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Abstract— The ability to direct visual attention is a funda-
mental skill for seeing robots. Attention comes in two flavours:
the gaze direction (overt attention) and attention to a specific
part of the current field of view (covert attention), of which
the latter is the focus of the present study. Specifically, we
study the effects of attentional masking within pre-trained deep
neural networks for the purpose of handling ambiguous scenes
containing multiple objects. We investigate several variants of
attentional masking on partially pre-trained deep neural net-
works and evaluate the effects on classification performance and
sensitivity to attention mask errors in multi-object scenes. We
find that a combined scheme consisting of multi-level masking
and blending provides the best trade-off between classification
accuracy and insensitivity to masking errors. This proposed
approach is denoted multilayer continuous-valued convolutional
feature masking (MC-CFM). For reasonably accurate masks it
can suppress the influence of distracting objects and reach
comparable classification performance to unmasked recognition
in cases without distractors.

I. INTRODUCTION

Deep neural networks, while computationally expensive
to train, are often lightweight enough to be used on much
less powerful platforms at runtime. Networks trained on
huge image databases, such as ImageNet [1], are therefore
a common tool for solving tasks other than those they were
originally trained for.

One potential application task is object recognition on
robot platforms, see figure 1. Here a pre-trained deep neural
network that outputs class probabilities can be used for
recognition, if combined with an attention system. Classifica-
tion networks give ambiguous outputs when multiple known
objects are present in a scene. Such an output is difficult
to use, as it is also obtained e.g. for a single object from
a category not present during training. An attention system
can resolve some of these ambiguities by using a saccade-
and-fixate strategy, as is done both by animals [2] and by
many seeing robots [3] [4] [5].

We want to use pre-trained deep neural networks on
robot vision platforms, and thus seek an answer to the
question of how attention masking should be applied to a
pre-trained deep network. Specifically, given an image and an
object mask, we desire a classification result that accurately
corresponds to the indicated object and that is robust to errors
in the mask. To this end, we evaluate a number of methods
proposed in the literature, and propose to combine their
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Fig. 1. Robot attention experiment setup. Even for simple scenes such
as this one, a deep classification network (DCN) is practically useless
when multiple objects are present. By integrating attentional masking to
sequentially focus on regions of interest, the DCN can be used to interpret
the scene. Left: left camera view (top) and attention mask from [9]
(bottom). Right: overview of experiment setup, showing table with objects
to recognize and the robot to the right.

strengths in a method which we name multilayer continuous-
valued convolutional feature masking (MC-CFM).

In order to perform controlled evaluation of attentional
masking for sequential attention, we use pre-trained lay-
ers from the VGG-F network [6] (trained on ImageNet
[1]). These are used to classify ambiguous scenes from
the PASCAL-Context semantic segmentation dataset [7], as
well as scenes from our robot platform, see figure 1. As
a controlled proxy for an attention system, we use the
salient object masks provided for a subset of these images
in the PASCAL-S dataset [8]. This experiment allows us
to evaluate controlled deviations from a best case scenario
of perfect attention masks. For recognition on the robot
platform we have instead integrated mask generation from
active segmentation [9] into the pipeline. This method is
selected due to its simplicity and because it is specifically
designed for extracting a region around an attended fixation
point.

II. RELATED WORK

1) Computational focus of attention: A classical way to
direct focus of attention is to use a bounding-box or region-
of-interest (ROI) and disregard the rest of the image. This
approach has been tried on convolutional neural networks,
e.g. in the R-CNN (Region-proposal Convolutional Neural
Network) architecture [10]. In our experiments we test two
variants of this approach, using either the mask contour or a
corresponding bounding box. These are henceforth denoted
input masking and input bounding box masking, respectively.
Another recent approach to direct focus is convolutional
feature masking (CFM) [11]. Here a low resolution spatial



mask is applied to the finest grid in a spatial pyramid pooling
(SPP) layer [12]. In this way, coarse-level structures bypass
the masking, while only details specific to the masked object
are left unsuppressed at fine scale. As it is described in [11],
CFM is applied also during training. However, this would
make it impossible to compare masking techniques on the
same network. Therefore, we apply all masking techniques
(including CFM) only at runtime.

2) Models of biological visual attention: Spatial visual
attention in primates is believed to use spatial salience maps,
that can be computed bottom-up from the feature layout of
a scene [13]. Maps that appear to have such functions have
been found in the lateral intraparietal area (LIP) [14] and
in the superior colliculus (SC) [15]. In this paper we focus
on spatial masking, and thus implicitly exclude top-down
attention which also includes non-spatial components [16]
[17].

Walther and Koch [18] point to studies of biological vision
that indicate that attentional modulation occurs in areas V1,
V4 as well as LGN. This motivates the proposed computa-
tional approach where attentional modulation is applied at
all convolutional levels of a deep neural network.

