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Abstract. Many of the latest smart phones and tablets come with integrated
depth sensors, that make depth-maps freely available, thus enabling new forms of
applications like rendering from different view points. However, efficient com-
pression exploiting the characteristics of depth-maps as well as the requirements
of these new applications is still an open issue. In this paper, we evaluate different
depth-map compression algorithms, with a focus on tree-based methods and view
projection as application.
The contributions of this paper are the following: 1. extensions of existing ge-
ometric compression trees, 2. a comparison of a number of different trees, 3.
a comparison of them to a state-of-the-art video coder, 4. an evaluation using
ground-truth data that considers both depth-maps and predicted frames with ar-
bitrary camera translation and rotation.
Despite our best efforts, and contrary to earlier results, current video depth-map
compression outperforms tree-based methods in most cases. The reason for this
is likely that previous evaluations focused on low-quality, low-resolution depth
maps, while high-resolution depth (as needed in the DIBR setting) has been ig-
nored up until now. We also demonstrate that PSNR on depth-maps is not always
a good measure of their utility.

Keywords: Depth map compression, Quadtree, Triangle Tree, 3DVC, View Pro-
jection

1 Introduction

In recent years depth-map compression has become an important research issue, with
the advent of commonly available depth sensors, like the Microsoft Kinect, which even
are included in some modern mobile phones. The data generated by these sensors be-
comes more and more accurate, thus enabling new applications, like efficient algorithms
to create astonishingly accurate geometric models from this type of data, e.g. [1]. Alas,
video cameras with included depth sensors (so called RGB+D sensors) generate tremen-
dous amounts of data, which only gets worse due to ever increasing image resolutions.
Thus, efficient compression algorithms are increasingly important.
While compression of RGB images and videos are well understood, depth images have
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different statistics and applications, and how to compress them is still an open re-
search topic. Some of the first depth-map compression techniques used mesh based ap-
proaches, for example [2], which suggested a hierarchical decomposition of the depth-
map to generate the mesh. Current methods include e.g. [3] which adapts a current video
coder for depth-map compression, or geometric primitives [4], which uses a block based
plane model. In this paper however we concentrate mainly on treebased methods.
Tree-based approaches have earlier be proven to be beneficial for depth-map compres-
sion. They allow alignment of the borders of the nodes with the edges of the depth-map,
thus creating sharp edges in the compressed depth-map, a property that we try to enforce
further with adaptive trees (see section 3). In contrast, most texture encoding techniques
cause fuzzy edges in depth maps, and these will cause stray points when rendering
from a different view. Also, tree-based methods usually encode plane equations and
can thus recreate slanted areas with higher fidelity, less effected by quantization step ef-
fects typically found in texture encoding. Furthermore, tree-based methods describe the
depth-map by a number of geometric primitives, which can be rendered very quickly,
compared to point wise projection as is necessary when using image based methods to
compress depth-maps. For all these reasons, trees are a natural choice for depth-map
compression for Depth based image rendering (DBIR). Finally, tree-based approaches
have previously shown superior compression performance, albeit only compared to
still-coder or (now outdated) video compression schemes in low quality scenarios. How-
ever, high quality scenarios, which are more interesting for projection purposes, have
not been examined further. Nor have comparisons been done with a current state-of-the-
art video encoder, neither have the different tree-based approaches been compared to
each other. Here, we compare quad trees[5][6][7][8], triangle trees[9][10][11], as well
as own enhancements aimed at improving coding efficiency. We also compare with the
3DVC module [14] from the latest video standard (HEVC[17]). All this is done in a
high-quality scenario, which is a requirement for good performance in DIBR.
There are different protocols for evaluation of depth-map compression quality. [12] and
[13] suggest a specific distortion metric for depth-maps, based on the quality of warped
views rather than the PSNR of the encoded depth-map itself. While the former consid-
ers a stereo scenario, the latter includes a scenario with a number of parallel camera
positions, translated along the x axis. We find the basic idea promising, but consider a
more flexible framework that allows for arbitrary camera translation and rotation. [18]
examines the influence of different warping techniques on the visual quality. Here, we
present the PSNR values of the compressed depth-maps, as well as PSNR and Multi-
Scale SSIM [16] results of projections using the compressed depth-maps, compared
to projections using the ground-truth values. We use our own, state-of-the-art projec-
tion algorithm [15] for that. For our evaluation, we use the depth extension of the Sintel
datasets [19] (see also figure 1), which provide ground-truth for RGB, depth and camera
poses. Thus, we are certain that any errors and artifacts are introduced by the algorithms
themselves rather than noise or inaccurate input data. While the results for the different
projections are interesting by themselves, it should be pointed out they could easily be
extended to similar applications (like e.g. construction of models from depth data).
The rest of the paper is organized as follows: Section 2 describes the Sintel dataset as
well as some small modifications we did to increase the accuracy of our evaluation.
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sleeping2 alley2 temple2 bamboo1 mountain1

Fig. 1. The first frames of the Sintel sequences used in this evaluation.

