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Assessing Losses for Point Set Registration
Anderson C. M. Tavares1,2, Felix Järemo Lawin1 and Per-Erik Forssén1

Abstract—This paper introduces a framework for evaluation of
the losses used in point set registration. In order for a loss to be
useful with a local optimizer, such as e.g. Levenberg-Marquardt,
or expectation maximisation (EM), it must be monotonic with
respect to the sought transformation. This motivates us to
introduce monotonicity violation probability (MVP) curves, and
use these to assess monotonicity empirically for many different
local distances, such as point-to-point, point-to-plane, and plane-
to-plane. We also introduce a local shape-to-shape distance, based
on the Wasserstein distance of the local normal distributions.
Evaluation is done on a comprehensive benchmark of terrestrial
lidar scans from two publicly available datasets. It demonstrates
that matching robustness can be improved significantly, by using
kernel versions of local distances together with inverse density
based sample weighting.

Index Terms—Performance Evaluation and Benchmarking,
Probability and Statistical Methods

I. INTRODUCTION

OVER the years, a large number of methods for point set
registration have been proposed. These have two main

components: (1) A registration loss and (2) an algorithm that
minimizes the registration loss (or, equivalently, maximizes a
registration score). In order to obtain an efficient algorithm,
the two components are typically deeply integrated, and for
this reason the registration loss is rarely studied in isolation.
Most of the practically useful registration losses are based
on local distances, such as the point-to-point [1] and point-
to-plane [2] distances commonly used in the iterative closest
point algorithm (ICP).

In this paper we make an in-depth analysis of registration
losses for point set alignment, and compare the different
choices on challenging real data, see figure 1. We also exper-
imentally demonstrate how performance differs between pairs
with large and small point set overlap.

As many point clouds have dramatically higher density of
samples near the sensor [5], another important aspect is how
to reduce the bias caused by the varying density. To this end,
we investigate the effect of density based sample weighting.

In order to be used in iterative minimization, a registration
loss should be monotonically decreasing with better alignment

Manuscript received: September, 10, 2019; Revised December, 21, 2019;
Accepted February, 3, 2020.

This paper was recommended for publication by Editor Sven Behnke upon
evaluation of the Associate Editor and Reviewers’ comments. This work was
supported by ELLIIT, the Strategic Area for ICT research, funded by the
Swedish Government, and by Vinnova through the Visual Sweden network.

1All authors are with Computer Vision Lab (CVL), department of Elec-
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Fig. 1. Datasets [3], [4] used in the experiments. See table I for details.

of the point sets. This motivates us to measure monotonicity
empirically, and for this purpose we introduce the concept of
monotonicity violation probability (MVP) curves. We use such
MVP curves as a criterion for assessing registration losses in
our experiments.

II. RELATED WORK

The objective functions used in point set registration can be
divided into losses based on maximum likelihood (ML), and
scores based on kernel density estimation (KDE).

The ML based losses descend from the iterative closest
point (ICP) algorithm [2], [1]. Changes to the ICP algorithm
have been proposed a countless number of times [6]. We
mention only a select subset of notable ideas here, and
refer to e.g. [7] for a more thorough treatment. The point-
to-plane local metric was actually there from the start [2].
Robustification and Kd-tree speedup was introduced by Zhang
[8]. LM-ICP [9] proposed the use of a distance field for
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speedup, an anticipation of cost volume based registration such
as the TSDF [10] used in the Kinect Fusion [11] real-time
registration method.

Robustified versions of ICP can also be defined using
Gaussian mixture models [12]. Here a Gaussian mixture
model and the tranformation parameters are inferred using
expectation maximization (EM). This is further generalized in
[13] to jointly handle multiple point sets. In order to better
handle density variations in an EM framework, [5] further
incorporates a density adaptive sample weighting into the
probabilistic model.

