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Abstract

We investigate spline-based continuous-time pose tra-
jectory estimation using non-linear explicit motion priors.
Current regularization priors either linearize the orienta-
tion, rely on the implicit regularization obtained from the
used spline basis function, or use sampling based regular-
ization schemes. The latter is a special case of a Riemann
sum approximation, and we demonstrate when and why this
can fail, and propose a way to avoid these issues. In addi-
tion we provide a number of novel practically useful theo-
retical contributions, including requirements on knot spac-
ing for orientation splines, new basis functions for constant
velocity extrapolation, and a generalization of the popular
P-Spline penalty to orientation. We analyze the properties
of the proposed approach using synthetic data. We validate
our system using the standard task of visual-inertial cali-
bration, and apply it to stereo visual odometry where we
demonstrate real-time performance on KITTI.

1. Introduction
State estimation problems in computer vision are usually

modeled by estimating the sensor pose only at a discrete set
of times (for example, one per camera frame). This works
well for data which is itself discretely sampled e.g. global
shutter camera images in reconstruction from collections of
images [1, 34] and low framerate video [31]. Many sen-
sors provide data more akin to a continuous stream than
discrete samples, e.g. high framerate video, rolling shutter
images, spinning lidars, event cameras, and inertial sensors.
These are better represented by continuous-time pose trajec-
tories [12]. Such pose splines allow the convenient incorpo-
ration of derivative measurements, such as from an inertial
measurement unit (IMU), as predictions of the analytic tra-
jectory derivatives. High frame-rate video Visual Odometry
(VO) illustrates another advantage. Standard discrete bun-
dle adjustment approaches scale cubically with the number
of frames, and as a result, often necessitate key framing i.e.
tossing information. Continuous pose trajectories with lo-
cal control instead scale cubically with the number of knots,
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which can be much lower than the frame rate [21].
Basis splines are a natural fit for continuous-time poses,

and were introduced for this purpose by Furgale et al. [12].
They have since been refined by many follow-up papers
e.g. [24, 14, 4, 28, 23, 25, 26, 37]. While the continuous-
time approach provides clear benefits over the discrete-time
approach, it has not yet been widely adopted by the com-
puter vision community, outside niche topics such as rolling
shutter structure from motion, and lidar fusion.

In the pose spline formulation, motion models are incor-
porated as a prior term in the cost, and need thus not be
linearized. We argue that they should instead approximated
using a Riemann sum, and propose a lower bound for the
sampling rate (i.e. the inverse sub-interval width) based on
observability, and frequency analysis.

We provide several practical improvements to the theo-
retical framework of pose trajectory estimation:
1) We generalize the unit quaternion spline (KKS) by Kim,
Kim and Shin [20], by extending it to infinity using constant
angular velocity. We do this by modifying the basis func-
tions at the beginning and end in such a way that the spline
locality and continuity is maintained.
2) We provide a simpler way to derive and compute inte-
grals of spline derivative product functions.
3) We provide an upper bound on the angular velocity ω(t),
for the KKS spline, which in turn has important implica-
tions for the sampling and knot distance selection.

These contributions, together with the provided opti-
mization framework code [29] should make it easier to use
pose splines for various applications in geometric vision
and robotics.

2. Related Work

Here we describe related work on continuous-time tra-
jectories, and on regularization strategies for pose splines.

An excellent overview of continuous-time pose trajecto-
ries is given in Furgale et al. [14]. The methods discussed
by Furgale mostly fall into two categories: They are either
KKS splines [20], or equivalent to a straightforward ap-
proximation, such as a linearization of a KKS spline. For
instance, the popular SLERP construction [36] on pairs of
consecutive control points corresponds to a first order KKS
spline, and splines over non-quaternion rotation representa-



tions are either equivalent to, or linearizations of the KKS
spline. Many of the more recent papers also use the KKS
construct [28, 23, 25, 26, 37].

