
API for C Implementation of Blob Detection
Algorithm

Per-Erik Forssén
Computer Vision Laboratory, Department of Electrical Engineering

Linköping University, SE-581 83 Linköping, Sweden

April 16, 2004

1 Introduction

This document is a documentation of the C implementation of a blob detection algorithm
described in chapter 7 of [1].

All source code files in the package are listed in section 2. For all .c-source files (except
the application program) there is also a corresponding .h file, which should be include-d
by the application using the methods in this file.

The implementation contains the example application blobdemo ppm, which reads an
RGB image in PPM format, and writes a new PPM file with the found blobs painted on
a green background.

The perhaps most interesting function is the function extract blobs contained in file
extract blobs.c. Its arguments are described in table 7. Basically it takes a pointer to
an image, and some algorithm parameters as input, and outputs detected blobs in three
lists of blob properties.

If you find this document too brief, please have a look at the example program
blobdemo ppm.c in section 3, for an example of how to use the API.

2 List of Files

• blobdemo ppm.c
This is the application program. It is listed in section 3 .
Usage: blobdemo ppm <image.ppm> <blobs.ppm> [<regions.ppm>] [<dmax>]

The program reads an RGB image in the PPM format and outputs a new PPM-file
with the found blobs painted on a green background. The optional out argument
regions.ppm is a visualisation of the regions used to compute the blobs. The
optional parameter dmax controls the colour sensitivity. Default is dmax=0.16.

• extract blobs.c
This file contains methods that encapsulate much of the details in blob extraction.
See tables 6 and 7 for a list of methods.

1

• file and time.c
This file contains routines for managing file IO, and execution timers. See table 8
for a list of methods.

• image buffer.c
Methods for buffer and ibuffer data types. A buffer or an ibuffer is a container
for a 3D array, typically an image.
For easy switching between double and float precision of floating point numbers,
the data type fpnum is declared as either double or float in image buffer.h. On
a 64-bit architecture, the double option is actually faster.
Fields and methods of the buffer data type are listed in tables 1 and 2.
Fields and methods of the ibuffer data type are listed in tables 3 and 4.

• merge blobs.c
Methods to merge and clean up a list of blobs. See table 9.

• pnmio.c
This file contains a set of functions for reading and writing pnm file headers. Table
5 lists the methods. The actual data in the file should be read or written using an
fread call. See the file file and time.c for an example of how to use the methods
in pnmio.c.

• region image.c
Methods to build a region image, and to compute moments from the region image.
See table 10.

• sbinfilt.c
This file implements the non-linear filter that is used to build the clustering pyramid.
The methods are listed in table 11. See [1] for details of the algorithm.

• visualise.c
This file contains routines for blob visualisation. I.e. the code that generates an
image with ellipses representing the blobs. See table 12 for a list of methods.

Field Type Description
rows int Number of rows in array
cols int Number of columns in array
ndim int Number of fields in array, e.g. 3 for an RGB image
data fpnum Pointer to floating point data.

Table 1: The buffer data type

2

Method Return type Argument description
buffer new buffer int rows, int cols, int ndims: These define

the size of the buffer to allocate.
buffer pdims buffer bf: The buffer to print dimension info of

to stdout.
buffer free buffer bf: A buffer to be released.

Table 2: Methods for the buffer data type

Field Type Description
rows int Number of rows in array
cols int Number of columns in array
ndim int Number of fields in array, e.g. 3 for an RGB image
data int Pointer to integer data.

Table 3: The ibuffer data type

Method Return type Argument description
ibuffer new buffer int rows, int cols, int ndims: These define

the size of the ibuffer to allocate.
ibuffer pdims ibuffer bf: The ibuffer to print dimension info

of to stdout.
ibuffer free ibuffer bf: An ibuffer to be released.

