
Supplemental Material for Paper:
Efficient Multi-Frequency Phase Unwrapping

using Kernel Density Estimation

Felix Järemo Lawin, Per-Erik Forssén, and Hannes Ovrén

Computer Vision Laboratory, Linköping University, Sweden
{felix.jaremo-lawin, per-erik.forssen, hannes.ovren}@liu.se

1 Introduction

This document is a supplement to the ECCV submission “Efficient Multi-Frequency
Phase Unwrapping using Kernel Density Estimation”. Here we describe the used
parameter tuning and dataset generation in more detail. We also provide more
examples of how the method works in difficult cases such as large-depth scenes
and outdoor scenes. We also give more examples of meshes produced by KinFu
when fed with output from the proposed KDE method and from libfreenect2.

2 Dataset generation

2.1 Ground Truth for Unwrapping

We have generated three ground truth datasets, that are used to quantitatively
evaluate the correctness of the phase unwrappings. The accuracy of the ground
truth must be good enough to tell a correct unwrapping from an incorrect one.
As described section 3.2 in the paper [1] we have 30 unwrapping candidates in
an 18.75m range. Thus, the distance between the candidates is on average 60cm.
To ensure that no incorrect unwrappings are accidentally counted as inliers, we
require an accuracy of at least half the candidate distance, i.e. better than 30cm.

The required accuracy can easily be met using the Kinect sensor itself. By
fusing many frames from the same camera pose, we can reduce the amount
of unwrapping errors, and also increase the accuracy in correctly unwrapped
measurements to a minimum. By also fusing data from multiple poses we can
detect and suppress multipath responses, which vary with camera position.

In practise we implement this as follows. For a given scene we place the
camera in a 3×3 positions, with different elevation, and sideways position. During
capture, the Kinect is mounted on a tripod, and 100 frames in each pose are
acquired, and fused to a single frame using per-pixel expectation maximization
(EM) of 4 Gaussian mixture models (GMM) [2]. In the fusion, each sample
is weighted with its unwrapping likelihood, see equation 15 in the paper. The
GMM is initialized by a channel encoded temporal average of the samples using
32 channels and a cos2-kernel [3]. The average standard deviation after the GMM
step is between 4cm and 10cm.

2 Felix Järemo Lawin, Per-Erik Forssén, Hannes Ovrén

Fig. 1. Ground truth generation for kitchen dataset: Left: Single depth frame without
outlier rejection. Large depth values on table are incorrect, and due to multi-path
effects. Center: Single view depth fusion of 100 frames. Right: Final ground truth image
from a multiview depth fusion of 9 single view depth fusion images, which are registered
and splatted into the chosen reference view. Inconsistent pixels are suppressed, here
highlighted in green.

The acquired depth values are then used to produce a point cloud for each
camera pose. These point clouds are then aligned using GMM based RGB-D
point-cloud alignment [4], and finally projected and splatted [2] into the depth
image of a chosen reference view. Each pixel now contains a set of depth values,
each with a mixture weight from the EM procedure, and from the splatting, a
spatial Gaussian weight on the distance to the pixel. The output depth is se-
lected as the most probable depth point cluster mean from a mean-shift filtering
procedure [2] using a Gaussian kernel with σ = 7.5cm. In 98% of the pixels we
had 4 or more camera poses within the 7.5cm radius, and thus the accuracy of
the estimate is 7.5/

√
4 = 3.75 or better, using the reasonable assumption that

data transferred from different camera poses are independent. Points where the
mean-shift KDE value is low are suppressed. An example of the ground truth
generation for the kitchen dataset is shown in figure 2.1. As can be seen the
noisy pixels in the corners of the image as well as the multipath pixels on the
table is either corrected or suppressed.