The extension of classic Bayesian discrete filtering ap-
proaches to continuous states i.e. Gaussian Processes (GP)
by Barfoot et al. [5] and especially pose trajectory GP
frameworks [2, 9] are relevant if the full posterior and not
just a point estimate is needed. These frameworks are sim-
ilar to a zeroth or first degree version of [14] using Gaus-
sian observer functions. In principle GPs are a powerful ap-
proach, but in practice, the price is high. In order to achieve
feasible computation, the GP pose frameworks linearize the
rotation, and since they lose local control, short optimiza-
tion windows are generally used. This work instead focuses
on point estimates using KKS pose splines with local con-
trol, and on-manifold rotation representation.

The range of motions a spline can express is constrained
by the choice of basis functions, their degree and the
knot spacing. This has previously been used as a regu-
larizer although it might not be explicitly stated as such
[20, 19, 23, 6]. Bibby et al. [6] discuss the connection be-
tween spline parameters and the constraints on dynamics.
Anderson et al. [3], and Ovrén et al. [25], investigated how
to select a knot spacing so as to ensure the spline could rep-
resent the necessary motions. Oth et al. [24] instead use a
variable knot spacing. They find the spacings by succes-
sively inserting control points during optimization at any
interval where residuals are not normally distributed, or
moving knots further apart until the predicted observation
error variances match the measurement model. Such non-
causal methods work well in batch, e.g. for offline calibra-
tion [13, 24], but are ill-suited to causal prediction or real
time applications.

Incorporation of inertial measurements reduces the need
for explicit regularization, and they are thus sometimes also
referred to as regularizing measurements [27, 25]. Depend-
ing on what other type of measurements are available, there
is however a risk of overfitting to one modality. In [25] this
problem is addressed by adaptively weighting the inertial
measurements based on the motion energy present in the
inertial data, and the chosen spline knot spacing.

A common form of trajectory regularization is a cost
term derived from a motion model. Motion models usually
result in cost terms of integral type, e.g. a constant angu-
lar velocity ω(t) model with Gaussian process noise results

in the cost term
∫
R
∂ω(t)
∂t

2
dt. However, the non-linear na-

ture of rotation means that in all but the simplest cases these
cannot be used to formulate analytic maximum aposteriori
(MAP) estimation problems without approximation.

One approach is to approximate the model formulation.
Furgale et al. [14] use an R6 spline state to represent the
pose trajectory. The state is regularized by the integral of the
second derivative of the spline. With regards to the trans-

lation, this has an intuitive interpretation; it penalizes the
linear acceleration. However, with regards to the rotation it
does not, as the angular acceleration is a non-linear function
of the parameters. This approach also linearizes expressions
involving the rotation. This requires that both true orienta-
tion, and estimate at every iteration, must lie within a small
region. In the discrete case, the linearization is typically re-
centered as needed, but doing so in the continuous case is
not possible without losing either continuity or linearity.

Cost terms of integral form can also be approximated by
sampling the integrand [28, 21, 18, 4]. In [28, 21] a single
sample per knot is used, whereas [39] uses one sample per
observation. The former are Riemann approximations, and
the latter could be made into such by weighting according
to sampling frequency. The Riemann approximation is well
known, but there are critical differences between approxi-
mating an integral to estimate the value, and approximating
a cost term, as will be discussed in Section 5.5. Furgale
and Anderson [14, 4] observe issues caused by the state be-
coming unobservable as knot distance decreases, and note
the need to lower knot distances to account for high fre-
quency dynamics. This class of methods along with sev-
eral other approaches [28, 21, 39, 18] would have these is-
sues as well. However, their experiments do not show this
due to the use of relatively dense measurements, though e.g.
Huang et al. [18] do note that they were unable to represent
a high frequency signal in one experiment. In this work we
establish a lower bound for the sampling rate, which is no-
tably above the one/knot used by [28, 21], and show how it
is related to the minimum degree and maximum knot dis-
tances given signal properties.

Huang et al. [18] consider different ways to regularize
trajectories using a forward-only vehicle model and investi-
gate the alternatives with regards to noise sensitivity. Their
variant SSBARv is an orientation spline estimated from vi-
sual measurements where the regularization is applied as an
L2 penalty on the deviation from forward velocity at the
frames. The open issues with the SSBARv method, i.e. the
uneven weighting over time, what the weight should be, and
the knot distance required for an orientation spline to ex-
press a given frequency, are answered by this work.

