manufacturers, in e.g. Sony Cyber-Shot DSC RX100 [2]. These devices use the motion
sensors to select a few frames (up to 6 for Sony) with low amounts of motion. These are
then stacked with global frame alignment (as the camera appears to use the mechanical
shutter this is justified), using inertial sensors. In contrast, the method in this paper
uses a rolling shutter distortion model, and is able to make use of all frames in the
acquisition interval. It thus has a much better light collection efficiency, and better
noise suppression.

1.2 Video stacking
The method proposed in this paper makes use of the built-in gyro sensor on a smart-
phone, and a sparse set of tracked image features to stack frames acquired using rolling
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shutter style exposure. The stacked frames can then be fused into a single (less noisy)
frame using e.g. averaging, median or bilateral filtering.

For low-noise low-light photography, we should collect as much light as possible
during the time the shutter is open. This means that for stacking, the light collection
efficiency, e, is an important performance metric. This measure is approximately equal
to the product of the shutter speed s in seconds, and the frame rate r in Hertz. For an
N frame stack it is defined as the effective exposure time se = sN divided by the time
required to acquire the stack T = (N − 1)/r + s ≈ N/r.

e = se/T ≈ sr. (1)

For a single frame we always get e = 1, but e.g. a shutter speed of s = 1/30 sec and
r = 20 fps, gives us e ≈ 0.67.

Just like in classical photography, we have a built-in trade-off here: in order to
eliminate motion blur, the shutter speed s should be short, but in order to collect more
light it should be as long as the frame rate permits.

In order to improve the light collection efficiency (1) we will in general allow some
motion blur. The rationale for this is illustrated in Figure 1. When the photographer has
a static aim, the blur directions in consecutive images will be randomly distributed (see
Figure 1 and 4), and this means that the final effective blur kernel will be much smaller
than the smear in individual frames. The example in Figure 1 shows the effective PSF
for stacking of 20 frames with 40 msec exposure time. Even though the smear length
is about 3 pixels in each frame, the effective PSF is similar to a Gaussian of σ = 0.5.

2 Motion Model
We make use of a motion model that consists of a time continuous 3D rotation, and
a frame global 3D translation. These models are estimated and applied in corrective
fashion, one after the other. Such an approach normally requires alternating optimisa-
tion. The reason this works in one shot here is that the rotation model makes use of
gyro sensors to estimate the rotation, and visual tracking to estimate the gyro bias and
the time delay between gyro and camera. As the gyro sensors only sense rotation and
not translation, the translation will not interfere with the rotation compensation, and
the two models need only to be estimated once.

2.1 Rotation model
We use the 3D rotation model introduced in [4]. In this model, a point in the first frame,
expressed in homogeneous coordinates as x = (x1 x2 1)

T , is related to its position in
a subsequent frame y = (y1 y2 1)

T according to:

x ∼ KR(tx)RT (ty)K−1y . (2)

Here K is the intrinsic camera matrix, R(t) is the time-continuous camera rotation to
be estimated, and ∼ denotes equality up to scale. The times tx and ty correspond to
when the image points x and y were observed.
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2.2 Translation model
In [17] the authors found that the rotation model was good for rolling-shutter recti-
fication since rotation is the dominant cause for the distortions. This model is used
pairwise on neighbouring frames, but for a global alignment between all the frames,
we also take translations into account. For the translations, we approximate the scene
with a fronto-parallel plane. A point y in one of the frames may be re-projected onto
this scene plane as u using:

u = λK−1y = λ (u1 u2 1)
T
. (3)

Now we may add a 3D displacement d = (∆X ∆Y ∆Z)
T , and re-project the result

into the first image:

x = K(λK−1y + d) =



y1s+ a
y2s+ b

1


 , (4)

where {s, a, b} are functions of the elements of K and d. We may thus estimate
{s, a, b} instead of d. Estimation of {s, a, b} can be done efficiently from a set of
corresponding points using least squares. This is the 2D equivalent of Horn’s rigid
motion estimation method [7].