Section 3 describes the different tree-based methods, section 4 the used encoding meth-
ods. In section 5 we present a short introduction to our projection algorithm (for more
detail the reader is referred to our earlier paper [15]). Section 6 presents the evaluation
and the results, while section 7 closes with some concluding remarks.

2 The Sintel Dataset

For the evaluation, we use the 2015 depth extension of the Sintel datasets [19]. This
provides ground-truth data for both depth and camera poses. This is necessary to ensure
that all errors or artifacts are introduced by the algorithms themselves rather than by
noisy or erroneous input data. The Sintel data set provides two different texture streams
for each sequence: clean without any after-effects (like lightning and blur) as well as
final with the after-effects included. Due to the very nature of these effects, they remove
fine detail from the sequences, and thus the differences between the different projections
(using ground-truth depth or any of the compressed depth maps) are more pronounced
in the clean sequences. Therefore we only used the clean sequences in our evaluation.
The sequences we chose were sleeping2, alley2, temple2, bamboo1 and mountain1 (see
figure 1), since they contain only low to moderate amounts of moving objects (which
are currently not handled by our projection algorithm), but moderate to high camera
movement/rotation. Thus, they represent cases where the inaccuracies introduced by
depth-map coding are noticeable.
To adapt the sequences to our evaluation, and further increase the accuracy of the re-
sults, we did the following changes to the sequences:

1. We removed the last 4 rows of all images and depth-data, to make the height di-
visible by 16. This is done to increase the efficiency of the reference video coder,
which would otherwise have to resort to use very small blocks, which would lead
to an increased bitrate.

2. The depth map of the first frame of the sleeping 2 sequence contains some pixels
with enormously high values. These are probably introduced by pixels which were
never written to during the rendering of the scene. Since these pixels would dom-
inate both the encoding and the evaluation, we clamp them to the second highest
value found in this depth-map.

3 Tree-based Methods

The trees are divided into inner nodes and leaves, where only the inner nodes have chil-
dren (which might either be leaves or inner nodes, too), while only the leaves contain
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Fig. 2. Example for tree-based encoding, from left to right:
Input, quadtree, isoscele trees, triangle trees, adaptive quadtree, adaptive triangle trees

information describing the actual depth values, normally in the form of one plane equa-
tion per leaf. The geometric primitives which are typically chosen for tree-based coding
are triangles and quads.
Triangles are typically split in one of their sides, thus each inner node has 2 children
(and therefore triangular trees are also called binary trees). In the case of quads, they
are split in each of their four sides, thus leading to four children. Therefore, given the
same number of leaves, triangle trees will have more inner nodes and thus need more
bits to encode the actual tree structure. On the other hand, quads are only able to model
vertical and horizontal edges correctly; for depth maps containing edges with arbitrary
direction a high number of quads is needed to describe them with adequate accuracy.
Triangles on the other hand can also model slanted edges correctly (if the angle coin-
cides with the angle found in the triangles). They thus offer slightly more flexibility.
Normally only triangles are used that are isosceles and right triangles, and they are al-
ways split in the middle of their long side, thus creating two children that are isosceles
and right triangles as well. This has however two disadvantages:

1. This requires that the depth-map can be divided into a few, comparably big triangles
that are both isosceles and right triangles. If the biggest possible triangles are too
small, the reached compression will be quite small as well since it is not possible
to merge neighboring triangles that can be approximated by the same (or nearly the
same) plane equation.

2. We can only approximate edges in the depth-map that are horizontal, vertical or
diagonal. Although this is better than in the case of quad trees, we would like a
more flexible method.