Tsin and Kanade [14] introduced KDE based registration
scores. They propose a score called kernel correlation. For
efficiency, kernel correlation can use precomputed densities
on a grid. This idea is generalized in the normal distribu-
tions transform (NDT) [15], where local anisotropic normal
distributions are precomputed on the grid. A coarse-to-fine
variation of grid cell sizes is also proposed in [15]. Another
related development is to use a Gaussian Mixture (GM) model
approximation of the probability density [16]. Here an L2

distance between PDFs represented as GM is minimized.
One could also consider assessing the alignment quality

after alignment [17]. This allows other aspects to be taken
into account, such as visibility. While visibility is useful for
assessing the final solution, it will cause the score to change
rapidly with small shifts and rotations (whenever they occlude
or disocclude points), and is thus detrimental when designing
a locally convex score. Related ideas also appear in [18],
where self-occlusisions are accounted for using rendering of
candidate image views, and the use of image based distances
on these.

III. POINT SET REGISTRATION LOSSES

We start by introducting the necessary terminology. Let V
be a normed vector space (e.g., V = R3) with norm ‖ · ‖ :
V → R≥0. Further, let P(V ) be the set of all possible subsets
of V . A point set X = {xk}Kk=1 ∈ P(V ) is a set of points
xk ∈ V with cardinality |X | = K. A transformation T :
V → V , originally defined on points, acts on a point set as
T (X ) = {T (x) : x ∈ X}.

For the rigid transformation group SE(3), a transformation
T applied to a point x is expressed in matrix algebra using a
rotation R and a translation t as:

T (x) = Rx + t . (1)

Thus, for convenience we use the notation T = (R, t).
Registration means aligning two point sets, which can be

restated as finding the transformation, T ∗, that minimizes a
given registration loss L : P(V )× P(V )→ R:

T ∗ = arg min
T
L(X , T (Y)) (2)

Such a loss can only be used to align point sets if it has a
global minimum at the correct point set transformation T ∗.

In order to use the loss in an iterative minimization, we
further desire that the loss should be monotonically decreasing
for small increments ∆T towards the correct transformation:

d(T ∗, T ◦∆T ) < d(T ∗, T ) ⇒ (3)
L(X , (T ◦∆T )(Y)) < L(X , T (Y)) . (4)

Here d(T1, T2) is a natural distance metric on the transfor-
mation group and ◦ denotes the group operation on SE(3).
E.g. for pure translations, the natural metric is the Euclidean
distance d(T1, T2) = ‖t1−t2‖, and for pure rotations, it is the
3D rotation angle d(T1, T2) = 2 sin−1(‖R1 −R2‖/

√
8), see

[19]. For SE(3) there is unfortunately no unique natural metric
[20], and thus it is common to present rotation and translation
deviations separately.

IV. A GENERAL LOSS FUNCTION

The point set registration losses considered here can all
be expressed as a weighted sum of local distances. A local
distance compares two points, or their neighbourhoods. Com-
mon examples are point-to-point [1], point-to-plane [2] and
plane-to-plane [21] distances. In addition, we will also test the
Wasserstein distance for normal distributions [22] as a local
shape-to-shape distance.

For point sets X = {xk}Kk=1 and Y = {yl}Ll=1, we can
collect all local distances in a K×L matrix C, with elements:

ckl = wld(NX (xk),NY(yl))
2 , (5)

where d(·, ·) is a local distance, NX (xk) is the local neigh-
bourhood in X around point xk and wl is an optional weight.

We can now express a general registration loss as:

L(X ,Y) =
∑
k,l

aklckl = 〈A | C〉F , (6)

where akl are assignment weights, and 〈· | ·〉F is the Frobe-
nius(matrix) scalar product. The weights akl encode the as-
signment (or more generally the transport plan [23], [24])
between points in X and Y .

The assignments A are updated for each iteration, and thus
a gradient of (6) is difficult or even impossible to define
analytically. In e.g ICP [1], the assignment is binary and at
most one-to-one, i.e. akl ∈ {0, 1}, and A is constrained to
sum to either 1 or 0 along each row or column. This also
implies that, in the ICP case, assignments could be stored as
a set A of ordered index pairs:

A ⊂ [1,K]× [1, L] . (7)

Such assignments are computed using nearest neighbours after
applying the currently best transformation.