3. Basis Splines

Here we briefly introduce basis splines and give a few
novel and/or practical extensions. For a comprehensive in-
troduction to basis splines and quaternion splines in gen-
eral, see [38, 8, 20]. We use the ∆ operator, which is de-
fined by ∆ai = ai − ai−1 and ∆nai = ∆n−1(∆ai) for
ai ∈ RN . We use dots to denote time derivatives, e.g. ä(t)

is ∂2a(t)
∂t2 . We will describe uniform splines with knot dis-

tance ∆ti = 1, as the generalizations are trivial, but ver-
bose. Further we choose the knots ti as i, for i ∈ Z. Now
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Figure 1. Backwards extrapolation from (6) (orange) and (7) (blue)
for n = 2. Black dots are control points, (i + (n + 1)/2, ai).

our uniform RN B-splines of degree n, with control points
ai are defined as in e.g. [38]:

sn(t) =
∑
i

aibn(t− i) (1)

where bn(t) is defined according to:

b0(t) =

{
1 if t ∈ [0, 1)

0 elsewhere.
(2)

bn(t) = (b0 ~ bn−1)(t) = (b0 ~ b0 . . .~ b0)(t) (3)

where (f~g)(t) =
∫
f(τ)g(t−τ)dτ denotes a convolution.

We will refer to this as the local form, and it is equivalent to
the cumulative form, as defined by e.g. Kim et al. [20]:

cn(t) =

∞∑
i=0

bn(t−i) =

{∑n−1
i=0 bn(t−i) if t < n

1 otherwise.
(4)

Now (1), for a control point interval [B,E], becomes:

sn(t) =

E∑
i=B

aibn(t− i) = (5)

aBcn(t−B) +

E∑
i=B+1

∆aicn(t− i) (6)

where ∆ai = ai − ai−1. By omitting the basis function on
the first control point, we obtain:

sn(t) = aB +

E∑
i=B+1

∆aicn(t− i) (7)

This expression extrapolates backwards using the first knot
instead of zero, see figure 1.

By using an adaptive start index, f = btc − n − 1, we
finally obtain the expression used in practice:

sn(t) = af +

btc∑
i=f+1

∆aicn(t− i) . (8)

3.1. Differential Relations

B-splines are straightforward to differentiate and inte-
grate, and the following relations are useful [38, 20]:

∂

∂t

∑
i

aibn(t− i) =
∑
i

∆aibn−1(t− i) (9)

∂cn(t)

∂t
= bn−1(t) (10)

We also note that:

∂

∂t
b0(t) = δ(t)− δ(t− 1) where (11)∫ b

a

δ(t− i)f(t)dt = f(i) if i ∈ [a, b] . (12)

We propose to use the often overlooked property (11) to sig-
nificantly simplify integrals of simple functions of splines.
For instance, given a second degree spline s2(t) with white
Gaussian accelerations, the regularizing cost can be derived
using partial integration and (9)-(11):∫ b

a

s̈2
2dt = [ṡ2s̈2]ba −

∫ b

a

ṡ2
...
s2dt = (13)

[ṡ2s̈2]ba −
∑
i

∆2ai

∫ b

a

ṡ2(δ(t−i)−δ(t−i−1))dt = (14)

[ṡ2s̈2]ba −
∑
i∈[a,b]

ṡ2(i)∆3ai (15)

This approach is significantly simpler than the common ma-
trix formulation approach taken by e.g. Furgale et al. [14],
in Eqn 37 to 59 for the same problem. Our approach gen-
eralizes to a broad category of spline differential functions,
and has to the best of our knowledge been overlooked until
now. Additional examples are found in the supplementary
material.