Table 4: Methods for the ibuffer data type

Method Return type Argument list
pnm readhead char *name Filename

int *format Location to store image type tag
int *height Location to store image height
int *width Location to store image width

pnm writehead FILE * char *name Filename
int format Tag for desired format
int height Height of image
int width Width of image

pnm close FILE *f Handle of file to close

Table 5: Methods in the pnmio.c file

3

Method Return type Argument list
number of scales int Calculate number of scales required to build an

octave pyramid of an image.
buffer *bf image Input image

imk pyramid new buffer ** Create a pyramid and insert input image at scale
0.
buffer *bf image Input image

imc pyramid new ibuffer ** Create a certainty pyramid and insert input cer-
tainty at scale 0.
ibuffer *bf imc Input certainty image

set to ones Set an ibuffer to all ones. The input is assumed
to be of size M × N × 1.
ibuffer *bf image The input array.

sbinfilt pyramid Generate a clustering pyramid by successive filter-
ing of bl imk and bl imc.
buffer **bl imk Image pyramid
ibuffer **bl imc Certainty pyramid
int nsc Number of scales
fpnum dmax Maximum allowed property distance
fpnum cmin Weighted fraction of pixels reqired for
c = 1.
int roi side 2 → 2× 2, 4→ 4× 4, 6 → 6× 6 . . .
int miter Number of M-estimation steps to fol-
low.

make label image Generate a label image from a clustering pyramid.
buffer **bl result List of 4 result arrays
buffer **bl imk Input image pyramid
ibuffer **bl imc Input certainty pyramid
int nsc Number of scales
int lowsc Scale to stop assigning new labels at
fpnum dmax Maximum allowed property distance

merge and cleanup Merge blobs and clean up blob list.
buffer **bl result List of 4 result arrays
buffer *bf mvec1 Moment vector list
buffer *bf pvec1 Property vector list
ibuffer *bf csc1 Detection scales
ibuffer *bf cntl Overlap count list
fpnum minc Merger threshold
int amin Minimum required area
fpnum dmax Maximum allowed property distance

Table 6: Methods in extract blobs.c part 1.

4

Method Return type Argument list
extract blobs Encapsulated blob feature extraction algorithm.

buffer *bf image Input image
ibuffer *bf cert Input certainty
buffer **bl lout List of 4 result arrays
fpnum dmax Maximum allowed property distance
fpnum cmin Weighted fraction of pixels reqired for
c = 1.
int roi side 2 → 2× 2, 4→ 4× 4, 6 → 6× 6 . . .
int miter Number of M-estimation steps to fol-
low.
int lowsc Scale to stop assigning new labels at
fpnum minc Merger threshold
int amin Minimum required area

Table 7: Methods in extract blobs.c part 2.

Method Return type Argument list
write time diff Write difference between two clock t structs to

standard output.
char *strg Message preceeding time text
clock t t0 Start time
clock t t1 End time

read pnm file Read a file from disk using PNMIO. See also file
pnmio.c

char *fname Name of file to read
char *pname Name of program (for error message)
buffer **bf image Place to store resultant image
buffer
int ssfl Subsample image if non-zero

dump to file Dump a buffer to file in ascii form suitable to be
read as an .m file in Matlab.
FILE *out fid open file stream
char *vname string containing variable name
buffer *bf var array holding data

idump to file Dump an ibuffer to file in ascii form suitable to
be read as an .m file in Matlab.
FILE *out fid open file stream
char *vname string containing variable name
ibuffer *bf var array holding data

Table 8: Methods in file and time.c

5

Method Return type Argument list
merge blobs This method merges two blobs

fpnum *mvec1 Moment vector for blob 1
fpnum *mvec2 Moment vector for blob 2
fpnum *mvecn Output moment vector
fpnum *pvec1 Property vector for blob 1
fpnum *pvec2 Property vector for blob 2
fpnum *pvecn Output property vector
int ndim Number of property dimensions

bloblist merge cnt int Old merge function. Returns number of merged
regions
buffer *bf mvec0 Input moment vectors
buffer *bf pvec0 Input property vectors
buffer *bf mvecn Output moment vectors
buffer *bf pvecn Output property vectors
ibuffer *bf out ind Index pointer list
ibuffer *bf cntl Overlap count list
fpnum minc Merger threshold

