
Scan Rectification for Structured Light Range Sensors with Rolling Shutters

Erik Ringaby and Per-Erik Forssén

Department of Electrical Engineering

Linköping University, Sweden

{ringaby,perfo}@isy.liu.se

Abstract

Structured light range sensors, such as the Microsoft

Kinect, have recently become popular as perception devices

for computer vision and robotic systems. These sensors use

CMOS imaging chips with electronic rolling shutters (ERS).

When using such a sensor on a moving platform, both the

image, and the depth map, will exhibit geometric distor-

tions. We introduce an algorithm that can suppress such

distortions, by rectifying the 3D point clouds from the range

sensor. This is done by first estimating the time continu-

ous 3D camera trajectory, and then transforming the 3D

points to where they would have been, if the camera had

been stationary. To ensure that image and range data are

synchronous, the camera trajectory is computed from KLT

tracks on the structured-light frames, after suppressing the

structured-light pattern. We evaluate our rectification, by

measuring angles between the visible sides of a cube, be-

fore and after rectification. We also measure how much bet-

ter the 3D point clouds can be aligned after rectification.

The obtained improvement is also related to the actual ro-

tational velocity, measured using a MEMS gyroscope.

1. Introduction

Structured light range sensors (SLRS) have recently be-

come popular, e.g. Microsoft Kinect and the Asus WAVI

Xtion. Both these devices are based on a patented reference

implementation by the company Primesense [17]. The in-

tended purpose for these sensors is full body gesture based

human-computer interfaces. As these devices deliver quasi-

dense depth maps at 30 fps (computed using a built-in SoC)

they also have many other applications (see e.g.

http://kinecthacks.net/ for some examples).

We want to make these sensors more useful for dynamic

robot perception. 3D range sensing has proven to be very

useful for autonomous robots, as demonstrated in the 2007

DARPA urban challenge [21]. In this competition, all of

the successful contenders made heavy use of 3D sensing,

both for mapping, and to perceive nearby obstacles. How-

Figure 1. Top row: Depth map, and NIR frame from a Kinect se-

quence acquired during fast motion. Bottom row: Re-projected

depth map, and NIR frame from rectified point cloud. The struc-

tured light pattern in the NIR frames have been suppressed using

the method in section 3.

ever, the high price for time-of-flight and laser-range sen-

sors have this far limited a more widespread use.

SLRS are directly useful for short range obstacle per-

ception (typically up to 3.5m [17]), and they also have the

potential to be useful in simultaneous localisation and map-

ping (SLAM) [12]. Doing SLAM using these devices is

somewhat problematic, as they make use of CMOS cameras

with electronic rolling shutters (ERS). In an ERS camera,

all pixels are not exposed at the same time (as is the case in

a global shutter camera). Instead each row is exposed at a

slightly different time interval, that is characterised by the

sensor readout time [10, 9, 2]. The effect of this is geomet-

ric distortions in the image, when either the camera or the

scene changes during exposure, see figure 1, top row.

Unless rolling shutter distortions are modelled, a SLAM

system using a rolling shutter sensor is limited to slow mo-

tions, or move-stop-look image acquisition cycles (analo-

gous to stop motion animation).

In this paper, we introduce an algorithm that rectifies

1

sensor data affected by rolling shutter distortions. An ex-

ample of sensor data before, and after the proposed rectifi-

cation is shown in figure 1.

1.1. Related Work

Simultaneous Localisation and Mapping (SLAM) is the

on-line equivalent of the Structure from Motion problem

[11]. SLAM has been extensively studied over the years,

and a good introduction is given in [7]. We do not study the

full SLAM problem, instead the algorithm presented in this

paper is a pre-processing step that makes the output from

SLRS systems useful in a SLAM framework under more

general motions.

An alternative to our proposed correction is to use con-

ventional global-shutter sensors, as has been explored by

others. Se and Jasiobedzki built a structured light stereo

system using a global shutter stereo camera [18]. In order

to allow dense correspondences from stereo in untextured

environments, a random dot structured light pattern (SLP)

is projected onto the scene in every second frame. Frames

without the SLP are used to acquire textures for the 3D

meshes, and to compute SIFT feature correspondences that

are used to align the 3D meshes over longer pose changes.

