
Trajectory Representation and
Landmark Projection for
Continuous-Time Structure from Motion

Journal Title
XX(X):1–15
c©The Author(s) 2019

Reprints and permission:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/ToBeAssigned
www.sagepub.com/

Hannes Ovrén1,2 and Per-Erik Forssén1

Abstract
This paper revisits the problem of continuous-time structure from motion, and introduces a number of extensions that
improve convergence and efficiency. The formulation with a C2-continuous spline for the trajectory naturally incorporates
inertial measurements, as derivatives of the sought trajectory. We analyse the behaviour of split spline interpolation on
SO(3) and on R3, and a joint spline on SE(3), and show that the latter implicitly couples the direction of translation
and rotation. Such an assumption can make good sense for a camera mounted on a robot arm, but not for hand-held
or body-mounted cameras. Our experiments in the Spline Fusion framework show that a split spline on R3 and SO(3)
is preferable over an SE(3) spline in all tested cases. Finally, we investigate the problem of landmark reprojection on
rolling shutter cameras, and show that the tested reprojection methods give similar quality, while their computational
load varies by a factor of 2.

Keywords
Sensor Fusion, Computer Vision, SLAM, Rolling Shutter, Structure from Motion

1 Introduction

Structure from motion on video, is a variant of the
Simultaneous Localisation And Mapping (SLAM) problem,
which by now is one of the classical problems in robotics
(Bailey and Durrant-Whyte 2006). Structure from motion on
video has a wide range of applications, such as 3D mapping
(Engel et al. 2016), video stabilization (Kopf et al. 2014), and
autonomous navigation (Bailey and Durrant-Whyte 2006).
Traditionally such systems used discrete-time camera poses,
while this paper considers the more recent continuous-time
formulation (Furgale et al. 2015). Many SLAM systems
exploit a combination of sensors for robustness; LIDAR,
cameras, and inertial sensors (typically gyroscopes and
accelerometers) are popular choices. It is well known
that cameras and inertial sensors are complementary, and
thus useful to combine. Primarily this is because inertial
measurements have biases, that can be estimated during
fusion with camera measurements. In addition, cameras
often provide very accurate relative pose, but not absolute
scale, and camera-only structure from motion fails in the
absence of scene structure.

Platforms that house both cameras and inertial sensors
are now very common. Examples include most current
smartphones and tablets, but also some action cameras, e.g.
newer models from GoPro. Nearly all such platforms use
cameras with an electronic rolling shutter mechanism, that
acquires each frame in a row-by-row fashion. This lends
itself naturally to continuous-time motion models, as the
camera has a slightly different pose in each image row.

Classical structure from motion treats camera trajectories
as a set of discrete poses (Triggs et al. 2000), but by replacing
the poses with spline knots, we obtain the continuous-
time formulation, which is used on rolling shutter cameras
for video structure from motion (Hedborg et al. 2012).

Figure 1. Rendered model estimated on the RC-Car dataset,
using split interpolation. Top: model rendered using Meshlab.
Bottom: Sample frames from dataset.

A useful property of the continuous pose representation,
introduced by Furgale et al. (2012), is that its derivatives
can predict measurements from an inertial measurement
unit (IMU), which simplifies fusion of data from cameras
and IMUs, and multi-sensor platforms in general (Furgale
et al. 2015). Continuous-time structure from motion is also
crucial in camera-IMU calibration when the camera has a

1Linköping University, Sweden
2Swedish Defence Research Agency, Sweden

Corresponding author:
Hannes Ovrén, FOI, Swedish Defence Research Agency, SE-164 90
Stockholm, Sweden
Email: hannes.ovren@foi.se

Prepared using sagej.cls [Version: 2016/06/24 v1.10]

2 Journal Title XX(X)

rolling shutter (Ovrén and Forssén 2015; Furgale et al. 2015;
Lovegrove et al. 2013). Compared to classical structure from
motion, the continuous-time version has a moderate increase
in complexity, due to reduced sparsity of the system Jacobian
as shown by Hedborg et al. (2012).

1.1 Contributions
In this paper we revisit the continuous-time structure from
motion problem with inertial measurements, and rethink
several design choices:

• We replace the SE(3)-based interpolation used
in the Spline Fusion method (Lovegrove et al.
2013; Patron-Perez et al. 2015) with a split
interpolation in R3 and SO(3). This leads to a
trajectory representation that does not couple rotation
and translation in a screw motion, see Figure 6, and is
better suited to e.g., hand-held camera motions.
• We compare the split and SE(3) trajectory representa-

tions theoretically, and in a series of both synthetic and
real data experiments.
• We compare the performance and efficiency of three

previously proposed ways to incorporate reprojection
time into the optimization (Hedborg et al. 2012;
Furgale et al. 2012; Lovegrove et al. 2013; Kim et al.
2016).
• For completeness, we also describe our recently

published spline error weighting approach to better
balance the residuals in the optimization problem, and
to automatically set the spline knot spacing based on
desired trajectory accuracy (Ovrén and Forssén 2018).

The main goal of the paper is to help other researchers
make informed choices when designing their continuous-
time structure from motion systems.

1.2 Related work
The classical pose interpolation approach in computer
animation is to independently interpolate the camera
orientation in the orientation group SO(3) and the camera
positions in the vector space R3 (Kim et al. 1995).

In robotic animation it is instead common to do direct
interpolation on the special Euclidean group SE(3) (Crouch
et al. 1999). Recently, such a direct interpolation on SE(3)
was applied to the continuous-time structure from motion
problem, by integrating the SE(3) spline into an optimization
framework (Lovegrove et al. 2013; Patron-Perez et al. 2015).
This formulation generalizes the orientation interpolation
of Kim et al. (1995) to SE(3). Several recent continuous-
time structure from motion papers use the SE(3) approach
(Patron-Perez et al. 2015; Kerl et al. 2015; Kim et al.
2016), while others use separate interpolation of pose
and orientation (Furgale et al. 2015; Oth et al. 2013).
In the following sections, we analyse the two approaches
theoretically, and also compare them experimentally.

Note that other approaches to continuous-time pose
representation also exist. Anderson and Barfoot (2015) use
a dynamic model, where the pose is part of the state, and
estimate state vectors for each mesurement time. Yet another
approach is to estimate the continuous-time velocity instead
of the pose (Anderson and Barfoot 2013b). In the present

study, we focus on spline based pose interpolation and do
not test either of these approaches.

When re-projecting a landmark in a frame there is an
additional complication in the rolling shutter case. As one
image coordinate (typically the image row) corresponds to
observation time, the reprojection of a landmark at time twill
not necessarily end up at the row corresponding to that time.
Early methods handled this by setting the reprojection time to
the landmark observation time (Hedborg et al. 2012; Furgale
et al. 2012). This was improved upon by Oth et al. (2013)
who also linearize the reprojection time error and convert it
to a spatial error covariance. Lovegrove et al. (2013) instead
use the Newton method to iteratively find a reprojection time
with a consistent row coordinate, and this approach is also
followed by Kerl et al. (2015). Yet another approach is to add
a projection time parameter for each landmark observation,
as well as a cost term for the projection time deviation (Kim
et al. 2016). In the experiments, we refer to this approach
as lifting, which is the common term for elimination of
alternating optimization by adding variables and constraints
(Zach 2014). No previous publication has compared these
choices, instead each paper makes a hard commitment to one
of the methods. In Furgale et al. (2015) some of the choices
are discussed, but a comparison is left for future work.

1.3 Paper overview
The remainder of the paper is organized as follows. In
section 2 we introduce the visual-inertial fusion problem
that is the context of this paper. In section 3 we describe
three methods for rolling shutter landmark projections, and
in section 4 we present two different choices of continuous
trajectory representation. Finally, in 5 we evaluate our
methods experimentally, and section 6 summarizes the paper
and gives an outlook.

Illustrations and plots are best viewed in colour.

2 Visual-inertial fusion

This work is an extension of the Spline fusion visual-inertial
fusion framework introduced by Lovegrove et al. (2013). In
this section we outline how the Spline fusion method works,
and also summarize the improvements to robustness of the
framework, introduced by Ovrén and Forssén (2018).

2.1 Video structure from motion
In structure from motion, the goal is to estimate camera
poses, and 3D structure, from a set of images. If the images
are from video, or are taken in sequence, the camera poses
can be thought of as a trajectory over time.

A camera pose consists of a rotational component R ∈
SO(3), and a translational component p ∈ R3. In standard
structure from motion, the camera path is simply the set of
all camera poses, with one pose per image, n:

Tn = (Rn,pn) . (1)

We follow the convention in Patron-Perez et al. (2015), and
define the pose such that T is a transformation from the body
(i.e. camera) to the global coordinate frame.