In order to increase robustness, all assignments for a point
are set to zero if the nearest neighbour is beyond a maximum
cutoff distance, dmax, see e.g. [8], [21]. We can interpret this
as a truncated quadratic loss, i.e. we keep the assignment, and
instead replace (5) with:

ckl = wlmin(dmax, d(NX (xk),NY(yl)))
2 . (8)

For kernel based methods, more general, many-to-one as-
signments are used [14], and their contributions are weighted
according to alignment distance.
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A. Local distances

The ICP-based algorithms are all minimizing Mahalanobis
distances between pairwise assignments:

dΣk,l
(xk,yl)

2 = ‖xk − T (yl)‖2Σ−1
k,l

. (9)

We may use different choices of Σ−1
k,l to recover the previously

proposed local distances point-to-point [1], point-to-plane [2]
and plane-to-plane [21]. For the point-to-point local distance
[1], we have:

Σ−1
k,l = I , (10)

and for the point-to-plane distance [2], we have:

Σ−1
k,l = nkn

T
k , (11)

where nk is the estimated surface normal at each point.
In contrast, the plane-to-plane local distance [21] depends

on both point sets. It can be written as:

Σ−1
k,l = (Σ̂k + RΣ̂lR

T )−1 , (12)

where Σ̂k and Σ̂l are local covariance estimates at correspond-
ing points, and R is the rotation part of the sought rigid trans-
formation, see (1). To model the local 2D-structure of surfaces,
[21] sets Σ̂ = UDUT , where U contains the eigenvectors of
the empirical covariance matrix and D = diag(ε, 1, 1) with
a small ε. This enforces a fixed density estimate along the
plane estimated from the empirical covariance. We will test
the effect of changing ε in the experiments.

Another way to utilize empirical covariances around points
is to compare them and their locations directly, using the
Wasserstein distance for Gaussian distributions [22]. This
results in the expression:

dWk,l
(xk,yl)

2 = ‖xk − yl‖22 + tr(Σk + Σl − 2(Σ
1
2

l ΣkΣ
1
2

l )
1
2 ) ,

(13)
which we denote the local shape-to-shape distance. Figure 2
illustrates the components of each distance metric.
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Fig. 2. Features used for distances between points xk and yl (a) point-to-
point, (b) point-to-plane, (c) plane-to-plane, and (d) shape-to-shape.

B. Empirical covariances

We estimate empirical covariances and normals, for point-
to-plane and plane-to-plane local distances, using the K-
nearest neighbours (K-NN) of the respective point. The shape-
to-shape distance, however, also depends on the scale differ-
ence between the two covariances, see (13) and thus a fixed
radius computation of the covariance is needed. As a fixed
radius neighbourhood may be empty of neighbours, we use
the fallback formula:

Σ = Σprior
1

N
+ Σest

N − 1

N
, (14)

where N is the number of points in the neighbourhood (includ-
ing the point itself). As prior, we use the expected covariance
of an isotropic neighbourhood, Σprior = 0.2r2I, where r is
the neighbourhood radius. For non-empty neighbourhoods, we
compute Σest using the regular unbiased estimation formula.

C. Sample density weighting

In order to reduce the impact of density variations in point
sets (caused by the sampling pattern of 3D sensors, see [5])
we optionally use a sample weighting based on the inverse of
a kernel density estimate (KDE) with an isotropic kernel:

w−1
k =

∑
i∈NX (xk)

exp

(
− 1

2h2
‖xk − xi‖2

)
. (15)

Here, NX (xk) is the local neighborhood of xk in X , and h
is the kernel bandwidth. The use of a neighborhood instead
of all points allows rapid evaluation with a Kd-tree. For a
variable number of points, the average over the points in the
conventional KDE expression can be replaced by a sum here.