3.2. KKS Quaternion Spline

The KKS(Kim, Kim and Shin) quaternion spline [20]
is a generalization of (6). The control points ki are unit
quaternions and the operations are replaced by their rotation
equivalents i.e. addition with quaternion multiplication, and
control point weighting by exponentiation. The ∆ operator
for unit quaternions thus becomes ∆ki = k∗i−1ki. Using
wi = ∆ki for brevity the KKS is defined as:

qn(t) = k
cn(t−F )
F

∞∏
i=F

exp(log(wi)cn(t− i)) . (16)

Where exp() and log() map between unit quaternions and
their tangent space. By instead using (7) and qa =



exp(log(q)a) we obtain a simpler definition of the orien-
tation spline as:

qn(t) = kF

∞∏
i=F

w
cn(t−i)
i = kf

btc∏
i=f+1

w
cn(t−i)
i (17)

for f = btc − n− 1 as in (8). This formulation also extrap-
olates backwards towards kF rather than identity. Using
helper variables τ,W, T we find the recursive form of (17):

τn, i(t) = τn, i−1(t)w
cn(t−i)
i , τn, f = kf (18)

qn(t) = τn, btc(t) (19)

This simplifies computing derivatives [20]:

Wi(t) = w
cn(t−i)
i , Ẇ0(t) = 0 (20)

Ẇi(t) = bn−1(t− i) log(wi)Wi(t) (21)
τ̇n, 0(t) = 0 (22)

τ̇n,i(t) = τ̇n, i−1(t)Wi(t) + qn(t)Ẇi(t) (23)

which gives the angular velocity ω(t) in rad/s as

Tn,i(t) = τ ∗n,i(t)τ̇n,i(t), Tn,0(t) = W0 (24)

ω(t) = 2q∗n(t)q̇n(t) = 2Tn,n

= 2(W∗
iTn,n−1Wi + Ẇi) (25)

In practice, the recursive approach is not only simpler to im-
plement, but was shown by Sommer et al. [37] to be signif-
icantly faster to compute. Comparing our implementation
using their benchmark also shows indistinguishable perfor-
mance for automatic differentiation.

For a unit quaternion in scalar-vector form, q = (r,v),
we define the scalar exponent and quaternion logarithm as:

qα =

(
cos(θα)

sin(θα) v
|v|

)
, log(q) =

(
0
θ v
|v|

)
(26)

θ =

{
atan2(|v|, r) r ≥ 0

atan2(−|v|,−r) otherwise.
(27)

These ensure θ ∈ [−π/2, π/2] i.e. that the shortest geodesic
path is selected, regardless of the signs of ki. From this
and (25) we see that regularizers for orientation splines like∫
|ω̇(t)|2dt will lack analytical primitives in general.

3.3. The KKS Domain

The ambiguity resolved by (27) leads to an important
but previously overlooked restriction on the domain of the
KKS, in addition to those shared with the R spline. Using
(25), | log(wi)| ≤ π

2 , |Wi| = 1 and the triangle inequality:

|ω(t)| ≤ 2

n∑
i=1

|Ẇi(t)| = 2

n∑
i=1

|bn−1(t− i) log(wi)Wi| ≤

2

n∑
i=1

bn−1(t− i)π
2
|Wi| = π

n∑
i=1

bn−1(t− i) ≤ π (28)

That is: |ω(t)| ≤ π. More generally a spline with knot
distance ∆ti = 1 has |ω(t)| ≤ π∆t−1i . Thus for a spline to
be able to express ω(t), its knot distance must satisfy:

∆ti ≤ π|ω(t)|−1, t ∈ R (29)

This novel constraint is necessary, but not sufficient, for the
spline to be able to express a given dynamic. This can be
used to regularize e.g. by assuming all ω(t) above some
value are noise. Another use case would be restricting the
knot distance search given gyro measurements. In prac-
tice this means a sufficiently expressive knot distance can
be found quickly. Note also that (29) implies a bound on
the Riemann approximation error for many orientation reg-
ularizers.

4. Spline Endpoints and Extrapolation
In theory, the control points are often assumed to exist

extending to infinity. In practice a finite range is used, and
boundary effects must be considered for any regularizer of
form

∫
R f(s(t))dt. In particular for (6) and (16), as they

will extremely quickly move towards identity. The modi-
fied splines (7) and (17) alleviate, but do not resolve this
issue, as their derivatives will still go to zero in just a few
knots, which can also cause severe boundary effects. To ad-
dress this, we propose a new class of pose trajectory spline
which uses constant linear and angular velocity for extrap-
olation. Our new spline class has the finite control points
ai, i ∈ [B,E] and the full domain R while maintaining the
continuity properties.