For SLRS systems with rolling shutters, we have only

found one attempt at SLAM. Henry et al. [12] have used

the Primesense reference platform [17] to do 3D mapping.

3D point clouds are aligned in two steps, first a rigid body

transformation between two scans is estimated using visual

features. This is then refined using a fusion of visual fea-

ture alignment, and range scan alignment from the Iterative

Closest Point algorithm (ICP) [23]. This solution appears

to be effective as loop-closing is used to correct for drifts,

but as mentioned on the author’s YouTube channel (RGB-

Dvision) it can fail “in the hands of a non technical user”,

and a requirement is that care is taken to avoid fast camera

motions.

There has also been work on rectification of sweeps from

moving laser range sensors, where the sensor is rotating [5],

or nodding [8]. These are related as they also deal with rec-

tification of 3D point clouds. In [8] planes are found in

the scene, and then 3D rotations are optimised for to make

the planes as flat as possible. In [5] ICP between neigh-

bouring scans is used, augmented with local scene structure

constraints. The sought trajectory is first gridded, and then

interpolated with a cubic spline.

Ait-Aider et al. [1] and Klein et al. [13] solve the

perspective-n-point problem (PnP) [11] under linear motion

across a rolling shutter frame. This is somewhat similar

to our problem, but note that we have distorted 3D to 3D

correspondences, whereas [1, 13] deal with 2D to 3D corre-

spondences, where the 3D points are assumed undistorted.

Another related line of work is rectification of rolling

shutter video. This problem has been studied, and solved to

some extent [9, 2]. What is different here is that in SLRS

systems we also have access to depth values in most pixels,

and these allow us to robustly solve for the full 3D cam-

era trajectory, instead of resorting to affine motion [2], or

rotation only models [9].

Our rolling shutter model is similar to [9], but instead

of assuming a pure rotational motion, or that the scene is

purely planar, we model both the camera rotation and trans-

lation in an arbitrary static scene. This is possible since we

have the depth values for most pixels in the image, and can

formulate a cost function on the 3D point correspondences.

1.2. Contributions

We introduce a scheme for scan-matching on SLRS with

rolling shutters (e.g. the Microsoft Kinect and the Asus

Wavi Xtion), under more general camera motions.

• We describe a simple and efficient technique to remove

the structured light pattern from the NIR images. This

allows us to use feature tracking in the NIR images.

• We describe how to automatically tune the parameters

of the structured light filter, to maximise the perfor-

mance of the feature tracking step.

• We provide estimates of the readout times for both the

NIR and the colour cameras on the Kinect. These

should be useful for any researcher that wants to use

the Kinect under a rolling shutter model.

• We derive models of rolling shutter correction of struc-

tured light range scans, and verify their effectiveness

on real data.

• We demonstrate the effectiveness of our approach us-

ing experiments on real data.

1.3. Example Calculation

A reasonable question to ask is when the rolling shutter

problem matters. To answer this, we give an example calcu-

lation for a panning Kinect NIR sensor below (the calcula-

tion for tilt is similar, but translations are more complicated

characterise, as the distortion now depends on the distance

to scene objects). For a pin-hole camera, the sensor width

w in pixels, the horizontal field of view hFoV, and the focal

length f are related according to [11]:

w/(2f) = tan(hFoV/2) . (1)

Assume that we can tolerate a pixel distortion of 5 pixels

between the top and the bottom of the frame. For hFoV =
58◦ and w = 640 [17] we get the focal length f = 577.3
pixels. If we now set w = 5, and solve for hFoV we get

the rotation corresponding to a 5 pixel skew at the image

centre (this is an underestimate, as pixels in the periphery

span smaller angles). The result is θ = 0.496◦. By dividing

this by the readout time r = 30.55 msec for the Kinect

NIR camera (see section 5), we get the angular velocity,

ω = θ/r = 16.2◦/sec.

That is, if we want to bound the geometric distortion to

5 pixels, we need to constrain the camera pan to always be

below 16.2◦/sec (At this speed a full 360◦ pan lasts 22.2
seconds). For tilt we instead get a 14.2◦/sec bound.