III. PAPER OVERVIEW

This paper is organized as follows: In section IV we
describe the different approaches to attentional modulation
that we test. In section V we describe the experimental
results. Methods are tested both on the PASCAL-S dataset
and on sequences collected on our robot platform. The paper
ends with a concluding discussion and outlook in section VI.

IV. METHODS AND EXPERIMENTAL SETUP

A. Mask generation

On a system level, attentional masking generates several
different mask proposals and tests these in sequence. The
quality of the individual mask proposals determines the
benefits of applying modulation. In [18] a saliency map is
adaptively thresholded to obtain attention masks. In CFM
a method called selective search is used to generate mask
proposals [19]. In [9], an active segmentation approach is
proposed. Here mask proposals are generated with a fixation
point as prior for the region location. This method is used
in our robot validation experiments.

Initially, we wish to evaluate attentional masking methods
without committing to a specific attention or mask generation
method. Therefore we use the attention masks (manually
annotated from gaze-tracking data) in the PASCAL-S dataset
[8]. To simulate errors in these, we gradually expand and
shrink them in order to obtain a continuous transition from
a mask that is much too restrictive to one that is not at all
restrictive enough. We posit that this is a typical case in
foreground/background segmentation or detection, as most
errors will affect the mask boundary.

The masks are calculated by computing a signed distance
transform of the target object. We then normalise this such
that the object boundary has a value of 1 and the innermost
object pixel has a value of 0. This means that thresholds

Fig. 2. Mask distortion for robustness evaluation. Left: distance map of
target object (the cat). Middle: td = 0.75 (white), td = 1 (light grey) and
td = 1.25 (dark grey). Right: mask contours for the three thresholds. These
cases represent masks that are too small, correct and too large, respectively.
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Fig. 3. Network structure used for masking evaluation. The feature
extraction CNN consists of the first 13 layers (conv1 to pool5) of the
VGG-F network [6].

0 ≤ td < 1 produce a mask that does not contain the entire
object, a threshold td = 1 produces a mask that matches the
object contour, and thresholds td > 1 produce masks that
contain both object and background. Examples of the masks
generated can be seen in figure 2.

B. Network structure and mask propagation

The network we use to compare masking methods on is a
slightly modified version of the VGG-F network [6], which is
similar in structure and performance to the popular AlexNet
[20]. The reason for this choice is that this network structure
has become a de facto standard model for comparison. While
its classification performance is no longer state-of-the-art,
it is fast, of manageable size and complexity and freely
available in many different formats. The only internal mod-
ification consists of the insertion of an SPP layer between
the convolutional and fully-connected layers. This is done
in order to use images of arbitrary size. We also change
the number of output nodes to correspond to the number
of classes in our experiments. The result is that we have
13 pre-trained feature extraction layers, and two trainable
fully-connected layers. This network structure is illustrated
in figure 3.

To trace the path of input pixels through the network,
we perform forward propagation of the input mask. In each
convolutional layer, the mask value of an input element
(pixel) is added with equal weights to each output affected
by that element. In each MAX-pooling layer, the mask value
is only propagated if it belongs to the maximum (since
otherwise it will not affect the result). Other layer types do
not affect the spatial footprint of the mask. An example of
the mask propagation is shown in figure 4.
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Fig. 4. Mask propagation for selected layers. Left: input image. Right:
Masks propagated through the network. Shown here is the sum over all
feature dimensions. The masks for layers 3 and 4 (normalisation and ReLU)
are not shown, as they do not affect the shape of the mask. The 1× 1 SPP
layer mask sum is also omitted, since it is a single scalar without spatial
structure.

C. Object class and data selection

In order to focus on the ambiguous multi-object cases, we
select a subset of the most commonly co-occurring out of
the 459 classes annotated in PASCAL-Context1. Specifically,
we choose all classes that co-occur in at least ten images,
resulting in a total of 11 classes appearing in 528 images
with an average co-occurrence of 1.77 objects per image.
The selected classes are horse, cup, chair, dog, bird, tree,
bottle, motorbike, bicycle, car and person. Note that for
co-occurrence of N objects, the best-case misclassification
rate of an unmasked whole-image classification approach is
(N − 1)/N , since the system has no way of dealing with
multiple objects. For training, we use all images in PASCAL-
Context not present in PASCAL-S. For evaluation, we use
all instances of the trained classes found in the 528 images
from PASCAL-S (a total of 892 object instances), see figure
5 for examples.