Using (9) we can expand s̈n(t) = 0 to:

s̈n(t) =
∑
i

(ai − 2ai−1 + ai−2)bn−2(t− i) = 0 (30)

This constrains the control points as:

ai = 2ai−1 − ai−2 = ai−1 + ∆ai−1 (31)

which is a common recursive extrapolation strategy. Note
however that (31) implies ∆ai−1 = ai − ai−1 = ∆ai,
and thus ∆ai = ∆aE for i > E. We can thus replace the
recursion with:

ai = aE + (i− E)∆aE for i > E . (32)

Rather than using this expression, we replace the first and
last basis functions with rn, and dn, and define the extrapo-
lating cumulative spline as follows:

sn(t) =aB + ∆aB+1rn(t−B)+

+

E−1∑
i=B+2

∆aicn(t− i) + ∆aEdn(t− E) . (33)
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Figure 2. Left: Extrapolation functions (34) (blue) and (35) (or-
ange) for n = 2 and [B,E] = [0, 7]. Right: Example extrapola-
tion.

The extrapolation functions of degree n are:

dn(t) =

∞∑
i=0

cn(t− i) and (34)

rn(t) = 1− dn(n+1−t) =

1∑
i=−∞

cn(t− i) . (35)

These two functions are plotted in figure 2. The forward
expression can be rewritten for implementation as:

dn(t) =

∞∑
i=0

cn(t− i)

=

{∑n−1
i=0 cn(t− i) if t < C

t− C + 1 otherwise.
(36)

Where C = (n + 1)/2 is the center of gravity of the basis
functions. Similarly, the backward function becomes:

rn(t) =

1∑
i=−∞

cn(t− i)− n

=

{∑1
i=1−n cn(t− i)− n if t > C

t− C otherwise.
(37)

We then replace linear space operations in (33) with cor-
responding quaternion operations as in Kim et al. [20] to
obtain:

qn(t) = kBw
rn(t−B)
B+1

[
E∏

i=B+2

w
cn(t−i)
i

]
w
dn(t−E)
E (38)

This spline is parametrized by its control points {ki}EB , with
the end-pairs (wB+1,wE) defining extrapolating angular
velocities. Similar to the RN case, this smoothly converges
to a constant angular velocity and maintains the continuity
properties. The solution is convenient to use in practice as
only the control point lookup and basis must be modified.

5. System Models and Regularizers
System models and regularizers are different sides of the

same coin. Maximum likelihood fitting of a spline s(t,Θ)

implies minimizing a loss on the prediction errors of the
observations yl made at times tl:

Lobs(Θ) =
∑
l

ρ(yl − h(s(tl,Θ))) , (39)

where ρ is the negative log of the error probability density
and h is a measurement function. For e.g. the assumption
of Gaussian errors, we have ρ(ε) = |ε|2. We can regularize
this cost by introducing an independent prior Lreg, and a
prior weight λ to get

L(Θ) = Lobs(Θ) + λLreg(Θ) . (40)

Minimizing (40) results in a maximum a posteriori point
estimate spline fit.

5.1. Derivative Based Regularizers

Derivative regularizers correspond to smooth functions
e.g.

Lmder(Θ) =

∫ ∞
−∞

∥∥∥∥∂ms(t,Θ)

∂tm

∥∥∥∥2 dt . (41)

This can be interpreted as an expectation that the chosen
derivative is i.i.d. Gaussian with zero mean. E.g. m = 2
corresponds to a constant velocity model, but higher order
derivative regularizers are in use as well, e.g. the m = 4
Snap [22]. For RN splines such costs can be efficiently
computed using their analytical primitives, as derived using
our approach in (13).

5.2. Orientation Regularization

Similar to the RN case, it is common to regularize
orientation using derivatives of the angular velocity ω(t)
weighted by the inertial tensor I [14]:∫

R

∂mω(t)

∂tm

T

I
∂mω(t)

∂tm
dt . (42)

This regularizer lacks an analytical primitive in general.

