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Abstract—We study the problem of registering a sequence
of scan lines (a strip) from an airborne push-broom imager
to another sequence partly covering the same area. Such a
registration has to compensate for deformations caused by
attitude and speed changes in the aircraft. The registration
is challenging, as both strips contain such deformations.

Our algorithm estimates the 3D rotation of the camera for
each scan line, by parametrising it as a linear spline with a
number of knots evenly distributed in one of the strips. The
rotations are estimated from correspondences between strips
of the same area. Once the rotations are known, they can be
compensated for, and each line of pixels can be transformed
such that ground trace of the two strips are registered with
respect to each other.

I. INTRODUCTION

In airborne remote sensing, push broom imagers are

commonly used. Such an imager has a spatial resolu-

tion of 1 × K pixels, and exploits the ego motion of

the platform on which the imager is mounted to form

an image. The imager in itself is thus equivalent to a

scanning sensor, but without the scanning mechanics.

The platform, typically a fixed-wing aircraft, does not

move in a perfectly straight line, and moreover rotates

slightly around all three axes. This causes distortions in

the resulting image (a sequence of lines), which thus

needs registration and orthorectification to be useful for

most applications. Hardware for navigation (GPS, INS)

and sensor stabilisation can be used to some degree, but

are not always available.

Our primary applications are change detection and

anomaly detection [1], while mapping and signature-

based target detection are secondary. For change detection

to be possible at all, the image lines of the two (or

more) acquired data strips must be registered with high

precision. In order for any kind of detection (change,

anomaly, target) to be georeferenced, the imagery must

be registered to other available orthorectified images.

In this paper, we propose a method for mutual reg-

istration of push broom data strips. The method is an

adaptation of the method developed at CVL for rolling

shutter video sensors.

The outline of the paper is as follows. The scenario,

the sensor, and the data are described in Section 2, the

registration method is described in Section 3, results are

shown in Section 4, and conclusions are drawn in Section

5.

II. SENSORS AND DATA

The imager, ImSpec, is a visual and near-infrared (391–

961 nm) hyperspectral imager from SpecIm [2], with

1024 pixels in each scan line and a maximum of 256

spectral bands. Due to limitations in read-out electronics’

data rate, the number of spectral bands might need to be

reduced to meet requirements on the number of lines to

be acquired per second. In this experiment 60 spectral

bands are recorded, which is more than enough for our

applications. The imager is mounted nadir-looking in a

small fixed wing aircraft as shown in Fig. 1. Data was

acquired by flying over approximately the same land strip

twice, a rural area at the Swedish Army Ground Combat

School premises at Kvarn outside Linköping. The flight

altitude was 1000 meters, yielding a pixel footprint of

around 0.5 meters. The aircraft was equipped with GPS,

but for unknown reasons the GPS data was not logged to

the hard disk during the flight. Two resulting data sets are

shown in Fig. 2.

For the purpose of strip alignment, we view each Im-

Spec strip as one image. For visualisation, and correspon-

dence finding, a mean of three wavelengths approximately

corresponding to blue, green and red are used.

III. REGISTRATION METHOD

Our algorithm estimates the 3D rotation of the camera

to compensate for the misregistration due to the aircraft’s

rotation. The algorithm can be summarised in the follow-

ing steps:

1) Initial strip alignment using SIFT-features and a

global homography model

2) Dense point correspondences with KLT using the

initial alignment

3) Separation of the strip into segments where rotation

is assumed smooth

4) Rotation estimation

5) Image rectification

A. Homography estimation with SIFT-features

Even though the pilot tries to fly over the same area

for each strip, the paths may differ (due to e.g. small

rotations during the flight). The spatial location of the

first row may also differ if the data gathering started

at different locations. The aircraft speed may also differ

between different strips.



Fig. 1. The sensor installation in the aircraft. Top: The sensors are
installed in the metal box beside the pilot. Bottom: Computer and storage
equipment in the back seat.

Fig. 2. Two strips from approximately the same area.

To get a coarse initial alignment of the strips we use

SIFT descriptors [3] together with RANSAC to estimate a

homography, see Fig. 3. In each strip, SIFT finds between

10 000 and 25 000 features. From these we select the 300

with the highest ratio score, and use these to estimate

a homography using RANSAC. We have used an inlier

threshold of 50 pixels on the symmetric transfer error [4].

Fig. 3. Initial homography alignment found with SIFT and RANSAC.
Top: strip 1, bottom: strip 2, with transformed bounding box from strip
1 overlaid.

B. Point correspondences with KLT

In order to estimate the camera rotation we need point

correspondences between the strips. We obtain them by

tracking points with the KLT-tracker [5], [6]. The KLT

tracker uses a spatial intensity gradient search which min-

imises the Euclidean distance between the corresponding

patches in the different strips. We use the scale pyramid

implementation of the algorithm in OpenCV. Correspon-

dences from KLT benefit from the initial homography

alignment, and also from first scaling the forward axis

of each dataset by a factor of two. The first image is

initialised with a regular grid of points which are tracked

and re-tracked. This means that when a point is tracked

from the first strip to the other one, it is tracked again and

if it returns to the original position the point is regarded as

a match [7]. This procedure removes outliers efficiently.