Prepared using sagej.cls

Ovrén and Forssén 3

x1

x2

(R1, p1)
(R2, p2)

y1,1

y2,2

(a) Global shutter projection

x1

x2
y1,1

(R(t1,1), p(t1,1))

y2,2

(R(t2,2), p(t2,2))

(b) Rolling shutter projection

Figure 2. Structure from motion under global and rolling shutter geometry. Here, xk is a 3D landmark which is projected to an
image observation, yk,n, in image n. Cameras are represented by their image plane, where we also show a limited number of the
image rows. On the camera trajectory (dashed, blue line) we indicate the time instant (global shutter), or time span (rolling shutter),
when the image was captured. This is an adaptation of an illustration that first appeared in the PhD thesis of the first author. It is
used here with permission.

The objective is then to find the camera poses, and 3D
points that minimize the cost function

J(T ,X) =
∑

Tn∈T

∑
xk∈X

‖yk,n − π(T−1n xk)‖2 . (2)

Here, X is the set of all 3D points, T is the set of all
camera poses, and yk,n is the observation of 3D point k
in image n. The function π(·) projects a 3D point in the
camera coordinate frame to the image plane, using some
camera model. This formulation of the structure from motion
objective is called bundle adjustment (Triggs et al. 2000). We
illustrate the structure from motion geometry in Figure 2a.

2.2 Rolling shutter
In the previous section, we assumed that there is one camera
pose per image, such that all pixels are captured at the same
time. Such cameras are said to have a global shutter.

Most cameras available today are however equipped with a
rolling shutter (Gamal and Eltoukhy 2005). Here, the image
is read out from the sensor one row at a time, i.e. different
rows are captured at different times. If the camera is moving
while the image is captured, then we no longer have a single
camera pose per image, but instead one camera pose per
row. We illustrate the rolling shutter geometry in Figure 2b,
where the camera pose at the row that corresponds to image
observation yk,n is denoted (R(tk,n),p(tk,n)).

It has been shown (Hedborg et al. 2012) that ignoring
rolling shutter when minimizing (2) reduces accuracy, and
can even lead to reconstruction failures.

2.3 Continuous-time structure from motion
To handle the rolling shutter problem, the standard, or
discrete-time, formulation of structure from motion in (1)
can be modified to instead model the camera trajectory as
a continuous-time function

T(t) = (R(t),p(t)) . (3)

Instead of being restricted to a set of discrete camera poses,
we can now determine the camera pose at any time instant t.

There are many ways to construct T(t), but argubly the most
common approach is to model it as some kind of spline.

Given this new representation, we modify the cost function
(2) to

J(T ,X) =
∑

yk,n∈Y
‖yk,n − π(T−1(tk,n)xk)‖2 . (4)

where Y is the set of all image observations, and X is still
the set of 3D points. However, T is no longer a set of discrete
camera poses, but is instead the set of trajectory parameters.
The exact nature of the trajectory parameters depends on how
we choose to model the trajectory.

With a continuous-time formulation, structure from
motion can be solved on both rolling shutter, and global
shutter cameras by minimizing the same cost function (4).
There are however some practical aspects regarding how
the landmarks are projected into the camera, which we will
further investigate in section 3.

Next, we will show another new possibility: incorporating
inertial measurements in the bundle adjustment formulation.

2.4 Inertial measurements
An IMU consists of a gyroscope, which measures angular
velocities, ω, and an accelerometer, which measures linear
accelerations, a. These measurements are direct observations
of motion, and are a useful addition to the trajectory
estimation problem. Lovegrove et al. (2013) therefore
extend (4) to also include residuals for the gyroscope and
accelerometer measurements:

J(T ,X) =
∑

yk,n∈Y
‖yk,n − π(T−1(tk,n)xk)‖2

+
∑
m

||ωm −∇ωT(tm)||2Wg
(5)

+
∑
l

||al −∇2
aT(tl)||2Wa

.

The operators ∇ω and ∇2
a represent inertial sensor models

which predict gyroscope and accelerometer values given the

Prepared using sagej.cls

4 Journal Title XX(X)

trajectory model T(t), using analytic differentiation. The
norm weight matrices Wg and Wa are used to balance the
three modalities fairly. We show how to set the norm weight
matrices in section 2.6.1.

For best results, the inertial sensor models, ∇ω and ∇2
a,

should model the used sensors as well as possible. At the
very least they should account for a constant measurement
bias, however, more advanced models that include e.g. axis
misalignment, or time-varying biases, are also possible. In
section 4 we derive basic inertial sensor models for the
trajectories in which we are interested.

Looking at the IMU residuals in (5), we can see that there
are two things that make it problematic to use a discrete
camera trajectory here. Firstly, the IMU measurement
timestamps do not in general coincide with the frame times.
This is partly because the IMU is usually sampling at a much
higher rate than the camera. With a trajectory consisting
only of discrete poses, it is not obvious how to extract a
pose for these intermediate timestamps. The continuous-time
formulation does not have this problem, since it allows us to
determine the camera pose at any given time instant.

Secondly, the IMU residuals require us to compute
derivatives of the trajectory, to get angular velocity
and linear acceleration, respectively. With a discrete-time
trajectory, these derivatives are not available. A continuous-
time trajectory can, however, be built such that the
required derivatives exist. To avoid derivatives, discrete time
systems commonly use sensor integration instead. However,
whenever the sensor bias is updated, the sensor integration
has to be recomputed. Much effort has thus been spent to
improve performance of sensor integration in the discrete
pose case (Forster et al. 2015).

Since we need second order derivatives to compute the
acceleration, it is crucial that the trajectory representation
T(t) is C2-continuous. A popular choice of trajectory
representation that is both C2-continuous and has compact
support is cubic B-splines (Anderson et al. 2014; Patron-
Perez et al. 2015; Furgale et al. 2012; Lovegrove et al. 2013).

2.5 Splined trajectories
Splines are an excellent choice for representing a continuous
trajectory because their derivatives can be easily computed
analytically (Unser 1999). To introduce the general concept
of splines, we will first describe it in only one dimension. In
section 4 we then describe how splines can be used to model
a continuous camera pose.

A spline consists of a set of control points, Θ =
(θ1, . . . , θK), which are positioned at knots, (t1, . . . , tK), in
time. The value of the spline at a specific time t is computed
from the control points, which are weighted by a basis
function, B(t). If the knots are evenly spaced, ∆t apart, we
have tk = k∆t, and say that the spline is uniform:

f(t|Θ) =

K∑
k=1

θkB(t− k∆t) . (6)

Fitting data to a (uniform) spline means to optimize the
spline control points, Θ, such that the shape of the spline
matches the measurements. The knot spacing, ∆t, is a hyper

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45

Knot spacing ∆t

F
it

er
ro
r

∆ta
∆tb
∆tc

0 2 4 6 8 10 12 14

Frequency [Hz]

A
m
pl
it
ud

e

H(f ; ∆ta)

H(f ; ∆tb)

H(f ; ∆tc)

Figure 3. Top: Interpolation error for a test signal x(t) as a
function of spline knot spacing ∆t. Bottom: The frequency
spectrum of x(t) (black) together with the frequency function
H(f ; ∆t) for different choices of ∆t. This illustration originally
appeared in the PhD thesis of the first author. It is used here
with permission.

parameter, and in section 2.6.2 we show one way to set it to
an appropriate value.

2.6 Spline Error Weighting
Before we attempt to minimize (5), using a splined trajectory,
there are three hyper-parameters that must be set to
apropriate values: the knot spacing, ∆t, and the IMU residual
norm matrices, Wa and Wg .

Lovegrove et al. (2013), who introduced (5), used a
fixed knot spacing value of ∆t = 0.1, and set the norm
weight matrices to the inverse covariance of the respective
measurement noises. Ovrén and Forssén (2018) showed why
these choices are suboptimal, and derived a robust method to
set these values. We will now give a summary of this method,
which is called Spline Error Weighting.

2.6.1 Selecting the IMU weights. If we use inverse
covariances to weight the inertial measurements in (5), then
we make the implicit assumption that the chosen trajectory
parameterization can perfectly represent the real motion.

However, a high ∆t (sparse spline) results in a smooth
trajectory which might not be able to fully represent
the real motion. In this case the residuals in (5) will
consist of two error terms: the measurement noise, and a
spline approximation error. The Spline fusion method only
accounts for the former, and in (Ovrén and Forssén 2018)
it is shown that ignoring the approximation error leads to
reconstruction failures.

