
Why Would I Want a Gyroscope on my RGB-D Sensor?

Hannes Ovrén, Per-Erik Forssén, and David Törnqvist
Department of Electrical Engineering, Linköping University, Sweden

hannes.ovren@liu.se

Abstract

Many RGB-D sensors, e.g. the Microsoft Kinect, use
rolling shutter cameras. Such cameras produce geometri-
cally distorted images when the sensor is moving. To miti-
gate these rolling shutter distortions we propose a method
that uses an attached gyroscope to rectify the depth scans.
We also present a simple scheme to calibrate the rela-
tive pose and time synchronization between the gyro and
a rolling shutter RGB-D sensor.

We examine the effectiveness of our rectification scheme
by coupling it with the the Kinect Fusion algorithm. By
comparing Kinect Fusion models obtained from raw sensor
scans and from rectified scans, we demonstrate improve-
ment for three classes of sensor motion: panning motions
causes slant distortions, and tilt motions cause vertically
elongated or compressed objects. For wobble we also ob-
serve a loss of detail, compared to the reconstruction using
rectified depth scans.

As our method relies on gyroscope readings, the amount
of computations required is negligible compared to the cost
of running Kinect Fusion.

1. Introduction
RGB-D sensors, such as the Microsoft Kinect have re-

cently become popular as a means for dense real-time 3D
mapping. Dense RGB-D mapping was introduced in the
Kinect Fusion algorithm [9], which is aimed at augmented
reality. Recently the Kinect Fusion algorithm has also been
adapted to simultaneous localisation and mapping (SLAM)
[18], and to odometry and obstacle avoidance [13].

As pointed out in [11], RGB-D sensors that use the
structured-light sensing principle, e.g. the Kinect, are built
using CMOS image sensors with rolling shutters (RS). A
sensor with a rolling shutter has a line-by-line exposure, and
this will cause geometric distortions in both the colour im-
ages and the depth maps from an RGB-D sensor, whenever
either the sensor or objects in the scene are moving. Illus-
trations of the rolling shutter effect on meshes reconstructed
using an RGB-D sensor can be found in Figure 1.

(a) Pan (left to right) (b) Tilt (upwards)

Figure 1: Synthetic visualization of rolling shutter effects
on reconstructed meshes. The solid shape is the correct
mesh and the wireframe is the distorted mesh.

In this paper we investigate how the influence of rolling
shutter distortions in dense SLAM can be mitigated, by
equipping an RGB-D sensor with a 3-axis MEMS gyro sen-
sor. Gyro sensors for consumer electronics are inexpensive
and can provide angular velocity measurements at rates well
above most camera frame rates. The use of a gyro sensor
means that the extra computational burden of optical flow,
and non-linear optimisation used for RS rectification in [11]
need not be added to the already high cost of SLAM com-
putation. An additional benefit is that the gyro provides an-
gular velocity also in scenes with low texture, where optical
flow computation is difficult.

Our experiments are designed around the Kinect Fusion
algorithm [9], which has gained popularity due to the open
source KinFu implementation in PCL [14]. We characterize
the situations where RS distortions occur, and investigate to
what extent a rotation based RS rectification can improve
the output of Kinect Fusion.

1.1. Related Work

As our system makes use of an external gyroscope sen-
sor, we require the clocks of the camera and the gyroscope
to be synchronized, and their relative pose to be known.
Several methods for camera-IMU calibration have been pro-
posed in the past. A recent example is [7]. Such methods

c©2013 IEEE. Preprint from IEEE Winter Vision Meetings, Workshop on Robot Vision 2013

typically compute the full relative pose between IMU and
camera (both translation and rotation). In this paper we have
instead chosen to introduce a new calibration scheme, for
two reasons: Firstly, all current algorithms assume global
shutter geometry, which means that their application to a
rolling shutter camera needs to be done with care. Sec-
ondly, when only gyro measurements are to be used, the
translation component is not needed, and this allows us to
simplify the calibration considerably.

Our time synchronization procedure uses the same cost-
function as [5, 8]. Just like [5] we only search for the
time shift, but instead of performing gridding on the cost-
function, we solve for the time shift in two steps: Firstly we
find a coarse alignment using correlation of the device mo-
tion function, secondly we refine this estimate using deriva-
tive free search. In contrast to [5, 8], our method also deals
with finding the unknown time scaling factor.