D. Input masking

The simplest form of masking considered is to apply the
attention mask directly onto the image data before compu-
tation of features. The masking is thus applied only once,
before any feature extraction is performed. This approach,
although simple, is likely to result in false contours that cause
artifacts in feature map calculation, and can thus impede
recognition2. We evaluate two versions of this, one using
the object contour mask obtained at a particular threshold
and one using an axis-aligned bounding box fitted to contain
this contour.

E. Spatial pyramid pooling and convolutional feature mask-
ing

Spatial pyramid pooling (SPP) and Convolutional feature
masking (CFM) are implemented as described in [12] and

1We omit class 431, “unknown” since, although it commonly co-occurs
with other classes, it does not represent an actual object type.

2A problem that is mentioned in [11] and that is further aggravated by
the typically Gabor-like shape of first-layer filters.

Fig. 5. Example of evaluation data. Left: images from PASCAL-VOC
2010. Right: corresponding masks from PASCAL-S. Each example has a
co-occurrence of at least two of the used classes.

[11], respectively. In the SSP layer, the feature map produced
by the convolutional layers of the feature extraction network
is spatially MAX-pooled into a set of fixed-size grids. We
use grid sizes of 1× 1, 2× 2, 4× 4 and 8× 8 spatial cells.
In CFM, masking is applied at the finest level of the SPP
layer. The masking is done such that if at least half of the
pixels contributing to the feature vector at a location are
from within the attention mask, this feature vector is retained,
otherwise it is set to zero. In our implementation, this is done
by thresholding the propagated mask at a value of 0.5, after
which it is used as a mask on the convolutional feature map.
The resulting fixed-size feature vectors are then concatenated
before entering the fully-connected layers.

F. Walther and Koch saliency masking

Walther and Koch [18] propose an early-layer feature
masking scheme where a saliency map is used to linearly
blend a masked and an unmasked feature map. We apply
this masking at the second layer, with a strength of 0.4 (see
equation (1)), as suggested in their publication.



Method RME (PASCAL-S) RME (robot)
Input, contour 0.65 0.17

Input, bounding box 0.65 0.21
Walther & Koch [18] 0.90 0.58

CFM [11] 0.91 0.88
MC-CFM (ours) 0.54 0.04

TABLE I
RATIO OF MINIMAL ERRORS (RME) VS. UNMASKED BASELINE.

G. Multilayer continuous-valued convolutional feature
masking

In order to combine the strengths of the masking tech-
niques used by Walther and Koch [18] and Dai et al. [11],
we propose an combined scheme in which masking is applied
at all network levels. We also remove the binarisation used
in CFM, and apply a continuous-valued mask proportional
to the amount of foreground present at each feature map lo-
cation. We denote this scheme, multilayer continuous-valued
convolutional feature masking (MC-CFM). The purpose of
this is to apply a suppression directly proportional to the
amount of background present in the receptive field at all
scales and locations, while avoiding artifacts such as false
contours produced by masking of the input image. Also, as in
[18], we use linear blending to control the masking strength.
The masked output RM (x, y) is linearly blended with the
unmasked output R0(x, y) to produce the final result

R(x, y) = µRM (x, y) + (1− µ)R0(x, y), (1)

where µ ∈ [0, 1] varies the amount of masking from none
(µ = 0) to complete (µ = 1). We optimise blend weights
for each layer on the top 1 % of training images containing
the highest rate of class co-occurrence in PASCAL-Context.
We do this by maximising the classification margin, which
we define as the difference in activation strength between
the correct output and the strongest competitor. During
optimisation, we sample this at 9 equidistant mask thresholds
td in the range [0.0, 2.0]. The resultant blend weights are
shown in figure 6, bottom.

V. RESULTS

We have compared the masking methods in two differ-
ent experiments: (1) recognition on a validation subset of
PASCAL-S, with the ideal attention masks provided (as
discussed in section IV-C), (2) attentional masking on the
robot platform, using masks from the active segmentation
algorithm [9]. Whereas the first experiment is a controlled
evaluation of mask distortion when training and test situ-
ations are similar, the second experiment uses both as-is
masks, and has a significant domain shift (training on real
objects in PASCAL-S, but recognition on toys seen by our
robot).

A. Results on PASCAL-S

The masking methods were evaluated at 141 equidistant
thresholds, td, in the range [0, 3.5]. Note that this range is
chosen to be larger than the tuning range ([0.0, 2.0]) to verify
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Fig. 6. Average classification margin for single object (top) and co-
occurrence images (middle) on PASCAL-S. Error bars are shown for every
10th threshold value. See top plot for legend. Bottom: weights used in MC-
CFM. Here, a value of 0 corresponds to no masking at all, while a value
of 1 corresponds to complete masking.

that no artifacts occur outside the tuning range. The results
of this evaluation are shown in figures 6 and 7. Table I shows
the ratio of minimal errors (RME) compared to the unmasked
baseline under co-occurence.