Spline fitting can be characterized in terms of a frequency
response function, H(f), as shown by Unser et al. (1993).
In this formulation, a signal x(t) with the Discrete Fourier
Transform (DFT)X(f) will have the frequency content (H ·
X)(f) after spline fitting. In Figure 3 we show examples of
how the spline interpolation functionH(f), and the spline fit
error, depend on the choice of knot spacing.

By denoting the DFT of the frequency response function
by the vector H, and the DFT of the signal by X, we can
express the error introduced by the spline fit as:

E = (1−H) ·X . (7)

Prepared using sagej.cls

Ovrén and Forssén 5

0 50 100 150 200

−10

0

10

20
S

ig
n

a
l

7.5 10.0

2

4

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

∆t

0.0

0.5

st
d

d
ev

Predicted
σr

σr0
σn

Figure 4. Top: test signal and noise (right subplot is a detail).
Bottom: standard deviations as functions of knot spacing. σr is
the empirical residual standard deviation, σn is the noise
standard deviation, which is used in Patron-Perez et al. (2015)
to predict σr, Predicted is the Spline Error Weighting residual
noise prediction. σr0 is the residual with respect to the
noise-free signal x0(t). This illustration originally appeared in
Ovrén and Forssén (2018). Used here with permission.

This results in an approximation error variance

σ̂2
e = ‖E‖2/N = ‖(1−H) ·X‖2/N , (8)

where N is the number of samples. The residual weight
matrices in (5) are then computed as

Wr =
1

σ̂2
r

I where σ̂2
r = σ̂2

e + σ̂2
f . (9)

Here σ̂2
f is a filtered version of the sensor noise variance σ2

n,
to account for the fact that X used in (7) already contains this
noise.

In Figure 4 we illustrate a simple experiment that
demonstrates the behaviour of the Spline Error Weighting
residual error prediction (9). Figure 4 top left, shows a test
signal, x(t), which is the sum of a true signal, x0(t), and
white Gaussian noise n(t) with variance σ2

n. The true signal
has been generated by filtering white noise to produce a
range of different frequencies and amplitudes. In figure 4 top
right, we show a detail of the signal, where the added noise
is visible.

We now apply a least-squares spline fit to the signal x(t),
to obtain the spline x̂(t), defined as in (6). This is repeated
for a range of knot spacings, ∆t, each resulting in a different
residual r(t) = x(t)− x̂(t). The residual standard deviation
σr is plotted in Figure 4, bottom. We make the same plot for
the residual r0(t) = x0(t)− x̂(t) which measures the error
compared to the true signal. The resulting σr0 curve has
a minimum at approximately ∆t = 0.15, which is thus the
optimal knot spacing. The fact that the actual residual σr
decreases for knot spacings below this value thus indicates
overfitting. From this short experiment, we can also see
that the implicit assumption made in Patron-Perez et al.
(2015) that the noise standard deviation σn can predict σr is
reasonable for knot spacings at or below the optimal value.
However, for larger knot spacings (at the right side of the
plot) this assumption becomes increasingly inaccurate.

2.6.2 Selecting the knot spacing. In Patron-Perez et al.
(2015) the spline knot spacing is fixed to ∆t = 0.1. However,

instead of deciding on a knot spacing explicitly, a more
convenient design criterion is the amount of approximation
error introduced by the spline fit. To select a suitable knot
spacing, ∆t, we thus first decide on a quality value, q̂ ∈
(0, 1], that corresponds to the fraction of signal energy we
want the approximation to retain. For a given signal, x(t),
with the DFT, X, we define the quality value as the ratio
between the energy, before and after spline fitting:

q(∆t) =
‖H(∆t) ·X‖2

‖X‖2
(10)

To find a suitable knot spacing for the signal, we search for
the largest knot spacing ∆t for which q(∆t) ≥ q̂.

The signals X are based on the accelerometer, and
gyroscope measurements, since these contain information
about both orientation and translation. See Ovrén and
Forssén (2018) for further details.

Note that many other systems for adapting the knot
spacing exist, e.g. recursive splitting (Oth et al. 2013) and
hierarchical wavelet decomposition (Anderson et al. 2014).

2.6.3 Adding a robust error norm. In Patron-Perez et al.
(2015), the cost function is defined as in (5), which
assumes that the measurements are drawn from a zero-mean
(Gaussian) distribution. This is a useful model for the IMU
measurements, if we account for the sensor biases, but not
for the image measurements. The image measurements are
produced by tracking or feature matching over a sequence
of images. The associations made are not perfect, and the
risk of producing a feature track where the measurements
do not correspond to one single 3D point is significant.
Depending on the environment, we might also have moving
objects in the scene, which can be successfully tracked, but
are obviously not good landmarks.

Since such outliers do not correspond to the geometry
we are trying to estimate, their errors can easily be orders
of magnitude larger than those of the inlier set. If the
outliers are not removed, the least-squares solver will try
to bring these large errors down, even if it means that all
the other measurement residuals (those in the inlier set) are
increased. In standard structure from motion with global
shutter cameras, most outliers can be removed by enforcing
geometric consistency between observed image points, using
e.g. RANSAC (Fischler and Bolles 1981). For rolling shutter
cameras, enforcing geometric consistency is much harder,
because the images no longer have a single corresponding
camera pose. We instead accept that we will have at least
some outliers, and try to mitigate their effect. We do this by
introducing a robust error norm (Zhang 1997) which scales
the residuals such that large residuals have less impact. The
cost function is thus modified to its final formulation

J(T ,X) =
∑

yk,n∈Y
φ(yk,n − π(T−1(tk,n)xk))

+
∑
n

||ωn −∇ωT(tn)||2Wg
(11)

+
∑
l

||al −∇2
aT(tl)||2Wa

,

where φ(x) is a robust error norm. In Ovrén and Forssén
(2018), as well as in this work, φ(x) is the Huber norm.

Prepared using sagej.cls

6 Journal Title XX(X)

It should be noted that there are several other,
complementary ways to increase robustness in continuous-
time SfM. A simple method is to use backtracking
(aka. track-retrack early outlier rejection) (Forssén and
Ringaby 2010), to remove some of the outliers (we also
use this in our experiments later). Another is to narrow
down the search range in future frames using predicted
motion (Klein and Murray 2009). Finally, the classical global
shutter approach, RANSAC (Fischler and Bolles 1981), has
been adapted to specific continuous-time geometries, by
designing novel minimal solvers, e.g. for a scanning 3D
sensor with constant velocity (Anderson and Barfoot 2013a)
and a linearly translating rolling shutter camera (Saurer et al.
2015).

3 Rolling shutter projection

In (2) and (4) the landmark projection function π(·) was
defined to simply project a 3D point to its image plane
location. This formulation works fine in the case of a global
shutter camera, where there is a single camera pose for each
captured image. In a rolling shutter camera, the image rows
are captured and read out sequentially, which results in each
row having its own camera pose. This means that an image
observation

yk,n = [u, v]T = π(T−1(tk,n)xk) (12)

was captured at time

tk,n = t0n + r
v

Nv
. (13)

Here t0n is the time of the first row of frame n, Nv is the
number of image rows, and r is the rolling shutter image
readout time. r is simply the time it takes to read out a frame
from the camera sensor.

The astute reader may have noticed a problem with
equations (12) and (13): the projection time tk,n requires
knowledge of the projection row, v, but at the same time, the
projection row also depends on the projection time! One of
the contributions of this work is to analyze different methods
for solving this chicken and egg problem. Before doing that,
we will however have to replace the landmark projection
function π(·).

3.1 The rolling shutter transfer function, ψ

So far we have represented a landmark k as a 3D point xk ∈
R3. This is, however, not the only possible parameterization.
In Patron-Perez et al. (2015), whose approach we follow, a
landmark is instead represented by its first observation yk,∗
and a corresponding inverse depth, ρk.

The inverse depth formulation has the nice property that it
is easy to represent points at infinity by setting ρk = 0. It also
means that the number of landmark parameters shrinks from
3N to N , because only ρk has to be optimized for instead of
the full 3D point xk.

With the inverse depth landmark representation we
redefine the image measurement process to instead use a

rolling shutter transfer function, ψ(·):

yk,n = ψ(yk,∗,T
−1(tk,n)T(tk,∗), ρk) (14)

= π

(
T−1(tk,n)T(tk,∗)

[
π−1(yk,∗)

ρk

])
.