D. Registration Losses

In this work, we consider two types of losses; the maximum
likelihood based loss used in the ICP-based algorithms and the
density based loss used in [14]. We investigate the behaviour
of both loss types for all the local distances introduced in
section IV-A.
Maximum Likelihood (ML) loss: The registration loss func-
tions used in the ICP based algorithms can be derived from
maximum likelihood estimation [25]. First, we assume that X
and Y are observations from random variables with associated
probability density functions pX and pY . We model pX as a
mixture of Gaussian distributions with means at the individual
points xk ∈ X and covariances Σk,l:

pX(yl|T ) =
∑
k

wkN (T (yl); xk,Σk,l) . (16)

The registration problem can be formulated as maximizing
the log-likelihood of the point set X given transformation T :

E = log pY (X|T ) . (17)

This can be optimized over T using expectation max-
imization. We first introduce the latent variables Z and
let pX(yl|T ) =

∑
k pZ,X(yl, k|T ) be the marginal with

pZ,X(yl, k|T ) = N (T (yl)); xk,Σk,l). By setting the assign-
ment weights to the latent posteriors [26]

akl = pZ|X(k|yl, T ) =
pX,Z(yl, k|T )∑L
i=1 pX,Z(yi, l|T )

(18)

the negative log-likelihood loss becomes (cf. (6)):

L(X ,Y) = −
∑
kl

akl(log pX,Z(yl, k|T )− log akl) = (19)

∑
k,l

akl

(
1

2
‖xk − T (yl)‖2Σ−1

k,l

+Bk,l + log akl

)
, (20)

where Bk,l = 0.5 log((2π)D|Σk,l|). In the ICP-case the term∑
i akl log akl vanishes since the assignment is binary, see (7).
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The negative log-likelihood is optimized iteratively by alter-
nating between setting the assignments akl and minimizing
L.

For both point-to-point and point-to-plane distances, the
term Bk,l is independent of the transformation T , thus it
only contributes with a constant bias. In the plane-to-plane
case, however, Σk,l is updated for each iteration, thus Bk,l
will affect the likelihood estimate. However, this term is not
useful in practise, as the scale of the covariance matrices is
destroyed in the plane-to-plane calculation, see (12). Without
correct scale, the magnitude of Bk,l will be incorrect.
Kernel Density (KD) loss: The local distances in section IV-A
are all based on the 2-norm, and are thus sensitive to outlier
assignments. In the pursuit of increasing the robustness of the
losses we also investigate kernel based versions. Following the
work of [14] we compute the local Gaussian kernel density for
each point. This means replacing the local distances in (5) with
local similarities:

ck,l = wl exp

(
− 1

2h2
‖xk − T (yl)‖2Σ−1

k,l

)
. (21)

Here Σk,l is the Mahalanobis metric for the corresponding
points xk and yl, h is the kernel bandwidth and wl is
the correspondence weight. We consider kernel versions for
all local distances d described in section IV-A. The final
registration score is then computed using (6). This score can
be turned into a loss, by changing the sign of ck,l in (21).

V. ASSESSMENT OF MONOTONICITY

We assess monotonicity for a particular registration loss
L(X1,X2), by evaluating it for deviations from the correct
alignment T ∗. We do this for sequences of transformations
T1, . . . , TN , with d(T ∗, Tn) < d(T ∗, Tn+1), in the natural
distance metric for the transformation group, see section III.
The transformations are applied to one of the point sets before
computing the loss. For each transformation sequence, this
gives us a sequence of registration losses L0, L1, . . . , LN
where:

Ln = L(X1, Tn(X2)) , (22)

and L0 is the registration loss at T ∗.
A sufficient condition for monotonicity is that

I(Ln ≤ Ln−1) = 0, for all adjacent pairs of Ln. Here I(x)
is the indicator function:

I(x) =

{
1 if x is true
0 otherwise.