bloblist merge cnt2 int New merge function. More expensive, but better.
Returns number of merged regions
buffer *bf mvec0 Input moment vectors
buffer *bf pvec0 Input property vectors
buffer *bf mvecn Output moment vectors
buffer *bf pvecn Output property vectors
ibuffer *bf out ind Index pointer list
ibuffer *bf cntl Overlap count list
fpnum minc Merger threshold
fpnum dmax2 Squared max property distance

bloblist mark invalid int Discard blobs with detI ≤ 0 or a < amin, by set-
ting their area to zero, and out ind[k]=0

buffer *bf mvec Moment vectors
ibuffer *bf out ind Array of index pointers
int amin Minimum required area

bloblist compact Remove holes in bloblists after
bloblist merge cnt

buffer *bf mvecn Input moment vectors
buffer *bf pvecn Input property vectors
ibuffer *bf cscn Input detection scales
buffer *bf mvecm Output moment vectors
buffer *bf pvecm Output property vectors
ibuffer *bf cscm Output detection scales
ibuffer *bf out ind Index pointer list

Table 9: Methods in merge blobs.c

6

Method Return type Argument list
propagate regions int ibuffer bf labelim1 Input label image (Y ×X)

ibuffer bf labelim2 Output label image
(Y × X)
buffer bf imk Property image (Y × X × D)
ibuffer bf imc Confidence image (Y × X)
buffer bf pvec Prototype list (D × N)
fpnum dmax2 Squared max property distance
Returns number of new seeds (for later allocation
by find new seeds)

find new seeds ibuffer *bf labelim1 Input label image (Y ×X)
buffer *bf imk Property image (Y × X × D)
ibuffer *bf imc Confidence image (Y × X)
buffer *bf pvec1 Input prototype list (D × N)
buffer *bf pvec2 Output prototype list
(D × Nnew)
int regions Length of pvec1
int new seeds Number of new seeds (as found by
propagate regions)

propagate regions cnt ibuffer *bf labelim1 Input label image
(Y/2 × X/2)
ibuffer *bf labelim2 Output label image
(Y × X)
buffer *bf imk Property image (Y × X × D)
ibuffer *bf imc Confidence image (Y × X)
buffer *bf pvec Prototype list (D × N)
ibuffer *bf cntl Boundary count list
fpnum dmax2 Squared max property distance

compute moments ibuffer *bf labelim Label image (Y × X)
buffer *bf image RGB image (Y × X × D)
buffer *bf pvec Output property averages
buffer *bf mvec Output moments

labelim compact Loop over label image and replace old labels
with new that are compatible with bf mvec and
bf pvec lists.
ibuffer *bf labelim Label image to modify
(Y × X)
ibuffer *bf out ind Compaction list (1 × N)

Table 10: Methods in region image.c

7

Method Return type Argumentlist
binfilt2d int * int order Allocates space and returns an array

containing an outer product of two binomial filters
of given order.

sbinfilt2d buffer *bf im0 Input image buffer
ibuffer *bf ic0 Input confidence map
buffer *bf im1 Location of result image
ibuffer *bf ic1 Location of result confidence
fpnum dmax2 Squared max property (colour) dis-
tance
fpnum cmin Weighted fraction of pixels reqired for
c = 1
int roi side 2 → 2× 2, 4→ 4× 4, 6 → 6× 6 . . .
int miter Number of M-estimation steps to fol-
low.

Table 11: Methods in sbinfilt.c

Method Return type Argument list
buffer paint Fill an image buffer with a given colour.

buffer *bf Buffer to paint in
fpnum *pvec Property vector (i.e. colour)

eigendec Decompose a symmetric positive semidefinite 2×2
matrix into its eigensystem
fpnum *I Input inertia matrix elements stacked
row-wise
fpnum *D Eigenvalue list
fpnum *E Eigenvector matrix elements stacked
column-wise

draw ellipses Paint a list of blobs as ellipses, sorted with the
smallest ellipse on top.
buffer *bf img Background image to paint in
buffer *bf mvec Moment vector list
buffer *bf pvec Property vector list

draw regions Paint regions with their average colours.
buffer *bf img Background image to paint in
ibuffer *bf labelim Region label image
buffer *bf pvec Property vector list

Table 12: Methods in visualise.c.