ψ(·) is called a transfer function because it transfers
the reference observation yk,∗, at time tk,∗, to a new
measurement at image n, using the inverse depth, ρk, and
the trajectory T(t).

For brevity, we will mostly use the shorter form ψ(t),
which should be understood as the projection (reference
observation transfer) at time t for some landmark and
trajectory.

In the following sections we describe three different
strategies to implement ψ(·). One important property of each
method, is how well they handle the rolling shutter time
deviation

ε(tk,n) = (tk,n − t0n)
Nv
r
− ψv(tk,n) . (15)

This residual measures the time deviation between the
requested projection time tk,n, and the time corresponding
to the resulting image row, ψv . We choose to express this
deviation in rows (pixels), instead of time (seconds), because
this makes it easier to compare it to the reprojection error.

An ideal rolling shutter projection model should always
satisfy the rolling shutter constraint

ε(tk,n) = 0 , (16)

but we will see that relaxing this constraint can result in other
benefits, while still producing reasonable results.

In Figure 5 we graphically compare the three different
methods, by plotting their possible image projections,
ψ(tk,n), together with the time deviation ε(tk,n).

3.2 Static projection
One simple approach to deal with the chicken and egg
problem described in section 3, is to ignore it completely.
If we denote the observed image row by vk,n, we set the
projection time to

tk,n = t0n + r
vk,n
Nv

(17)

and directly compute (14).
The advantage of this method is that it is fast to compute,

and simple to implement. The downside is that the projected
point in general will not satisfy the rolling shutter constraint
in (16). This is shown in Figure 5, where the yStatic point can
end up anywhere on the ψ(t) line, regardless of the value of
ε(t).

3.3 Newton projection
To make sure that the rolling shutter projection time
constraint in (16) holds, Patron-Perez et al. (2015) uses
Newton’s method to iteratively find the projection time.

To use Newton’s method to solve ε(t) = 0 we must
compute dε(t)

dt , which in turn requires computation of dψ(t)
dt .

The transfer function ψ(t) involves applying the camera
projection model, π(t), and its inverse, π−1(t), which means

Prepared using sagej.cls

Ovrén and Forssén 7

Column

0

vk,n

Nv

R
ow

(proportional
to

tim
e)

yk,n

yclosest

yNewton

yStatic

yLifting

Image plane with ψ(t)

Deviation

t0n

tk,n

t0n + r

T
im

e

ε(t)

Figure 5. Geometric illustration of the different approaches to
the projection time problem. The left plot shows the image plane
of the current frame together with the reprojection transfer
curve, ψ(t), which is generated from the reference observation,
yk,∗, and the current trajectory model. In this case, the actual
measured observation, yk,n, is not on the ψ(t) curve, which can
result from a measurement error, and/or a bad trajectory model.
The right plot shows the rolling shutter time deviation, ε(t),
plotted against the image row (i.e. time). In the illustration we
can see that yNewton is the point on the reprojection curve ψ(t)
that perfectly satisfies the projection time constraint ε(t) = 0,
and yLifting is a point on ψ(t) somewhere between yclosest, the
point closest to the observation, and yNewton (depending on
residual weighting). yStatic is obtained by setting the reprojection
time to the observation time, tk,n, of the landmark observation
yk,n, which can place it anywhere on the ψ(t) curve.

that the implementation can be quite tricky, as derivatives of
these functions are also required. Each iteration is thus more
expensive than the Static method, but we must also compute
multiple iterations, making this a quite slow strategy. The
advantage is of course that the rolling shutter time constraint
(16) is now satisfied, as we can see in Figure 5.

3.4 Lifting

The two previous methods are extremes when it comes to
trading accuracy for computational efficiency. Kim et al.
(2016) therefore introduced a third method that aims to be
more accurate than Static, while being faster than Newton.

This works by adding the time deviation ε(tk,n) (see
(15)) as a new residual to the optimization problem. The
unknown projection time tk,n is now an additional parameter
to optimize over.

The added residual, turns (16) into a soft constraint, which
means that at best it will match the Newton method, and at
worst give the point closest to the measured observation. See
Figure 5 for a graphical illustration.

The described method, which we denote Lifting, has
the same computational complexity as the Static method.
However, since we are adding an extra residual and
parameter per image observation, the optimization problem
grows larger.

4 Spline interpolation spaces
A time-continuous pose T(t) consists of a rotational
component R(t), and a translational component p(t),

T(t) =

[
R(t) p(t)
0T 1

]
. (18)

Nearly all continuous camera pose representations are based
on B-splines, that define the continuous pose by blending
discrete poses {Tk}K1 . In this section we introduce and
compare the two trajectory representations that are used
in this work: one interpolating over control points Tk ∈
SE(3), and one that uses separate splines for translation,
and rotation, with control points pk ∈ R3, and Rk ∈ SO(3),
respectively. We also analyze the theoretical difference
between the two when interpolating a camera pose.

4.1 A split spline in R3 and SO(3)

A regular B-spline curve in vector space Rn can be written:

p(t) =

K∑
k=1

pkB(t− k∆t) =

K∑
k=1

pkBk(t) , (19)

where pk ∈ Rn are the spline control points, and Bk(·) are
the shifted B-spline basis functions (cf. (6)), that distribute
the influence of each control point in a specific time window.

Any spline of form (19) may instead be written in
cumulative form:

p(t) = p1B̃1(t) +

K∑
k=2

(pk − pk−1)B̃k(t) , (20)

where B̃(t) are the corresponding cumulative basis
functions. Kim et al. (1995) show that this construction is
also feasible on SO(3), and propose to use unit quaternions
qk as orientation control points to interpolate

q(t) = q
B̃1(t)
1

K∏
k=2

exp(log(q∗k−1qk)B̃k(t)) . (21)

Here q∗ denotes the conjugation of the quaternion q, and
exp() and log() are mappings to Spin(3), and its tangent
space, respectively. The rationale behind (21) is the classical
SLeRP interpolation (Shoemake 1985):

q(λ) = q1 exp(λ log(q∗1q2)) λ ∈ [0, 1] . (22)

The expression (22) moves smoothly between q1 and q2 as
λ is moved from 0 to 1. By comparing (21) with (22) we see
that the Kim et al. construction is essentially a blending of
SLeRP interpolations, within each B-spline support window.

In summary, Kim et al. (1995) advocate pose interpolation
with (20) for position and (21) for orientation. We will denote
this as split interpolation, or split representation.

4.1.1 IMU predictions for the split interpolation. The IMU
predictions for the split representation is most suitably
derived using quaternion algebra, with vectors v ∈ R3

embedded in pure quaternions qv =
(
0 v

)T
. g is the

gravity vector, in the global coordinate frame. We only show
how to get the ideal gyroscope and IMU measurements from
the trajectory, and disregard other aspects of the IMU model,
such as bias, or axis misalignment.

Prepared using sagej.cls

8 Journal Title XX(X)

Gyroscope prediction(
0

∇ωT(t)

)
= qbody

ω (t) = q∗(t)qglobal
ω (t)q(t) where

(23)

qglobal
ω (t) = 2q̇(t)q∗(t) (24)

Accelerometer prediction(
0

∇2
aT(t)

)
= q∗(t)

(
0

p̈(t)− g

)
q(t) (25)

4.2 A spline in SE(3)
In Patron-Perez et al. (2015) the quaternion spline (21) is
generalized to a spline construction with control points Tk ∈
SE(3):

T(t) = exp(log(T1)B̃1)

K∏
k=2

exp(log(T−1k−1Tk)B̃k(t)) .

(26)
Just like in the quaternion case, this is a blend of linear
interpolations on the group, within each B-spline window.

In Patron-Perez et al. (2015) the poses to interpolate are
defined as transformations from the body frame to the global
frame, i.e.,

T(R,p) =

[
R p
0T 1

]
, (27)

where p is the spline position in the global frame, and R is
the rotation from the body frame to the global frame. Note
that interpolation of p and R separately, using (20) and (21)
is not equivalent to (26). The difference between the two is
revealed by expanding the SE(3) tangent, or twist (Murray
et al. 1994), that is used to move between two poses in (26):

log(T−11 T2) = log

[
RT

1 R2 RT
1 (p2 − p1)

0T 1

]
. (28)

A twist ξ = (v,ω) ∈ se(3), consists of a translation v
(with direction and scale), and an axis-angle vector ω. By
exponentiating a twist times a scalar amount θ we obtain an
element in SE(3), with the following analytic expression:

exp(ξθ) = exp
([

[ω]× v
0T 0

]
θ

)
= (29)[

exp([ω]×θ) (I− exp([ω]×θ))[ω]×v + ωωTvθ
0T 1

]
,

(30)

where [·]× is the cross product operator, i.e., [a]×b = a× b,
see (Murray et al. 1994, eq. 2.36). In analogy with this, the
twist in (28) is weighted by a basis function value B̃k(t) and
exponentiated in (26). We can thus identify θ with B̃k(t).