1.4. Overview

This paper is organised as follows: Section 2 briefly de-

scribes our approach to solve the range scan rectification

problem. In section 3 we introduce a filter that suppresses

the structured light pattern, and demonstrate how to tune

the filter for maximal feature tracking performance. In sec-

tion 4 we introduce the motion model and cost functions for

camera ego-motion estimation, and methods for rectifica-

tion of point clouds, depth maps and video frames. Section

5 describes how the sensor calibration was performed. In

section 6 we evaluate our algorithm by measuring angles

between the visible sides of a cube, and by comparing the

closest point distances in the rectified point clouds to the

unrectified point clouds. The paper concludes with outlooks

and concluding remarks in section 7.

2. Our Approach

As both the NIR structured light camera and the RGB

camera have rolling shutters, and their readout times are

different in general, the correspondence problem is prob-

lematic under camera motion. (Corresponding pixels in the

NIR and RGB images are in general acquired at slightly dif-

ferent times, as the acquisition time depends on the image

row.) We use only the NIR camera here, as this ensures

temporal correspondence between depth and intensity val-

ues. We have also noticed that indoors, the NIR camera uses

shorter shutter speeds than the RGB camera, resulting in

less motion blur. Using the NIR camera images does how-

ever require that we can somehow suppress the influence of

the structured light pattern present in the NIR images. Our

full approach consists of the following steps:

1. We suppress the structured light pattern in the NIR im-

ages, and use feature tracking to find correspondences

between frames.

2. We solve the ego-motion estimation problem by opti-

mising over the continuous NIR camera trajectory to

minimise the alignment errors in the 3D model.

3. We rectify the 3D model using the estimated motion,

and rectify both the filtered NIR images, and the depth

map, by projecting the rectified point cloud through the

camera again.

3. Removing the Structured Light Pattern

The structured light pattern consists of small circular

disks of uniform illumination (see figure 2, left). We have

noticed that the scene in-between these illuminated dots is

also illuminated, by a weak ambient light. In order to track

regions in the NIR images, we thus remove the structured

light pattern, and use interpolation to fill in the gaps. We

detect the structured light pattern peaks using normalised

difference of Gaussian filtering of the NIR image f(x):

s(x) =
(f ∗ (gσ1

− gσ2
))(x)

(f ∗ gσ2
)(x)

. (2)

Here gσ1
and gσ2

are two Gaussian kernels, with σ1 < σ2,

and ’∗’ is the convolution operator. Note that since the

Gaussian kernel is separable, and f can be factored in, the

whole operation consists only of four 1D convolutions, and

some point-wise operations.

The numerator in (2) serves as a pattern-detector, while

the denominator is a local magnitude normalisation. The

normalisation is useful because the structured light pattern

varies substantially in magnitude across a scene.

In order to remove the structured light pattern, we make

use of a technique called normalized averaging [16, 14].

This requires that we first convert the pattern function to a

confidence map c ∈ [0, 1]:

c(x) = max(0, min(1, s(x) · w)) , (3)

where w is a parameter that controls the scaling of the in-

put. Using the confidence signal, we can now remove the

structured light pattern using the quotient of two additional

convolutions:

f̂(x) =
(f · c ∗ gσ3

)(x)

(c ∗ gσ3
)(x)

, (4)

where the σ3 parameter controls the amount of blurring in

the output image. The result of this operation is shown in

figure 2, right. Note that the input image has also been

gamma corrected by taking the square root of image inten-

sities in the range f ∈ [0, 1].

Figure 2. Removal of structured-light pattern in NIR image. Left:

input image (gamma corrected) Right: result of pattern removal.

3.1. Parameter Tuning

We tune the parameters for the SLP filter to give the best

performance for the pyramid KLT tracker [6] in OpenCV.

We do this by first selecting five pairs of images in a se-

quence where the camera was rotating sideways. We then

run the SLP filter with a particular parameter setting. Next

we detect interest points using the good features to track

measure [19], and run the KLT tracker on these points. To

remove bad tracks, we also apply the a crosschecking rejec-

tion with a threshold of 0.5 pixels [9, 3]. After this we have

a set of correspondences: {xk ↔ yk}
K
1 , where xk are in-

terest points, and yk are the corresponding locations found

by KLT. As we know that the camera was panning, we then

separate the correspondences into two categories:

G = {xk ↔ yk : xk,1 − yk,1 ≤ −5, |xk,2 − yk,2| ≤ 10}

B = {xk ↔ yk : k ∈ [1, K]}/G (5)

where the thresholds for G membership were found by man-

ual inspection. We can now define a score function as

J(σ1, σ2, w, σ3) = |G|/(|G| + |B|) . (6)

That is, we want to maximise the fraction of correct corre-

spondences.