Thus, we introduce here the notion of adaptive trees. In an adaptive quad tree, both the
split-positions in x and in y direction can be selected freely, i.e. they do not need to
split the sides exactly in half as is normally done in quad trees. It would of course be
possible to split all four sides of the quad freely, however this would mean that we have
to encode double the amount of data, which therefore does not seem to be beneficial.
For triangle trees, we allow them to be split in any of their sides, as well as an arbitrary
split position. Thus, we end up with 5 different trees:

1. Quadtrees, which are always split in the middle of their sides.
2. Adaptive quadtrees, where the splits are on an arbitrary position of each side. How-

ever, the split position of the two horizontal sides has to be the same, as well as the
split position of the two vertical sides has to be the same.
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3. Isoscele Trees, which are triangle trees that are always split in the middle of their
longest side.

4. Triangle Trees, which are triangle trees that are split in the middle of one of their
sides.

5. Adaptive Triangle Trees, which are triangle trees split in an arbitrary position in any
of their sides.

Examples for the different trees can be found in figure 2.
In most tree-based methods the image is divided into a number of trees first. How-
ever, here we omit this and encode the whole image directly in one tree in case of the
quadtrees, and 4 in case of the triangle trees. This enables a more flexible division of
the depth map, and thus a smaller bitrate. Using only one (resp. four) tree(s) means that
we might have to transmit a couple of more bits to describe additional splits. On the
other hand, the data needed to describe these splits is very small, compared to the data
used for the plane equation. Thus, depending on the input data we can actually save
data with our approach. The standard approach might lead to a situation where several
neighboring trees contain only one leaf with the same plane equation (or at least nearly
the same). Using only one tree, these could be merged to one leaf instead, thus avoiding
sending the same plane equation several times and therefore saving data rate, even if
using a prediction scheme for the encoding of the plane equations.
For the actual modeling of the depth-values, we use one plane equation per leaf, as is
usually done. We tried different ways to express this plane equation, and finally settled
for a differential form (i.e. describing the plane by the depth in the middle point as well
as how the depth changes in both x and y directions), since no other form offered a
higher accuracy or encoding gains, but this form simplifies the computations.

4 Depth-map Encoding

The search for an efficient encoding is done using the following algorithm:
We calculate all possible splits available in the tree. That even includes evaluating split-
ting each leaf in each of its sides (in case of the triangle trees) and each split position
(in case of the adaptive trees). We then choose the split that leads to the highest increase
in PSNR. For efficiency, we save the calculated PSNR improvements, to avoid recalcu-
lating them in later steps. This step is repeated until a given bitrate is reached.
In case of the triangle and isoscele trees, we first have to divide the image in a number
of triangles. We choose 4, with the exact middle point as the common point of all 4 tri-
angles. For the adaptive triangle tree, this point was allowed to be placed on an arbitrary
position. We only split one of the trees in each step of our algorithm.
In some cases large leaves will not be split since this only lead to a comparably small
change. To counter this, we introduced a look-ahead functionality: rather than calculat-
ing the PSNR after just one split, we calculate the PSNR after the leaf is split n number
of times. For adaptive trees this could be done in two different ways:

1. Calculate each split for itself.
2. Choose one certain split, than calculate all possible consecutive splits which could

result from this certain split, before evaluating the next split.
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Fig. 3. Depth-map of the first image from the Sintel Bamboo 1 sequence, as used for the warping.
a) (top left) input depth-map b) (top right) result using HEVC/3DVC compression, c) (middle-up,
left) using isoscele trees, d) (middle-up, right) using triangle trees, e) (middle-down, left) using
quad tree-compression, f) (middle-down, right) using triangle tree-compression and g] (bottom)
using adaptive triangle tree-compression.