(23)

We can test whether a violation has occurred in an interval
of Ln, by using max(). This gives us a violation indicator
function:

vn = max
m∈[s,n]

I(Lm ≤ Lm−s) , n ≥ s . (24)

Here s is a step length parameter. If the step between sub-
sequent transformations is too small, (24) will give spurious
indications near the correct transformation. Causes of these
include assignment noise (nearest neighbour assignment forces
a neighbour to be selected, when the correct location may be

between two points) and inaccurate ground truth. Spurious
indications can be avoided by using a larger step, e.g. s = 3
instead of 1.

A. Monotonicity violation probability

For point sets depicting real scenes there is always a risk
that a unique global minimum does not exist. This could
e.g. be due to periodic structures in the scene, or too low
an overlap between the point sets. This motivates an analysis
of monotonicity violations in a statistical sense, i.e. how likely
is it that a particular loss will have a violation compared to
another one.

By averaging the violation indicator function (24) across
a set of point set registrations and transformation sequences,
we can obtain an empirical monotonicity violation probability
(MVP) curve for each registration loss. We will use such MVP
curves to compare the monotonicity of different registration
losses in the experiment section.

A point p̂n = E{vn}, on an MVP curve is an average
of a set of violation indicators {vkn}K1 , see (24). Thus p̂n is
binomially distributed

p̂n =
1

K

K∑
k=1

vkn ∼
1

K
B(K, pn) . (25)

In order to assess significance, we can add confidence bounds
to the MVP curves. We use the adjusted Wald test proposed
in [27]. This results intervals where pn satisfies:

|pn − p̃n| < zα/2
√
p̃n(1− p̃n)/(K + 4) . (26)

Here p̃n = (Kp̂n + 2)/(K + 4), and zα/2 = 1.96 for a 95%
confidence interval. Note that for the MVP estimate, we still
use p̂n as defined in (25).

B. Sampling of transformation sequences

In the experiments we restrict the transformation sequences
T1, . . . , TN to equidistant samplings away from the optimum,
i.e. the special case where Tn = (∆T )nT ∗ for n ∈ [1, N ]. As
a loss could be violation free for a different trajectory from TN
to T ∗, we may occasionally record a violation when there is
none. Another option is to take steps in the gradient direction,
but for losses of interest, see (6), the gradients are hard to
obtain.

If sufficiently many transformation sequences are used, a
simple way of choosing them is to do random sampling of
directions in rotation and translation space. For lower numbers
of samples, we recommend a symmetric arrangement of M
directions. Symmetric directions are obtained from the vertices
of the Platonic solids [28], when M = 4, 6, 8, 12, 20. For
other values of M , a best fit can be found by minimizing the
following cost, where x̂k are normalized columns of a 3×M
parameter matrix X:

J (X) =

M−1∑
k=1

M∑
l=k+1

π − cos−1(x̂Tk x̂l) . (27)

Multiple equivalent minima of (27) exist, and they correspond
to column permutations of X. The solutions are vertices of the
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Platonic solids for M = 4, 6, 12. For M = 8, 20 we get the
Platonic solids as well as a twisted cube and dodecahedron.
For other values of M we also get well separated vertices on
the sphere.

C. Point set overlap

The difficulty of registration of two point sets depends on
the amount of volume that they share, relative to their total
volume. This common volume fraction is referred to as the
point set overlap. Due to noise and sparsity of point sets, an
overlap may be defined in a nearest neighbor sense.

We apply KDE using an isotropic normal kernel for one
point set and query the density for points in the other set:

pY(xk) =
1

L

L∑
l=1

N (xk − yl, σ) (28)

We reverse the roles of X and Y and compute pX (yl). Then
we count the points whose densities are above a threshold t:

oXY =
1

K + L

(
K∑
k=1

I(pY(xk)> t) +

L∑
l=1

I(pX (yl)> t)

)
(29)

We calculate oXY ∈ [0, 1] for all pairs of point sets (X , Y),
and split them into two groups: easy pairs (oXY ≥ to) and
hard pairs (oXY < to) according to to ∈ [0, 1].