C. Separation of the strip into segments

The rotations during a flight are assumed to vary

smoothly, and thus the strip can be split into several

segments. At each line that splits two segments, we

introduce a key-rotation, i.e. a knot in a linear spline

that interpolates aircraft rotations. The number of key-

rotations needed may differ depending on how long the

strip is, and how big the aircraft rotations were (i.e. if

the strips differ much). We have chosen to have N key-

rotations uniformly spaced in the first strip and to use

local linear regression to calculate where these rotations

approximately should be in the the other strips, see Fig. 4.

Fig. 4. Rotation distribution with N = 21

D. Rotation estimation

We model the distortion of a strip as a sequence of

rotation homographies:

H(t) = KR(t)K−1 , (1)

i.e. we neglect the translational component of the aircraft

motion. This means that we model the sensor as rotating

purely about its optical centre, and thus the imaged ground

patch is modelled as being on the interior surface of a

sphere. This is bound to cause some distortions in the

reconstruction, but if the radius of the sphere (i.e. the

focal length in K) is large enough (compared to the strip

length), this distortion is small.

We optimise for a sequence of rotations n1,. . . , nN

using the MATLAB optimiser lsqnonlin. The optimi-

sation makes use of a cost function

J = ǫ(n1, . . . ,nN ) , (2)

with image correspondences xk ↔ yk as constant pa-

rameters. The rotations n1,. . . , nN are represented as



three element vectors, where the magnitude corresponds

to the rotation angle, and the direction is the axis of

rotation, i.e. n = ϕn̂. This is a minimal parametrisation of

rotations, and it also ensures smooth variations, in contrast

to e.g. Euler angles. The vector n can be converted to a

rotation matrix using the matrix exponent. Because we

are dealing with only rotations this can be simplified to

Rodrigues formula.

In order to make the optimisation more stable, the first

and last key-rotations in the first strip is set to identity

rotations. To help the global optimisation with an initial

guess, smaller segments (areas between vertical lines in

figure 4) is locally optimised and used as input to the

global optimisation.

We have also augmented the cost function with a reg-

ularisation, where we put an extra cost on large changes

between consecutive rotations. This trajectory smoothness

constraint is done by adding a term in the cost function:

J = ǫ(n1, . . . ,nN ) + α

(

N−1
∑

l=1

1 − n̂T

l
n̂l+1

)

. (3)

This regularisation is necessary, otherwise the optimiser

may find very strange trajectories, see Fig. 6.

E. Image rectification

When the key-rotations have been estimated, they can

be used to assign a rotation to each row using SLERP

(Spherical Linear intERPolation) [8]. With this we know

how each point should be displaced in order to rectify the

scene.

We have chosen to perform the rectifying interpolation

in three steps: First, we create an all-zero RGBA image.

Second, we apply the rectification to each pixel in the strip

image. The 3×3 closest grid locations are then updated by

adding vectors of the form (wr, wg,wb, w). Here r, g, b
are the colour channel values of the input pixel, and w
is a variable weight that depends on the grid location y,

according to:

w(y) = exp(−.5(y − x′)2/σ2) . (4)

Here x′ is the sub-pixel location of the pixel, and σ is a

smoothing parameter, which we set to σ = 0.15. Third,

after looping through all pixels, we convert the RGBA

image to RGB, by dividing the RGB values by the fourth

element. The whole operation is quite fast, and its parallel

nature makes it well suited to a GPU implementation. The

number of channels may be changed to correspond to the

correct number of bands.

Alternatively, the irregular grid of pixels can be re-

sampled to a regular grid, by defining a triangular mesh

over the points, and sampling the mesh using bi-cubic

interpolation. This is done by the function griddata

in Matlab. This method gives a good result but is much

slower than the previous proposed method.

Finally, it is also tempting to use regular, or inverse

interpolation. We can now loop over all values of output

pixels, and use inverse mapping to find the pixel locations

in the distorted image, and cubically interpolate these, see
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Fig. 5. Forward and inverse interpolation. Left: In forward interpolation,
we rectify the locations of all pixels to obtain an irregular grid.
Neighbours are now correctly defined by the irregular grid. Right: In
regular interpolation, one uses the inverse mapping to find out where to
sample points. Neighbours are then defined by the regular grid where
the distorted pixels lie.

Fig. 5, right. This is fast but it does not give as good a

result as the previously proposed methods because the

interpolation takes place in the distorted image.

IV. RESULTS

The results presented here are from one of the three

strips acquired during the flight. Fig. 6 shows the result

when the regularisation parameter is set to zero. The

strips are overlapping but it is difficult to make use of

the images. When using α = 60 000 as regularisation

parameter the trajectory is much smoother and the images

look more like the original scene, see figure 7.

Fig. 6. Result for aligning the two strips from the first flight path,
without regularisation of large deviations in rotation.

V. CONCLUSION AND FUTURE WORK

In order to exploit the hyper-spectral imagery for the

mentioned targeted applications, there are additional steps

that need to be taken. Where the strips are overlapping

in figure 8 left, many false change detections are made.

The pixel registration needs to be more exact, which can

be achieved by exploiting navigation data (GPS, INS)

from the aircraft as well as a suitable motion model.

Also additional imagery can be used for registration.

For registration, simultaneously acquired imagery from a

staring sensor with high spatial and low spectral resolution

(for example a consumer digital camera) can be used,

possibly enabling registration exact enough for spectral

change detection.

In general, we got better results the more rotations we

added. The downside was much higher computation time,

and additionally the optimisation had an increasingly

harder time to converge.



Fig. 7. Result for aligning the two strips from the first flight path, with
N = 21, and regularisation parameter α = 60 000.
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