While it would of course be preferably to evaluate all possible combinations, this would
increase the runtime exponentially and is therefore not feasible. On the other hand, this
means that the look-ahead functionality improved the results for the adaptive trees only
marginally. However, it improved the reached quality significantly for the non-adaptive
trees.
After the tree division was done, the final tree was encoded using the following ap-
proach: Different streams were created for the split information and the plane equations.
In the case of adaptive trees, an additional stream was added containing information
where exactly the splits occur. This was done to separate the different data, which have
different stochastic properties. In a real world application, the arithmetic encoder needs
decoding trees to be able to decode these streams, which could either be included di-
rectly in the encoded-video-sequence, or general ones might be applied, based on the
statistics derived from a high number of different input sequences. Here, we emulated
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this step instead.
Most of the compression gain of modern coding schemes is reached by applying arith-
metic coding, and thus for an accurate comparison, an arithmetic coder needs to be
added to the compression of the trees. However, developing such an encoder is unfortu-
nately time consuming and therefore out of scope for this project. Instead, we approxi-
mate the outcome of the arithmetic coding by calculating the minimum number of bits
that are required to encode the sequences. The possible symbols that were not included
in our actual tree were added with a very low probability for this calculation. This em-
ulation gives quite accurate results since modern arithmetic coder can actually reach
(or at least come very close to) this minimum. Also, since prediction did not improve
our results, it is highly unlikely that context-sensitive encoding could improve on this
either. Finally, if the trees do not perform better than other approaches using this theo-
retical optimal compression, they will never perform better, and thus there is no need to
actually develop an arithmetic coder for them.
Firstly, the tree structure was encoded. For the isoscele and the quadtrees, this was done
by using a 1 to describe an inner node, a 0 to describe a leaf. For the (adaptive) triangle
trees another symbol was added which describes in which side it was split. It was as-
sumed that each side has the same probability to be split.
Secondly, for the adaptive trees the split position were encoded, and for the adaptive
triangle tree, we add the position of the common point of the 4 trees to this encoding
stream.
We tried different value ranges for this, and settled to use the difference of the actual
position to the middle of the side. For large nodes, it is more likely that they are split
close to the middle than towards the edges. For small nodes on the other hand their sides
will be very small and thus no split far away from the middle can occur. Thus, using the
difference to the middle creates a distribution where values around zero are much more
likely, and thus enables a more efficient encoding. We were even able to wittness this
during our experiments.
Finally, the plane equations were encoded using 8 bits for each of the 3 values (depth
in the center, depth change in x and depth change in y direction, both calculated at the
edge of the segment the leaf is describing). We tried to use different schemes to predict
these values from surrounding other leaves, which however did not lead to an improved
bitrate. If two leaves have very similar plane equations, in all likelihood their parent
node will not have been split in the first place. Also, if the plane equation of two neigh-
boring leaves are very different, this might lead in an increase of the number of symbols
needed to encode the tree (if the values range from -1 to 1, and both extremes are dis-
covered in neighboring leaves, prediction might require increasing the symbol range to
a range from -2 to 2).

5 View Projection

For the projection needed in our evaluation, we use our own, state-of-the-art projection
algorithm, described in [15]. It consists of a flexible framework integrating a multi-
tude of different methods, both state-of-the-art methods as well as own contributions,
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Fig. 4. Example of the projection process:
Top row: input images, image 1 (left), image 50 (middle) and mask-image (right)
Bottom row: combined projection using ground-truth depth (left), and ground-truth frame 34
(right)

which were mainly introduced to counter artifacts we discovered during this work. This
framework was then finely tuned using an exhaustive search for the optimal parameters
and methods. In the end, it is a forward warping projection scheme, which employs an
internal upscale (by both 3 in width and height; Gaussian filtering is used for the down-
scale), and agglomerative clustering to merge different candidate pixels and projections
from different view points, among other things. Hole-filling is provided by a hierar-
chical approach using scale pyramids for a rough estimate and cross-bilateral filtering
for refinement, which can be seen as an enhancement of hierarchical hole-filling (HFF)
[20].

Table 1. Depth map quality of the different approaches measured in PSNR for the different se-
quences. An average value of the two frames of each sequence is shown.

method Sequence

Alley Bamboo Mountain Sleeping Temple

HEVC 49.07 45.53 47.49 46.05 49.51

Quad tree 32.93 25.56 31.39 32.28 30.55

Isoscele tree 29.01 21.47 28.32 28.32 26.91

Triangle tree 29.60 21.39 28.71 29.25 27.29

Adpative triangle tree 29.17 19.06 27.27 26.69 27.09

Adaptive quad tree 32.7 23.86 31.96 31.38 31.63
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6 Evaluation