The simple form of a box constraint in (5) has been cho-

sen as this test needs to be performed in the centre of an

optimisation loop. In practise we have found it to be quite

effective at finding good filter parameters. Note also in par-

ticular that we can not use e.g. a fundamental matrix, or ho-

mography constraint [11] for outlier rejection here, as the

camera motion causes each image row in a rolling shutter

camera to move in a different way.

We have used coordinate-wise optimisation, with alter-

nating exhaustive search in a fixed grid along each coordi-

nate. This is a simple and reasonably efficient way to find

useful parameters, it is also straight-forward to implement.

Note however that there is no guarantee that the global min-

imum is found, and that more sophisticated approaches ex-

ist. Note also that e.g. gradient descent, and Newton style

methods are not suitable, as the score function (6) is not

continuous. The parameters we found are listed in table 1.

As 5 × 5 blocks gave the highest score, we have used this

setting throughout the paper.

4. Geometry Estimation and Rectification

Since the sensor has a rolling shutter, the reconstructed

3D scene will have geometric distortions if the sensor is

moving during a frame capture. To compensate for this

we need to model the camera motion and rectify the 3D

points accordingly. In contrast to previous work that as-

sumed affine [2], or purely rotational models [9], we model

both the camera rotation and translation in an arbitrary static

block size σ1 σ2 w σ3 J
13 × 13 0.35 1.0 4.5 3.5 0.8909

11 × 11 0.475 1.0 4.5 3.4 0.8959

9 × 9 0.575 2.4 5.0 3.4 0.8991

7 × 7 0.375 2.1 5.0 3.4 0.8989

5 × 5 0.575 2.3 9.0 3.4 0.9026

3 × 3 0.575 2.4 9.0 3.4 0.8887

Table 1. Parameters at maximal scores found for different KLT

block sizes.

scene. This is possible since we have the depth values for

most pixels in the image, and can formulate a cost function

on the 3D point correspondences.

4.1. Preprocessing of Points

When the NIR images have been filtered from the

structured-light pattern these can be used, together with the

depth images, to compute each pixel’s 3D point. The same

method as described in section 3.1 is used to find point

correspondences between consecutive frames. The interest

point detector finds points at corners, which could represent

a depth discontinuity. Since the KLT-tracker has sub-pixel

accuracy, the values in the depth image must be interpo-

lated in a small neighbourhood. Values on different sides of

the discontinuity may differ a lot, and interpolation must in

such cases be avoided. We create a validity mask to select

which KLT tracks are good. For this, an edge detector is

used on each depth image to detect the discontinuities. The

thresholded edge map is then expanded by 4 pixels to create

the validity mask.

The Kinect’s depth map is quite noisy, and this can con-

siderably affect a point’s 3D position. In addition to the pos-

sibly incorrect z value, the depth values are also multiplied

with a point’s x and y coordinates after projection through

the camera matrix, which gives larger distances between

3D point correspondences, even though image point cor-

respondences in consecutive frames are close. To remove

these outliers, point correspondences are fed into a rigid

motion estimation RANSAC loop [11]. In each sample, the

camera’s per frame rotation and translation is estimated us-

ing the orthogonal Procrustes method, see e.g. [22]. Even

though the 3D point clouds exhibit geometric distortions

due to the rolling shutter (which violates the rigid motion

model), outliers can still be rejected, by using a high inlier

threshold.

4.2. Camera Motion Model

A 3D point in the scene, X, and its projections, x (homo-

geneous), in the NIR and depth images, have the following

relationship in the camera’s coordinate system:

x = KX , and X = z(x)K−1x , (7)

where K is a 5DOF upper triangular 3× 3 intrinsic camera

matrix, and z(x) is the point’s value in the depth image.

We model the camera motion as a sequence of rotation

matrices R(t) ∈ SO(3) and translation vectors d(t) ∈ R
3.

