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Linköping, Sweden

per-erik.forssen@liu.se

Abstract—Random Forests (RF) is a learning technique
with very low run-time complexity. It has found a niche
application in situations where input data is low-dimensional
and computational performance is paramount. We wish to
make RFs more useful for high dimensional problems, and
to this end, we propose two extensions to RFs: Firstly, a
feature selection mechanism called correlation-enhancing pro-
jections, and secondly sparse discriminant selection schemes for
better accuracy and faster training. We evaluate the proposed
extensions by performing age and gender estimation on the
MORPH-II dataset, and demonstrate near-equal or improved
estimation performance when using these extensions despite a
seventy-fold reduction in the number of data dimensions.
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I. INTRODUCTION

Random Forests (RF) [2], [3] is a learning technique with
very low run-time complexity. It has found a niche applica-
tion in situations where input data is low-dimensional (tens
or hundreds of dimensions) and computational performance
is paramount. We wish to make RFs more useful for high-
dimensional problems (tens or hundreds of thousands of
dimensions), where deep learning [9], [18] is currently the
method of choice. To this end, we propose two extensions
to RFs: A feature selection mechanism called correlation-
enhancing projections (CEP), and two discriminant selection
schemes, normalised sparse discriminant selection (NSDS)
and sample-based sparse discriminant selection (SSDS), for
better accuracy and faster training.

Correlation enhancing projections work by first computing
an unsupervised appearance clustering, and then selecting
locally discriminative features using canonical correlation
analysis (CCA) [1]. The result is a feature space where
similarity better corresponds to response space similarity.
The use of CCA allows us to do this simultaneously for
disparate responses such as subject gender (a classification
response) and age (a regression response), and thus the
resultant projections are inherently well suited to feature
sharing.

The proposed NSDS scheme provides automatic center-
ing of projection data during training in high-dimensional

spaces, reducing the need for threshold optimisation. The
SSDS scheme is a simple, but effective means to speed
up the search for discriminants which is the computational
bottleneck for RF learning in high dimensional spaces. In
the experiments, we evaluate the proposed extensions by
performing age and gender estimation on the MORPH-II
dataset [8].

A. Related work

In attribute estimation from facial images, state-of-the art
has for quite some time been to use hand crafted features,
e.g. [7], [17] coupled with support-vector machines (SVM)
for classification or regression [13]. Recently however, fea-
tures that are more data-driven have surpassed these in
benchmarks [18], and this motivates us to also pursue this
approach. One possible way to do this is to apply generic
learned features from e.g. DeCAF [4], but as our goal is a
highly efficient system, we want to simplify the feature com-
putation to a minimum. We thus propose a two step feature
selection, where the first one partitions the feature space
using k-means clustering [11], [13], and the second step
finds correlation-enhancing projections (CEP), by in each
cluster performing canonical correlation analysis (CCA) [1]
between the feature space and the response dimensions.

Our NSDS and SSDS schemes are related to the Forest-
RC algorithm [2], and to the RANSAC algorithm used in
geometric computer vision [5]. Just like Forest-RC, NSDS
and SSDS find discriminants that are linear combinations
of a subset of the feature dimensions. In Forest-RC, the
feature dimensions are chosen randomly, and then random
discriminants between these are checked to find a good split.
In NSDS, a normalisation of the coefficients is performed,
which serves to center the resulting projections. In SSDS
splits are instead selected by first drawing a sample sub-
set, and based on this, a subset of feature dimensions is
then chosen. For classification, the minimal sample subset
consists of just two samples, and this is the size we use.
The two samples are drawn based on response; for e.g. a
binary classifier, we draw one sample randomly from each
class. Based on the sample subset, a discriminant projection
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Figure 1: Facial landmarks and image patches used. Example
from MORPH-II dataset (female, age 25). Top left: Original
image with facial landmark points. Top right: extracted
image patches and corresponding scale levels, original ori-
entation (first row) and mirrored (second row). Bottom:
resulting greyscale patches, original orientation (left) and
mirrored (right). Artifacts at image borders are due to border
replication in the rectification step.

can then be defined, as the hyperplane with best sample
separation. We then proceed to sparsify this projection,
by only allowing coefficients in a subset of the feature
dimensions, and in this way obtain an efficient discriminant.