4.2.1 IMU predictions for SE(3). To compute the IMU
preditions for SE(3), we use the same formulation as in
Patron-Perez et al. (2015). Here Ṙ(t), ṗ(t), and p̈(t), are
the corresponding submatrices of Ṫ(t), and T̈(t) (as defined
in equations 5 and 6 in (Patron-Perez et al. 2015)). g is the
gravity vector, in the global coordinate frame. Again, we only
show how to get the ideal gyroscope and IMU measurements
from the trajectory, and disregard other aspects of the IMU
model.

SE(3) R3 and SO(3)

Figure 6. Trajectories from interpolation of two poses on SE(3)
(left) and separate interpolation in R3 and SO(3) (right). Here,
start and end poses differ by 150◦ in orientation, which exposes
the screw motion caused by the SE(3)-based interpolation.

Gyroscope prediction

∇ωT(t) = ω where (31)

[ω]× =

 0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0

 = RT (t)Ṙ(t)

(32)

Accelerometer prediction

∇2
aT(t) = RT (t)(p̈(t)− g) (33)

4.3 Why SE(3) splines are problematic
Here we describe a number of problems with choosing SE(3)
as the interpolation space.

4.3.1 Translation is linked with orientation. By identify-
ing the exponentiation of (28) with (30), when θ = 1, we
can further identify the rotation component as exp([ω]×) =
RT

1 R2 (and thus ω is parallel to the axis of rotation, which
implies ω = RT

1 R2ω). For intermediate values of θ, the
translation in (30) consists of a component parallel to the
rotation axis (i.e., ωωTv) and one orthogonal to it (i.e.,
[ω]×v) that depends on the amount of rotation. Unless the
translation is parallel to the rotation axis, there will thus
be an interaction between the rotation and the translation.
The effect of this coupling of translation and orientation
is that the camera position moves along a trajectory that
spirals about the rotation axis ω, as exemplified in Figure 6,
left. Such a motion is called a screw motion (Murray et al.
1994). In SE(3) interpolation, screw motions are simple
and require few knots, and conversely in split interpolation,
decoupled segments (where linear and anguar momentum are
conserved) such as in Figure 6, right, are simple and require
few knots.

The implicit mechanical model in SE(3)-based interpo-
lation is that the pose is manipulated by an internal force
and torque, i.e., a force applied to the same fixed reference
point, and with a torque about a fixed axis in the intrinsic
pose frame (such an action is called a wrench (Murray et al.
1994)). For separate interpolation of position and orientation
(see section 4.1), pose is instead manipulated by an external
force and torque whenever linear and angular momentums
change.

The above interpretation predicts that the SE(3) model
would be a good fit for e.g., cameras mounted at the

Prepared using sagej.cls

Ovrén and Forssén 9

0

2

4

6

P
os
it
io
n

SE(3) R3 and SO(3)

−1

0

1

V
el
oc
it
y

2 4 6 8

Time

−2

−1

0

1

A
cc
el
er
at
io
n

2 4 6 8

Time

Figure 7. The problem with acceleration in SE(3). Solid and
colored lines are the position, velocity, and acceleration as
computed from the spline interpolation. Black dashed lines are
the same quantities, but instead computed by numerical
differentiation.

end of a robot arm, and in the idealized case also car
mounted cameras e.g., dashcams. It also suggests that the
split interpolation should be prefereable whenever force and
torque are unrelated.

4.3.2 Derivative vs. body acceleration. To compute the
accelerometer predictions, (33) and (25), we must first
compute the linear acceleration of the body, denoted p̈(t).
For split interpolation this is simply the second order
derivative of the R3-spline, which does not impose any
problem. Using the SE(3) representation, p̈(t) is defined as
a submatrix of T̈(t).

In our experiments we observed that the acceleration
which is computed analytically for the SE(3)-spline (see
equation 6 in (Patron-Perez et al. 2015)) is not consistent
with the numerical derivative of the velocity.

We illustrate this problem in Figure 7. Here we have
constructed two pose trajectories: one in SE(3) and one
split in R3 and SO(3). These trajectories have equal knot
placements, and are designed to be as similar as possible.
For a trajectory to be well behaved, we expect that its
velocity is the first order derivative of the position (v(t) =
dp(t)
dt), and that acceleration is the first order derivative

of velocity (a(t) = dv(t)
dt). To test whether this holds true

for the two trajectories, we first analytically compute the
position, velocity, and acceleration, using their respective
spline formulations (Patron-Perez et al. 2015, eqns. 4-6).
We then compute velocity and acceleration again, but this
time using numerical differentiation of position and velocity,
respectively. The idea is to now check whether the numerical
and analytical quantities are equal.

Figure 7 clearly shows that both trajectory representations
behave as expected with respect to velocity, since

the analytical and numerical results are identical. For
acceleration, we can see that this holds true only for the split
interpolation, while SE(3) shows severe differences. Only
if we were to set the orientation constant (i.e. R(t) = R)
will the analytical and numerical results agree, which verifies
that the problem is indeed caused by interaction with the
orientation.

A possible explanation for this phenomenon can be
found in (Zefran and Kumar 1996). There it is noted that
the kinematic acceleration should be computed using the
covariant derivative in SE(3), and not in the embedding
space R4×4, as is done in (Patron-Perez et al. 2015). In
(Zefran et al. 1999) it is also stated that the acceleration
on SE(3) is not unique, but depends on the choice of
connection. They also define a kinematic connection that
produces a kinematically meaningful aceleration.

This means that the acceleration produced by the
analytical derivative of the SE(3)-spline used in (Patron-
Perez et al. 2015) is not necessarily the true, kinematic, body
acceleration. Accelerometer predictions computed from it,
may therefore also be inaccurate.

4.3.3 Efficiency. In general, evaluation of an SE(3) spline
is slightly more expensive, as the translation part of a spline
is evaluated using the upper right element in (30) instead
of the simpler vector difference in (20). The SO(3) part is,
however, the same for both methods.

Another efficiency issue has to do with evaluation of
derivatives. Here, the split R3 and SO(3) representation
allows for a potential speedup by choosing to compute only
the derivatives that are required for each term in the visual-
inertial cost function (11):

• To compute the gyroscope residuals (see (24) and
(32)), only the first order orientation derivative is
needed. However, when using SE(3) we must compute
the full Ṫ(t) matrix, which implicitly also calculates
the superfluous linear part.

• Computing the acceleration residuals (see (25) and
(33)) requires the linear acceleration, and orientation.
In the case of split interpolation on R3 and SO(3), the
linear acceleration in R3 is very efficient to compute,
while we only need to evaluate the orientation in
SO(3). In SE(3), we must of course compute the full
T̈(t) matrix, which requires more computations.

5 Experiments
In section 4 we described two different choices of trajectory
representation, and their properties and theoretical problems.
We will now investigate what impact the identified problems
have on practical applications. In section 3, we described
three different choices of rolling shutter projection methods.
We now want to see how these methods differ with respect
to accuracy and runtime efficiency. To investigate this, we
perform a number of experiments on both synthetically
generated, and recorded real data.

5.1 Software
To estimate the trajectory and 3D structure we used the
open source Kontiki framework (Ovrén 2018), which also
serves as a reference implementation of the framework used

Prepared using sagej.cls

10 Journal Title XX(X)

(a) The GoPro camera with
attached IMU logger

(b) The radio controlled car
used for the RC-Car dataset

Figure 8. Hardware used for experiments

in this paper. Kontiki is a general purpose continuous-
time trajectory estimation framework, built to be easy to
extend. Users choose a trajectory, add measurements (IMU,
camera, etc.), and then ask the framework to find the most
probable trajectory matching the measurements. The least-
squares solver uses the well known Ceres Solver (Agarwal
et al. 2012–2018), and for SE(3) calculations we use the
Sophus library (Strasdat and Lovegrove 2011–2017). Kontiki
is written in C++, but is mainly intended to be used with its
Python frontend.