3 Parameter tuning

The parameters of the likelihood weight in our method are tuned by evaluating
many values along each parameter axis on the library dataset. The following
parameters were found to maximize the number of inliers at a 1% outlier rate:

– the kernel scale h in the KDE kernel was set to h = 0.1547.
– the spatial support r was set to r = 5. (the Gaussian has a spatial support

of (2r + 1)× (2r + 1) and σ = r/2.)
– the number of hypotheses |I| was set to 2.
– the scalings s1 and s2 in the unwrapping likelihood, and the phase likelihood

were set to s1 =
√

2, and s2 =
√

3. (in practise, the parameters s21 = 2 and
s22 = 3 are used on the GPU, to save floating point operations).

Supplement: Efficient Multi-Frequency Phase Unwrapping using KDE 3

– the coefficients (γ0, γ1, γ2) in the amplitude mapping when the bilateral filter
is used were fitted using least squares as discussed in the main paper [1].

Below we discuss the behaviour of these parameters. In figure 2 we also
provide plots for a selection of values that deviate from the chosen ones along
one axis at a time.

the kernel scale h: This parameter should be adapted to the distance be-
tween hypotheses, which is roughly the maximal range divided by 30 for the
Kinect v2. From this base the parameter could be varied and the performance
could be measured on the tuning dataset, see figure 2. As can be seen the dif-
ference is small between 3 of the curves, however the proposed parameter value
of h = 0.1547 is marginally better.

spatial support r: As discussed in the main paper, larger the size of the
spatial support the slower the calculations. The setting with the smallest spatial
support is inferior to the others in performance. There seems to be an upper
limit to the improvement of performance as the spatial support gets larger. The
proposed spatial support of 11× 11, i.e. r = 5 and σ = 2.5 (always set to r/2),
is a good trade off, which also results in a confidence that is better at ordering
the pixels for thresholding. For better speed however, a smaller spatial support
may also be interesting.

the likelihood scales s1 and s2: These parameters should correspond to
the standard deviations of the unwrapping error and the phase measurements
respectively. By using the statistics of these on the tuning dataset and the plots
in figure 2, reasonable values were found.

4 Examples of output depth maps

In the main paper we gave quantitative measures of how the proposed KDE
method improves over libfreenect2 on large depth scenes, when using the full
depth range of 18.75m. Here we complement this by providing a few qualitative
examples of performance for the two methods. In figure 3 we compare the output
from the two methods on two large-depth indoor scenes, and on two outdoor
scenes. In the third row we can notice that the bike leaning on the wall is almost
removed in the libfreenect2 output while detailed structures are visible in the
output from the KDE method. See also the supplied video for more comparative
examples of performance.

As can bee seen in the second row of figure 3 there seems to be a fattening
artifact around edges of foreground objects. This only seems to occur when the
background is noisy and partly suppressed such as on the the plant and the
grid railing in this scene. However, this is merely a defect caused by multi-path
interference and leakage in the sensor itself. In figure 4 it can be seen that
the depth output from the libfreenect2 without outlier rejection has the same
fattening artifacts, which verifies that this is not caused by our method. For
the full libfreenect2 method many of these pixels are suppressed, but not all of
them as can be seen in figure 3. One way to reduce the impact of fattening in

4 Felix Järemo Lawin, Per-Erik Forssén, Hannes Ovrén

10
-8

10
-6

10
-4

10
-2

10
0

outlier rate

0

0.2

0.4

0.6

0.8

1

in
li
e
r

ra
te

h=0.1547

h=0.0495

h=0.0990

h=0.9900

10
-8

10
-6

10
-4

10
-2

10
0

outlier rate

0

0.2

0.4

0.6

0.8

1

in
li
e
r

ra
te

r=5

r=3

r=1

r=8

10
-8

10
-6

10
-4

10
-2

10
0

outlier rate

0

0.2

0.4

0.6

0.8

1

in
li
e
r

ra
te

s1=1.4142

s1=3.1623

s1=4.4721

s1=0.3162

10
-8

10
-6

10
-4

10
-2

10
0

outlier rate

0

0.2

0.4

0.6

0.8

1

in
li
e
r

ra
te

s2=1.7321

s2=1

s2=0.3162

s2=3.1623

Fig. 2. Performance plots on the library dataset for varied parameter settings. In
each plot, one parameter is varied and the others are set to the chosen values. Top left:
varied h. Top right: varied r. Bottom left: varied s1. Bottom right: varied s2. The red
curve in each plot corresponds to the chosen parameter settings. Values were chosen
to maximise the inlier rate at 1% outlier rate.

our method would be to post-process the output using a similar approach as in
libfreenect2, see [5].

