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ABSTRACT
We describe a system for active stabilization of cameras
mounted on highly dynamic robots. To focus on careful
performance evaluation of the stabilization algorithm, we
use a camera mounted on a robotic test platform that can
have unknown perturbations in the horizontal plane, a com-
monly occurring scenario in mobile robotics. We show that
the camera can be effectively stabilized using an inertial sen-
sor and a single additional motor, without a joint position
sensor. The algorithm uses an adaptive controller based
on a model of the vertebrate Cerebellum for velocity sta-
bilization, with additional drift correction. We have also
developed a resolution adaptive retinal slip algorithm that
is robust to motion blur.

We evaluated the performance quantitatively using an-
other high speed robot to generate repeatable sequences of
large and fast movements that a gaze stabilization system
can attempt to counteract. Thanks to the high-accuracy re-
peatability, we can make a fair comparison of algorithms for
gaze stabilization. We show that the resulting system can
reduce camera image motion to about one pixel per frame
on average even when the platform is rotated at 200 degrees
per second. As a practical application, we also demonstrate
how the common task of face detection benefits from active
gaze stabilization.

Keywords
gaze stabilization, active vision, Cerebellum, VOR, adaptive
control

1. INTRODUCTION
Vision systems in robots, like those in animals, have to

function in a dynamic environment. Motion of either the
imaged objects or the camera itself causes two significant
problems: (1) motion blur, which degrades vision, and (2)
disappearance of objects from the field of view, which makes
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vision impossible. In practice, these are often dealt with us-
ing quick fixes: To avoid camera motion blur, the camera
motion is restricted. To avoid object motion blur, strong il-
lumination and short shutter speeds are used (alternatively
the resolution is reduced). To prevent objects from mov-
ing out of view, wide field of view optics are used (with an
associated loss of spatial resolution).

In contrast, biological systems deal with fast motions by
active movements of the eye to counteract the unwanted
motions and keep the image stable on the retina. This active
gaze stabilization relies on measuring both the acceleration
of the head using the vestibular system and image motion in
the form of a retinal slip signal. Such a stabilization system
could, for example, allow a humanoid to recognize objects
while walking, or allow a visual SLAM system in a car to
work while driving in rough terrain (by suppressing motion
blur from bumps and vibrations).

Following the terminology in biology, we will use the word
“head” to refer to the platform on which both an actu-
ated camera and an inertial measurement unit (IMU) are
mounted. Figure 1a shows the results when the head is sub-
jected to a high speed rotation; figure 1b shows the same
motion of the head, but using our system to stabilize gaze.

In this paper we describe a complete system for active
stabilization of cameras which can reject large disturbances
and maintain drift-free object tracking. This is achieved
by using both inertial measurement and vision information
as inputs to the controller. The controller is adaptive and
does not require a system identification step or extensive
parameter tuning. It only requires a rudimentary model of
the plant and we demonstrate its ability to operate even
with a factor of two error in the given plant model DC gain.
Even under this condition, the system demonstrates rapid
adaptation to a good performance. This robustness is made
possible, in part, by the robustness of the vision algorithm
used to estimate the retinal slip, which applies crosscheck-
ing and resolution adaptivity to a standard feature tracking
algorithm. We also describe a robust method for converting
motion in the image plane into an angular velocity.

A major goal of this paper is to carefully evaluate the sta-
bilization performance and its limits. While many systems
for gaze stabilization have been reported, both in the liter-
ature and by commercial vendors, most previous work has
only reported examples of their system’s performance. In
contrast, our system’s stabilization performance was evalu-
ated using a high speed robotic platform that can generate
repeatable and general rigid motions of the head in the hor-
izontal plane.



(a) Without stabilization

(b) With our stabilization method

Figure 1: Image frames captured by the camera at 60 fps.
(a) shows a frame captured near the peak velocity (230◦/sec)
of a sinusoidal disturbance without stabilization. (b) shows a
corresponding frame captured with gaze-stabilization turned
on.

2. RELATED WORK
Most of the techniques used for active gaze stabilization,

also referred to as image or video stabilization, are targeted
at small motions. A common application is suppression of
vibrations of hand-held cameras, e.g. by moving the internal
camera optics in response to the sensed inertial motion [4,
20]. In [10], an onboard camera is stabilized against vehi-
cle vibration by panning and tilting either a set of external
mirrors or the camera itself. Alternatively, one can capture
the image as is (without stabilization) and use digital post-
processing to correct the motion blurred image [27, 12]. This
has been demonstrated to be effective in stabilizing video se-
quences captured from moving vehicles [15, 18].