8

3 Example application

/*

** File: blobdemo_ppm.c

** Usage: blobdemo_ppm <infile.ppm> <outfile.ppm> [<dmax>]

** (c) April 2004 Per-Erik Forssen

*/

int main(int argc,char *argv[]) {

fpnum pvec_green[] = {0.0,1.0,0.0}; /* Background colour */

buffer *bf_image,*bf_mvec,*bf_pvec,*bf_blobimage,*bf_rimage;

buffer **bl_lout;

ibuffer *bf_cert,*bf_csc,*bf_labelim;

int regionfl=0;

fpnum testnum;

/* Parameters for the algorithm */

fpnum dmax=0.16; /* Maximum colour distance */

fpnum cmin=0.5; /* Area threshold for pyramid generation */

fpnum minc=0.5; /* Merger threshold */

int roi=0; /* Side of spatial window (or 0 for 12 pixel roi) */

int miter=5; /* Number of m-estimation steps */

int lowsc=2; /* Finest scale to detect blobs in */

int amin=20; /* Min required area */

int ssfl=0; /* Subsample image if set */

if((argc<3)||(argc>5)) {

fprintf(stderr,"ERROR: At least two filenames should be supplied.\n");

fprintf(stderr,"Usage: %s <infile.ppm> <outfile.ppm> [<outfile2.ppm>] [<dmax>]\n",ar

exit(1);

}

if(argc==4) {

testnum=strtod(argv[3],(char **)NULL);

if(testnum>0) {

dmax=testnum; /* Third arg was dmax */

} else {

regionfl=1; /* Third arg was fname */

}

}

if(argc==5) {

regionfl=1; /* Third arg was fname */

dmax=strtod(argv[4],(char **)NULL);

9

}

read_pnm_file(argv[1],argv[0],&bf_image,ssfl);

/* Create certainty mask */

bf_cert=ibuffer_new(bf_image->rows,bf_image->cols,bf_image->ndim);

set_to_ones(bf_cert);

/* Allocate array of result pointers */

bl_lout=(buffer **)calloc(4,sizeof(buffer *));

/* Call the blob extraction function */

extract_blobs(bf_image,bf_cert,bl_lout,dmax,cmin,roi,miter,lowsc,minc,amin);

/* Extract results */

bf_mvec = bl_lout[0];

bf_pvec = bl_lout[1];

bf_csc = (ibuffer *)bl_lout[2];

bf_labelim = (ibuffer *)bl_lout[3];

/* Create an empty green image */

bf_blobimage = buffer_new(bf_image->rows,bf_image->cols,bf_image->ndim);

buffer_paint(bf_blobimage,pvec_green);

/* Visualise blobs in the green image */

draw_ellipses(bf_blobimage,bf_mvec,bf_pvec);

/* Store result as a file */

write_pnm_file(argv[2],argv[0],bf_blobimage);

if(regionfl) {

/* Create an empty green image */

bf_rimage = buffer_new(bf_image->rows,bf_image->cols,bf_image->ndim);

buffer_paint(bf_rimage,pvec_green);

/* Visualise regions in the green image */

draw_regions(bf_rimage,bf_labelim,bf_pvec);

/* Store result as a file */

write_pnm_file(argv[3],argv[0],bf_rimage);

buffer_free(bf_rimage);

}

/* Free memory */

free(bl_lout);

10

buffer_free(bf_image);

ibuffer_free(bf_cert);

buffer_free(bf_blobimage);

buffer_free(bf_mvec);

buffer_free(bf_pvec);

ibuffer_free(bf_csc);

ibuffer_free(bf_labelim);

return(0);

}

References

[1] Per-Erik Forssén. Low and Medium Level Vision using Channel Representations. PhD
thesis, Linköping University, Sweden, SE-581 83 Linköping, Sweden, March 2004.
Dissertation No 858, ISBN 91-7373-876-X.

11