II. APPLICATION EXAMPLE: AGE AND GENDER
ESTIMATION

To test the proposed extensions, we perform age and
gender estimation from facial images on the MORPH-II
dataset [8], using the cross-validation folds from [14]. This is
a fine-grained problem, where both high invariance and high
discriminative power are required to pick up on the subtle
differences needed for the estimation task. Changes such
as differences in pose and illumination, as well as within-
class differences such as differences in skin tone and facial
geometry are difficult to handle for an estimator operating
only on images. Such changes introduce domain shifts [16]
which disrupt the neighbourhood structure of the feature
space (two images of the same face in different poses or
illuminations are not likely to have similar pixel values).
The most common way to address this is to model these
differences using a parametric model. This is a difficult
problem, and may require highly specialised knowledge
of the differences to be modelled [10]. Methods that do

not rely on parametric models, such as [18], [7] typically
use a very computationally expensive estimator (such as
a CNN) [18] or, computationally expensive image features
like BIF [7], [17]. We instead propose a combination of
appearance clustering locally adapted correlation-enhancing
projection operations, which do not require any problem-
specific knowledge and are significantly cheaper to compute
than the alternatives above. This means that although age
and gender estimation is used as an application example,
the technique is applicable to many other classification and
regression tasks.

As input data, we use image patches as in [18] (see figure
1). To extract the patches, we first find facial landmarks,
using the pico detector [12], and then rectify the facial
region of interest to a canonical scale and orientation. Note
that the detector used lacks points corresponding to two of
the regions used in [18]. However, the remaining 21 regions
are extracted and due to the amount of overlap we do not
believe the final two regions play a decisive role in the
estimation process. We also use patches of size 47×47 pixels
(48×48 pixels were used in [18]). Half of these regions are
extracted from the scale pyramid of the original rectified
image, and half are extracted from a mirrored version. Thus,
each image yields two sets of 21 patches. Each such set can
be used as a training sample, resulting in N = 46 389 feature
dimensions in the input space of the estimator.

III. APPEARANCE CLUSTERING AND LOCALLY ADAPTED
CORRELATION-ENHANCING PROJECTIONS

To find local clusters of similar appearance, we perform
k-means clustering [11], [13] on the coarse-scale full-face
patches of each training image. The result of such a clus-
tering can be seen in figure 2. A small number of clusters
(k = 16) is used, in order to ensure that each cluster is homo-
geneous enough to be represented by a single local feature,
but large enough so that the feature selection process can
be performed robustly. This number is highly dependent on
the distribution of training data, and has not been optimised
for this specific dataset. Once a set of k cluster prototypes
has been found, means are subtracted and CCA is performed
separately for each landmark patch in each cluster. As there
are two response dimensions (age and gender), two CCA
projections are obtained for each patch (see figure 3). When
combined, these form the correlation-enhancing projection
(CEP). With 21 landmark points, this results in a total of
42 projection values for each image in a cluster. In order
to visualise the relative importance of different input feature
dimensions (in this case corresponding to facial regions), the
average weight magnitude is also shown in figure 3.

Since a novel image may belong to any cluster, and since
we have observed that the CCA components of neighbouring
clusters in many cases are similar, we represent all images
using the CCA features obtained in all clusters. With k = 16,
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Figure 2: Clustering results. Top: full-face regions for each
cluster center. Bottom: average full-face images of 10%
oldest and youngest males and females in clusters two and
five. Images were drawn from folds 1–4 of the MORPH-II
dataset (omitting fold 0).

this results in a total of N = 672 feature dimensions per
image (a reduction by a factor of approximately 70).

IV. NORMALISED SPARSE PROJECTION RANDOM
FOREST WITH SAMPLE-BASED DISCRIMINANT

SELECTION

Our baseline estimator is a special case of the Forest-RC
algorithm [2]. It relies on linear combinations of S (where
1 < S ≤ N ) feature dimensions as discriminants. However,
the manner in which these discriminants are generated is
not uniform (as in the original formulation), but engineered
to simplify training. Typically S � N , representing a very
sparse projection operation.

To optimise the internal nodes, we use a random test gen-
eration scheme. For each node, a maximum number M of
tests are generated and evaluated using the information gain
(mutual information), as is done in the standard Random
Forest formulation [2], [3]. For the regression case, we use a
separable Gaussian approximation of the left and right splits
in order to express the resulting entropy in closed form. If
a discriminant is found which separates the classes (in the
classification case) or produces splits with a variance below
a set threshold (in the regression case), node optimisation
is terminated. If no such test is found, the best candidate
among those evaluated is kept instead.