With the exception of [10], the above methods are not
suited to compensating for large motions encountered, for
example, in walking. Consequently, humanoid robots often
rely on the larger range of whole camera motions to per-
form gaze stabilization [3, 24, 21, 8, 14]. The Cog robotic
platform uses a learned mapping between retinal displace-
ment to motor command to compensate for motion sensed
from optical flow and vestibular signals [3]. The Babyrobot
platform [17] uses a neural-network stabilization algorithm
incorporating both visual and inertial input [21]. The iCub
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Figure 2: Overview of the hardware setup used to test the
gaze control algorithm. The gaze controller uses only the
visual, inertial, and camera position information to com-
pensate the camera motion generated by the test platform.

robot [2] uses a chaotic controller that relies on visual feed-
back to stabilize the camera motion [8]. The camera stabi-
lization system in [24] incorporates a controller based on the
feedback error learning model of the cerebellum as proposed
by Kawato [13]. A recent model of the cerebellum uses a
recurrent architecture to solve the motor-error problem as-
sociated with feedback error learning [7, 6]. A stabilization
system based on this recurrent model was implemented on
a pneumatic-air-muscle driven eye in [14].

Purely image-based stabilization and tracking has been
studied for a long time under the name visual servoing [5].
Compared to systems using inertial sensors, visual servoing
is better suited to tracking of slow phenomena, due to the
limited sampling rate of most cameras. A notable exception
is the 1000 frames per second camera system described in
[19]. The system relies on a custom hardware setup consist-
ing of 128 Field Programmable Gate Array chips to process
an image with a resolution of 128x128 pixels. It would also
require strong scene illumination or wide lens aperture to
compensate for the high frame rate. Therefore this approach
is not suitable for many applications.

Recently, there has been increased interest in develop-
ing high performance hardware for active vision. A notable
example is reported in [25]. A head mounted camera sys-
tem was stabilized using the eye’s own Vestibulo-Ocular Re-
flex (VOR) and Optokinetic Reflex (OKR) by continuously
tracking and reproducing the eye orientation.

Gaze stabilization is also provided recently by several com-
panies for applications in UAVs and movie production. Ex-
amples include systems from Freefly, DJI, and Intuitive Aerial.
However, the details of these systems are not known.

3. SYSTEM OVERVIEW
The system hardware consists of the following major com-

ponents (see Figure 2): (1) Vision system; (2) Head, consist-
ing of a camera, motor, and IMU; (3) Test platform, a high
speed robot (3 DOF translational + 1 DOF rotational); and
(4) Control computers.



3.1 Vision System
The vision system uses a Firewire camera running at 60

frames per second with a resolution of 648 × 488 (Dragon-
fly 2, Point Grey, Richmond, BC). The lens used provides a
74◦ horizontal viewing angle. The load inertia of the cam-
era is minimized by only mounting the remote head on the
motor while the processing board remains fixed to the head
platform. The vision software described in Section 5 was
developed using the OpenCV library.

3.2 Head
The camera is actuated using a geared (262:1) DC mo-

tor (MICROMO, Clearwater, FL) approximately about its
optical center. The gearing gives the attached 16 lines per
revolution magnetic encoder a resolution of 0.02◦. This is
much higher than the backlash due to the gearbox itself.
The IMU (3DM-GX3-25, MicroStrain, Williston, VT) pro-
vides both translational acceleration and angular rate infor-
mation. It has a full-scale range of ±5g and ±300◦/sec with
a 17-bit resolution. The inertial measurements are sent to
the real-time controller through a serial (RS-232) connection
at 1000Hz.

3.3 Test Platform
The head can be used while mounted on any mobile plat-

form. However, to carefully test system performance we
built a platform consisting of a high-speed translation stage
which can move the head with 3 DOF, on which is mounted
a rotation stage (called the “neck”) that can rotate the head
in the horizontal plane.

The translation stage consists of a commercial haptic de-
vice based on the delta parallel mechanism (Force Dimen-
sion, Nyon, Switzerland). Its parallel kinematic structure
enables a high end-effector force (20 N continuous) and a
large workspace (40 cm diameter). These properties are use-
ful in moving the rest of the platform (including the head)
quickly. The base of the delta mechanism is oriented such
that it is parallel to the ground as shown in Figure 3 and
controlled through USB by a PC. The neck is driven by a
geared (14:1) DC Motor (MICROMO) with a 1024 lines per
revolution optical encoder.