5.2 Reconstruction method
All experiments follow the same reconstruction pipeline,
which we describe here.

First we compute a suitable knot spacing for the
splines, using the method by Ovrén and Forssén (2018),
summarized in section 2.6.2. Since that method assumes
a split spline defined on R3 and SO(3), we get one knot
spacing for each interpolation space: ∆tR3 and ∆tSO(3).
To make the comparison with SE(3) fair, we set ∆t =
min(∆tR3 ,∆tSO(3)), and use this value for all splines.
From the selected knot spacing, ∆t, we then computed
the corresponding IMU norm weights, Wa and Wg , as
summarized in section 2.6.1.

Like Ovrén and Forssén (2018), we use keyframing
to reduce the number of measurements, and consequently
the processing time. In this case, we extract keyframes
uniformly, spaced 10 frames apart. We then use the adaptive
non-maxima suppression method by Gauglitz et al. (2011) to
select the set of landmarks and observations such that each
keyframe has at most 100 observations.

Trajectories are initialized such that p(t) = 0, and R(t) =
I, for all t. Landmarks are set to points at infinity, using
ρk = 0.

The robust error norm φ(·) is the Huber norm, with
parameter c = 1.

5.3 Datasets
To show that the optimization behaves differently depending
on the choice of interpolation space we define the following
types of motion that we want to investigate:

1. Free. Camera with free orientation. The camera
orientation changes independently of the motion path.

This simulates the case of a handheld camera, or a
camera mounted on a gimbal on e.g., a UAV.

2. Forward. Camera locked in the forward direction of
the path. This is similar to e.g., a dash-cam mounted in
a car.

3. Sideways. As above but the camera is mounted
looking 90◦ left or right.

Checking both the Forward locked and Sideways locked
cases are of interest since they are known to differ in
difficulty, where the former is harder (Vedaldi et al. 2007).

5.3.1 Synthetic data. Our synthetic data was created
using the IMUSim software package (Young et al. 2011).
Since IMUSim only models IMU measurements, we
implemented an extension package1 that models rolling
shutter cameras.

For each of the motion types we generated 200 random
trajectories, with matching 3D-structure, which were then
processed by the simulator. For the Forward and Sideways
cases, the ground truth trajectories were generated using a
simple motion model, intended to emulate a driving car.

The landmarks were projected into the simulated camera
by finding a solution for ε(tk,n) = 0, using the bounded root
search method by Brent (1973).

The camera observations and IMU measurements were
perturbed by additive Gaussian noise with σimage = 0.5 and
σIMU = 0.01, respectively. We always used exactly the same
measurements for the SE(3) and split reconstructions.

The camera parameters (intrinsic matrix, lens distortion,
and rolling shutter readout time) used in the synthetic
experiments were the same as for the camera used in the real
data experiments.

5.3.2 Real data. For the real data experiments we used
two datasets2 called Handheld and RC-Car.

For both datasets, we used a GoPro Hero 3+ Black
camera, to which we attached a custom designed IMU
logger, see Figure 8a. The camera was recording using 1080p
wide mode at 29.97 Hz, while the IMU measurements were
collected at 1000 Hz. The rolling shutter image readout
time for the camera was calibrated to 31.7 ms using the
method described by Forssén and Ringaby (2010). In the
experiments, the raw IMU samples were resampled to 300
Hz to reduce processing time.

The Handheld dataset was recorded while holding the
camera and walking in a loop outdoors. Since the camera was
free to rotate, it represents the Free motion type. Example
frames from the Handheld dataset can be found in Figure 9.

In the RC-Car dataset, the camera was attached to a
radio controlled car, see Figure 8b. The camera was mounted
pointing forwards, and thus represents the Forward motion
type. The RC-car was then driven in a loop, over (relatively)
rough terrain, resulting in both high-frequency motion and
motion blur. Example frames from the RC-Car dataset can
be found in Figure 1.

Image measurements were collected by tracking FAST
features (Rosten et al. 2010) over subsequent frames,
using the OpenCV KLT-tracker (Bouguet 2000). For added
robustness, we performed backtracking and discarded tracks
which did not return to within 0.5 pixels of its starting
point. Using tracking instead of feature matching means that

Prepared using sagej.cls

Ovrén and Forssén 11

Figure 9. Rendered model estimated on the Handheld dataset,
using split interpolation. Top: model rendered using Meshlab.
Bottom: Sample frames from dataset. This figure originally
appeared in Ovrén and Forssén (2018). Used here with
permission.

landmarks that are detected more than once will be tracked
multiple times by the system.

The camera-IMU extrinsics, gyroscope bias, and time
offset, were given an initial estimate using the Crisp
(Ovrén and Forssén 2015) toolbox. Since Crisp does not
support accelerometer measurements, we then refined the
initial estimate using Kontiki, described in section 5.1, by
optimizing over a short part of the full sequence with the
accelerometer bias as a parameter to optimize.

5.4 Trajectory representation convergence
rates

We want to investigate whether the choice of trajectory
representation has any impact on the reconstruction process.
By performing many reconstructions using both trajectory
representations, we can gather statistics on how the
optimization cost changes over time. Ideally we would like
to compare reconstruction quality, but since the real dataset
does not have any ground truth, this is not possible. The use
of convergence rate as a metric is thus justified by the fact
that it allows us to compare the results from the synthetic and
the real datasets. Since a failed reconstruction should also
cause a higher cost, the reconstruction quality is implicitly
measured by the convergence metric.

In order to gather statistics also for the real datasets (of
which we have only two, longer, sequences), we split them
into a set of five seconds long, overlapping, slices, and
perform the reconstructions on these instead.

Figures 10 and 11 show the median relative cost per
iteration for the synthetic and real datasets, respectively. The
relative cost is simply the ratio between the current iteration
cost, and the initial cost at iteration 0. To give an idea on the
distribution, the shaded area shows the 40/60 percentiles of
the data. We can see that the split trajectory performs much
better than SE(3), giving a larger reduction in cost, which
indicates a better solution. This is true both for the synthetic
and real data case, and for all motion types.

In section 4.3.1 we hypothesized that SE(3) could be a
better choice for the fixed orientation cases. It is clear from

10−2

100

Free

SE(3) R3 and SO(3)

10−2

100

Forward

100 101 102

Iteration

10−2

100

Sideways

Figure 10. Convergence rate results on the synthetic dataset.
The Y-axis shows the ratio between the current iteration cost
and the initial cost at iteration 0. Solid line is the median, and the
shaded area shows the distribution using the 40/60-percentiles.

10−2

100

Handheld (free)

SE(3) R3 and SO(3)

100 101 102

Iteration

10−2

100

RC-Car (forward)

Figure 11. Convergence rate results on the real dataset. The
Y-axis shows the ratio between the current iteration cost and the
initial cost at iteration 0. Solid line is the median, and the
shaded area shows the distribution using the 40/60-percentiles.

Figure 10 that the difference between split interpolation and
SE(3) is largest on the Free dataset, which corroborates
this. However, SE(3) is clearly inferior on all datasets, both
real and synthetic, which means that the negative aspects of
SE(3), as described in section 4.3, outweigh the possible
benefit this might have had.

To get further clues to what might affect performance,
we plot the relative cost ratio for each reconstruction as
a function of the chosen knot spacing. As we can see in
figures 12 and 13 it is clear that SE(3) tends to have worse
performance for small knot spacings (denser splines).

5.5 Projection method
In section 3 we described three different methods to do
rolling shutter landmark projection. Since they differ both in
implementation complexity, and runtime efficiency, we want

Prepared using sagej.cls

12 Journal Title XX(X)

10−2

100

102

104

Free

10−2

100

102

104

Forward

0.02 0.04 0.06 0.08 0.10

Knot spacing ∆t

10−2

100

102

104

Sideways

Figure 12. Distribution of relative performance between split
interpolation on R3 and SO(3) and SE(3) on synthetic data.
The Y-axis shows the ratio between their respective relative
costs at the final iteration. Samples above the line are where
split representation performed better.

0.015 0.020 0.025 0.030 0.035 0.040

10−1

101

103

Handheld (free)

0.002 0.004 0.006 0.008 0.010 0.012

Knot spacing ∆t

10−1

101

103

RC-Car (forward)

Figure 13. Distribution of relative performance between split
interpolation on R3 and SO(3) and SE(3) on real data. The
Y-axis shows the ratio between their respective relative costs at
the final iteration. Samples above the line are where split
representation performed better.

to make sure that slower and more complex methods actually
result in better accuracy.

In this experiment we performed reconstructions on the
200 sequences in the Free dataset, for all combinations
of trajectory representations and projection methods. To
also investigate whether any of the methods are sensitive
to the available amount of data, we also performed the
reconstructions with only half the available landmarks. The
dataset consists of motions of varying magnitudes, which
means that this experiment also implicitly tests a range of
magnitudes of the rolling shutter effect. This is beacuse
the rolling shutter effect is proportional to both the image
readout time, and the magnitude of the motion.