A dataset for evaluation of RGB-D SLAM accuracy
was recently introduced by TU Münich and University of
Freiburg, and will be presented at IROS 2012 [17]. Evalua-
tion using this dataset consists of comparing a camera mo-
tion trajectory against ground truth from a motion capture
system. As we rely on gyro measurements, we cannot use
these datasets, and instead we demonstrate the effectiveness
of our algorithm by comparing obtained 3D models with,
and without applying our depth-map rectification.

The rolling shutter problem has been extensively studied
in the past [3, 12, 1, 11]. Most closely related to our work
is [11], on which we base our rectification scheme. In [11],
the RGB-D device motion is computed using a sparse opti-
cal flow that is obtained from Kinect NIR images. Instead
of using optical flow, we rectify the depth maps using the
angular velocity provided by a 3-axis MEMS gyro sensor.
This makes the resultant system more robust, as we can eas-
ily deal with two cases that are challenging for optical flow
based techniques: 1. Scenes with large untextured regions
2. Scenes where the amount of ambient light present in the
scene is too low.

1.2. Structure

This paper is divided into three parts: Section 2 describes
the gyro and rolling shutter camera calibration. Section 3
describes our approach to depth map rolling shutter rectifi-
cation. In Section 4 we perform a number of experiments
that show the effect of rolling shutter rectification for RGB-
D cameras.

1.3. Notation

We use superscripts to denote the used frame of refer-
ence where needed. tg and tc denote time in the gyro and
RGB-D camera frames of reference respectively. A relation
between frames is expressed as combinations, e.g. Rcg is
the rotation from the gyro frame to the camera frame of ref-

erence. Vectors and matrices are expressed in bold (x, Ω).

2. Sensor Calibration
The gyro provides angular velocity measurements for

each of its three axes as the angular velocity vector ω(tg) =
(ωx, ωy, ωz). The RGB-D camera provides us with RGB
images I(tc) and depth images D(tc).

To associate the data from the two sensors we must know
the relation between their timestamps, tg and tc, as well as
the relative pose, Rgc, between their coordinate frames.

2.1. Synchronizing the Timestamps

Assuming that both timestamp generators provide times-
tamps that are linear in time, the two timestamps will be
related via a linear function

tg = mgc · tc + dg . (1)

The multiplier mgc will be constant when both times-
tamp generators are stable and do not drift. The time offset
dg depends on when each timestamp generator was initial-
ized. Typically reinitialization can occur at any time due to
e.g. a hardware reset, which makes it necessary to recom-
pute dg for every experiment.

Although the multiplier has to be known in order to cal-
culate the offset, we will start by describing how to calculate
the latter.

2.1.1 Finding the Offset

Since the offset, dg , has to be computed for every experi-
ment it should be fast to compute. To achieve this we divide
the task into first finding a rough estimate which is then re-
fined.

The rough offset is found based on the assumption that
a rotation of the sensor platform will in some way be ob-
servable by both sensors. For the gyro this is trivial. For the
RGB-D sensor we assume that the rotation is manifested in
the optical flow magnitude between consecutive frames.

We begin by defining the gyro speed as

W (tg) = ‖ω(tg)‖ . (2)

The optical flow displacement magnitude is calculated as

F (tcj)︸ ︷︷ ︸
j=1...(J−1)

=
1

N

N∑
n

‖xn(tcj)− xn(tcj+1)‖ , (3)

which is the average optical flow at the frame j, whereN
is the number of points tracked between frames j and j+ 1,
and xn(tcj) are the image coordinates of the tracked point n
in frame j.

The assumed proportionality between F (tc) and W (tg),
after mapping through (1), then becomes

W (tg) ∝∼ F (
tg − dg

mgc
) . (4)

After applying the multiplier mgc and resampling the
signal with the lowest sampling rate to match the other, we
can use cross-correlation to find the offset dg .

It is important to note that the chosen sensor platform
movement must be such that it produces a signal form that
is not periodic, as this could make the cross-correlation fail.
Since data collection from both sensors is initiated at ap-
proximately the same time, we can extract slices of the orig-
inal signals which are known to contain the synchronization
movement. An example of the proportionality and the syn-
chronization movement can be seen in Figure 2.