3.4 Control computers
The vision software and haptic device control execute on

a generic PC. The rest of the setup is controlled by a hard
real-time controller equipped with various I/O modules run-
ning at a sample rate of 0.5 msec (xPC Target, MathWorks
Inc., Natick, MA). A 16-bit digital-to-analog board drives
the linear motor amplifiers (LSC 30/2, Maxon motor AG,
Sachseln, Switzerland) connected to the camera and neck
joint DC motors.

4. ADAPTIVE CONTROLLER FOR GAZE
STABILIZATION

Gaze stabilization requires the camera direction to be main-
tained with respect to the world or object of interest. While
the camera direction can be measured using visual informa-
tion, this is not always feasible when fast motion is involved
due to its limited sampling rate. This is an important and
subtle point: the sampling rate has to be limited due to
the optical requirements of the camera, available illumina-
tion, and delays in visual processing. However, this results

Figure 3: The head platform mounted on the robotic test
platform with the axes of motion indicated. The camera
head is actuated by a DC motor allowing a rotation about
an axis perpendicular to the ground. The test platform ro-
tational axis (at the neck joint) is parallel to the camera’s
and is colinear to one of its translational axis.

in motion blur in the images, making visual processing even
more difficult. Instead, our gaze stabilization algorithm re-
lies on the much faster IMU velocity data to drive a velocity
compensation loop. We then add an outer position tracking
loop, driven by vision information, to avoid drift.

To perform velocity compensation, we implemented a model
of the rotational VOR similar to the one described in [7]
(see box in figure 4). The model’s recurrent architecture
allows for an adaptive controller which employs gradient de-
scent learning without requiring a complicated inverse plant
model. However, unlike [7], our brainstem is a simple gain,
representing the simplest model of the plant inverse. It
performs basic compensation to the velocity sensed by the
vestibular system (inertial sensor). This simple plant inverse
model is improved through the modulation of the inputs to
the brainstem controller by the cerebellum. The cerebel-
lum is modeled as an adaptive filter trained using a distal
(sensory) signal (here the retinal slip).

Retinal slip. This term is somewhat ambiguously used in
the literature, and needs some clarification before we start.
We define the term to mean the angular velocity of the eye,
as measured using image motion. This is a vector quantity in
general, though in the planar case it is a scalar. It has units
of radians (or degrees) per second. In a discrete setting, it is
more useful to interpret this angular velocity in terms of the
image motion between consecutive video frames. Therefore
we will, on occasion, change the unit of angle to be the angle
subtended by a standard pixel (typically at the center of the
image), and unit of time to be the inter-frame interval, and
express retinal slip as pixels/frame.

Notation. We use leading superscripts and subscripts to



denote coordinate frames:
w
h ω refers to the angular velocity

ω of frame h with respect to frame w. We use w, h, l to
denote world (inertial), head, and camera frame respectively.

The plant inverse modeled by the brainstem and cerebel-
lum forms a feedforward controller to track an input angular
velocity signal, h

l ωdes. To achieve disturbance cancellation
in VOR, this signal should correspond to the negative of the
head velocity measured by the vestibular system

h
l ωdes = −w

h ω̂. (1)

The distal error signal is defined as

ec = h
l ω − h

l ωdes. (2)

One of the advantages of VOR stabilization is that this er-
ror in the motion of the camera in the head can now be
estimated from the retinal slip w

l ω̂, i.e., the residual veloc-
ity of the eye relative to the visual world (see Section 5 for
more information). This makes sense since, ignoring the
non-collinearity of the rotational axes for the moment, the
kinematic relationship between the measured variables for
rotational VOR is given by

w
l ω = w

hω + h
l ω . (3)

Substituting Eqs. 1 and 3 in Eq. 2 we have

ec = w
h ω̂ + h

l ω = w
l ω̂. (4)

This analysis could be extended to include camera transla-
tions (or equivalently, by Chasles’ theorem, rotation about a
different point). However, it is well known that errors due to
camera rotation are much more significant than those due
to translation (e.g., [27]), so we can safely ignore transla-
tions and small offsets of the rotation axis unless the visual
targets are very close to the camera.