Table 1. Mean iteration time for different choices of
interpolation space and projection method. The times are given
relative to SE(3) with Newton. Lower values are faster.

Newton Static Lifting

SE(3) 1.00 0.52 0.54
R3 and SO(3) 0.54 0.36 0.37

To evaluate the result we compared the estimated
trajectory to the ground truth trajectory using the soap-
bubble area between the two position trajectories, as
previously suggested in Hedborg et al. (2012). The optimized
trajectory was aligned to the ground truth by using Horn’s
method for the translation (Horn 1987) and the orthogonal
Procrustes method for the orientation (Golub and van Loan
1983). Since the optimization gives a trajectory with a metric
scale, we do not need to estimate any scaling factor, as was
done in Hedborg et al. (2012). For two position trajectories
f(t) and g(t), we compute the area error numerically by
trapezoid summation:

a(f ,g) =

K−1∑
k=1

atrap(f(tk), f(tk+1),g(tk),g(tk+1)), where

(34)

atrap(a,b, c,d) =
||a− c||

2
(||a− b||+ ||c− d||) . (35)

This approximation of the area is only valid when sampled
densely, which we do.

In Figure 14 we plot the trajectory error distributions
for all tested combinations. Since some reconstructions fail,
we choose to plot only an inlier set, which we define as
the samples with an error below 0.25m2. The results in
Figure 14 support the conclusion from the convergence
experiment in section 5.4: SE(3) fails more often than split
interpolation, as shown by the inlier percentage. However,
even for the inlier sets, it is clear that split interpolation
provides better reconstructions since most of the distribution
mass is concentrated at lower errors.

Looking only at the results for split interpolation we can
see that all three projection methods perform more or less
identically. Also, they all benefit from more available data,
which is expected.

5.6 Efficiency
The choice of interpolation space and reprojection method
will affect the runtime of the optimization. In Table 1 we
show the mean iteration time of our implementations on
the Free dataset, normalized with respect to SE(3) with
Newton. Note that these timings include also the time to
compute the IMU residuals.

In section 4.3.3 we hypothesized that SE(3) would be the
slowest, both because it is more computationally involved,
and because it must compute superfluous derivatives for
the IMU measurements. In our implementations, split
interpolation on R3 and SO(3) is roughly twice as fast as
SE(3) per iteration, which supports this.

The Static and Lifting reprojection methods share the
same cost function, but the latter adds parameters to the
optimization which should yield a higher per-iteration cost.

Prepared using sagej.cls

Ovrén and Forssén 13

All Half

Number of landmarks

0.00

0.05

0.10

0.15

0.20

0.25
E
rr
or

[m
2
]

76%28% 76%27% 76%24% 78%24% 78%24% 77%22%

Projection
Newton
Static
Lifting

Trajectory
R3 and SO(3)

SE(3)

Trajectory
R3 and SO(3)

SE(3)

Figure 14. Distribution of trajectory errors for different combinations of trajectory representation and landmark projection method.
The violin plots show the distribution for all errors in the inlier set, for which the error < 0.25. The percentage above each violin is
the inlier ratio.

The cost of the Newton method is linear in the number of
iterations taken, which is usually around 2.

Although performance is always contingent upon the
specific implementation, these practical results are consistent
with the principled discussion in section 4.3.3. Also, the
SE(3) (i.e., Sophus by Strasdat and Lovegrove (2011–
2017)) and split implementations both use the same Eigen
(Guennebaud et al. (2010)) linear algebra library for spline
interpolation and projection computations, ensuring a fair
comparison.

5.7 Example reconstructions
To showcase the real dataset, and to also verify that
reconstruction is possible, we performed 3D reconstruction
on the original, full, sequences. We used the pipeline from
Ovrén and Forssén (2018), which uses a split trajectory and
the Static projection method.

Since the resulting sparse reconstructions are hard to
visualize, we densified them by triangulating new landmarks
using the final trajectory. During this densification step, the
trajectory was locked, and not updated. The trajectories and
densified 3D scenes are shown in figures 1 and 9.

6 Conclusions and future work
We have looked at two different spline-based trajectory
representations, and compared them theoretically, and
experimentally in the Spline Fusion framework. From the
presented theory we hypothesized that SE(3) interpolation
would perform worse than split interpolation because
it makes translation dependent on the orientation. The
experiments support this, since the SE(3) spline converges
slower, and to a worse result than interpolation on
R3 and SO(3), while also having a much higher failure rate.
It is also clear that SE(3) is less efficient, being roughly half
as fast as split interpolation. A split R3 and SO(3) spline
also has the added flexibility of allowing splines of different
densities. Because of these findings, we recommend that
researchers use a split R3 and SO(3) spline over an SE(3)
spline for this type of application.

The three landmark projection methods all performed
well, and produced nearly identical results. There was

however a large difference in efficiency, with Newton up
to twice as slow as Lifting and Static. In the context
of continuous-time structure from motion, we therefore
recommend researchers to use the Static projection method,
since it is both the fastest, and the most easy to implement. In
other applications, e.g., when the rolling shutter readout time
is also calibrated for (Oth et al. 2013), the difference between
the methods may be larger. Here, hybrid optimization
schemes could be of interest, where a fast method is used
initially, and a more accurate one is used in the final few
iterations.

In the experiments all reconstructions were started with
a trajectory with constant position p(t) = 0 and orientation
R(t) = I, and landmarks at infinity with ρk = 0. In contrast,
discrete-time structure from motion requires a suitable
initialization to get any meaningful result. We believe that
this works because the addition of inertial measurements
gives constraints on the shape of the trajectory which can
force even a bad starting state into something useful. From
the experiments it is clear that while this initialization-
free start works quite well in general (at least for a spline
defined on R3 and SO(3)), there are failure cases. In the
future we would like to investigate more robust ways
to perform initialization for visual-inertial fusion. On the
synthetic Forward and Sideways datasets, we have observed
a correlation between the velocity of the simulated vehicle,
and the final relative cost value. We hypothesize that the lack
of a zero-velocity point makes the estimation harder, since
the integration from accelerometer measurements to velocity
assumes an initial speed of 0. If available, adding velocity
measurements to the optimization could be a way to remedy
this.

Acknowledgements

The authors would like to thank Andreas Robinson for designing
the IMU logger, and helping out with the radio controlled car.

Funding

This work was funded by the Swedish Research Council through
projects LCMM (2014-5928) and and EMC2 (2014-6227).

Prepared using sagej.cls

14 Journal Title XX(X)

Notes

1. The rolling shutter extension to IMUSim can be found at
https://github.com/hovren/rsimusim.

2. The full dataset is available from http://www.

cvl.isy.liu.se/research/datasets/

gopro-imu-dataset/

References

Agarwal S, Mierle K and Others (2012–2018) Ceres solver.
http://ceres-solver.org.

Anderson S and Barfoot TD (2013a) RANSAC for motion-distorted
3D visual sensors. In: IEEE International Conference on
Intelligent Robots and Systems (IROS13). Tokyo, Japan, pp.
2093–2099.

Anderson S and Barfoot TD (2013b) Towards relative continuous-
time SLAM. In: IEEE International Conference on Robotics
and Automation (ICRA13). Karlsruhe, Germany, pp. 1033–
1040.

Anderson S and Barfoot TD (2015) Full STEAM ahead: Exactly
sparse gaussian process regression for batch continuous-time
trajectory estimation on SE(3). In: IEEE International
Conference on Intelligent Robots and Systems (IROS15).
Hamburg, Germany, pp. 157–164.

Anderson S, Dellaert F and Barfoot TD (2014) A hierarchical
wavelet decomposition for continuous-time SLAM. In:
IEEE International Conference on Robotics and Automation
(ICRA14). Hong Kong, China, pp. 373–380.

Bailey T and Durrant-Whyte H (2006) Simultaneous localization
and mapping (SLAM): part II. IEEE Robotics & Automation
Magazine 13(3): 108–117. DOI:10.1109/MRA.2006.1678144.

Bouguet JY (2000) Pyramidal implementation of the Lucas Kanade
feature tracker. Intel Corporation, Microprocessor Research
Labs .

Brent RP (1973) Algorithms for Minimization without Derivatives,
chapter 4: An Algorithm with Guaranteed Convergence for
Finding a Zero of a Function. Englewood Cliffs, NJ: Prentice-
Hall.