We use the image row N , as time parameter starting at the

top row. By calibrating the camera’s readout time tr (see

section 5), the inter-frame delay td can be calculated and

expressed as number of blank rows Nb [9]:

Nb = Nrtd/(1/f) = Nr(1 − trf) , (8)

where f is the frame rate. For an image pair, this gives us the

time parameter N1 = x2/x3 for a homogeneous point in the

first image and N2 = x2/x3 +Nr +Nb for a homogeneous

point in the second image, where Nb is the number of image

rows.

4.3. 3D Motion from Image and Range Video

Since the camera is moving during frame capture, corre-

sponding points in the images will reconstruct different 3D

points. Assuming that the 3D points are static, this differ-

ence is used to find the camera motion. Assuming a point

in the first image is at row N1, and its corresponding point

in the second image is at row N2, their reconstructed 3D

points can be written as X1 and X2 for frame 1 and 2, and

calculated using the image coordinates and the depth map

according to (7). These points can be transformed to the po-

sition X0, where the reconstructed point should have been,

if it was imaged at the same time as the first row in the first

image:

X0 = R(N1)X1 + d(N1) (9)

X0 = R(N2)X2 + d(N2). (10)

The cost function to minimise is thus:

J =
K∑

k=1

||R(N1,k)X1,k + d(N1,k)−

R(N2,k)X2,k − d(N2,k)||2, (11)

where K is the number of point correspondences.

In the experiments we have minimised (11) using the

Matlab solver lsqnonlin with the trust-region reflective

algorithm.

We represent each rotation with a three element axis-

angle-vector and each 3D translation by another three ele-

ment vector. This results in 12 unknowns for each point cor-

respondence, which only gives us three equations. In order

to solve this, we parametrise rotations and translations with

two interpolating splines, using SLERP (Spherical Linear

intERPolation) [20] for the rotations and linear interpola-

tion for the translations. Since we fixate the origin at the

beginning of a spline, the parameters for this knot do not

need to be estimated. The number of spline knots during a

frame interval can be chosen depending on how fast the mo-

tion is changing and how many correspondences we have.

With L number of knots in one of the splines, and M knots

in the other, we have 3(L + M − 2) unknowns to solve for.

4.4. 3D Motion using Known Model

If the 3D structure of the scene is known beforehand,

point correspondences (e.g. from SIFT [15]) between the

model and the rolling shutter video can be used to find the

camera motion. Given 3D point correspondences

Xm,k ↔ X1,k we optimise:

J =
K∑

k=1

||Xm,k − R(N1,k)X1,k − d(N1,k)||2, (12)

where Xm is a point in the 3D model and X1 a point in

the point cloud calculated from the Kinect data. Since the

position of Xm is known, we now only have 6 unknowns

for each point correspondence. We parametrise the rota-

tions and translations with interpolating splines as before,

but now we also have to estimate the rotation and transla-

tion for the first knot.

4.5. Rectification

When the camera motion has been estimated, the point

clouds can be geometrically rectified to better represent the

correct 3D scene. This can be done either per point, if a

sparse number of points is to be rectified, or row-wise, in

the dense reconstruction case, since all the pixels within a

row share the same transformation. A distorted 3D point

Xx can be transformed to the rectified position X′ by:

X′ = Rref(R(N1)X1 + d(N1)) + dref, (13)

where Rref and dref describe a global transformation to a

reference coordinate system. By choosing Rref = I and

dref = [0 0 0]T , the point cloud will be transformed to the

position the camera had at the first knot in each spline.

Once a 3D point cloud has been rectified, the corre-

sponding depth map and video frame can also be rectified.

By projecting the 3D points through the camera matrix, and

saving the rectified image coordinates in a new image grid,

at the same position as the original points, a forward map-

ping is created. This is a combination of (7) and (13):

x′ = K[Rref(R(N1)X1 + d(N1)) + dref]. (14)

The mapping tells us how each pixel (where depth informa-

tion is available) in the depth map or video frame should

be moved to its rectified position x′. Note that since the 3D

points are re-projected into the camera, even the noisy depth

values can be used here as most of the noise will be removed

by the projection. Figure 1 shows an example of a Kinect

NIR frame and depth map acquired during fast motion, and

the re-projected results from our rectified point cloud.

oscillation readout time oscillation readout time

(Hz) (msec) (Hz) (msec)

58 25.7069 57 30.7018

65 26.8769 66 30.4848

87 26.2414 87 30.5977

93 25.914 92 30.5217

115 25.8957 117 30.4957

124 26.0323 122 30.4918

µ = 26.11 µ = 30.549
σest = 0.17 σest = 0.0350

Table 2. Measured readout times, mean estimate (µ), and std of

estimate (σest). Left: colour camera, Right: NIR camera.