We implement the brainstem filter as the inverse of the
motor speed constant of the DC motor driving the camera;
this is a parameter that is easily obtained from the motor
specifications. The cerebellum is implemented as a finite im-
pulse response (FIR) filter with the following transfer func-
tion

C(q) =

K∑
k=1

wkq
−kTt , (5)

where q is the forward shift operator, Tt is the tap delay,
and wk are the adaptive weights that define the filter. We
use K = 160 taps with a tap delay of Tt = 10 ms, resulting
in a filter of length 1.6 sec.

Each time a retinal slip signal arrives, the weights are
modified with the update rule

∆wk = −γu(t− kTt)ec(t) , (6)

where γ is the learning rate, appropriate values of γ were
found to be in the range γ ∈ [10−5, 3 × 10−5]. Lower val-
ues give very slow learning, and higher values result in an
unstable filter due to the noise present in the retinal slip
signal.

As the controller runs faster than the tap delay, learning
is handled asynchronously. The weights are updated as soon
as more than one tap delay has passed and a new retinal slip
value is available.

Position tracking is performed similar to Shibata et al. [24],
who add a proportional, or P-controller to convert the po-
sition error into a velocity error signal (ep). This is added
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Figure 4: Our gaze stabilization architecture consisting of
the velocity tracking inner loop (inside the dashed box) and
a position tracking outer loop. The angular rate inertial
sensor (A) provides an estimate of the rotational velocity of
the head platform. In our Cerebellum-like recurrent design,
the desired camera velocity is augmented with the output
of the cerebellum (C) and used by the brainstem (B) to
generate the plant control signal (u).

with the negative of the head velocity estimate to form the
new signal tracked by the inner velocity loop. The distal
error signal is also modified to reflect the change in desired
velocity. The modified system architecture is illustrated in
figure 4. We have in effect implemented a model of the OKR:
the camera tracks the motion of the visual field even in the
absence of head motion.

5. RETINAL SLIP ESTIMATION
Retinal slip is the main signal that facilitates learning of

both VOR, fixation and OKR. Here we describe how it is
estimated robustly.

5.1 Multi-resolution KLT
We make use of the multi-resolution KLT tracker [16,

23] as implemented in OpenCV. The KLT algorithm tracks
small rectangular patches by finding the sub-pixel shift that
aligns the Taylor expansion of each patch at two different
time instances. The original KLT tracker is accurate, but
can only handle small displacements, as it requires a good
initial guess in order to work.

The OpenCV implementation makes use of coarse to fine
search to also handle large displacements. Here alignment
happens first at a coarse resolution. This first alignment
is then used as an initial guess at the next finer resolution.
This process is repeated until the finest resolution is reached.

5.2 Crosschecking and Resolution Adaptivity
As the KLT algorithm tracks small patches, it has prob-

lems near depth-discontinuities (where half the patch may
look different in one of the frames) it also frequently matches
the wrong regions if a repetitive texture is viewed. Most of
these erroneous matches can be detected, and subsequently
eliminated by adding a crosschecking step [1]. This step
tracks each patch, first forwards and then backwards in time.
Points that do not end up where they started (within a small
tolerance) are rejected.

During fast rotational motions the KLT algorithm often



fails to find correspondences due to motion blur. For this
reason we have added a layer on top of OpenCVs KLT. This
layer detects frames where many regions fail to be tracked,
and subsequently reduces the resolution of the images fed
into KLT one octave at a time.

5.3 Estimation of 3D Camera Rotation
The coordinates of points tracked by KLT are expressed

in the image grid, and thus depend on both the focal length
and the optics of the camera. We convert the coordinates
to normalised image coordinates using calibration parame-
ters found from calibration using a planar target [28]. The
projection model assumes that image coordinates x are gen-
erated from 3D points X as:

x = f(x̃, k1, k2) where x̃ = KX . (7)

Here k1 and k2 are the lens distortion parameters, and K is
the intrinsic camera matrix, all provided by the calibration.

Using the camera calibration, we find the normalised im-
age coordinates u, as:

u = K−1f−1(x, k1, k2) . (8)

The normalised coordinates are homogeneous 3-element vec-
tors, and they have the desirable property that they are pro-
portional to the 3D coordinates X. By normalising them to
unit length, we obtain the projection of the 3D points onto
the unit sphere.