5.3. Orientation P-spline

The P-spline regularizer LmP (Θ) =
∑
i(∆

mai)
2 of Eil-

ers and Marx [10] was originally derived as an approxima-
tion to (41), in part to simplify making a spline observable,
and in part to avoid the ”difficult” integral (13). This ap-
proach is popular due to its simplicity and is practical when
little is known about the signal except that it is smooth.

The P-spline regularizer is limited to RN splines. In or-
der to address this, we here introduce the Orientation P-
Spline regularizer LPO(Θ) which uses the unit quaternion
∆ operator: ∆ki = k∗i−1ki, ∆mki = ∆m−1(∆ki). This
allows us to define the regularizer:

LmPO(Θ) =
∑
i

|∆mki|2geo , (43)



where we note that |p∗q|geo = 2 cos−1(pTq). Thus
L1

PO(Θ),L2
PO(Θ) roughly correspond to a constant orienta-

tion and constant ω(t) respectively. The first order in par-
ticular is useful for higher degree KKS splines, as it penal-
izes discontinuities, much like the corresponding RN vari-
ant does.

5.4. Car Motion Models

There are two motion models commonly used for e.g.
cars which we consider for the stereo visual odometry ex-
periment section 7. In the vehicle coordinate system with
z forwards, y down, x to the right and position p. A car
moving forwards only leads to ṗx = n(t), ṗy = n(t) for
iid Gaussian n(t). Moving on a surface leads to the coordi-
nated turn model p̈x = vz(t)wy(t) + n0(t).

Lfwd(Θ) =

∫
R

(p̈x)2 + (p̈y)2dt (44)

Lct(Θ) =

∫
R
(p̈x − vz(t)wy(t))2 (45)

The latter cost (45) lacks analytic primitives in general, and
many different approximations have been investigated, e.g.
Roth [33] and Yuan [40]. The forward motion model has an
analytic solution for specific pose definitions, but is never-
the-less often approximated e.g. in SSBARv [39].

5.5. Integral Cost Approximation

In order to optimize over cost terms which are integrals,
we must be able to either analytically evaluate them, or ap-
proximate them. A common approach is to approximate the
function [14, 39], but we have noticed that for smooth func-
tions such as splines, Riemann sums are an appealing alter-
native. In practice we should use few samples to minimize
the computational cost. So how sparsely can we sample?

The key observation we make is that optimizing over
samples rather than the integral can turn an overdetermined
problem into a determined, or underdetermined one. This
in turn allows the optimizer to overfit to the samples and
thus perfectly satisfy the regularizer. This is the cause of
the ringing artifacts shown in Figure 4. Avoiding this gives
us a lower bound for the required minimum number of sam-
ples. For N knots we will need a minimum of N + 1 sam-
ples. This also implies that using one sample at each knot
as in e.g. [28, 4], is insufficient. For a longer spline, 2 sam-
ples/knot is mostly sufficient, but for a short interval, and in
the beginning, we should have at least n + 2 samples/knot
to know that the state is overdetermined.

Next we consider the local frequency properties. When a
function is sampled at a rate fs, frequencies above 0.5fs are
aliased, and cause errors. The Fourier transform of the ba-
sis function is sincn(f) which means that the amplitude of
the aliased frequencies decay faster than (0.5fs)

−n where
n is the degree (less the derivative) for e.g. (41). This also

suggests a minimum sample rate above 2 per knot, and that
the minimum approximation error drops faster for higher
degree splines. Because the rotation spline is smooth and
therefore can be locally described by a spline of the same
degree with good precision, this is likely a good approxi-
mation for them as well.

We conclude that unless a careful constraint analysis has
been performed, n + 2 evenly spaced samples per knot
should be used.