VI. EXPERIMENTS

In order to analyze the registration losses described in pre-
vious sections we perform extensive evaluation on a number
of real-world lidar point sets. We present an evaluation of the
monotonicity in accordance with section V.

A. Setup

We perform the evaluation by sampling the registration
losses at different transformations Tn (see section V). For each
pair of point sets we consider both rotation and translation
errors.

For each point set pair (X ,Y), we first select a target point
set and apply the transformation Tn(Y). Next, we compute
assignment sets Ak for each point xk ∈ X using a nearest
neighbor (NN) search in point set Tn(Y). For the NN search
we use the Euclidean distance metric, as in [21]. Losses are
then computed according to Section IV-D.

Rotation sensitivity is assessed by rotating one of the point
sets in the range [0◦, 30◦] in steps of 1◦. This is done along
M = 10 different axes, one of which is the up-vector, see
section V-B.

Translation sensitivity is assessed by shifting one of the
point sets in the range [0, 7.5m] in steps of 0.25 meter. This
is done along the same M = 10 axes used for rotation.

In experiments with combined rotation and translation,
we simply apply the above deviations in both rotation and
translation, starting with rotation.

B. Datasets

We use pairs of point sets from two terrestrial laser scan-
ners (TLS) [3], [4]. Each of the datasets comes with ground
truth point set poses, which we use to generate controlled
deviations from the optimum. The datasets used are described
in table I.

TABLE I
DATASETS USED FOR EVALUATION, ALONG WITH NUMBER OF POINT SETS,

THE NUMBER OF COMBINATIONS OF SET PAIRS, AVERAGE POINT SET
RANGE (IN METERS) AND AVERAGE OVERLAP (SEE (29)).

Dataset name #point sets #point-set pairs range overlap
VPS Indoors [3] 4 6 1.6 99.8%

VPS Outdoors [3] 4 6 4.0 97.5%
ETH Façade [4] 7 21 3.0 98.9%

ETH Arch [4] 5 10 12.8 56.7%
ETH Courtyard [4] 8 28 10.6 91.8%

ETH Office [4] 5 10 4.6 100.0%
Total 33 81 6.1 91.3%

For efficiency, each set is downsampled to S = 10 000
points. This is done by generating a random index permu-
tation, and picking the S first points. This sampling preserves
underlying structure and density variations in the data.

C. Parameters

Covariances are computed with K-NN with K = 20 as
in [21] (point-to-point, point-to-plane and plane-to-plane), or
fixed radius search (shape-to-shape) with r = 3h where h =
σ = 0.3. For ML methods we use a robust cutoff of dmax =
3h = 0.9, which is close to the values found in by threshold
evaluation in [21]. We split the set of pairs into two groups,
easy and hard cases, by using the degree of overlap (29). We
set t = 0.1 when computing the list OXY of overlaps, and to =
median(OXY), which gives groups of roughly equal sizes. We
use the step s = 3 for differentiation in MVP. Therefore, the
plots start at 3× 1◦ = 3◦ for rotation and 3× 0.25m = 0.75m
for translation.

D. Results and discussion

We present MVP curves for loss functions based on the fol-
lowing local distances: point-to-point (pt2pt), point-to-plane
(pt2pl), plane-to-plane (pl2pl) and shape-to-shape (sh2sh).
For the plane-to-plane we use a value of ε = 0.01. We also
include a version of plane-to-plane (pl2pl’) with the PCL [29]
default value of ε = 0.001. Below, we present results with ML
and kernelized versions separately.
Maximum Likelihood: Figures 3 and 4 show MVP curves
for ML losses under rotation and translation respectively. The
plots start at the differentiation step size (3◦ + 0.75m).