û = u/
√
u2
1 + u2

2 + u2
3 . (9)

Using projections of a set of points onto the unit sphere at
two different time instances, we can compute the relative
3D rotation of the camera using the Orthogonal Procrustes
algorithm [22]. Consider a set of normalised points U =
[û1 . . . ûN ] and the corresponding points at a different time
instant V = [v̂1 . . . v̂N ]. Assuming that the camera has
undergone a pure rotation, they should be related as U =
RV. The Orthogonal Procrustes algorithm finds the least-
squares approximation of the unknown rotation R by solving
the following problem:

arg min
R
||U−RV||2 , subject to RTR = I . (10)

Using the singular value decomposition(SVD) of the matrix
UVT the solution becomes [9]:

R = ABT where ADBT = svd(UVT ) . (11)

This is how we find the 3D camera rotation R between two
consecutive frames.

The rotation matrix R is related to the angular velocity
vector ω = [ω1 ω2 ω3]T through the matrix exponent

R = exp
(( 0 −ω3 ω2

ω3 0 −ω1
−ω2 ω1 0

)
t
)
, (12)

where t is the inter-frame time interval. For rotation matri-
ces the logarithm has a closed form expression, see e.g. [11],
result A4.6. As our camera currently only has one axis of
rotation, we compute the angular velocity about that axis
by projection of the angular velocity vector onto the camera
rotation axis, n̂,

ω = n̂Tω . (13)

Note that this gives us the angular velocity in rad/frame.

6. PERFORMANCE EVALUATION
In this section and the next we evaluate the performance

of the system. Please also see the supplementary video which
shows the system in action.

6.1 Retinal Slip Accuracy
We checked the controller stabilization performance by

first disturbing the system with a sinusoidal position signal
of varying frequency. The frequency ranges from 0.16 to 0.64
Hz with a corresponding maximum speed from 57◦/sec to
230◦/sec respectively. The maximum velocity encountered
in this test is close to the maximal speed of the camera mo-
tor. Figure 5a shows a snapshot of the disturbance velocity
profile and the corresponding stabilization response from the
camera. The retinal slip trace in the figure corresponds to
the velocity of the features as seen by the camera. We believe
that the retinal slip is the most important metric for evaluat-
ing the stabilization performance since the goal of a camera
stabilization system is to minimize image movement. Note
that the results are obtained after the cerebellar weights
have been learned. We observe that the difference between
disturbance velocity and camera velocity corresponds to the
amount of retinal slip as expected. Most of the error oc-
curs as the camera velocity lags behind during a change in
direction.

Although velocity tracking such as shown in figure 5a
is commonly used to evaluate VOR performance, an often
overlooked aspect of VOR is position tracking. The posi-
tion tracking performance of the system, corresponding to
the same time period as figure 5a is shown in figure 5b.
Here, the disturbance causes a maximum rotational displace-
ment of ±56◦ while the stabilization system tracking error
is bounded to 2◦.

The system performance for different disturbance speeds
is shown in figure 5c. As expected, the retinal slip tends
to increase as the disturbance velocity increases. On the
other hand the tracking error appears to be more robust to
changes in the disturbance speed. We see that the stabi-
lization system gives, for a disturbance up to 230◦/sec, an
RMS tracking error of less than 1◦ and a frame-to-frame
image motion of less than 1.5 pixels. Figure 1 illustrates
the motion blur effect caused by a disturbance of such speed
and the large improvement obtained from using the gaze-
stabilization system.

We also tested the stabilization algorithm with a colored
noise disturbance. This is representative to the disturbance
experienced by, for example, a vehicle travelling over a rough
terrain. In this test we use white noise bandpass filtered
from 0.5 to 1.5 Hz as a disturbance, similar to [14]. Figure
6 shows the response of the setup to the noise disturbance.
After the cerebellar weights have been learned, the system
has a retinal slip RMS of 2.1 pixels/frame.

We can clearly observe the effect of learning in the cere-
bellum by setting the gain in the brainstem path to be 50%
of the correct gain. This causes the initial stabilization per-
formance, before the cerebellum weights have been trained,
to be very undergained. As the cerebellum becomes trained,
the retinal slip quickly decreases. Figure 7 shows the speed
at which the cerebellum learns and compensates for the de-
ficient inverse plant model assumed by the brainstem.