3 Interpolation of Rotations
In order to obtain a smooth representation of the continuous rotation R(t), we use the
cumulative quaternion splines proposed in [10]. A B-spline curve defined by knots
pk ∈ Rn is evaluated as:

p(t) =

K∑

k=0

pkBk(t) . (5)

The cumulative form of (5) is:

p(t) = p0B̃0(t) +
K∑

k=1

∆pkB̃k(t) ,where (6)

∆pk = pk − pk−1 and B̃k =

K∑

l=k

Bk . (7)

In analogy with this, cumulative splines on the rotation manifold may be defined, using
unit quaternion knots, qk = (cosαk, n̂k sinαk) ∈ Spin(3), and quaternion operations
as [10]:

q(t) = q
B̃0(t)
0

K∏

k=1

exp(ωkB̃k(t)) where (8)

ωk = log(q∗k−1qk) . (9)
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Figure 2: Kernels. Left: Interpolating quartic spline (solid blue) and B-spline (dashed
red). Right: The corresponding cumulative kernels.

Here ∗ denotes the quaternion conjugate, and for a unit quaternion q, the logarithm is
defined as:

logq = log (cosα, n̂ sinα) = (0, αn̂) , (10)

and exp() is the corresponding inverse operation. In [10] B-spline kernels were used,
and these define a curve by approximation. As we are interested in interpolation, we
will also try replacing the B-spline kernels with the classical interpolating cubic spline
(with the common choice of ∂B/∂t(1) = −0.5, see e.g. [18]), as well as the following
quartic spline:

Bint(t) =





− 1
2 t

4 + 5
2 |t|3 − 3t2 + 1 if |t| < 1

1
2 t

4 − 7
2 |t|3 + 9t2 − 10|t|+ 4 if |t| ∈ [1, 2]

0 otherwise.
(11)

This spline is the unique piecewise quartic that satisfies the following 10 con-
straints: constant sum (1dof), B : [−2,−1, 0, 1, 2] → [0, 0, 1, 0, 0] (5dof), ∂B/∂t
and ∂2B/∂t2 continuous at t = 1 (2dof). ∂B/∂t : [0, 2]→ [0, 0] (2dof).

Figure 2 shows a B-spline kernel and the kernel defined in (11), and their corre-
sponding cumulative kernels.

Note also that it is possible to move smoothly between interpolation and approxi-
mation by blending the interpolating and the approximating kernels:

B̃(t, γ) = γB̃int(t) + (1− γ)B̃approx(t) . (12)

Here B̃approx(t) is the B-spline kernel, and γ is a blending parameter.

3.1 Integration
Interestingly, the tangent vectors ωk in (9) are closely related to angular velocities.
This allows us to compute them from the gyro data {gk}K0 , using the expression:

ωk = (0,∆t(gk + gk−1 − 2b)/2) , (13)
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where ∆t is the gyro sample time, and b is the gyro bias vector to be estimated. The
rationale for (13) is that for small angles (i.e. small ∆t) it is a good approximation of
trapezoidal integration on the manifold of rotations.

4 Parameter Optimisation
The use of gyro data together with a camera requires estimation of the time delay td
between gyro samples and camera frame timestamps, as well as the three element gyro
bias vector b, see (13).

In [9] a calibration procedure that finds td and b is proposed, our approach is quite
similar, but we have replaced an initial global-shutter geometric constraint with a ge-
ometry free rejection, and added a rolling-shutter geometry based rejection later on.

First the reprojection error of (2) is used to define residuals for correspondences
between neighbouring frames. As we want to avoid imposing geometric constraints on
the correspondences, we use cross-checking rejection on KLT-features, as suggested in
[4]. We start with setting the gyro bias to the sample mean and estimate the time delay
td using point correspondences from a few frames in the beginning of the sequence.
The parameter that minimises the squared sum of the residuals is found using non-
linear optimisation. After convergence of this optimisation, we obtain residuals that
approximately follow a Gaussian distribution. We have found that better accuracy of
the sought parameters can be obtained by removing correspondences with residuals
beyond the 3σ limit at this stage. After removal of these correspondences, we optimise
for both td and b using correspondences from the whole sequence until convergence.