2.1.2 Refining the Time Offset

The correlation based time offset was found to be accurate
to about ±2 frames. Since we need sub-frame accuracy, the
time offset must be refined further.

In [5] Hanning et al. describe a method to find an un-
known offset between image timestamps and gyro times-
tamps. Points are tracked through an image sequence, and a
grid search is used to find the time offset that best removes
the rolling shutter effects.

Since we know that the offset is off by at most a few
frames, the function to be optimized will be convex. This
allows us to replace grid search with the much more effi-
cient Brent’s method [10].

? =

Figure 2: Optical flow and gyro speed comparison. From
top to bottom: Optical flow displacement magnitude F (tc),
gyro angular speed W (tg), and correlation response. Cor-
relation is calculated from slices known to contain the syn-
chronization movement (highlighted).

2.1.3 Finding the multiplier

To find the multiplier, the sensor platform is kept still ex-
cept for two short and distinct movements, where the sec-
ond movement is delayed sufficiently long.

We generate two short rotations of the sensor platform
which will both be observable in both W (tg) and F (tcj).
The time between the two rotations, T , is measured in each
sensor’s frame of reference and the multiplier is calculated
as the average of N such sequences

mgc =
1

N

N∑
n

T g
n

T c
n

. (5)

The calculated multiplier is then assumed to be valid for
sequences of at least length T .

2.2. Relation of Coordinate Frames

No matter how carefully the IMU and camera are joined
there will likely be some alignment error which could dis-
turb the results [7].

A relative pose consists of a rotation and a translation
from one coordinate frame to another. For our implementa-
tion only the gyro is used so the translation is not needed.

The basic idea of the relative pose estimation is that if
we have two or more orientation vectors in one coordinate
frame, and corresponding orientation vectors in the other
coordinate frame we can find uniquely the rotation between
them.

By rotating the sensor platform around two orthogonal
axes we find the axes of rotation as seen by the camera co-
ordinate frame and the IMU coordinate frame.

2.2.1 Gyro Coordinate Frame

Given a sequence where the gyro is rotating, we want to find
the axis of rotation r̂. We do this by defining the following
maximization problem:

r̂ = arg max
r
J(r) (6)

J(r) =

N∑
n=1

‖rTωn‖2 (7)

J(r) =

N∑
n=1

rTωnω
T
nr = rT

(
N∑

n=1

ωnω
T
n

)
︸ ︷︷ ︸

Ω

r (8)

HereN is the total number of gyro samples in the chosen
sequence.

The rationale of this cost function is that the principal
axis of rotation should be parallel to ω, and large velocities

should have a larger influence on the result. The solution r̂
is the eigenvector of Ω with the largest eigenvalue.

We are however not certain if we have found r̂ or −r̂ as
both will give the same cost. The sign can be determined
by testing whether the scalar product between the acquired
r̂ and all ωn is positive or negative such that

r̂← sgn

(
N∑

n=1

r̂Tωn

)
r̂ . (9)

2.2.2 Camera Coordinate Frame

The problem of finding the rotation axes of the camera can
be formulated as an Orthogonal Procrustes problem [15, 4].
For a given rotation sequence we track a number of points
from the first image frame to the last. To make sure the re-
sulting point correspondences are of high quality the points
are retracked from the last image to the first. Points are dis-
carded if the distance from the original point is larger than
0.5 pixels. It is very important that the first and last frame
of the sequence are captured when the sensor platform is
not moving, otherwise rolling shutter effects would bias the
result.

Using the camera calibration matrix K, and a depth map
z(u, v) the 2D points are back projected to 3D using the
equation  x

y
z

 = z(u, v)K−1

 u
v
1

 . (10)

If we denote the set of 3D points from the first and last
image X = (X1,X2, ...) and Y = (Y1,Y2, ...) respec-
tively, the problem of aligning them can be formulated as

arg min
R,t
‖X− (RY + t)‖2 s.t. RRT = I (11)

where R is a rotation matrix and t is a translation.
Procrustes now gives us an estimate of R and t using the

SVD

UDVT = SVD[(X− µX)(Y − µY)T] (12)

R = U

1 0 0
0 1 0
0 0 det(UVT)

VT (13)

t = µX −RµY . (14)

Here µX and µY are the means of the vectors X and Y
respectively.