5. Readout Time Calibration

We have calibrated the rolling shutter readout times for

the colour camera (not used in this paper) and the NIR cam-

era in the Kinect, using the method and implementation de-

scribed in [9]. This involves imaging an LED that flashes

with a known frequency, and measuring the width of the

resultant stripes in the image. We have used a DSO Nano

pocket oscilloscope to generate the square waves that power

the LEDs. For the colour camera, we used a plain red LED,

and for the NIR camera, we used an Osram SFH 485-2 IR-

LED, with 880nm wavelength. For each camera we used

six probing frequencies, and thus obtained six readout val-

ues. The obtained values are listed in table 2, together with

their means and standard deviations.

For the NIR camera, we also noticed a slight drift in the

frame delivery. When imaging the IR-LED when flashing at

60 Hz, one should obtain a fixed pattern of horizontal stripes

if the camera has a 30 Hz frame-rate. By measuring the

slope of these stripes over time we found a correction factor

for the frame-rate. Assuming that the frequency delivered

by the DSO Nano is correct, the actual frame-rate of the

NIR camera is 29.9688 Hz. For the colour camera no such

drift was observed.

6. Experiments

We evaluate our algorithm by by measuring angles be-

tween the visible sides of a cube, before and after rectifica-

tion. We also compare the closest point distances in the rec-

tified point clouds to the unrectified point clouds. In order

to relate the alignment accuracy to rotational velocities, we

have computed the sensor rotational velocity using an iPod

Touch4 device. Even though rolling shutter artifacts can

arise from a fast translation of the sensor (moving platform,

such as a car) the dominant cause is usually due to rotation.

Our method estimates both translation and rotation, but the

sensor has only been rotated in the experiments.

6.1. Ground Truth Rotational Velocities

We have generated several series of panning motions, at

various rotational velocities, by rotating the Kinect while

mounted on a tripod. During capture of the Kinect data,

we also logged actual rotational velocities using an iPod

Touch4. The gyro in the iPodTouch4 is surprisingly accu-

rate (we have estimated the standard deviation to be less

than 0.7 degrees/second). Synchronization between the de-

vices is obtained by tapping the Kinect, and setting time-

shifts to the time where the distortion occurs in each data

stream. The setup, and an example gyro log are shown in

figure 3.

0 10 20 30 40 50 60 70
−375

−250

−125

0

125

250

375

da(t)/dt

a(t)

Figure 3. Setup for rotation ground-truth measurement. Left: A

Kinect mounted on a tripod, together with an rigidly duct-taped

iPod Touch4, with built-in gyro, which are used to estimate ro-

tations. Right: Example of measured rotational velocity in de-

grees/second (BLUE), and integrated position in degrees (RED).

6.2. Angle estimation from known object

We evaluate our method by comparing the angles be-

tween the visible sides of a wooden box, before and after

rectification. The three sides of the box are manually seg-

mented in each evaluated frame. Ground-truth angles are

obtained by imaging the box when the sensor was station-

ary, see figure 4. We estimate the plane angles, by first find-

ing the cube normals using RANSAC, with an inlier thresh-

old of 0.01. We then compute the angle between two nor-

mals using the formula

Θk,l = sin−1(‖n̂k × n̂l‖) , (15)

where n̂k and n̂l are normal vectors for the two planes.

Figure 4. Left: Depth frame from a static sensor. Right: Manually

marked planes on frame captured during sensor rotation.

In figure 5 we plot the estimated angles between the box

sides before and after rectification. As can be seen, the an-

0 50 100 150 200
85

86

87

88

89

90

91

1 − 2

1 − 3

2 − 3

0 50 100 150 200
85

86

87

88

89

90

91

1 − 2

1 − 3

2 − 3

Figure 5. Angles between box sides, as function of rotational ve-

locity. Each colour corresponds to a particular pair of planes, and

the horizontal dashed lines show the ground-truth. Top: Box an-

gles before rectification. Bottom: Box angles after rectification.

The corresponding plane numbers are given in figure 4.