4.1 Robust Estimation
After td and b have been found, we can apply the rotation model (2) to all points. We
do this and resample the images using forward interpolation as suggested in [4].

After image resampling, we have a fairly well aligned stack, but if the imaged scene
is close to the camera we still need to apply the 3D translation model from section
2.2. In order to do this, we again run a KLT-tracker between the first frame, and each
successive frame, and remove outliers using cross-checking. We then use the found
correspondences to estimate the translation model (4) within a RANSAC [18] loop.
For the model (4) the minimal number of sample correspondences is 2. This, and
the low number of remaining outliers together mean that RANSAC usually finds the
correct model after just a few trials. Once a model with a large ratio of inliers has been
found, we re-estimate the model using all inliers.

In the final result, we want to avoid any unnecessary blurring caused by resampling
the images twice. The final correction is thus obtained by applying both the rotation
model and the translation model to the original image coordinates, and then resampling
the original frames using forward interpolation.
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Figure 3: Zoomed in examples between global frame alignment (left) and our rolling
shutter aware method (right). For full frames, see Figure 7, top left, and Figure 6,
bottom left.

Figure 4: Columns 1-7: Example frames from a hand-held sequence showing different
blurs. Right: Our result. (Best viewed electronically)

Figure 5: Scene captured using a physical tripod. Left to right, top to bottom: de-
noised image using 64 frames, zoomed in detail using 1, 2, 4, 8, 16, 32 and 64 frames
respectively. (Best viewed electronically)
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4.2 Algorithm Bottlenecks
The proposed algorithm is quite efficient. The current implementation is in Python, and
runs on a PC, for ease of analysis. Currently, the most expensive part of the algorithm
is image resampling and saving to disk, followed by optimisation, and feature tracking.
Most of the time is currently spent on saving to disk and image re-sampling, but if
resampling was to be done on the smartphone GPU, the cost of these steps would
be negligible. Thus, an efficient implementation on a smartphone should be straight
forward.

5 Experiments
We have tested our method on many real-life sequences and compare our results with
the following methods: (1) the single frame denoising implemented in Photoshop CS
5.11, (2) direct averaging of the unaligned frames in the stack, (3) global frame align-
ment (i.e. without rolling shutter correction). In the experiments, our method uses 32
frames, and B-spline kernels, unless stated otherwise.

When capturing images in low light we usually get both motion blur and image
noise. Since most of the motion blur is from rotation, the blur kernel is non-uniform,
both across the frame [21] and temporally. In Figure 4 we give an example of how
different it may look like across a sequence of frames from a hand-held sequence.

If we assume a rigid scene we could use as many frames as we want to obtain the
final result, but since this is not always the case we have to trade the capture duration
and the output noise level. In Figure 5 the noise level for stacks with increasing number
of frames is shown. In this particular example, improvements beyond 16 frames are
difficult to see.

5.1 Data collection
We have implemented an app for iOS that logs time-stamped full resolution frames, as
well as gyro sensor data at 100 Hz. The obtained frame-rate is a function of the bus-
speed, the chosen video-quality, and the computational power of the device. We have
configured the app to record using the JPEG encoder, with quality set to 85%. This
results in a recording speed of about 9 Hz on iPhone 4s, 14 Hz on iPhone 5, and 30
Hz on iPhone 5s. For the same amount of denoising, the 5s thus has a shorter stacking
time, due to its superior light collection efficiency, see (1).

The five stacks used in this experiment have been made available in a public dataset2.
This includes full resolution input images, frame timestamps, and logs from the builtin
gyroscope.