Although the Procrustes solution provides us with both
rotation and translation, only the rotation is needed in our
implementation.

The rotation matrix R can be written on axis-angle form
as ϕn̂ where n̂ is the principal axis of the rotation that we
want to find.

To convert from matrix form to axis-angle form we use
the method described by Hartley and Zisserman [6]

2 cosϕ = trace(R)− 1 (15)

2 sinϕn̂ =

R32 −R23

R13 −R31

R21 −R12

 . (16)

It is worth noting that this representation forces the rota-
tion angle ϕ to only take positive values. Therefore, if we
have two rotations about the same axis ϕ1n̂ and ϕ2n̂ where
ϕ2 = −ϕ1 we would measure the latter as ϕ1(−n̂) which
is a positive angle and a flipped rotation axis. This makes
the result consistent with the behaviour of the gyro rotation
axis calculation in (9).

2.2.3 Calculating the Relative Pose

Using the methods in sections 2.2.1 and 2.2.2 we can collect
a set of corresponding rotation axes, Xg and Xc, in the gyro
coordinate frame and RGB-D camera coordinate frame re-
spectively.

Once again we can formulate an Orthogonal Procrustes’s
Problem to find the relative sensor pose

Rcg, tcg = arg min
R,t
‖Xc − (RXg + t)‖2

s.t. RRT = I
(17)

We typically use two forward-backward sequences,
along two approximately orthogonal axes. This gives us
four measurements in total, from which the relative pose
may be determined.

3. Depth Map Rectification
3.1. Gyro integration

We obtain the rotation of the sensor platform (relative
to some initial orientation) by integrating the gyro angular
velocity measurements. This accumulated rotation is later
used for depth map rectification.

The accumulated rotation at time t is denoted by the unit
quaternion

q(t) = [cos
ϕ

2
; sin

ϕ

2
n] , (18)

where the unit vector n is the axis of rotation and ϕ is
the magnitude of the rotation.

Using the timestep ∆t and angular velocity measure-
ments ω, the integration becomes

q(0) = [1; 0] and (19)
q(t+ ∆t) = q(t)�w(ω; ∆t) , where (20)

w(ω; ∆t) =

cos

(
‖ω‖∆t

2

)
;

sin
(
‖ω‖∆t

2

)
‖ω‖

ω

 . (21)

Here � is the quaternion multiplication operator. q is
kept as a unit quaternion by renormalizing after each step.

3.2. Rectification

Once the camera and IMU are synchronized and their
relative pose is known we can perform the rectification.

We are only measuring rotations, so the update equation
for image coordinates from [11] simplifies to

x′ = KR(tmid)RT (trow)K−1x , where (22)

trow = t0 + tr
x2

#rows
and (23)

tmid = t0 + tr
1

2
. (24)

Here trow and tmid are the times when the current row and
middle row were captured given the start of frame time, t0,
and readout time, tr. R(t) is the rotation of the camera at
time t, which is constructed as R(t) = RcgM(q(t)), where

M(q) =

(
1− 2q22 − 2q23 2q1q2 + 2q0q3 2q1q3 − 2q0q2
2q1q2 − 2q0q3 1− 2q21 − 2q23 2q2q3 + 2q0q1
2q1q3 − 2q0q2 2q2q3 − 2q0q1 1− 2q21 − 2q22

)
,

(25)
transforms a unit quaternion to a rotation matrix [16]. x
and x′ are homogenous image coordinates before and after
rolling shutter rectification.

A way to interpret (22) is that a 2D point is back-
projected to a 3D point, which is rotated back to the initial
camera position, then rotated back to the time the middle
row was captured, and finally projected again to a 2D point.

The inevitable drift accumulated in q(t) in previous
frames is effectively cancelled out, as the combined rota-
tion in (22) is relative to the middle row, and not to the start
of the sequence.

Note that the fact that we are neglecting translations also
means that the depth z(x) can be ignored in the projections
as it is now simply a scale factor in a homogenous equation.