When selecting discriminant candidates at an internal
node, feature space dimensionality affects the choice of

Cluster 9, 1st component Cluster 16, 1st component

Cluster 9, 2nd component Cluster 16, 2nd component

Average weight magnitude Average intensity

Figure 3: First (top row) and second (middle row) CCA basis
vectors for clusters 9 and 16. Images were drawn from folds
1–4 of the MORPH-II dataset. (omitting fold 0). Bottom
row: Average weight magnitude (left) and average intensity
for reference (right).

method. The likelihood of a randomly selected sparse lin-
ear discriminant producing a useful split decreases with
dimensionality. However, the computational cost of finding
an optimal sparse linear discriminant for a minimal set
of points also decreases with dimensionality. Therefore,
we propose the following scheme: For high-dimensional
data (such as image patches), sparse discriminants (S non-
zero dimensions) are generated at random. The projection
coefficients ws are normalised such that

S∑
s=1

ws = 0, and
S∑

s=1

|ws| = 1. (1)
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Figure 4: Normalised kernel density estimate (1000 samples,
σ = 0.02) of relative coefficient distribution for different
values of S.

This has the effect of centering the mean value of the
projections at 0, which is then used as the threshold value
except at the final split level of each tree, where the small
number of remaining samples make threshold optimisation
tractable. The absolute sum normalisation also preserves
the range of the selected data dimensions. The resulting
coefficient distribution for different values of S can be seen
in figure 4. For specific choices of S we can also obtain
other previous discriminants, for instance those used in [15],
which are obtained for S = 2. We denote this selection
method normalised sparse discriminant selection (NSDS).

For lower-dimensional data (such as the CEP features),
discriminants are found in a manner similar to RANSAC
[5]. For a minimal subset of two (different) sample points,
the optimal discriminant is the hyperplane mid-way between
the points with a normal parallel to the line connecting
them. This discriminant is greedily sparsified by selecting
the S largest-magnitude components of the normal vector,
and is used as a candidate test for the node. In this setting,
threshold optimisation is also only performed at the final
split level. We denote this selection method sample-based
sparse discriminant selection (SSDS).

V. RESULTS AND DISCUSSION

In this section, we present results of the proposed ex-
tensions. The first section shows an evaluation of the CEP
feature space, and the second shows results for Random
Forest evaluation.

A. Feature selection

In order to evaluate the effect of the feature selection
process described in section III, we perform a 5 − NN
evaluation using Euclidean distance in the respective feature
spaces (before and after applying the correlation-enhancing
projection). Results of this evaluation are shown in table I.

As the table indicates, the local neighbourhood of a data
point is more homogeneous after the CEP has been applied.
We take this to mean that the application of the CEP
simplifies the estimation problem, which should improve
performance and simplify estimator training.

Method Data dimensions Gender error Age MAE
Input space 46 389 13.61 ± 2.17% 8.05 ± 0.30 years

CEP 672 7.24 ± 1.14% 6.02 ± 0.20 years

Table I: Feature space evaluation using 5-NN. Standard
deviations indicate results from five-fold cross-validation,
using folds supplied in [6].

B. Random Forests

To evaluate the effect of CEP, NSDS and SSDS on the
Random Forest, three variants were compared:

• Naive Random Forest: An example of the most basic
Random Forest estimator, selecting a random feature
dimension (S = 1) at each node and then brute-
force optimising a threshold along that dimension. Input
data are the original image patches, distributed such
that each tree is trained on a subset of dimensions
corresponding to a single landmark point.

• NSDS: Our variant of Forest-RC with normalised
sparse projections (S = 5). Input data are the orig-
inal image patches, distributed such that each tree is
trained on a subset of dimensions corresponding to a
single landmark point. A maximum number of 4096
discriminant candidates were evaluated at each node.

• CEP-NSDS(5): The NSDS (S = 5), trained on the
lower-dimensional CEP features. Input data are the
CEP features, distributed such that each tree is trained
on a subset of dimensions corresponding to a single
data cluster. A maximum number of 2048 discriminant
candidates were evaluated at each node.