The mask weights used by MC-CFM are shown in figure
6. As can be seen, the weight distribution represents a
combination of both early-layer masking and SPP masking,
indicating that the best results in multi-object cases are
obtained using a combination of both approaches. The total
amount of masking obtained on the convolutional layers is
higher than that found in [18]. The results also indicate that
SPP masking is most useful at fine scale, as is suggested in
[11].
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Fig. 7. Misclassification rates for single object (top) and co-occurrence
images (bottom) on the PASCAL-S dataset. See figure 6, top for legend.

As can be seen in figure 7 (top), all methods are effec-
tive when no co-occurrence is present. Unless the mask is
significantly smaller than the true object extent, all masking
methods improve over the unmasked baseline. An interesting
effect is that the inclusion of significant amounts of back-
ground does not seem to provide useful context information
in these unambiguous cases.

The results when multiple objects are present are shown
in figure 7 (bottom). Here MC-CFM surpasses all the other
masking methods. It also retains some of the benefits of
CFM for low thresholds, resulting in a smaller drop in per-
formance for an underestimated mask than the input masking
techniques3. When the mask includes large amounts of non-
object areas, the effect of co-occurrence becomes evident.
This results in gradually reduced classification performance.

B. Results on Robot Platform

For the second experiment we use images acquired with
the platform shown in figure 9, and generate masks using
active segmentation [9]. Fixation points are set manually on
objects of interest in a reference image and then centred
and matched between cameras using correlation-based visual

3The bounding box variant is inherently less sensitive to these cases, since
it represents a consistent overestimation of object size.
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Fig. 8. Classification margin (top) and misclassification rate (bottom) for
the robot dataset. Each evaluation image contains one target object and three
distractors.
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Fig. 9. Robot platform used to capture images in figure 10. The images
were captured using wide-angle cameras (D) and (E). Pan-tilt stereo rig with
Kinect. (A) - SLP projector, (B) - RGB camera, (C) - NIR camera, (D) -
Right wide-angle camera, (E) - Left wide-angle camera, (F) - Manual SLP
shutter (open).

servoing. We have collected five series of stereo fixations on
four objects, resulting in a total of 40 images. Examples of
images obtained are shown in figure 10. In order to isolate
the effect of masking from other errors, we use a plain
background to simplify segmentation and obtain the “ideal”
mask approximately at a threshold of td = 1. Despite this,
the masks from [9] contain significant errors; object parts are



Left camera Left Mask Right camera Right mask

Fig. 10. Example images from the robot evaluation dataset. Images in
columns 1 and 3 are left and right camera frames respectively, corresponding
masks are shown in columns 2 and 4. Each example has a co-occurrence
of four objects, where one is the target and the others are distractors.

occasionally missing, and background is sometimes included
in the mask. This means that the robot experiment differs
from the PASCAL-S experiment in at least two respects:
larger difference between training set and test set objects,
and less accurate attention masks.

The results of this evaluation are shown in figure 8, and
mirror those obtained during co-occurrence on the PASCAL-
S dataset. The classification margin is shown in the upper
plot. Input masking and MC-CFM both have high values,
with input masking often achieving a better classification
margin. In terms of misclassification rate, see figure 8 (bot-
tom), MC-CFM performs consistently better than the other
methods. From this we can conclude that MC-CFM is better
at classifying the images, but input masking is either more
confident when correct or less overconfident when wrong.
Table I shows the ratio of minimal errors, compared to the
unmasked baseline under co-occurrence.

VI. CONCLUSIONS

We have implemented and compared mechanisms for
incorporation of an attention mask into a deep neural network
consisting of pre-trained feature extraction layers, with a
task-adapted classifier on top. We show that an approach
combining early-layer feature map masking and multi-scale
spatial pyramid masking is better at disambiguating cases
of object co-occurrence than image masking, early-layer
masking or convolutional feature masking.

Our experiments are focussed on the attentional masking
component. In a real application there are several other
aspects that should be studied further to improve perfor-
mance. The most pressing issue is to improve the mask
generation. This includes investigating the use of multiple
mask proposals for each gaze point, and a more sophisticated
blending approach than the linear method used here. The
incorporation of top-down attention components (e.g. [16]

[17]) could also further improve performance, especially in
cases where the initial segmentation is poor, or a specific
object is sought.

The low impact of context on classification performance
is also worth investigating further. Whether this is caused by
the network topology, or that most network layers are pre-
trained is currently an open question. Previous work on the
PASCAL-S dataset has found modest improvements when
context is utilized [7]. While context may not decrease the
level of ambiguity in co-occurrence cases, it should (at least
in typical scenes) provide a less noisy set of candidates to
to begin with.
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