5 Examples of KinFu meshes

We have implemented a data-logger that saves all output from the Kinect v2 to
a file for later playback. This allows us to feed the Kinect Fusion implementation
KinFu in the Point Cloud Library [6] with Kinect v2 output unwrapped with
both libfreenect2 and the proposed KDE method. Figure 7 in the main paper [1]
gives one such example in the lecture scene, here extended with a second view in
figure 5. In figure 6 we give an example from a KinFu run in the outdoor scene
shown in figure 3, third row. Both examples show that our method produces
meshes with more coverage and less noise than libfreenect2.

Supplement: Efficient Multi-Frequency Phase Unwrapping using KDE 5

Fig. 3. Single frame output comparisons. First two rows show output on scenes with
greater than 18.75m depth range, and the last two rows show outdoor scene outputs.
Left column: libfreenect2. Center column: proposed KDE method. Right column: corre-
sponding RGB images. Pixels suppressed by outlier rejection are shown in green. The
proposed KDE method has more valid depth points than libfreenect2 resulting in a
denser and more well defined depth scene. While the suppressed areas are clean from
outliers for the proposed KDE method, the libfreenect2 images are covered in salt and
pepper noise.

References

1. Anonymous: Efficient multi-frequency phase unwrapping using kernel density esti-
mation. the paper (2016)

2. Szeliski, R.: Computer Vision: Algorithms and Applications. Springer-Verlag New
York, Inc. (2010)

3. Forssén, P.E.: Low and Medium Level Vision using Channel Representations. PhD
thesis, Linköping University, Sweden, SE-581 83 Linköping, Sweden (March 2004)
Dissertation No. 858, ISBN 91-7373-876-X.

6 Felix Järemo Lawin, Per-Erik Forssén, Hannes Ovrén

Fig. 4. Fattening effects in libfreenect2 and the proposed KDE method. Left:
libfreenect2 without outlier rejection. Center: proposed KDE method. Right: corre-
sponding RGB image. Notice that the same fattening artifacts on foreground objects
is present in both methods.

Fig. 5. KinFu run from lecture, see figure 7 in the main paper [1], scene with 200
frames. Top: unwrapped with libfreenect2. Bottom: unwrapped with proposed KDE
method. Left and right columns show different views of the same mesh. Our method
has more coverage of the scene and less noise, seen as scattered vertices around the
model.

4. Danelljan, M., Meneghetti, G., Khan, F., Felsberg, M.: A probabilistic framework for
color-based point set registration. In: IEEE International Conference on Computer
Vision and Pattern Recognition (CVPR’16). (2016)

5. Open Source: libfreenect2, library for Kinect v2.
https://github.com/OpenKinect/libfreenect2 (2015)

6. Rusu, R.B., Cousins, S.: 3D is here: Point Cloud Library (PCL). In: IEEE ICRA.
(May 9-13 2011)

Supplement: Efficient Multi-Frequency Phase Unwrapping using KDE 7

Fig. 6. Outdoors KinFu run with 100 depth frames, see figure 3 third row, for exam-
ples input and corresponding RGB frames. Top: unwrapped with libfreenect2, Bottom:
unwrapped with proposed KDE method. Left and right columns show different views
of the same mesh. Our method has more coverage and less noise. See for example the
tree and the ground. Notice also the wall far in the background, on which our method
produces significantly more valid measurements than libfreenect2.