Figure 6. Top row: Unrectified and rectified point clouds at rota-

tional velocity 172.9◦/sec. Bottom row: Re-projected depth maps

gles after rectification are closer to the ground-truth, espe-

cially the angles that include the top plane (plane 2).

For high rotational velocities (to the right in figure 5),

the motion blur is severe, and the plane normals are diffi-

cult to estimate accurately. The depth data appears to be

less noisy on the top side, which may be the reason why an-

gles that include this side are more accurate. At velocities

above about 115◦/sec, depth maps are simply too noisy to be

useful. However, the rectified point clouds and depth maps

at high velocities still look less geometrically distorted than

the originals. See figure 6 for a rectification at a rotational

velocity of 172.9◦/sec.

0 50 100 150
0

0.01

0.02

0.03

0.04

Unrectified

Rectified

Figure 7. Point cloud alignment at 233.0◦/sec relative rotation.

Top left: ICP alignment of unrectified point clouds. Top right:

ICP alignment of rectified point clouds. Bottom: p(d) for the two

alignments.

6.3. ICP Alignment

Another way to evaluate the point cloud rectifications, is

to check how well two rectified point clouds can be aligned,

compared to the corresponding unrectified point clouds. As

evaluation measure we use the distribution of closest point

distances after alignment. For two point clouds, we first

find the best alignment using the iterative closest point algo-

rithm (ICP) [23]. We then transform one of them using the

found transformation, yielding aligned point clouds {X}M
1 ,

and {Y}N
1 . Using these, we now compute closest point dis-

tances for all points in the first set to the second one:

dm = d(Xm, {Y}N
1) = min

n∈[1,N]
||Xm − Yn|| . (16)

For these distances, we then compute a kernel density esti-

mate (KDE) [4], to obtain a probability density curve p(d).
Figure 7 shows an example of aligned point clouds, with-

out rectification, and with rectification applied. The corre-

sponding KDE plots are given below. Each two pairs of

point clouds have been generated from two images, approx-

imately imaging the same part of the scene, but with differ-

ent motions. For one of the point clouds in a pair, the sensor

was panning left, and for the other one it was panning right.

The images have been down-sampled 8 times in each di-

mension to speed up the ICP calculations. This corresponds

to approximately 4800 points per image depending on how

much depth data is available.

7. Concluding Remarks

We have introduced an algorithm that suppresses rolling

shutter distortions caused by device motion and describe

∆rotation µd(unrectified) µd(rectified) ∆µd

71.5◦ 24.0907 21.1574 2.9333

134.3◦ 26.1565 20.602 5.5545

156.8◦ 25.7794 20.1405 5.6389

233.0◦ 26.4491 18.994 7.4551

Table 3. Average improvements of alignment errors for various

relative rotational speeds. µd values are sample means (i.e. the

centre-of-gravities for the corresponding KDE curves).

how to rectify the 3D point clouds. We also show how the

point clouds can be used for rectification of the correspond-

ing depth maps and video frames.

Only one previous attempt to use SLRS with rolling

shutters during device motion has been made [12], and it

required slow motion of the device. We have demonstrated

that our method improves the geometric consistency of the

3D scene by comparing the closest point distances between

rectified point clouds with min distances for unrectified

ones. We have also shown that our rectification can restore

planar surfaces under rotational velocities up to 115◦/sec.

At higher velocities the depth maps from the structured light

sensor are too noisy to be useful.

A strength and a weakness with the proposed method

is that it relies on feature correspondences. While feature

correspondences help avoiding the local minima that ICP

is sensitive to, fast motions will cause motion blur, which

removes many correspondences. Furthermore, if a scene

without structure is imaged (e.g. a white wall) no correspon-

dences can be found. For better robustness, more sources of

information are needed. For example, one could also use

range data features to find correspondences. Another inter-

esting line of future work would be to add a gyroscopic sen-

sor to the structured light device. The proposed rectification

scheme could then instead be fed with device motion esti-

mated from the inertial sensors. Such an approach would

also work for scenes with neither texture nor 3D structure.

We have found that it is important to have good points

as input to the optimisation. This is because with too much

noise in the data, the algorithm may not converge. However,

in such cases the result is still better than using the Pro-

crustes method or ICP on the unrectified data. We currently

use three rejection steps (cross-checking, validity mask, and

RANSAC), and in the future we would like to improve and

simplify this process. It would also be interesting to feed the

estimated camera trajectory as a starting guess to a SLAM,

or a bundle adjustment system.