We choose the depth-map of the first and the last frame from each of the test sequences
to be encoded. Thus, the projection evaluation could be done by using a combined pro-
jection from these two frames to each other frame in the sequence.
Since the depth-maps are in a floating point format, they first need to be converted to an
intermediate gray scale image to make it possible to encode them with HEVC/3DVC[14].
The lowest value in each depth-map was mapped to a luminance of -0.5 in the interme-
diate image, the highest value to 255.5 (rounding was performed always towards 0).
This mapping was done linearly. During earlier experiments we also tested an inverse
mapping, and found that it leads to similar or slightly worse results. We used the stan-
dard settings of the encoder to allow for easier comparison with our experiments. After
encoding, the luminance of the resulting images was transferred back to the original
floating point range.
Note that video encoder typically reach much higher compression even for still images
than most still image coders like e.g. JPEG2000, since these normally do not take cor-
relation between the different blocks into account, while video coders tend to predict
blocks from other blocks contained in the same (or other) image(s).
We then encoded the original depth-maps with all different tree methods, aiming at a
similar bit rate as reached by the HEVC/3DVC reference encoder. The resulting quality
levels are given in table 1 (an average of the two encoded frames from each sequence is
given), and example depth-maps are shown in figure 3. The average bitrates per frame
were 23480 for the alley sequence, 99924 for bamboo, 17208 for mountain, 29960 for
sleeping and 36264 for the temple sequence.
For the projection evaluation, we did a combined projection from the first and the last
image of each sequence to each other image of the same sequence. To reach higher
accuracy, we mask part of the projected images that block regions with holes caused
by disocclusion and regions containing moving objects. For that, we created mask im-
ages beforehand, by projecting every point of the input frames to the target frame, and
rounding the obtained x- and y-positions both up and down. To exclude moving ob-
jects from the masks, the depth of the projected point is compared to the depth of the
ground-truth image for each pixel of this 2×2 region, and only the pixels for which this
difference was below a predetermined threshold were then set in the mask. An example
of the projection process is shown in 4. The resulting PSNR and MS SSIM values of
the projected images compared to the groundtruth images are given in figure 5a) and
figure 5b) respectively.
In terms of PSNR/Multiscale SSIM for the warped images, the depth maps encoded
with the reference HEVC/3DVC performed best by far, with the exception of the moun-
tain sequence. Simple quad-trees performed surprisingly well as well. On first glance,
the PSNR values of the compressed depth-maps correspond well to the PSNR and MS
SSIM results reached by the projected images. However, this is not the case for the
mountain sequence, neither for the sleeping sequence if comparing quad- and adaptive
quad-tree. This means that the PSNR of a depth-map is not in all cases a good indicator
for the visual quality that can be reached by images that are results of image warping
using its depth values, and is thus not reliable as a performance measure in this case.
The reason why the adaptive methods performed worse than their non-adaptive coun-



10 What is the best depth-map compression for Depth Image Based Rendering?

terparts lies in the encoding algorithm. While the look-ahead functionality works very
well in the non-adaptive cases, it did not perform much better for the adaptive cases,
sometimes even worse. The reason is that a split with a certain split position might be
beneficial for the exact lookahead-level, but not for a level that is larger. Using an ex-
treme large look-ahead level, or evaluating all possible combinations might solve the
problem, but is however not feasible from a computational viewpoint.

7 Conclusion & Future Work

We have presented an evaluation of the most important tree-based compression meth-
ods, and introduced modifications aimed at increasing their quality and coding per-
formance. However, the latest standard video encoder for depth-maps (HEVC/3DVC)
outperformed the tree-based methods in all but one of the tested sequences in our high-
quality evaluation setting.
All tree-based approaches presented in this paper could potentially be improved if a bet-
ter encoder was found (especially the adaptive ones). As exhaustive search is out of the
question due to computational constraints this would require designing a better, novel
parameter search strategy. Even if such a strategy could be found it is highly question-
able if the performance could be raised to the level of HEVC/3DVC. Thus, while it still
might be preferable to use tree-based approaches in narrow, very specialized cases, such
as the low-quality setting previously explored, HEVC/3DVC will outperform them at
least in the high quality setting that is needed for accurate DIBR. It might however be
interesting to consider other recent compression schemes, e.g. [21].
While high PSNR values of compressed depth-maps often coincides with a good pro-
jection performance, we have found cases where they do not. Thus, the PSNR of a
depth-map is not a good predictor for the quality of projection using this depth-map.
To further improve depth-map compression for DIBR purposes a better error metric
should therefore be developed. One solution is of course to directly measure the pro-
jection performance. However, using one or even several high quality projections might
not always be possible due to the increased computational complexity.
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Fig. 5. Measured PSNR (a), left) and MS SSIM (b), right) between the warped images and the
original images of the sequences:
From top to bottom: alley, bamboo, mountain, sleeping and temple.
Note that the curves are ordered according to their performance in the legend, the curve with the
highest MS SSIM values is mentioned first.