Using (22) we can construct a forward mapping for each
pixel coordinate in the original image. We use this to for-
ward interpolate new rectified depth images.

In order to propagate also the the valid/invalid status of
pixels each depth image is interpolated twice. First an in-
terpolation using a weighted gaussian 3x3 kernel is used on

all pixels that have valid depth values. Second we inter-
polate using nearest neighbour interpolation all pixels with
invalid depth values. This avoids having invalid pixels be-
come valid due to interpolation.

4. Experiments

We will now demonstrate the gain with using rolling
shutter rectification when doing 3D reconstruction using an
RGB-D camera. Three experiments have been performed
on three different types of sensor movement: pan, tilt and
wobble. Other types of sensor movement such as roll and
translation also cause rolling shutter effects but have not
been investigated. Roll motions can be handled by our
method, but visualizing and measuring the effect is difficult.
As our method neglects translations, rolling shutter effects
from translations are not handled. However, these effects
appear only when the image plane is moving at high speeds
which makes the impact much weaker than rotational move-
ments.

To carry out the reconstruction we have used the Kinect
Fusion algorithm implemented in PCL [14] under the name
KinFu.

Our sensor platform consists of one Kinect RGB-D cam-
era, to which is attached an ArduIMU gyro and accelerom-
eter. The Kinect captures depth images at 29.97 Hz and
RGB images at 30Hz, while the ArduIMU provides gyro-
scope measurements at approximately 170Hz. The discrep-
ancy between the frame rates of the RGB and depth cam-
era can safely be ignored during 3D reconstruction, since
only depth images are used here. To capture the Kinect data
we wrote a data logging application that makes sure that no
frames are skipped and also uses the raw timestamps from
the clock on board the Kinect.

We use the method in Section 2 to synchronize the RGB
camera and the gyroscope. Using the raw timestamps is im-
portant as RGB and depth timestamps are then in the same
time frame, and the synchronization is thus automatically
valid also for the depth frames. The Kinect timestamps are
32-bit unsigned integers generated by a 60 MHz clock.

4.1. Pan and Tilt distortions

Items of varying size were placed on a desk that was sur-
rounded by screens to avoid background clutter (see Fig-
ure 3). The data logging applications were started and af-
ter that a short time synchronization action was performed,
consisting of a short panning angular motion while the sen-
sor platform was standing on the desk.

The experiment was performed such that the objects of
interest in the scene were in view of the RGB-D sensor only
during motion. But to allow the Kinect Fusion some good
frames to initialize, the sensor platform was initially held as
still as possible while not observing the objects of interest.

Figure 3: Scene used for experiments

Figure 4: Grey: Mesh created by Kinect Fusion, captured
while panning with an angular speed of about 1 rad/sec.
Yellow: Outline of mesh from rectified depth frames. Ar-
rows indicate the rolling shutter artifacts.

Skipping this initial step often resulted in failed reconstruc-
tions. The sensor platform was then either panned from left
to right or tilted down to up. For each motion, three se-
quences with different angular speed were recorded.

After the data was captured a rectified version was cre-
ated using the method described in Section 3. Both se-
quences were then processed by the Kinect Fusion algo-
rithm which produced two reconstructed mesh representa-
tions of the scene. Kinect Fusion was run in offline mode to
make sure that all frames were handled, and that processing
did not depend on the GPU speed.

In Figure 4 we visualize the result of one pan motion ex-
periment. The original and rectified mesh were aligned, and
the outline (an edge map) of the rectified mesh was drawn
on top of the original mesh. To align the meshes we used
the iterative closest point algorithm (ICP) [2]. The meshes
are not related through a simple rigid transformation, so the

Pan
90.59◦ ± 0.56
89.57◦ ± 0.48

Tilt 17.3± 0.1

(a) Ground truth measurements. See tables b and c for details.

‖ω‖ Original Error Rectified Error

0.5
89.52◦ ± 0.67 −1.1◦ 90.44◦ ± 0.27 −0.1◦
90.46◦ ± 0.19 0.9◦ 89.51◦ ± 0.57 −0.1◦

1.1
87.11◦ ± 1.07 −3.5◦ 90.27◦ ± 0.35 −0.3◦
92.95◦ ± 0.57 3.4◦ 89.99◦ ± 0.51 0.4◦

2.5
87.00◦ ± 0.17 −3.6◦ 91.51◦ ± 0.49 0.9◦

97.41◦ ± 0.28 7.8◦ 92.74◦ ± 0.47 3.1◦

(b) Pan measurements. The two upper angles of the rectangular
box, measured in degrees.