6. Regularization Experiments
We evaluate how the sample rate affects estimate ac-

curacy and compare the Orientation P-Spline and variable
knot spacing. This experiment corresponds to a model of
e.g. detected correspondences in RGB-D video. The ground
truth trajectory uses a knot spacing of ∆ti = 1 and degree 4
and is generated by simulation. The trajectory smoothly ro-
tates through, and between each of the planes while moving
on a sphere, and is designed to expose every special case.
Se the supplementary material for additional details. The
regularizers are evaluated on the problem of fitting the pose
spline trajectory P̂Θ(t) consisting of KKS q(t) and a R3

splines given 3D point correspondences which satisfy:

x̂i = P (t)x + ni,t (46)

for ground truth trajectory P (t) and the IID Gaussian noise
ni,t ∼ N (0, 1.0E). The 3D landmarks x are randomly
drawn from the unit sphere at 5Hz. We estimate a trajectory
of the same degree and knot distance by minimizing:

min
Θ

∑
i,t

α−1
∥∥∥x̂i − P̂Θ(t)x

∥∥∥2
2

+ β−1Lreg(Θ) (47)

where α, β are the variances of the measurements and of
the regularizer on the ground truth. The estimated trajec-
tory has the same degree and knot distance as the ground
truth. The trajectory estimate is initialized using the ground
truth, i.e. we are studying how far the noise causes the tra-
jectory to diverge. This is to avoid any issue caused by local
minima. As metric we use

∫
θ2(t)dt where θ is the angle

between ground truth and estimated orientations. The inte-
gral is evaluated using dense sampling (105 per knot).

Figure 3 shows the relative accuracy of the constant an-
gular velocity model, often called energy (i.e. (41) with
n = 2) when varying the number of regularizer samples
that are used per control point.

The figure shows that the energy regularizer provides
excellent performance even at low sampling rates. Quali-
tatively the reconstruction is nearly indistinguishable from
the ground truth for fs ≥ 2 whereas the signal is ex-
tremely noisy without regularization. Using one sample per
knot, the system performs reasonably well, but visibly os-
cillates/overfits at the beginning as shown in Figure 4 and
predicted by the constraint analysis.
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Figure 5. Regularization using knot spacing as an implicit regular-
izer. The error is reported relative to using no regularization and
knot spacing ∆ti = 1. The difference to the energy regulariza-
tion is approximately 30%. The problem becomes unobservable
for knot spacing below 0.2 and errors above 1 are excluded.

We also compare to implicit regularization by using var-
ied knot spacing in figure 5. We conclude that if the optimal
knot spacing can be found, this approach works reasonably
well, but it is difficult to predict what that spacing is in ad-
vance based on e.g. dynamic models.

For P-spline regularization (43) we try using both first
and second order, and vary the regularizer weight. In both
cases the optimal weight is predicted by the ground truth
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Figure 6. Performance of P-spline regularizers for different
weights. Left: m = 1, right: m = 2. The error is reported
relative to using no regularization and knot spacing ∆ti = 1.

variance weighting. Figure 6 shows that second order gen-
eralized P-splines are better than first order, but both are
inferior to using the sampled energy model.

We conclude that the energy penalty with a moderate
number of samples per knot performs well. The improve-
ment plateaus after 2 samples per knot. Adding this regu-
larizer significantly improves convergence speed, reducing
total computational time by 33%. Overall, the generalized
P-splines are faster but also perform worse.

7. Visual Odometry
This experiment demonstrates that continuous pose tra-

jectories are applicable to real-time odometry using the
KITTI odometry dataset [16]. Specifically we examine how
varying knot distance and spline degree affects the compu-
tation time and reconstruction accuracy.

The visual odometry system we use is intentionally sim-
ple. We use a KLT [32] tracker and a SGM [17] stereo,
which at each step tracks 3d features into the next im-
age. After minimization we discard outliers based on a re-
projection error with threshold 3 pixels by eliminating the
track’s last measurement. We initialize new features us-
ing ANMS [15] and prune old features using the approach
of [31] keeping the number of tracks ∈ [100, 300]. The sys-
tem is initialized using PnP for the first five frames, after
which the regularizers allow the spline to predict the next
frame pose. In each frame the system optimizes the repro-
jection errors, the sampled regularization using n+2 sam-
ples, and the 3d point positions, giving the cost:

L(Θ) =
∑
k,f

‖yti,f − ℘(PcvP
−1
wv (ti)xf )‖2 (48)