References

[1] O. Ait-Aider, N. Andreff, J. M. Lavest, and P. Martinet. Si-

multaneous object pose and velocity computation using a

single view from a rolling shutter camera. In Proceedings

of ECCV’06, pages 56–68, Graz, Austria, May 2006. 2

[2] S. Baker, E. Bennett, S. B. Kang, and R. Szeliski. Removing

rolling shutter wobble. In CVPR10, San Francisco, USA,

June 2010. IEEE Computer Society, IEEE. 1, 2, 4

[3] S. Baker, D. Scharstein, J. P. Lewis, S. Roth, M. J. Black,

and R. Szeliski. A database and evaluation methodology for

optical flow. In ICCV07, Rio de Janeiro, Brazil, 2007. 4

[4] C. M. Bishop. Neural Networks for Pattern Recognition. OU

Press, 1995. 7

[5] M. Bosse and R. Zlot. Continuous 3d scan-matching with a

spinning 2d laser. In ICRA09, Kobe, Japan, May 2009. 2

[6] J.-Y. Bouguet. Pyramidal implementation of the Lucas

Kanade feature tracker. Technical report, Intel Corporation.,

2000. 4

[7] H. Durrant-Whyte and T. Bailey. Simultaneous localization

and mapping: Tutorial part I. Robotics and Automation Mag-

azine, 13(2):99–110, 2006. 2

[8] J. Elseberg, D. Borrmann, K. Lingemann, and A. Nüchter.

Non-rigid registration and rectification of 3d laser scans. In

IROS10, Taipei, Taiwan, October 2010. 2

[9] P.-E. Forssén and E. Ringaby. Rectifying rolling shutter

video from hand-held devices. In CVPR10, San Francisco,

USA, June 2010. IEEE Computer Society. 1, 2, 4, 5, 6

[10] C. Geyer, M. Meingast, and S. Sastry. Geometric models of

rolling-shutter cameras. In 6th OmniVis WS, 2005. 1

[11] R. Hartley and A. Zisserman. Multiple View Geometry in

Computer Vision. Cambridge University Press, 2000. 2, 4

[12] P. Henry, M. Krainin, E. Herbst, X. Ren, and D. Fox. RGB-

D mapping: Using depth cameras for dense 3D modeling of

indoor environments. In ISER, December 2010. 1, 2, 8

[13] G. Klein and D. Murray. Parallel tracking and mapping on a

camera phone. In (ISMAR’09), Orlando, October 2009. 2

[14] H. Knutsson and C.-F. Westin. Normalized and differential

convolution: Methods for interpolation and filtering of in-

complete and uncertain data. In CVPR93, pages 515–523,

New York City, USA, 1993. 3

[15] D. G. Lowe. Distinctive image features from scale-invariant

keypoints. IJCV, 60(2):91–110, 2004. 5

[16] T. Q. Pham and L. J. van Vliet. Normalized averaging using

adaptive applicability functions with applications in image

reconstruction from sparsely and randomly sampled data. In

SCIA03, pages 485–492, 2003. 3

[17] Primesense reference platform

http://www.primesense.com/files/FMF_2.PDF. 1, 2

[18] S. Se and P. Jasiobedzki. Photo-realistic 3D model recon-

struction. In ICRA06, Orlando, Florida, May 2006. 2

[19] J. Shi and C. Tomasi. Good features to track. In CVPR94,

Seattle, June 1994. 4

[20] K. Shoemake. Animating rotation with quaternion curves. In

Int. Conf. on CGIT, pages 245–254, 1985. 5

[21] Various. Special issues on the 2007 DARPA urban challenge,

parts I- III. In M. Buehler, K. Iagnemma, and S. Singh, edi-

tors, JFR, volume 25. Wiley Blackwell, August 2008. 1

[22] T. Viklands. Algorithms for the Weighted Orthogonal Pro-

crustes Problem and Other Least Squares Problems. PhD

thesis, Umeå University, 2006. 4

[23] Z. Zhang. Iterative point matching for registration of free-

form curves and surfaces. IJCV, 13(2), 1994. 2, 7