‖ω‖ Original Error Rectified Error
0.7 16.9± 0.3 0.4 16.8± 0.1 0.5

1.1 17.7± 0.1 0.3 17.2± 0.1 0.1

2 19.2± 0.2 1.9 18.3± 0.1 1.0

(c) Tilt measurements. Height of cube object, measured in cm.

Table 1: Measurements for different angular speeds (in
rad/sec). The raw data is expressed as µ ± σ where µ is
the mean and σ is the standard deviation of the measure-
ment. The error columns of tables b and c are deviations
from the ground truths in table a.

entire mesh can not be used for ICP alignment. Since our
scene had a flat ground surface we instead opted to align the
meshes such that this ground plane was aligned as well as
possible. We selected points on the desk surface and close
to distinct objects in both meshes, and applied ICP to this
smaller point set.

To measure the impact of the rectification we compared
the obtained meshes with a ground truth mesh. The ground
truth mesh was reconstructed from a long sequence where
the sensor platform was moving at very low speed. The
ground truth measurements are presented in Table 1a. A
panning motion should produce a slant in the depth images,
and we therefore expect the mesh to become slanted (see
Figure 1a). By finding the corners of the front face of the
large rectangular box, the angles of its corners can be cal-
culated. Since clicking in the mesh is prone to errors, each
angle measurement was done five times and the mean was
used as the true angle. Table 1b shows the deviations from
the ground truth for the two upper angles of the rectangular
box for different angular speeds.

With a tilt motion in the upwards direction, the rolling
shutter effect causes objects to become extended and ap-
pear longer than they really are (see Figure 1b). Once again

we measured the deviation from the ground truth mesh, by
measuring the height of the smaller cube-shaped object.
Like before, the height was measured five times in each
mesh, and the average height was used as the true height.
The results can be found in Table 1c.

Note that at angular speeds of about 2 rad/sec and above,
the reconstructed meshes are bad due to large amounts of
motion blur.

4.2. Wobble distortions

The wobble experiment was carried out by keeping an
object (in our case, a telephone) in view of the sensor while
shaking the sensor platform. In contrast to the pan and
tilt experiment, with wobble we do not expect the general
shape of the objects in the scene to change. However, since
the Kinect Fusion algorithm integrates measurements over
time, we do expect rolling shutter wobble to blur out smaller
details. In Figure 5 we show a zoomed in view of the tele-
phone, and one can see that e.g. the buttons and cables are
more pronounced in the rectified version than in the original
version.

We examined the frequency of the wobble by applying
the FFT to each axis, and calculated a conservative estimate
of the combined frequency content as

G(f) =
√
|Ωx(f)|2 + |Ωy(f)|2 + |Ωz(f)|2 . (26)

The result in Figure 6 shows that the frequency of our
handheld wobble was approximately 4 Hz. We can also see
that the energy beyond 15 Hz is negligible, which implies
that our sampling rate of 170 Hz is sufficient.

5. Concluding Remarks

In this paper we have shown that the rolling shutter ef-
fect will create notable errors in 3D reconstructions from
the Kinect Fusion algorithm. We also show that these errors
can be mitigated by applying rolling shutter rectification on
the depth data before 3D reconstruction.

We have also introduced a simple scheme for calibrating
the time synhronization and relative orientation between a
gyroscope and a rolling shutter RGB-D sensor.

In the future we would like to improve the depth map
rectification scheme. Our current approach, while avoid-
ing interpolation of bad depth values, sometimes produces
jagged edges due to nearest neighbour interpolation.

A potential benefit of RS rectification which is not stud-
ied here is reduction of drift in SLAM. Once the Kintinuous
SLAM system [18] is made available for testing by other
researchers, it would be of great interest to feed it with rec-
tified Kinect scans, and to investigate the benefits of this.