+ α−1Lfwd(Θ) + β−1Lct(Θ) (49)

where yti,f are observations of feature f at time ti and ℘
is the stereo projection. Pcv is the transform between the
camera and the rear axle, and Pwv(t) is the pose trajectory.
The weights α, β are found as the inverse variances of the
regularizers applied to the ground truth trajectory of KITTI
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Figure 8. The KITTI rotation error metric evaluated on the first
training sequence, for n = 3, 4, 5 on knot distances from 0.05
to 1. The current top performer SOFT2[7] achieves an error of
0.0009 overall on test data.

sequence two. The entire history of each track present in
any of the five most recent frames are included in the cost.
All knots preceding those affected by the five most recent
frames are set constant, as are all 3d points which are not
present in the current image. We use up to five iterations per
frame. To our knowledge, we are the first to use a windowed
optimization strategy for real-time VO on real data.

We evaluate the system on the first training sequence as
it lets us perform the evaluation repeatedly and because it is
simple enough to use a simple tracker. Results are shown
in figures 7 and 8. This demonstrates that real-time on-
line stereo odometry using pose trajectory splines is feasi-
ble, with the degree three alternative running at 30fps while
achieving reasonable results. The experiment also shows
that knot distances shorter than one are possible given that
a regularizer is used. A video showing sample results is
available in the supplementary material.

8. Visual-Inertial Calibration
Visual-inertial calibration is commonly used as a valida-

tion experiment for pose trajectory spline implementations,
e.g. Furgale et al. [14], Patron-Perez et al. [28] and Sommer
et al. [37]. We similarly validate our system by calibrat-
ing the calib-cam1 sequence from the dataset by Shubert

et al. [35]. The sequence has 10 336 IMU measurements
and 1038 stereo pairs spanning 52.8 seconds, but it lacks
ground truth. Therefore we compare to the result of Som-
mer et al. [37] and use the same Pcam,imu initialization and
weights γacc, γgyro as them. We initialize the spline using per
frame PnP-Ransac [30, 11] followed by bundle adjustment.

Since poses from calibration patterns are highly accu-
rate, we wish to be able to go through each, which im-
plies a minimum knot distance of 0.05s. We verify that this
is likely sufficient to represent the observed ω(t) as using
(29) implies a minimum knot distance of 0.7s. The low-
est derivative of interest i.e. acceleration should have one or
preferably two continuous derivatives. Therefore degree 3
or 4 is suitable and we use four. We find the transform Pci
between camera and IMU by minimizing the cost:

L(Θ) =
∑
tf ,i

‖ytf ,i − ℘(Pcw(tf )xi)‖2+ (50)

γacc

∑
ta

‖p̈body(ta)− p̈[ta] + gbody + bacc‖2+ (51)

γgyro

∑
tg

‖ωbody(tg)− ωbody[tg] + bgyro‖2 (52)

Where ℘ is the projection operator, ytf ,i visual measure-
ments, and Pcw(t) = PciP

−1
wi (t) the offset pose trajectory

spline. The ωbody(ti), and p̈(ti) are gyro and accelerometer
measurements with constant IMU bias. We optimize over
Pci and the pose trajectory. We do not add regularization,
as this would conflict with the sought estimate.

Using this procedure we recover the IMU-camera trans-
formation with a geodesic difference of 10−5 and 10−4 me-
ters, relative to the calibration of Sommer (which is not a
ground truth).

9. Concluding Remarks
This paper has investigated pose trajectory regulariza-

tion by sampling explicit non-linear priors. This is aided
by a novel spline construct with constant linear and angular
velocity extrapolation. We have found a lower bound for the
sampling rate, which is notably above the common choice
of a single sample per knot. We have compared several
different types of pose trajectory regularization, including
derivative penalties, implicit (using knot spacing), and a
novel orientation P-spline penalty. We have also derived an
upper bound on the knot distance required to represent a
given ω(t). The code for our system is available on GitHub
[29]. The system has been validated on the standard task
of visual-inertial calibration, and applied to stereo visual
odometry where we demonstrate real-time performance.
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