• CEP-SSDS(5): The SSDS (S = 5) with sample-
based discriminant selection, trained on the lower-
dimensional CEP features. Input data are the CEP
features, distributed such that each tree is trained on
a subset of dimensions corresponding to a single data
cluster. A maximum number of 256 discriminant can-
didates were evaluated at each node.

In all cases, trees were grown to a maximum depth of 10, and
the ensemble size was set as three trees per (non-mirrored)
landmark (63 trees) in the first two cases, and three trees
per data cluster (48 trees) in the last two cases. Sample bag-
ging was performed by drawing (with replacement) 50 000
samples of each gender (for gender classification) and 2000
samples of each available age (for age estimation). Results
of this evaluation are shown in table II.

The naive Random Forest, considering a single ran-
dom data dimension at a time and performing brute-force
threshold optimisation obtained a classification error rate of
32.05± 1.34% on the image patch data. Because the brute-
force threshold optimisation is more computationally expen-
sive for regression than for classification, age estimation was
not performed in this case. At the set maximum depth, this
variant is unsuitable for high-dimensional data. In order to
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Method/trees/depth Gender error Age MAE Iter. Time
NSDS(5)/63/10 4.83 ± 0.77% 7.97 ± 0.19 y 4096 ≈ 140 h/fold

CEP-NSDS(5)48/10 5.08 ± 0.91% 5.78 ± 0.04 y 2048 ≈ 40 h/fold
CEP-SSDS(5)/48/10 4.48 ± 0.41% 5.29 ± 0.04 y 512 ≈ 40 h/fold

Table II: Age and gender estimation performance for the
different methods. Standard deviations indicate results from
five-fold cross-validation, using folds supplied in [6]. For
NSDS(5), the age estimation result is based only on the first
two folds due to the prohibitive optimisation time for full
cross-validation on the test machine.

handle these data, tree depth and number would have to be
vastly increased. NSDS however, can produce good results
even at this depth while using very sparse projections (5
non-zero elements out of 46 389) and also while performing
no threshold optimisation, except at the final split level. For
CEP-NSDS, age estimation results are significantly better
than for NSDS. Gender classification performance, though
slightly decreased, is still within one standard deviation of
NSDS despite the massive reduction in the number of feature
dimensions. For CEP-SSDS, both age and gender estimation
are improved, despite using only 512 iterations at each node.

Timing results are from a machine with a quad-core Intel
Xeon processor, running at 2.30 GHz. Feature selection
is performed using all cores, while tree training is run
using a single core for each evaluation fold. Although
the feature selection takes time to perform (around 18 h
on the test system), training time for the methods using
CEP is still significantly shorter than for the image-space
methods. Although the CEP methods use fewer discriminant
candidates per node, the reduction in training time is not
proportional to this reduction. This indicates that the CEP
features do provide faster convergence. When using sample-
based discriminant selection, the reduction in the number
of iterations does not produce the corresponding reduction
in training time, due to the higher computational cost of
SSDS. However, at a corresponding number of iterations
NSDS seldom produces usable results.

These results, though not state of the art (to the authors’
knowledge, the best published results on the MORPH-II
dataset are 1.5% error rate for gender classification [7] and
3.63 years MAE for age estimation [18]), indicate that the
proposed extensions have the desired effect when dealing
with high-dimensional problems. Since the parameters are
not optimised for performance on the dataset used, best-case
performance has yet to be determined.

VI. CONCLUSIONS AND FUTURE WORK

We have proposed and evaluated extensions designed to
make Random Forests better equipped to deal with high-
dimensional problems including both feature selection and
estimator training. In our experiments, the feature selection
method based on CEP improves neighbourhood homogene-

ity of samples, and produces equal or superior estimation
performance. In combination with the proposed discriminant
generation schemes the rate of convergence is also improved,
reducing the number of iterations needed and further improv-
ing results for age and gender estimation.

Future work includes optimisation schemes to automat-
ically determine appropriate parameters of the clustering,
CCA and Random Forest steps, as well as further in-
vestigation of the usefulness of the k-NN neighbourhood
score as a measure of feature space quality. The effect of
applying label- and parameter-based decision margin cost
functions during RF optimisation will also be studied, as
this has the potential of increasing the overall robustness and
generalisation capabilities of the estimators. Furthermore,
frequency weighting and a spatial weight function in feature
selection could produce more complementary features by
forcing them to be more localised around the landmark
points.

ACKNOWLEDGEMENTS

The research presented in this paper was funded by
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