1Note that Photoshop CC also has a Shake Reduction feature, which has not been tested here.
2Dataset: http://www.cvl.isy.liu.se/research/datasets/stacking-dataset/
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Full frame result from our method First Direct Photoshop Our
frame stacking method

Figure 6: Results for Table (iPhone 4s), Grass (iPhone 5), and Books (iPhone 5)
datasets. Left: Full frames after stacking with our method. Right columns: first frame
in sequence, stacking of original frames, denoised first frame using Photoshop and our
results. (Best viewed electronically)
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Full frame result from our method First Direct Photoshop Our
frame stacking method

Figure 7: Results for Church (iPhone 4s) and Tree (iPhone 5s) datasets. Left: Full
frame after stacking with our method. Right columns: first frame in sequence, stacking
of original frames, denoised first frame using Photoshop and our results. (Best viewed
electronically)

5.2 Comparative Experiments
Here we compare our results with a single frame from the stack, a denoising of this
frame using Photoshop CS 5.1, and the average of the non-aligned frames in the se-
quence, see Figures 6 and 7. The Photoshop denoising was set to standard settings
except “strength” and “preserve details” which were changed to 10 and 10% respec-
tively.

It is also interesting to see how our method compares to a global alignment of the
frames. In order to do this we used our estimated motion and applied a global rotation
and translation on each frame. Please note that this motion has been estimated taking
rolling shutter into account and that the first row of the global alignment will thus be
the same as in our method. Figure 3 shows how the global alignment gets worse further
down the image, whereas the proposed method has consistent performance at all image
rows. As can be seen in the detail subplots, our algorithm successfully averages out
the noise, while preserving structural details. An interesting observation is that our
algorithm often manages to average out lens flares, (see e.g. Figure 7, bottom), as these
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move around quite a bit when shooting handheld photos. In the case of lens-flares this
is a desired behaviour, but of course actual scene objects that move during the 1 − 2
sec exposure will also be averaged out.

5.3 Limitations
The proposed method, in essence, implements the behaviour of a tripod, and as such
the final result is sensitive to moving objects in the scene. For small objects, the trans-
lation estimation will lock on to the background scene, and the moving objects will
be smeared just like on a tripod. For large objects, on the other hand, the translation
estimation will tend to lock on to the object instead. If the object satisfies the assump-
tion of a fronto-parallel plane, see section 2.2, the result will be a sharp object, and
a smeared background. In general however the result is unpredictable. Note however
that other stacking functions than the frame average that we currently use, may to some
extent remedy these limitations.
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Figure 8: Trace of central pixel for the five stacks used in our experiments. Colours
indicate time, ranging from red to green, and thick segments indicate the 32 individual
exposures. Left to right, top to bottom: Table (4s), Grass (5), Books (5), Church (4s),
Tree (5s)

5.4 Estimated PSFs from Gyroscope data
We have used an externally mounted L3G4200D gyro to record the device motion at
800Hz, as illustrated in Figure 1. Using the built-in gyro recording at 100Hz in the three
iPhones (4s,5,5s), we obtain similar pixel traces, shown in Figure 8. By comparing the
curves in Figure 1 and Figure 8, we see that the curves are similar, and thus conclude
that the 100Hz sampling is sufficient.

In Figure 9 we have plotted iso-contours of the effective PSF for the central pixel
in each of the datasets. The contour levels are set to 1/255, 2/255. . . 32/255. This
means that beyond the first iso contour, the central pixel will not be influenced beyond
the 8-bit quantization level. Beyond the second contour, a change of more than 128 in
pixel value is required to influence the blurred pixel value, and so on.

It is interesting to relate the PSFs in Figure 9 to the imaging situation. The Grass se-
quence was imaged with elbows resting on a ledge, and consequently it has the smallest
PSF. The Church and Tree sequences were recorded in cold weather, and consequently
they have slightly more handshake. The Table, Books, and the 800Hz recording in
Figure 1 were all recorded in warmer conditions, and consequently have better concen-
trated PSFs.