6.2 User-driven Disturbance
Along with the dynamic platform, we have also tested
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Figure 5: Tracking performance to a sinusoidal disturbance. (a) and (b) show tracking for a disturbance with a maximum
velocity of 172◦/sec. (c) shows the stabilization performance to different peak velocities caused by sinusoidal disturbance of
various frequency. The sign of the camera velocity has been changed for easier visualization.
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Figure 6: System performance to a bandpass noise distur-
bance. The sign of the camera velocity has been changed
for easier visualization.

our gaze-stabilization system by mounting it on a wheeled-
platform and disturbing it by hand as shown in figure 8.
Even though this does not have the repeatability offered
by the dynamic platform, it provides a clear delineation
between the disturbance source and the stabilization algo-
rithm. Figure 9 shows a sample user-driven disturbance (as
measured by the IMU) and the corresponding stabilization
result.

7. EFFECT OF FAST MOVEMENTS ON COM-
PUTER VISION ALGORITHMS

Common computer vision tasks, such as detection and
recognition work better with sharp images, and their use on
mobile platforms should thus benefit from active gaze stabi-
lization. In this Section we demonstrate this with the very
common task of face detection. The OpenCV implementa-
tion of a Haar Feature-based cascade classifier, first proposed
by Viola and Jones [26], is used as the face detector.

We tested the effect of fast movements on the face detec-

0 10 20 30 40 50 60
1

2

3

4

5

6

7

Re
tin

al
 S

lip
 W

in
do

w
ed

 R
M

S 
(p

ix
el

s/
fr

am
e)

Time (s)
0 10 20 30 40 50 60

0

2

4

6

8

10

12

Tr
ac

ki
ng

 E
rr

or
 W

in
do

w
ed

 R
M

S 
(d

eg
)

Figure 7: With the brainstem gain set to 50% of the correct
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seconds window) to a sinusoidal disturbance signal with a
maximum velocity of 230◦/sec

Figure 8: The wheeled-platform used to subject our gaze-
stabilization system with user-driven disturbance.
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Figure 9: System performance to a user-driven disturbance.
The disturbance velocity is obtained directly from the an-
gular rate measurement of the IMU.

tion algorithm by placing a set of printed faces within the
camera field of view at a fixed distance from the camera. The
printed faces were used as substitute for human subjects as
they can remain fixed in the scene across the different ex-
periments for fair comparsion. We then applied sinusoidal
disturbances with increasing velocity and capture the images
recorded by the camera. This is then repeated with the faces
placed at a different distance. The captured frames in Fig-
ure 10 show that aside from the targets disappearing from
the camera field of view, significant motion blurring also
occurs at higher speeds. Both of these effects negatively
affect the face detection algorithm. Even at 46◦/sec, the
face detection algorithm already misses some of the faces,
at 230◦/sec none of the faces are detected. Figure 11 shows
the results for the frames which have the same field of view
as the undisturbed case. We see that the face detection per-
formance deteriorates as the speed of the disturbance, and
consequently motion blur, increases.

We repeated the experiment with the stabilization sys-
tem turned on. The stabilization causes the field of view
to be maintained under fast movements and also minimizes
the blurring as shown in Figure 10c. The face detection
algorithm performs consistently well even under increasing
disturbance speed (see Figure 11).

8. CONCLUSIONS
Our adaptive algorithm is composed of an inner veloc-

ity loop driven by the fast IMU velocity data and an outer
position tracking loop which provides drift correction. The
velocity loop mimics the architecture of the biological VOR
system whereby inertial information provides velocity com-
pensation and the system is continuously tuned using the
retinal slip error signal. The outer position loop uses posi-
tion information from the camera to track an object, giving
a behavior similar to the OKR. By adding a fast velocity
loop instead of just using the position loop, we can incor-
porate inertial information to compensate for fast platform
motion. This keeps our setup simple and affordable as iner-
tial measurements can be obtained at high sample rate much
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Figure 11: Relationship between disturbance velocity and
face detection performance when all 5 printed faces are
within field of view. Each data point corresponds to an
average of over 5 samples, ignoring false positives.

more easily than vision data at the same rate.
We evaluated the performance of the stabilization algo-

rithm with various types of input, including sinusoidal head
movements, colored noise head movements, and random user
inputs. We also demonstrated how active gaze stabilization
allows face recognition to work in circumstances where it
would otherwise fail completely. The reason for this is that
visual accuity can be sustained. Humanoids and other in-
teractive robots should directly benefit from this, as they
make heavy use of face detection. In general, loss of vi-
sual acuity is a real and important issue encountered in all
robotic systems with moving cameras. Similar performance
improvements are to be expected for any vision algorithm
that requires good visual acuity.
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