An interesting observation is that the pl2pl loss has signifi-
cantly more violations than the others in almost all scenarios.
This is particularly evident in the translation error case (see
figure 4). The exception is when close to the solution for
the easy pairs under only rotation deviations close to the
solution (see figure 3, right column). This is in contrast to
what has been found elsewhere [21]. A possible reason for
this is that convergence under translation on real scenes is
rarely considered. By adjusting the ε parameter of pl2pl, the
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Fig. 3. MVP curves for ML losses under rotation. Unweighted (top) and
weighted (bottom), for hard (left) and easy (right) cases, with point-to-point
(pt2pt), point-to-plane (pt2pl), plane-to-plane (pl2pl has ε = 0.01, pl2pl’ has
ε = 0.001), and shape-to-shape (sh2sh). 95% confidence bands for each curve
are shaded in the same colour. X-axis is degrees.

performance can be improved somewhat over the PCL [29]
default, but the general trend holds.

We can also see that weighting improves performance for
all methods when close to the solution. In particular pt2pl
benefits from weighting. When far from the solution, and
under rotation, weighting results in more violations.

We also note that sh2sh behaves almost exactly like pt2pt,
and is thus not worth the extra cost.

Finally, we present MVP curves under joint rotation and
translation errors in Figure 5. Naturally, these curves show
slightly more violations. Consistent with separating rotation
and translation, these curves show that pl2pl has significantly
more violations than the other methods, and that weighting
improves performance.
Kernel Density: Figures 6 and 7 show MVP curves for
KD losses under rotation and translation, respectively. Several
conclusions from the ML-based methods also hold here: In
the unweighted case, close to the solution, pl2pl has fewer
violations than the other methods, while the behaviour for
larger deviations is inconsistent. We also see again that sh2sh
behaves almost exactly like pt2pt, and is thus not worth the
extra cost. The performance change when changing the ε value
in pl2pl is however insignificant in the KD case.

The most significant observation from 6 and 7, however
is the large benefit from density based weighting in the KD
case: all KD losses benefit from weighting, both under rotation
and translation. Especially when close to the solution, we can
see that the results are now nearly violation free. Although
weighting is beneficial for pl2pl, it falls behind the others on
the hard pairs. This demonstrates that weighting is beneficial
in general, and should be used in all methods.

We also present MVP curves under joint rotation and
translation errors in Figure 8. Similar to the MVP curves
under rotation and translation separately, pl2pl has slightly
more violations on the hard pairs. Moreover, the differences
between methods on the easy pairs are insignificant.

Fig. 4. MVP curves for ML losses for translation (see caption to Figure 3).
X-axis is meters.
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Fig. 5. MVP curves for ML losses under combined rotation and translation
(see caption to Figure 3). X-axis is sample index.
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Fig. 6. MVP curves for KD losses under rotation (see caption to Figure 3).

VII. CONCLUSIONS

We have introduced monotonicity violation probability
(MVP) curves as an analysis tool in point set registration.
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Fig. 7. MVP curves for KD losses for translation (see caption to Figure 3).
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Fig. 8. MVP curves for KD losses under combined rotation and translation
(see caption to Figure 3). X-axis is sample index.

They allow empirical analysis of only the cost instead of the
entire algorithm. We have used the MVP curves to evaluate
most common choices of local distances on a comprehensive
dataset of 81 real terrestrial lidar scan pairs.

The experiments clearly demonstrate that density based
weighting reduces the number of monotonicity violations in
general. As density based weighting is not an expensive
addition, it should thus be used in all registration methods.

We can further see that kernel based losses work very
well together with density based weighting, resulting in very
few violations in monotonicity. With a larger computational
budget one could thus also consider running a weighted kernel
method.

Further, our experiments indicate that plane-to-plane dis-
tances can increase robustness close to the solution, but in
general introduce more violations than other local distances.
This suggests a registration strategy, where initially a point-to-
point based loss is used before switching to a plane-to-plane
loss when the first optimizer converges.

We also introduced a local shape-to-shape distance, based
on the Wasserstein distance for normal distributions. However,

the evaluation shows it to perform near identical to point-to-
point, and it is thus not worth the extra effort.

We hope that the introduction of MVP curves can help
to improve the understanding of the losses used in point-set-
registration. In the future they could also be a useful tool when
designing novel loss functions.
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