Crouch P, Kun G and Leite FS (1999) The de Casteljau algorithm
on lie groups and spheres. Journal of Dynamical and Control
Systems 5(3): 397–429.

Engel J, Koltun V and Cremers D (2016) Direct sparse odometry.
In: ArXiv:1607.02565.

Fischler MA and Bolles RC (1981) Random Sample Consensus:
A Paradigm for Model Fitting with Applications to Image
Analysis and Automated Cartography. Communications of the
Association for Computing Machinery 24(6): 381–395. DOI:
10.1145/358669.358692.

Forssén PE and Ringaby E (2010) Rectifying rolling shutter video
from hand-held devices. In: IEEE Conference on Computer
Vision and Pattern Recognition. IEEE Computer Society.

Forster C, Carlone L, Dellaert F and Scaramuzza D (2015)
IMU preintegration on manifold for efficient visual-inertial
maximum-a-posteriori estimation. In: Robotics: Science and
Systems (RSS’15). Rome, Italy.

Furgale P, Barfoot TD and Sibley G (2012) Continuous-time
batch estimation using temporal basis functions. In:
IEEE International Conference on Robotics and Automation
(ICRA12).

Furgale P, Tong CH, Barfoot TD and Sibley G (2015) Continuous-
time batch trajectory estimation using temporal basis functions.
International Journal of Robotics Research 34(14): 1688–
1710.

Gamal AE and Eltoukhy H (2005) CMOS image sensors. IEEE
Circuits and Devices Magazine .

Gauglitz S, Foschini L, Turk M and Hollerer T (2011) Efficiently
selecting spatially distributed keypoints for visual tracking. In:
18th IEEE International Conference on Image Processing.

Golub GH and van Loan CF (1983) Matrix Computations.
Baltimore, Maryland: Johns Hopkins University Press.

Guennebaud G, Jacob B et al. (2010) Eigen v3.
http://eigen.tuxfamily.org.

Hedborg J, Forssén PE, Felsberg M and Ringaby E (2012) Rolling
shutter bundle adjustment. In: IEEE Conference on Computer
Vision and Pattern Recognition.

Horn BKP (1987) Solution of absolute orientation using unit
quaternions. J. Opt. Soc. Am. 4: 629–642.

Kerl C, Stückler J and Cremers D (2015) Dense continuous-time
tracking and mapping with rolling shutter cameras. In: IEEE
International Conference on Computer Vision (ICCV15).

Kim JH, Cadena C and Reid I (2016) Direct semi-dense SLAM for
rolling shutter cameras. In: IEEE International Conference on
Robotics and Automation (ICRA16).

Kim MJ, Kim MS and Shin SY (1995) A general construction
scheme for unit quaternion curves with simple high order
derivatives. In: SIGGRAPH’95. pp. 369–376.

Klein G and Murray D (2009) Parallel tracking and mapping on a
camera phone. In: ISMAR’09.

Kopf J, Cohen MF and Szeliski R (2014) First-person hyper-lapse
videos. In: ACM Transactions on Graphics (Proc. SIGGRAPH
2014).

Lovegrove S, Patron-Perez A and Sibley G (2013) Spline fusion: A
continuous-time representation for visual-inertial fusion with
application to rolling shutter cameras. In: British Machine
Vision Conference (BMVC). BMVA.

Murray RM, Li Z and Sastry SS (1994) A Mathematical
Introduction to Robotic Manipiulation. CRC Press.

Oth L, Furgale P, Kneip L and Siegwart R (2013) Rolling shutter
camera calibration. In: IEEE Conference on Computer Vision
and Pattern Recognition (CVPR13). Portland, Oregon, pp.
1360–1367.

Ovrén H (2018) Kontiki - the continuous time toolkit.
https://github.com/hovren/kontiki.

Ovrén H and Forssén PE (2015) Gyroscope-based video
stabilisation with auto-calibration. In: IEEE International
Conference on Robotics and Automation ICRA’15.

Ovrén H and Forssén PE (2018) Spline error weighting for robust
visual-inertial fusion. In: IEEE Conference on Computer Vision
and Pattern Recognition. Salt Lake City, Utah, USA: Computer
Vision Foundation.

Patron-Perez A, Lovegrove S and Sibley G (2015) A spline-based
trajectory representation for sensor fusion and rolling shutter
cameras. International Journal on Computer Vision 113(3):
208–219.

Rosten E, Porter R and Drummond T (2010) Faster and better: A
machine learning approach to corner detection. IEEE Trans.
Pattern Anal. Mach. Intell. 32(1).

Prepared using sagej.cls

https://github.com/hovren/rsimusim
http://www.cvl.isy.liu.se/research/datasets/gopro-imu-dataset/
http://www.cvl.isy.liu.se/research/datasets/gopro-imu-dataset/
http://www.cvl.isy.liu.se/research/datasets/gopro-imu-dataset/
http://ceres-solver.org
https://github.com/hovren/kontiki

Ovrén and Forssén 15

Saurer O, Pollefeys M and Lee GH (2015) A minimal solution
to the rolling shutter pose estimation problem. In: IEEE/RSJ
International Conference on Intelligent Robots and Systems.
pp. 1328–1334.

Shoemake K (1985) Animating rotation with quaternion curves. In:
Int. Conf. on CGIT. pp. 245–254.

Strasdat H and Lovegrove S (2011–2017) Sophus: C++ implemen-
tation of lie groups using eigen.
https://github.com/strasdat/Sophus.

Triggs B, Mclauchlan P, Hartley R and Fitzgibbon A (2000) Bundle
adjustment a modern synthesis. In: Vision Algorithms: Theory
and Practice, LNCS. Springer Verlag, pp. 298–375.

Unser M (1999) Splines – a perfect fit for signal and image
processing. IEEE Signal Processing Magazine 16(6): 22–38.

Unser M, Aldroubi A and Eden M (1993) B-spline signal
processing. II. Efficiency design and applications. IEEE
Transactions on Signal Processing 41(2): 834–848. DOI:
10.1109/78.193221.

Vedaldi A, Guidi G and Soatto S (2007) Moving forward in
structure from motion. In: 2007 IEEE Conference on Computer
Vision and Pattern Recognition. pp. 1–7. DOI:10.1109/CVPR.
2007.383117.

Young AD, Ling MJ and Arvind DK (2011) IMUSim: A
simulation environment for inertial sensing algorithm design
and evaluation. Proceedings of the 10th ACM/IEEE
International Conference on Information Processing in Sensor
Networks : 199–210.

Zach C (2014) Robust bundle adjustment revisited. In: European
Conference on Computer Vision ECCV’14.

Zefran M and Kumar V (1996) Planning smooth motions on SE(3).
In: Proceedings - IEEE International Conference on Robotics
and Automation, April. pp. 121–126. DOI:10.1109/ROBOT.
1996.503583.

Zefran M, Kumar V and Croke C (1999) Metrics and connections
for rigid-body kinematics. The International Journal of
Robotics Research 18(2): 242–1–242–16. DOI:10.1177/
027836499901800208.

Zhang Z (1997) Parameter estimation techniques: A tutorial with
application to conic fitting. Journal of Image and Vision
Computing 15(1): 59–76.

Prepared using sagej.cls

https://github.com/strasdat/Sophus

	1 Introduction
	1.1 Contributions
	1.2 Related work
	1.3 Paper overview

	2 Visual-inertial fusion
	2.1 Video structure from motion
	2.2 Rolling shutter
	2.3 Continuous-time structure from motion
	2.4 Inertial measurements
	2.5 Splined trajectories
	2.6 Spline Error Weighting
	2.6.1 Selecting the IMU weights.
	2.6.2 Selecting the knot spacing.
	2.6.3 Adding a robust error norm.

	3 Rolling shutter projection
	3.1 The rolling shutter transfer function,
	3.2 Static projection
	3.3 Newton projection
	3.4 Lifting

	4 Spline interpolation spaces
	4.1 A split spline in R3 and SO(3)
	4.1.1 IMU predictions for the split interpolation.

	4.2 A spline in SE(3)
	4.2.1 IMU predictions for SE(3).

	4.3 Why SE(3) splines are problematic
	4.3.1 Translation is linked with orientation.
	4.3.2 Derivative vs. body acceleration.
	4.3.3 Efficiency.

	5 Experiments
	5.1 Software
	5.2 Reconstruction method
	5.3 Datasets
	5.3.1 Synthetic data.
	5.3.2 Real data.

	5.4 Trajectory representation convergence rates
	5.5 Projection method
	5.6 Efficiency
	5.7 Example reconstructions

	6 Conclusions and future work