0 2 4 6 8 10

−π
2

0

π
2

x y z

Figure 5: Wobble experiment. Zoom in on raycasted mesh.
From top to bottom: Original mesh, rectified mesh, one se-
lected RGB image from the sequence, and gyro measure-
ments.

6. Acknowledgements

This work was supported by the Swedish Research
Council through a grant for the project Embodied Visual
Object Recognition, and by Linköping University.

0 5 10 15 20 25 30 35 40

Frequency (Hz)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

M
ag

ni
tu

de
(r

ad
)

Figure 6: Composite frequency content, G(f), of the wob-
ble experiment.

References
[1] S. Baker, E. Bennett, S. B. Kang, and R. Szeliski. Removing

rolling shutter wobble. In IEEE Conference on Computer
Vision and Pattern Recognition, San Francisco, USA, June
2010. IEEE Computer Society.

[2] P. Besl and H. McKay. A method for registration of 3-D
shapes. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 14(2):239–256, 1992.

[3] C. Geyer, M. Meingast, and S. Sastry. Geometric models of
rolling-shutter cameras. In 6th OmniVis WS, 2005.

[4] G. H. Golub and C. F. van Loan. Matrix Computations. Johns
Hopkins University Press, Baltimore, Maryland, 1983.

[5] G. Hanning, N. Forslöw, P.-E. Forssén, E. Ringaby,
D. Törnqvist, and J. Callmer. Stabilizing cell phone video
using inertial measurement sensors. In The Second IEEE In-
ternational Workshop on Mobile Vision, Barcelona, Spain,
November 2011. IEEE.

[6] R. I. Hartley and A. Zisserman. Multiple View Geometry in
Computer Vision. Cambridge University Press, 2004.

[7] J. D. Hol, T. B. Schön, and F. Gustafsson. Modeling and cal-
ibration of inertial and vision sensors. International Journal
of Robotics Research, 29(2):231–244, February 2010.

[8] A. Karpenko, D. Jacobs, J. Baek, and M. Levoy. Digital
video stabilization and rolling shutter correction using gyro-
scopes. Technical Report CSTR 2011-03, Stanford Univer-
sity Computer Science, September 2011.

[9] R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux,
D. Kim, A. J. Davison, P. Kohli, J. Shotton, S. Hodges,
and A. Fitzgibbon. Kinectfusion: Real-time dense surface
mapping and tracking. In IEEE International Symposium
on Mixed and Augmented Reality ISMAR’11, Basel, Switzer-
land, October 2011.

[10] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P.
Flannery. Numerical recipes in C (2nd ed.): the art of sci-
entific computing. Cambridge University Press, New York,
NY, USA, 1992.

[11] E. Ringaby and P.-E. Forssén. Scan rectification for struc-
tured light range sensors with rolling shutters. In IEEE Inter-
national Conference on Computer Vision, Barcelona, Spain,
November 2011. IEEE, IEEE Computer Society.

[12] E. Ringaby and P.-E. Forssén. Efficient video rectification
and stabilisation for cell-phones. International Journal of
Computer Vision, 96(3):335–352, February 2012.

[13] H. Roth and M. Vona. Moving volume kinectfusion.
In British Machine Vision Conference (BMVC12), Uni-
versity of Surrey, UK, September 2012. BMVA, BMVA.
http://dx.doi.org/10.5244/C.26.112.

[14] R. B. Rusu and S. Cousins. 3D is here: Point Cloud Library
(PCL). In IEEE International Conference on Robotics and
Automation (ICRA), Shanghai, China, May 9-13 2011.

[15] P. Schönemann. A generalized solution of the orthogo-
nal procrustes problem. Psychometrika, 31(1):1–10, March
1966.

[16] K. Shoemake. Animating rotation with quaternion curves. In
Int. Conf. on CGIT, pages 245–254, 1985.

[17] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cre-
mers. A benchmark for the evaluation of RGB-D SLAM sys-
tems. In Proc. of the International Conference on Intelligent
Robot Systems (IROS), October 2012.

[18] T. Whelan, J. McDonald, M. Kaess, M. Fallon, H. Johanns-
son, and J. J. Leonard. Kintinuous: Spatially extended
kinectfusion. In RSS 2012 Workshop on RGB-D Cameras,
Sydney, July 2012.