5.5 Quantitative Experiments
For quantitative evaluation of the stacking result, we use the standard deviation in time
across a stack of frames. This measure is then averaged across all pixels to obtain a
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Figure 9: Iso contours of the effective PSF for central pixel. PSF values are scaled by
255, see text for details. Left to right, top to bottom: Table (4s), Grass (5), Books (5),
Church (4s), Tree (5s), Gaussian with σ = 0.5.

scalar measure. If we denote the c-th colour band of RGB frame k in a stack by Ik,c(x),
the measure is computed as:

σavg =
1

3|Ω|
∑

x∈Ω

3∑

c=1

√√√√ 1

K

K∑

k=1

(Ik,c(x)− Iavg,c(x))2 , (14)

where Iavg,c(x) =
1

K

K∑

k=1

Ik,c(x) . (15)

Here Ω is the set of image coordinates in the frames, and |Ω| is the set size.
In Table 1 we use the measure (14) to compare different stacking approaches.

Here Global refers to the global-shutter based frame alignment, also used in Figure 3.
The other methods (Slerp, Cubic, Quartic, and B-spline) are versions of our rolling-
shutter based algorithm, with different interpolation kernels. As can be seen in Table
1, all rolling-shutter based stacking approaches are significantly better than the global-
shutter based alignment. We can also see that the B-spline kernel is slightly better than
the other approaches. The reason for this is probably that its low-pass characteristic
results in a denoising of the gyro signal. It is also interesting to note that Slerp per-
forms surprisingly well. This may be caused by it being linear, just like the trapezoid
integration in (13).

We have also tried blending the Quartic and the B-spline kernels according to (12),
and then got the best results for a pure B-spline kernel. As the performance differences
are quite small, these results may however not be significant, and are thus excluded
from the Table.
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Dataset Table Grass Books Church Tree
iPhone Device 4s 5 5 4s 5s
Global σavg 6.17 6.83 7.55 8.02 5.23
Slerp σavg 6.00 4.80 6.43 7.01 4.31

residual 0.707 0.611 1.11 1.10 1.04
Cubic σavg 6.00 4.77 6.42 7.02 4.31

residual 0.728 0.612 1.12 1.16 1.11
Quartic σavg 6.00 4.78 6.41 7.02 4.31

residual 0.721 0.612 1.11 1.13 1.09
B-spline σavg 6.00 4.77 6.41 7.00 4.31

residual 0.692 0.612 1.09 1.05 0.983

Table 1: Quantitative results for different versions of our method, on the five datasets
“Table”, “Grass”, “Books”, “Church”, and “Tree”. The measure σavg is defined in
(14), and “residual” is the mean squared residual of the reprojection error on tracked
features. Best results in each column are shown in boldface. See Figures 6 and 7 for
images of the different datasets.

6 Concluding Remarks
We have introduced an algorithm for accurate stacking of full resolution frames on a
smartphone. This algorithm enables hand-held capture of low-noise images in low-
light conditions, and thus implements a virtual tripod. This is accomplished using high
accuracy motion estimation using logged gyro sensor data and correspondences from
image feature tracking. In the experiments we demonstrate that the use of cumulative
quaternion splines for motion interpolation results in a more accurate stacking than
currently used stacking approaches that implicitly assume a global shutter. We also
demonstrate that, while Photoshop style denoising works well in some situations, our
algorithm consistently delivers a sharp, low-noise output.

The proposed motion estimation could also be used in other applications where ac-
curate frame alignment is needed, such as flash-no-flash photography, and HDR imag-
ing using exposure brackets.

When stacking is used in astrophotography, it is common to apply deconvolution
to the stacking result, e.g. using Richardson-Lucy (RL) [16, 13]. This could also be
done here to obtain a sharper final image. Since the PSFs in each frame are different,
another possibility is to apply RL to the individual frames, before stacking. This will
come at a higher computational cost, but as ringing artifacts tend to depend on both
image structure and image smear, this may improve the output quality.

In the paper we have only investigated frame combination using direct averaging.
In future research we plan to investigate how this compares to other commonly used
approaches, such as temporal median and bilateral filtering. It would also be interest-
ing to investigate criteria for stopping frame acquisition automatically when sufficient
data is available to average out the noise. Finally, moving the entire algorithm onto a
smartphone will also be tested.
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